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Abstract

Data mining is an emerging research area, whose goal is to extract significant patterns or interesting
rules from databases. High-level inference from large volumes of routine business data can
provide valuable information to businesses, such as customer buying patterns, shelving criterion in
supermarkets and stock trends. Many algorithms have been proposed for data mining of association
rules. However, research so far has mainly focused on sequential algorithms.

In this paper we present parallel algorithms for data mining of association rules, and study
the degree of parallelism, synchronization, and data locality issues on the SGI Power Challenge
shared-memory multi-processor. We further present a set of optimizations for the sequential and
parallel algorithms. Experiments show that a significant improvement of performance is achieved
using our proposed optimizations. We also achieved good speed-up for the parallel algorithm, but
we observe a need for parallel I/O techniques for further performance gains.
Keywords: Data Mining, Association Rules, Load Balancing, Hash Tree Balancing, Hashing,
Shared-Memory Multi-processor
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1 Introduction

With large volumes of routine business data having been collected, business organizations are
increasingly turning to the extraction of useful information from such databases. Such high-level
inference processes may provide information on customer buying patterns, shelving criterion in
supermarkets, stock trends, etc. Data mining is an emerging research area, whose goal is to extract
significant patterns or interesting rules from such databases. Data mining is in fact a broad area
which combines research in machine learning, statistics and databases. It can be broadly classified
into these categories [1]: Classification (Clustering) – finding rules that partition the database
into finite, disjoint, and previously known (unknown) classes; Sequences – extracting commonly
occurring sequences in ordered data; and Associations (a form of summarization) – find the set of
most commonly occurring groupings of items. In this paper we will concentrate on data mining
for association rules. Application domains for association rules range from decision support to
telecommunications alarm diagnosis, and prediction. The prototypical application is the analysis
of sales data.

The problem of mining association rules over basket data was introduced in [2, 3]. It can be
formally stated as: Let I � fi1� i2� � � � � img be a set of m distinct attributes, also called items.
Each transaction T in the database D of transactions, has a unique identifier, and contains a set
of items, such that T � I . An association rule is an expression A � B, where A�B � I , are
sets of items called itemsets, and A � B � �. Each itemset is said to have a support s if s% of
the transactions in D contain the itemset. The association rule is said to have confidence c if c%
of the transactions that contain A also contain B, i.e., c � support�A � B��support�A�, i.e., the
conditional probability that transactions contain the itemset B, given that they contain itemset A.
Data mining of association rules from such databases consists of finding the set of all such rules
which meet the user-specified minimum confidence and support values.

The data mining task for association rules can be broken into two steps. The first step consists
of finding all large itemsets. The second step consists of forming implication rules with a user
specified confidence among the large itemsets found in the first step. Since this step is not
compute intensive [5], henceforth we will focus only on the first step. The general structure of
most algorithms for mining associations is that during the initial pass over the database the support
for all single items (1-itemsets) is counted. The large 1-itemsets are used to generate candidate
2-itemsets. The database is scanned again to obtain occurrence counts for the candidates, and the
large 2-itemsets are selected for the next pass. This iterative process is repeated for k � 3� 4� � � � �
until there are no more large k-itemsets to be found.

1.1 Related Work

Many algorithms for finding large itemsets have been proposed in the literature since the introduction
of this problem in [2] (AIS algorithm).

In [9] a pass minimization approach was presented, which uses the idea that if an itemset belongs
to the set of large �k � e�-itemsets, then it must contain

�
k�e
k

�
k-itemsets. The Apriori algorithm

[5] also uses the property that any subset of a large itemset must itself be large. These algorithms
had performance superior to AIS and are also polynomial. The DHP algorithm [10] uses a hash
table in pass k to do efficient pruning of �k � 1�-itemsets. The Partition algorithm [13] minimizes
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I/O by scanning the database only twice. In the first pass it generates the set of all potentially large
itemsets, and in the second pass the support for all these is measured. The above algorithms are all
specialized black-box techniques which do not use any database operations. Algorithms using only
general-purpose DBMS systems and relational algebra operations have also been proposed [7, 8].
The work closest to this from the machine learning literature is the KID3 algorithm presented in
[12]. The main problem with their approach is that it may take exponential time in the worst case
as opposed to the polynomial time algorithms presented in the above papers.

