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Abstract

The need for a preliminary assessment of the clustering tendency or clusterability of massive data
sets is known. A good clusterability detection method should serve to influence a decision as to whether
to cluster at all, as well as provide useful seed input to a chosen clustering algorithm. We present a
framework for the definition of the clusterability of a data set from a distance-based perspective. We
discuss a graph-based system for detecting clusterability and generating seed information including an
estimate of the value of k – the number of clusters in the data set, an input parameter to many distance-
based clustering methods. The output of our method is tunable to accommodate a wide variety of
clustering methods.

We have conducted a number of experiments using our methodology with stock market data and with
the well-known BIRCH data sets, in two as well as higher dimensions. Based on our experiments and
results we find that our methodology can serve as the basis for much future work in this area. We report
our results and discuss promising future directions.

1 Introduction

Much work has been done recently in the area of unsupervised learning or data clustering. Data clustering
algorithms find the natural groupings or clusters in a set of data. They are distinguished from the supervised
learning or classification algorithms, which attempt to assign the elements of a set of data to a group of
predefined classes.

One method of detecting clusters is to view the elements of the data set as points in a metric space in
which some distance metric is defined as in [18]. A cluster can then be informally defined as a set of points
that are mutually ’close’ together, where two points are considered close if the metric difference between
them is small. Clustering quality is determined by the minimization of intra-cluster distance and/or the
maximization of inter-cluster distance. Intuitively, a good clustering will have a high degree of distance
among points in different clusters (separation) and a low degree of distance among points in the same cluster
(distortion). Distance-based algorithms perform quite well when working with data sets that contain very
distinct, and in general spherically-shaped groups of points. Most distance-based algorithms are variants
of the classic k-means algorithm, in which part of the input to the algorithm is a value k that signifies
the desired number of clusters. Each cluster is represented by a single centroid. As each point is scanned
it is added to the cluster of the centroid to which it is closest. Distance-based approaches have been the
traditional approach to analyzing numeric data.

Recently, several works have been published that explore cases in which distance-based methods are less
effective, in particular when data clusters naturally are of irregular often non-convex shapes and are close
together in the space. Mining patterns in such spatial data is more akin to detecting clusters as they would
be seen by humans.

In this regard there have emerged two clearly-defined, distinct approaches to clustering data: distance-
based and spatial. To illustrate this idea, consider the dataset shown in Figure 1. When viewed as a set of
spatial data, there are two distinctly discernible clusters of points. The regions in between the two clusters
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are sufficiently sparse as to separate them as objects but not much more than that. In this context, points
X and W belong in one cluster, while Y and Z belong in the other.

It would not be desirable for a distance-based method to cluster this data in a similar manner. Such
an approach would be more likely to group X with Y and W with Z. Depending on the desired end-result
knowledge, it may very well make sense to consider both objects together as comprising a single large cluster
since the extent of overlap between the two is much more pronounced than the small degree of separation.
Suppose for example that this data represented some sort of demographic customer profile. The most useful
information attainable from this dataset may be that there is no clearly discernible pattern whatsoever.

X

Y

Z

W

Figure 1: A subjectively-
clusterable dataset.

In this paper we discuss perspectives on distance-based clustering,
providing means for evaluating the distance-based clusterability of an
individual data set. Our work is a fresh approach to what is referred
to in [16] as clustering tendency. Given a dataset, we discern whether a
distance-based approach is likely to yield fruitful results. In so doing, we
generate seed centroids likely to improve the accuracy and order-stability
of distance-based clustering algorithms. Our method is tunable so that
the type of output can be geared toward specific algorithms and is shown
to be efficient in high dimensions. Experimental results indicate a high-
degree of accuracy as well as sub-linear slowdown, even in massive (1000)
dimensions.

There are two main parts of our work. First, we determine the clus-
terability of a data set by examining the histogram of point-to-point
distances. We then use the histogram to determine seed information for
any k-means algorithm, in particular a value for k as well as an estimate
of the k centroid points. For multiple-centroid methods, e.g. [12] the
sensitivity of our detection method can be tuned to generate an initial
set of multiple centroids.

We determine the seed information with various graph-theoretic formulations. In the past, graph theory
has been used in identifying clusters [5, 13, 16, 19]. The approaches that have been taken so far treat each
point as a node in a graph and define adjacency relationship among nodes based on some distance metric.
Two common ideas treat clusters as approximate cliques or use algorithms to partition nodes of graphs (such
that each partition is treated as an approximate cluster).