There has been very limited work in parallel implementations of association algorithms. In
[11], a parallel implementation of the DHP algorithm [10] is presented. However only simulation
results on a shared-nothing or distributed-memory machine like IBM SP2 were presented. Parallel
implementations of the Apriori algorithm on the IBM SP2 were presented in [4]. There has been
no study on shared-everything or shared-memory machines to-date.

1.2 Contribution

In this paper we present parallel implementations of the Apriori algorithm on the SGI Power
Challenge shared-memory multi-processor. We study the degree of parallelism, synchronization,
and data locality issues in parallelizing data mining applications for such architectures. We also
present a set of optimizations for the sequential Apriori algorithm, and for the parallel algorithms
as well.

The rest of the paper is organized as follows. In the next section we briefly describe the
Apriori algorithm. Section 3 presents a discussion of the parallelization issues for each of the
steps in the algorithm, while section 4 presents some effective optimizations for mining association
rules. Section 5 presents our experimental results for the different optimization and the parallel
performance. Finally we conclude in section 6.

2 The Apriori Algorithm

The naive method of finding large itemsets would be to generate all the 2m subsets of the universe of
m items, count their support by scanning the database, and output those meeting minimum support
criterion. It is not hard to see that the naive method exhibits complexity exponential in m, and is
quite impractical. Apriori follows the basic iterative structure discussed earlier. However the key
observation used is that any subset of a large itemset must also be large. During each iteration of
the algorithm only candidates found to be large in the previous iteration are used to generate a new
candidate set to be counted during the current iteration. A pruning step eliminates any candidate
which has a small subset. The algorithm terminates at step t, if there are no large t-itemsets. The
general structure of the algorithm is given in figure 1, and a brief discussion of each step is given
below (for details on its performance characteristics, we refer the reader to [5]). In the figure Lk

denotes the set of large k-itemsets, and Ck the set of candidate k-itemsets.
In candidate itemsets generation, the candidates Ck for the k-th pass are generated by joining

Lk�1 with itself, which can be expressed as:

Ck � fx j x�1 : k � 2� � A�1 : k � 2� � B�1 : k � 2�� x�k � 1� � A�k � 1��

x�k� � B�k � 1�� A�k � 1� � B�k � 1�� where A�B � Lk�1g
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L1 � flarge 1-itemsets g;
for (k � 2;Lk�1 	� �; k ��)

/*Candidate Itemsets generation*/
Ck = Set of New Candidates;
/*Support Counting*/
for all transactions t � D

for all k-subsets s of t
if (s � Ck) s�count��;

/*Large Itemsets generation*/
Lk � fc � Ckjc�count 
 minimum supportg;

Set of all large itemsets =
S
k Lk;

Figure 1: The Apriori Algorithm

where x�a : b� denotes items at index a through b in itemset x. Before inserting x into Ck, we test
whether all �k � 1�-subsets of x are large. This pruning step eliminates any itemset at least one
of whose subsets is not large. The candidates are stored in a hash tree to facilitate fast support
counting. An internal node of the hash tree at depth d contains a hash table whose cells point to
nodes at depth d � 1. The size of the hash table, also called the fan-out, is denoted as F . All the
itemsets are stored in the leaves. To insert an itemset in Ck , we start at the root, and at depth d
we hash on the d-th item in the itemset until we reach a leaf. If the number of itemsets in that
leaf exceeds a threshold value, that node is converted into an internal node. We would generally
like the fan-out to be large, and the threshold to be small, to facilitate fast support counting. The
maximum depth of the tree in iteration k is k.

To count the support of candidate k-itemsets, for each transaction T in the database, we form
all k-subsets of T in lexicographical order. This is done by starting at the root and hashing on items
0 through �n � k � 1� of the transaction. If we reach depth d by hashing on item i then we hash
on items i through �n � k � 1� � d. This is done recursively, until we reach a leaf. At this point
we increment the count of all itemsets in the leaf that are contained in the transaction (note: this is
the reason for having a small threshold value).

For large itemsets generation, each itemset in Ck with minimum support is inserted into Lk , a
sorted linked-list denoting the large k-itemsets. Lk is used in generating the candidates in the next
iteration.