We propose a different definition of adjacency relationship. We determine adjacency between two nodes
not directly but indirectly by obtaining a histogram of all pair edge lengths and then, using this histogram,
we determine a threshold for the intra-cluster distance. By considering the intra-cluster nodes (corresponding
to those points) and their corresponding edges, we get a subgraph. By analyzing the connected components
[6], we get a starting point for the clusters. The thrust of our approach is to identify proper starting points
for any of the clustering methods. In this fashion, we find the application of graph theory to be useful and
to provide insight.

The rest of this paper is as follows: in Section 2 we discuss related work. In Section 3 we define the basis
of our framework. In Section 3.2 we weave the definitions presented in Section 3 into the theory behind
our method and then in Section 4 we discuss the application of the theory. In Section 5 we explain our
experiments and results. Finally in Section 6 we offer concluding remarks and prospects for future work.

2 Related Work

The detection of groups in data has been studied for decades in several domains. [7, 16, 17] provide excellent
overviews of standard issues in data clustering, as well as classical approaches to handling them. The recent
book by Han and Kamber [14] also provides a much needed reference on the latest results on clustering from
the data mining community.

Recent attention in the context of data mining has focussed largely on the challenges imposed by large
datasets and high dimensionality. Several works [4, 12, 19, 21] are based on traditional distance-based clus-
tering, and in particular the k-means algorithm, in which the number of desired clusters k is given as part of
the input. As mentioned above, such methods require the existence of a distance metric between points in
the space, where the most common metrics are Euclidean and Manhattan distance. In general, k-means-type
algorithms make extensive use of a centroid for each cluster, a single point that represents the entire cluster.
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A common means of determining the dimensions of a centroid is to average the values of the dimensions of
each of the points in the cluster.

CLARANS [19] views the solution space as a large graph, in which each node of the graph represents the
current set of centroids. The graph is traversed and a node is visited if it will improve upon the objective
distance function. BIRCH [21] introduces the novel approach of minimizing the amount of information
stored with each cluster and demonstrates substantial improvements in both runtime and accuracy over
[19]. A common characteristic of these two systems is that they are dependent on the fact that the clusters
are spherically-shaped. CURE [12] introduces a multiple-centroid approach and is particularly effective at
discovering elliptical-shaped clusters. [4] describes a k-means type algorithm that improves on the stored
information-reduction approach first described in [21] and can determine clusters in a single-scan of the data,
a particularly desirable characteristic in the presence of very large data sets.

Works have also emerged that are specifically geared toward spatial data[8, 20], the clusters of which
are generally irregularly-shaped and can be close together, compromising the effectiveness of distance-based
methods. WaveCluster[8, 20] use notions of point density to detect cluster boundaries and thus the clusters
themselves. Another class of clustering algorithms perform subspace or projective clustering [1, 2], i.e.,
instead of using all the dimensions they find clusters in dense subspaces. This is particularly effective in
high dimensional spaces where it becomes hard to distinguish between the nearest and farthest neighbors of
a data point [15]. By looking at important subspaces meaningful clusters can be found.

Our work focuses on open problems in the area of distance-based clustering. A common theme among
the current algorithms is the need to seed the system. At the very least, the value of k is required, but in
general, both performance and accuracy improvements can be realized if seed information is provided[3, 4, 9].
Distance-based algorithms, especially those that make only a few database scans, are particularly volatile
in their earliest iterations, before a stable state is reached. Our work provides an effective solution to
this problem as a means of working in conjunction with existing algorithms. Our assumption is that an
initial value of k as well as an initial stable set of cluster centroids will greatly increase the stability of such
algorithms.

A different approach to a similar problem is taken in [3, 9]. A statistical method is presented that seeds
clustering algorithms by discovering clusters in several small sub-samples of the data. To the best of our
knowledge this is the only available work that deals with initial seeding of k-means algorithms. Our work
differs from the work in [3, 9] in several ways:

• We provide an means for analyzing clustering tendency, or clusterability in a data set. This information
is used before any attempt to detect the clusters in the database.

• Our approach to seed generation is based on this clusterability information. We use graph-theoretic
constructs to generate approximations of cluster centroids based on ’pretending’ that the data set is
of high clusterability.