3 Parallel Data Mining: Design Issues

In this section we present the design issues in parallel data mining for association rules on shared
memory architectures. We separately look at the two main steps – candidate generation, and support
counting. In our algorithm large itemsets generation is embedded in the support counting wherein
as soon as a candidate has reached the minimum support it is added to the large set.
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3.1 Candidate Itemsets Generation

3.1.1 Optimized Join and Pruning

Recall that in iteration k, Ck is generated by joining Lk�1 with itself. The naive way of doing the
join is to look at all

�
jLk�1j

2

�
combinations. However, since Lk�1 is lexicographically sorted, we can

partition the itemsets in Lk�1 into equivalence classes S0� � � � � Sn, based on their common k � 2
prefixes (class identifier). k-itemsets are formed only from items within a class by taking all

�
jSij

2

�

item pairs and prefixing them with the class identifier. In general we have to consider
Pn

i�0

�
jSij

2

�

combinations instead of
�
jLk�1j

2

�
combinations.

While pruning a candidate we have to check if all k of its �k � 1�-subsets are large. Since the
candidate is formed by an item pair from the same class, we need only check for the remaining
k � 2 subsets. Furthermore, assuming all Si are lexicographically sorted, these k � 2 subsets must
come from classes greater than the current class. Thus, to generate a candidate, there must be at
least k � 2 equivalence classes after a given class. In other words we need consider only the first
n� �k � 2� equivalence classes.

Adaptive Hash Table Size (F ) : Having equivalence classes also allows us to accurately adapt
the hash table size F for each iteration. For iteration k, and for a given threshold value T , i.e.,
the maximum number of k-itemsets per leaf, the total k-itemsets that can be inserted into the
tree is given by the expression: T Fk. Since we can insert up to

Pn
i�0

�
jSij

2

�
itemsets, we get the

expression: T Fk 

Pn

i�0

�
jSi j

2

�
. This can be solved to obtain:

F 


�
�
Pn

i�0

�
jSij

2

�

T

�
A

1�k

3.1.2 Computation Balancing

Let the number of processors P � 3, k � 2, and L1 � f0� 1� 2� 3� 4� 5� 6� 7� 8� 9g. There is
only 1 resulting equivalence class since the k � 2 (� 0) length common prefix is null. The
number of 2-itemsets generated by an itemset, called the work load due to itemset i, is given
as wi � n � i � 1, for i � 0� � � � � n � 1. For example, itemset 0 contributes nine 2-itemsets
f01� 02� 03� 04� 05� 06� 07� 08� 09g. There are different ways of partitioning this class among P
processors.

Block partitioning : A simple block partition generates the assignment A0 � f0� 1� 2g, A1 �
f3� 4� 5g andA2 � f6� 7� 8� 9g, whereAp denotes the itemsets assigned to processor p. The resulting
workload per processor is: W0 � 9� 8� 7 � 24, W1 � 6� 5� 4 � 15 andW2 � 3� 2� 1 � 6,
whereWp �

P
i�Ap

wi. We can clearly see that this method suffers from a load imbalance problem.

Interleaved partitioning : A better way is to do an interleaved partition, which results in the
assignment A0 � 0� 3� 6� 9, A1 � 1� 4� 7 and A2 � 2� 5� 8. The work load is now given as

5



W0 � 9 � 6 � 3 � 18, W1 � 8 � 5 � 2 � 15 and W2 � 7 � 4 � 1 � 12. The load imbalance is
much smaller, however it is still present.

Bitonic Partitioning (Single Equivalence Class): In [6] we propose a new partitioning scheme,
called bitonic partitioning, for load balancing that can be applied to the problem here as well. This
scheme is based on the observation that the sum of the workload due to itemsets i and �2P � i� 1�
is a constant:

wi � w2P�i�1 � n� i� 1 � �n� �2P � i� 1�� 1� � 2n� 2Pt� 1

We can therefore assign itemsets i and �n� i� 1� as one unit with uniform work (2n� 2Pt� 1).
If n mod 2P � 0 then perfect balancing results. The case n mod 2P 	� 0 is handled as described
in [6].

The final assignment is given as A0 � f0� 5� 6g,A1 � f1� 4� 7g, and A2 � f2� 3� 8� 9g, with
corresponding workload given as W0 � 9 � 4 � 3 � 16, W1 � 8 � 5 � 2 � 15 and W2 �
7 � 6 � 1 � 14. This partition scheme is better than the interleaved scheme and results in almost
no imbalance.

Bitonic Partitioning (Multiple Equivalence Classes): Above we presented the simple case of
C1, where we only had a single equivalence class. In general we may have multiple equivalence
classes. Observe that the bitonic scheme presented above is a greedy algorithm, i.e., we sort all
the wi (the work load due to itemset i), extract the itemset with maximum wi, and assign it to
processor 0. Each time we extract the maximum of the remaining itemsets and assign it to the least
loaded processor. This greedy strategy generalizes to the multiple equivalence class as well [14],
the major difference being work loads in different classes may not be distinct.

3.1.3 Adaptive Parallelism

Let n be the total number of items in the database. Then there are potentially
�
n
k

�
large k-itemsets

that we would have to count during iteration k. However, in practice the number is usually much
smaller as is indicated by our experimental results. We found that support counting dominated
the execution time to the tune of around 85% of the total computation time for the databases we
considered in Section 5. On the other hand for iterations with a large number of k itemsets there
was sufficient work in the candidate generation phase. This suggests a need for some form of
dynamic or adaptive parallelization based on the number of large k-itemsets. If there aren’t a
sufficient number of large itemsets, then it is better not to parallelize the candidate generation.

3.1.4 Parallel Hash Tree Formation

We could choose to build the candidate hash tree in parallel, or we could let the candidates be
temporarily inserted in local lists (or hash trees). This would have to be followed by a step to
construct the global hash tree.

In our implementation we build the tree in parallel. We associate a lock with each leaf node in
the hash tree. When processor i wants to insert a candidate itemset into the hash tree it starts at the
root node and hashes on successive items in the itemsets until it reaches a leaf node. At this point it
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acquires a lock on this leaf node for mutual exclusion while inserting the itemset. However, if we
exceed the threshold of the leaf, we convert the leaf into an internal node (with the lock still set).
This implies that we also have to provide a lock for all the internal nodes, and the processors will
have to check if any node is acquired along its downward path from the root. This complication
only arises at the interface of the leaves and internal nodes.

With this locking mechanism, each process can insert the itemsets in different parts of the hash
tree in parallel. However, since we start with a hash tree with the root as a leaf, there can be a lot
of initial contention to acquire the lock at the root. However, we did not find this to be a significant
factor on 12 processors.

3.2 Support Counting

For this phase, we could either split the database logically among the processors with a common
hash tree, or split the hash tree with each processor traversing the entire database. We will look at
each case below.

3.2.1 Partitioned vs. Common Candidate Hash Tree

One approach in parallelizing the support counting step is to split the hash tree among the processors.
The decisions for computation balancing directly influence the effectiveness of this approach, since
each processor should ideally have the same number of itemsets in its local portion of the hash
tree. Another approach is to keep a single common hash tree among all the processors. There are
several ways of incrementing the count of itemsets in the common candidate hash tree.

Counter per Itemset: Let us assume that each itemset in the candidate hash tree has a single
count field associated with it. Since the counts are common, more than one processor may try
to access the count field and increment it. We thus need a locking mechanism to provide mutual
exclusion among the processors while incrementing the count. This approach may cause contention
and degrade the performance. However, since we are using only 12 processors, and the sharing is
very fine-grained (at the itemset level), we found this approach to be the better than using private
or separate counters 1.

3.2.2 Partitioned vs. Common Database

We could either choose to logically partition the database among the processors, or each processor
can choose to traverse the entire database for incrementing the candidate support counts.