• Part of our output is a value for k, the number of expected clusters. Part of the input to the system
described in [3, 9] is a value for k; thus it is expected that our system could work in conjunction with
that proposed in [3, 9], rather than in place of it.

Having established the basis of the problem space and the currently available solutions we now turn our
attention to defining our framework for clusterability detection, beginning with a set of definitions.

3 Definitions and Framework

In this section we present the definitions that are the basis of our framework. We begin by clearly defining the
components of a clustering and then build upon these definitions to establish notions of clustering tendency.

A data set D is a unique, fixed set of n-dimensional points in a metric space. The number of points in a
data set D is denoted |D|. A cluster C of a data set D is a subset of D. A clustering C of a data set D is

a set of distinct clusters {C1, C2, . . . , Ck} such that
⋃k

i=1
Ci = D. A trivial clustering C with k clusters of a

data set D is one in which either k = 1 or k = |D|, i.e., the case where all points are in one cluster (k = 1),
and the case where each point is in its own cluster (k = |D|). A clustering which is not trivial is said to be
non-trivial. If k = O(n) we call the clustering near-trivial. A useful clustering C with k clusters of a data
set D is one which is nontrivial and k = O(1). Note that if k = O(n) then we have that k = O(1) ensure
that a useful clustering avoids being near-trivial.
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Definition 3.1 [Properly Clusterable Data Set] A properly clusterable data set is a data set D for which
there exists a useful clustering C composed of clusters C1, C2, . . . , Ck such that, for each point pi ∈ Ci, pi is
closer to every point in Ci then to any point not in Ci.

The clustering C is known as a proper clustering of the dataset D. Definition 3.1 ensures that, for a data set
to be considered properly clusterable, there must exist a non-trivial clustering for which each point clearly
belongs to the cluster to which it is assigned and there is no possibility that it would be assigned to any
other.

Definition 3.2 [Edge] An edge is a four-tuple: {u, v, ∆u,v, ωC}, where C is a clustering, u and v are points
in a data set, ∆u,v is the distance1 between u and v and:

ωC =

{

internal if u and v belong to the same cluster in C
external otherwise

Since each edge is uniquely determined by the points which it represents, we will use the notation Eu,v to
denote the edge between points u and v. Also, unless otherwise specified, the weight of Eu,v, ∆u,v is fixed.

Edges for which ωC = external are referred to as external with respect to C, and similarly for internal

edges. For a data set in which no points have been assigned to any clusters (C = φ), all edges are by
Definition 3.2 external.

Definition 3.3 [Perfectly Clusterable Data Set] A perfectly clusterable data set is a properly clusterable
data set for which there exists a “useful clustering” C, such that for all edges {u, v, ∆u,v, internalC} and all
edges {w, x, ∆w,x, externalC}, ∆u,v < ∆w,x.

The clustering C is known as a perfect clustering of D. Definition 3.3 ensures of a perfectly clusterable data
set that there exists a clustering for which each edge belongs unambiguously to either the set of internal or
external edges. A properly clusterable dataset which is not perfectly clusterable would have one or more
clusters with large distance between points in the same cluster. Given a perfectly clusterable data set, any
k-means based algorithm should be able to cluster the points into distinct clusters in one pass over the data
set.

A cut-off point for a Perfectly clusterable data set is a distance c such that for all edges {u, v, ∆u,v, internalC}
and all edges {w, x, ∆w,x, externalC}, ∆u,v < c < ∆w,x. In other words a good cut-off point results in well
separated clusters. Finding such a cut-off point is a nontrivial task. In our algorithms, we suggest way for
calculating c (in Section 5.2.2).

3.1 Examples

Here we present illustrative examples of the types of data sets and clusterings defined above.
Figure 2A) shows a data set that is not properly clusterable. Clustering this data set is somewhat

subjective, and different interpretations will result in different clusterings. Consider points a, b, and c, with
c and a both exactly one unit of distance apart from b. Do a and b belong together, or b and c? An argument
could be made for either of these options, as well as the case that neither or all of them end up together.

ca b

Figure 2: A) Non-properly-clusterable dataset, B) Properly-
clusterable data set, C) Perfectly-clusterable dataset.

Figure 2B) shows a properly cluster-
able data set. There is little argument
as to which points belong together in
which clusters. However, there is no
non-trivial clustering which exhibits a
clean schism between the internal and
external edge lengths. In other words,
there is no clearly-defined threshold as
to what constitutes an internal edge
and what constitutes an external edge.

Figure 2C) shows a perfectly clus-
terable data set. Given any edge e be-
tween two points, there is no question

1distance here can denote any metric satisfying the definition in [18]. In general we will make use of either Euclidean or
Manhattan distance.
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as to whether e is internal or external. Intuitively this type of data set represents the absolute best-case of
clusterability.

3.2 Framework

In this section, we explain the theory behind our work. For a perfectly clusterable data set D, the clear
distinction between the set of internal edges and the set of external edges can be exploited as follows:

Let us represent D as a completely-connected, undirected, weighted graph G where the nodes of G
represent the points in the data set and the edges of G represent the edges of D as defined in Section 32.

Consider the perfect clustering C of D. Since the longest internal edge of D is shorter than the shortest
external edge, there exists a cut-off value c, such that any edge of length <= c is internal, and any edge of
length > c is external. Determining the clusters in this respect is as simple as casting G as a completely-
connected signed graph3 G

′

with node set equivalent to that of G. The edge set E
′

of G
′

is constructed from
the edge set E of G as follows, for all (Eu,v ∈ E),

E
′

u,v =

{

+ if ∆u,v ≤ c

− otherwise

The problem of determining the clusters in D is then equivalent to the clustering problem described in [5],

i.e., finding the clusters in D reduces to the problem of finding sets of nodes in G
′

such that for any two
nodes u, v in the same cluster, E

′

u,v = + and for all pairs of nodes w, x in different clusters, E
′

w,x = −.
The main point is how to choose the cut-off distance c? Consider the data distribution of ∆u,v for

all u, v ∈ D, or more formally the distribution of the probability that distance (or equivalently, the edge
lengths) between pairs of points u and v is less than c, i.e. P [∆u,v ≤ c]. The idea behind our method is
to determine the clusterability information (or the probability density) for a data set using a histogram of
the edge lengths, and then to use this information to find an actual or approximate value for the cutoff c,
most likely the bucket where the first clearly defined spike reaches its minimum. A similar approach was
taken in [15] to find the quality of a subspace projection for nearest neighbor queries in high dimensions.
For example, in the histogram of Figure 5, an exact cutoff exists at bucket 4, the minimum of the spike
from buckets 0 − 4 and thus this would be the chosen value for c. We then generate the graph G and do a
depth-first-traversal of G, restricting adjacency to those points u, v, such that ∆u,v ≤ c. The points of each
connected path generated in this traversal are averaged and the result is output as an approximate centroid
in the set. Note that this restricted traversal is equivalent to a depth-first traversal on the graph G

′

.
The complete algorithm for clusterability detection and seed-generation is presented in Figure 4.2. We

now turn our attention to a discussion of clusterability detection. Jain and Dubes describe three classifications
of clustering tendency in data: uniform in which points exhibit “mutual repulsion”, random in which points
exhibit no clear-cut tendency, and clusterable in which points exhibit “mutual cohesion”[16].

Perfectly clusterable data sets as we define them are a concrete, finer-grained distinction of the third
type of data set in Jain and Dubes’ classification. The three classes of clusterability defined above are still
characterized by subjective interpretation, whereas our notion of perfectly clusterable is mathematically
precise.

Our hypothesis, confirmed through experimentation, is that the three high-level classes of clustering
tendency are revealed by the structure of the edge-length frequency histogram for the data set in question.
Our claim is that the existence and characterization of extreme points in the histogram reveals the non-
uniformity and mutual attraction of points in the space. We supply supporting examples in the next section.

4 Methodology and Examples

The purpose of this section is to explain the bridge between the theory described in Section 3.2 and our
methods for determining clusterability and generating seed information. We begin with an explanation of
the various classifications of clusterability, continue with a high-level description of our application, and
conclude with a description of the complete algorithm.

2Note that unless otherwise noted the weight of Eu,v, the quantity ∆u,v, the distance between u and v and the length of
the edge between u and v are for all intents and purposes equivalent and the terms are thus used interchangeably.

3Recall that a signed graph is one in which each edge is either positive or negative.
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4.1 Motivating Examples

The basis of our clusterability determination comes from an analysis of the all-pairs edge length frequency
histogram of a data set. Exactly how each histogram is generated is described in Section 4.2.1. For the
moment we turn our attention to examples of data sets and their histograms, beginning with a short de-
scription of histogram structure. For each example, notions of how the histogram reveals the clusterability
of the underlying data set are also explained.