Balanced Database Partitioning: In our implementation we partition the database in a blocked
fashion among all the processors. However, this strategy may not result in balanced work per
processor. This is because the work load is a function of the length of the transactions. If lt is the
length of the transaction t, then during iteration k of the algorithm, we have to test whether all the

1For all the databases we looked at on our system the overhead of contention was within 4%, which leads us to
conclude that contention is not a big problem. Other mechanisms like separate counters (to eliminate locking) and
local counters (to eliminate false sharing) were studied but not shown to be beneficial [14].
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�
lt
k

�
subsets of the transaction are contained in Ck. Clearly the complexity of the work load for

a transaction is given as O�min�lt
k� lt

lt�k��, i.e., it is polynomial in the transaction length. This
also implies that a static partitioning won’t work. However, we could devise static heuristics to
approximate a balanced partition. For example, one static heuristic is to estimate the maximum
number of iterations we expect, say T . We could then partition the database based on the mean
estimated work load for each transaction over all iterations, given as �

PT
k�1

�
li
k

�
��T . Another

approach is to re-partition the database in each iteration. In this case it is important to respect the
locality of the partition by moving transactions only when it is absolutely necessary. We plan to
investigate different partitioning schemes as part of future work.

3.3 Parallel Data Mining: Algorithms

Based on the discussion in the previous section, we consider the following algorithms for mining
association rules in parallel:

� Common Candidate Partitioned Database (CCPD): This algorithm uses a common can-
didate hash tree across all processors, while the database is logically split among them.
The hash tree is built in parallel (see section 3.1.4). Each processor then traverses its local
database and counts the support (see section 3.2.1) for each itemset. Finally, the master
process selects the large itemsets.

� Partitioned Candidate Common Database (PCCD): This has a partitioned candidate hash
tree, but a common database. In this approach we construct a local candidate hash tree per
processor. Each processor then traverses the entire database and counts support for itemsets
only in its local tree. Finally the master process performs the reduction and selects the large
itemsets for the next iteration.

Note that the common candidate common database(CCCD) approach results in duplicated work,
while the partitioned candidate partitioned database (PCPD) approach is more or less equivalent to
CCPD. For this reason we did not implement these parallelizations.

4 Optimizations

In this section we present some optimizations to the association rule algorithm. These optimizations
are beneficial for both sequential and parallel implementation.

4.1 Hash Tree Balancing

Although the computation balancing approach results in balanced work load, it does not guarantee
that the resulting hash tree is balanced.

Balancing C2 (No Pruning) : We’ll begin by a discussion of tree balancing for C2, since there
is no pruning step in this case. We can balance the hash tree by using the bitonic partitioning
scheme described above. We simply replace P , the number of processors with the fan-out F for
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the hash table. We label the n large 1-itemsets from 0 to n � 1 in lexicographical order, and
use P � F to derive the assignments A0� � � � �AF�1 for each processor. Each Ai is treated as
an equivalence class. The hash function is based on these equivalence classes, which is simply
given as, h�i� � Ai, for i � 0� � � � �F . The equivalence classes are implemented via an indirection
vector of length n. For example, let L1 � fA�D�E�G�K�M�N� S� T� Zg. We first label these
as f0� 1� 2� 3� 4� 5� 6� 7� 8� 9g. Assume that the fan-out F � 3. We thus obtain the 3 equivalence
classes A0 � f0� 5� 6g, A1 � f1� 4� 7g, and A2 � f2� 3� 8� 9g, and the indirection vector is shown
in table 1. Furthermore, this hash function is applied at all levels of the hash tree. Clearly, this
scheme results in a balanced hash tree as compared to the simple g�i� � i mod F hash function
(which corresponds to the interleaved partitioning scheme from section 3.1.1).

Label 0 1 2 3 4 5 6 7 8 9
Hash Value 0 1 2 2 1 0 0 1 2 2

Table 1: Indirection Vector

BalancingCk�k � 2� : Although items can be pruned for iteration k 
 3, we use the same bitonic
partitioning scheme for C3 and beyond. Below we show that even in this general case bitonic hash
function is very good as compared to the interleaved scheme. Theorem 1 below establishes an
upper and lower bound on the number of itemsets per leaf for the bitonic scheme.

Theorem 1 Let k 
 1 denote the iteration number, I � f0� � � � � d � 1g the set of items, F the
fan-out of the hash table, T � f0� � � � � F � 1g the set of equivalence classes modulo F , T � Tk

the total number of leaves in Ck, and G the family of all size k ordered subsets of I , i.e., the set of
all k-itemsets that can be constructed from items in I . Suppose d

2F is an integer and d
2F �F 
 k.

Define the bitonic hash function h : I � T by:

h�i� � i mod F if 0 
 �i mod 2F� � F and 2F � 1� �i mod 2F� otherwise,

and the mapping H : G � T from k-itemsets to the leaves of Ck by H�a1 � � � � ak� �
�h�a1�� � � � � h�ak��. Then for every leaf B � �b1� � � � � bk� � T , the ratio of the number of k-
itemsets in the leaf (kH�1�B�k) to the average number of itemsets per leaf (kGk�kT k) is bounded
above and below by the expression,

e
� k2

d�F 

kH�1�B�k

kGk�kT k

 e

k2

d�F �

A proof of the above theorem can be found in [14]. We also obtain the same lower and upper
bound for the interleaved hash function also. However, the two functions behave differently. Note

that the average number of k-itemsets per leaf kGk�kT k is
�

2wF
k

�
�Fk � �2w�k

k! . Let ��w� denote
this polynomial. We say that a leaf has a capacity close to the average if its capacity, which is a

polynomial in w of degree at most k, is of the form �2w�k

k! � ��w�, with ��w� being a polynomial
of degree at most k � 2.
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For the bitonic hash function, a leaf specified by the hash values �a1 � � � � ak� has capacity close
to ��w� if and only if ai 	� ai�1 for all i, 1 
 i 
 k � 1. Thus, there are F�F � 1�k�1 such leaves,
and so, �1 � F�1�k�1 fraction of the leaves have capacity close to ��w�. Note also that clearly,
�1�F�1�k�1 approaches 1.

On the other hand, for the interleaved hash function, a leaf specified by �a1 � � � � ak� has capacity
close to ��w� if and only if ai 	� ai�1 for all i, and the number of i such that ai � ai�1 is equal
to �k � 1��2. So, there is no such leaf if k is even. For odd k 
 3, the ratio of the “good” leaves
decreases as k increases, achieving a maximum of 2�3 when k � 3. Thus, at most 2�3 of the leaves
achieve the average.

From the above discussion it is clear that while both the simple and bitonic hash function have
the same maximum and minimum bounds, the distribution of the number of itemsets per leaf is
quite different. While a significant portion of the leaves are close to the average for the bitonic
case, only a few are close in the simple hash function case.

4.2 Short-circuited Subset Checking

Candidate Hash Tree (C   )3
Hash Function: h(i) = i mod 2

DEPTH 0

DEPTH 1

DEPTH 2

0 1

3 5

7 10 11 1312986

2 4

LEAVES

ABE
ADE
CDE

A,C,EB,D

B,D

B,D B,D B,D B,D

B,DA,C,E

A,C,E A,C,E A,C,E A,C,E

A,C,E

ABD ACD ACEBCEBCDBDE ABC

Figure 2: Candidate Hash Tree (C3)

Recall that while counting the support, once we reach a leaf node, we check whether all the
itemsets in the leaf are contained in the transaction. This node is then marked as VISITED to
avoid processing it more than once for the same transaction. A further optimization is to associate
a VISITED flag with each node in the hash tree. We mark an internal node as VISITED the
first time we touch it. This enables us to preempt the search as soon as possible. We would
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expect this optimization to be of greatest benefit when the transaction sizes are large. For example,
if our transaction is T � fA�B�C�D�Eg, k � 3, fan-out � 2, then all the 3-subsets of T are:
fABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDEg. Figure 2 shows the candidate hash tree
C3. We have to increment the support of every subset of T contained in C3. We begin with the
subset ABC , and hash to node 11 and process all the itemsets. In this downward path from the
root we mark nodes 1, 4, and 11 as visited. We then process subset ADB, and mark node 10. Now
consider the subset CDE. We see in this case that node 1 has already been marked, and we can
preempt the processing at this very stage. This approach can however consume a lot of memory.
For a given fan-out F , for iteration k, we need additional memory of size Fk to store the flags.
In the parallel implementation we have to keep a VISITED field for each processor, bringing the
memory requirement to P � F k. This can still get very large, especially with increasing number of
processors. In [14] we show a mechanism by which further reduces the memory requirement to
only k � F . The approach in the parallel setting yields a total requirement of k � F � P .

5 Experimental Evaluation

Database T I D Total Size
T5.I2.D100K 5 2 100,000 2.6MB
T10.I4.D100K 10 4 100,000 4.3MB
T15.I4.D100K 15 4 100,000 6.2MB
T20.I6.D100K 20 6 100,000 7.9MB
T10.I6.D400K 10 6 400,000 17.1MB
T10.I6.D800K 10 6 800,000 34.6MB
T10.I6.D1600K 10 6 1,600,000 69.8MB

Table 2: Database properties

5.1 Experimental Setup

All the experiments were performed on a 12-node SGI Power Challenge shared-memory multipro-
cessor. Each node is a MIPS processor running at 100MHz. There’s a total of 256MB of main
memory. The primary cache size is 16 KB (64 bytes cache line size), with different instruction
and data caches, while the secondary cache is 1 MB (128 bytes cache line size). The databases are
stored on an attached 2GB disk. All processors run IRIX 5.3, and data is obtained from the disk
via an NFS file server.

We used different synthetic databases with size ranging form 3MB to 70MB 2, and are generated
using the procedure described in [5]. These databases mimic the transactions in a retailing environ-
ment. Each transaction has a unique ID followed by a list of items bought in that transaction. The

2While results in this section are only shown for memory resident databases, the concepts and optimization are
equally applicable for non memory resident databases. In non memory resident programs I/O becomes an important
problem. Solutions to the I/O problem, can be applied in combination with the schemes presented in this paper. These
solutions are part of future research.
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Figure 3: Large Itemsets per Iteration

data-mining provides information about the set of items generally bought together. Table 2 shows
the databases used and their properties. The number of transactions is denoted as jDj, average
transaction size as jT j, and the average maximal potentially large itemset size as jIj. The number
of maximal potentially large itemsets jLj � 2000, and the number of items N � 1000. We refer
the reader to [5] for more detail on the database generation. All the experiments were performed
with a minimum support value of 0.5%, and a leaf threshold of 2 (i.e., max of 2 itemsets per leaf).
We note that the % improvements shown in all the experiments, except where indicated, do not take
into account initial database reading time, since we specifically wanted to measure the effects of
the optimizations on the computation. Figure 3 shows the number of iterations and the number of
large itemsets found for different databases. In the following sections all the results are reported for
the CCPD parallelization. We do not present any results for the PCCD approach since it performs
very poorly, and results in a speed-down on more than one processor 3.

5.2 Aggregate Parallel Performance

Table 3 gives actual running times for the unoptimized sequential, and a naive parallelization
of the base algorithm (Apriori) for 2,4 and 8 processors without any of the techniques descibed in
sections 3 and 4. In this section all the graphs showing % improvements, are with respect to the
data for one processor in table 3.

Figure 4 presents the speedups obtained on different databases and different processors for
the CCPD parallelization. The results presented on CCPD use all the optimization discussed

3Recall that in the PCCD approach every processor has to read the entire database during each iteration. The
resulting I/O costs on our system were too prohibitive for this method to be effective.
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Database 1 proc 2 procs 4 procs 8 procs
T5.I2.D100K 20 17 12 10
T10.I4.D100K 96 70 51 39
T15.I4.D100K 236 168 111 78
T20.I6.D100K 513 360 238 166
T10.I6.D400K 372 261 165 105
T10.I6.D800K 637 435 267 163
T10.I6.D1600K 1272 860 529 307

Table 3: Naive Parallelization of Apriori (seconds)
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Reading % of Total Time
Database Time P � 1 P � 2 P � 4 P � 8 P � 12
T5.I2.D100K 9.1s 39.9 43.8 52.6 56.8 59.0
T10.I4.D100K 13.7s 15.6 22.2 29.3 36.6 39.8
T15.I4.D100K 18.9s 8.9 14.0 21.6 29.2 32.8
T20.I6.D100K 24.1s 4.9 8.1 12.8 18.6 22.4
T10.I6.D400K 55.2s 16.8 24.7 36.4 48.0 53.8
T10.I6.D800K 109.0s 19.0 29.8 43.0 56.0 62.9
T10.I6.D1600K 222.0s 19.4 28.6 44.9 59.4 66.4

Table 4: Database Reading Time

in section 4, – computation balancing, hash tree balancing and short-circuited subset checking.
The figure on the left presents the speed-up without taking the initial database reading time into
account. We observe that as the number of transactions increase we get increasing speed-up, with
a speed-up of more than 8 on 12 processors for the largest database (T10.I6.D1600K, with 1.6
million transactions). However, if we were to account for the database reading time, then we get
speed-up of only 4 on 12 processors. The lack of linear speedup can be attributed to false and
true sharing for the heap nodes when updating the subset counts and to some extent during the
heap generation phase. Furthermore since variable length transactions are allowed, and the data is
distributed along transaction boundaries, the workload is not be uniformly balanced. Other factors
like bus contention, and i/o contention further reduce the speedup.

Table 4 shows the total time spent reading the database, and the percentage of total time this
constitutes on different number of processors. The results indicate that on 12 processors up to
60% of the time can be spent just on I/O. This suggest a great need for parallel I/O techniques for
effective parallelization of data mining applications since by its very nature data mining algorithms
must operate on large amounts of data.

5.3 Computation and Hash Tree Balancing

Figure 5 shows the improvement in the performance obtained by applying the computation
balancing optimization (discussed in section 3.1.2), and the hash tree balancing optimization
(described in section 4.1). The figure shows the % improvement over a run on the same number of
processors without any optimizations (see Table 3). Results are presented for different databases and
on different number of processors. We first consider only the computation balancing optimization
(COMP) using the multiple equivalence classes algorithm. As expected this doesn’t improve the
execution time for the uni-processor case, as there is nothing to balance. However, it is very
effective on multiple processors. We get an improvement of around 20% on 8 processors. The
second column (for all processors) shows the benefit of just balancing the hash tree (TREE) using
our bitonic hashing (the unoptimized version uses the simple mod interleaved hash function).
Hash tree balancing by itself is an extremely effective optimization. It improves the performance
by about 30% even on uni-processors. On smaller databases and 8 processors however it is not as
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Figure 5: Effect of Computation and Hash Tree Balancing

good as the COMP optimization. The reason that the hash tree balancing is not sufficient to offset
inherent load imbalance in the candidate generation in this case. The most effective approach is
to apply both optimizations at the same time (COMP-TREE). The combined effect is sufficient to
push the improvements in the 40% range in the multiple-processor case. On 1 processor only hash
tree balancing is beneficial, since computation balancing only adds extra cost.

5.4 Short-circuited Subset Checking

Figure 6 shows the improvement due to the short-circuited subset checking optimization with
respect to the unoptimized version (The unoptimized version is the Apriori algorithm due to
Agrawal et al [5]). The results are presented for different number of processors across different
databases. The results indicate that while there is some improvement for databases with small
transaction sizes, the optimization is most effective when the transaction size is large. In this case
we get improvements of around 25% over the unoptimized version.

To gain further insight into this optimization, consider figure 7. It shows the percentage
improvement obtained per iteration on applying this optimization on the T20.I6.D100K database.
It shows results only for the uni-processor case, however similar results were obtained on more
processors. We observe that as the iteration k increases, there is more opportunity for short-
circuiting the subset checking, and we get increasing benefits of up to 60%. The improvements
start to fall off at the high end where the number of candidates becomes small, resulting in a small
hash tree and less opportunity for short-circuiting. It becomes clear that is an extremely effective
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optimization for larger transaction sizes, and in cases where there are large number of candidate
k-itemsets.

6 Conclusions

In this paper, we presented a parallel implementation of the Apriori algorithm on the SGI Power
Challenge shared memory multi-processor. We also discussed a set of optimizations which include
optimized join and pruning, computation balancing for candidate generation, hash tree balancing,
and short-circuited subset checking. We then presented experimental results on each of these.
Improvements of more than 40% were obtained for the computation and hash tree balancing.
The short-circuiting optimization was found to be extremely effective for databases with large
transaction sizes. Finally we reported the parallel performance of the algorithm. While we
achieved good speed-up, we observed a need for parallel I/O techniques for further performance
gains.
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