Figure 3: Uniform data set, Edge frequency histogram.

Each bucket in the histogram represents the frequency of occurrence of edge lengths over a specific
interval, where each length is normalized over the interval between the minimum Emin and maximum Emax

lengths in the set. For the sake of clarity in the examples, unless otherwise noted it is assumed that distance
refers to Manhattan distance.

Suppose then that there are b buckets for a given histogram. The bucket index values range from
[0 . . . b − 1]. Each edge length is normalized to a value on the interval [0 . . . 1] and an index is determined
by multiplying the normalized value by b in order to select a bucket in the range [0 . . . b − 1]. A counter
is maintained for each bucket. The counter of bucket i is incremented each time a normalized edge length
’lands’ in bucket i. In the histogram plots, each plotted point corresponds to a single bucket, where the x
value of the plotted point is the bucket index and the y value is the final total of the counter for bucket x.

Figure 3 shows a perfectly uniform, six-by-six set of data points, as well as the corresponding edge-
frequency histogram. Each data point in the set is exactly one unit away from its nearest neighbor, two
units away from its nearest neighbor’s neighbors4, etc. The important element to notice about the plot is
that the entire range of buckets is represented; there are no gaps. The conspicuous absence of irregularity
in the histogram curve mirrors the complete absence of irregularity of the edge lengths in the data set.
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Figure 4: Random data set, Edge frequency histogram.

4Other than itself, of course, for which its distance is zero and is thus not counted
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Figure 4 shows a random set of points and corresponding histogram. Note the similarity between the curve
in Figure 4 and that in Figure 3. The presence of many small extrema in the curve indicates non-uniformity,
but the fact that no large extrema exists indicates low clusterability.

Figure 5 shows a perfectly clusterable data set and the plot of its edge-frequency histogram. There is
a large minimum at point 4 in the histogram and a large maximum at point 2. The separation between
the internal and the external edges is clear; the internal edges are all represented in the initial spike of the
histogram (buckets 0 − 4), while the external edges are represented in the second spike (buckets 10 − 19).
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Figure 5: Two cluster data set, Edge frequency histogram.

Figure 6: DS1 data set, Edge frequency histogram.

Figure 6 shows DS1 from BIRCH[21] and the plot of its edge-frequency histogram, generated from a
random sample of the points. In this case, the uniformity of the data set is reflected in the similarity to the
curve of the uniform set in Figure 3. The small degree of separation of the points is reflected in the jagged
edges (small extrema) of the curve.

4.2 Implementation

Recall that there are two steps to the task at hand. First we generate the edge length frequency histogram
for the data set in question and make an assessment of clusterability based on this histogram. In step two we
determine a cutoff for internal and external edge lengths from the histogram generated in step one and then
determine centroids using graph-theoretic concepts. Each of these steps is discussed in more detail here.

4.2.1 Histogram Generation

The histogram we use keeps track of the frequency of occurrence of values among the set of all-pairs distances

between points (edges as defined in Section 3). In general for a data set of size n there are exactly n2−n
2

7



edges in the corresponding graph. Obviously quadratic run times are impractical for large data sets and so
in such cases a random sample is used. Much literature exists on the effect of validity and expected results
of choice of sample size and we will not discuss it here [10, 11]. In practice, we have found that sample sizes
under 10% have been sufficient for large data sets. In the discussion that follows we will assume that a data
set refers to either an entire data set or a pre-chosen sample.

The only input parameter then is the number of buckets. Our experiments indicate that for any data set
there exists a number of buckets b such that setting the number of buckets > b will only result in an increased
number of empty buckets. Very few buckets will result in a very coarse approximation of the distribution,
while we get more precise answers for smaller bucket sizes (i.e., for more buckets). In our experience beyond
a certain point the results are more or less insensitive to the number of buckets. Thus the choice of number
of buckets is easy to make, it just need be sufficiently large.

Suppose then that there is a data set D and b buckets. We first compute the |D|2−|D|
2

edge lengths Eu,v,
determining the minimum and maximum values for Eu,v as we go. Let us refer to these values as Emin and
Emax, respectively. The bucket boundaries are determined by normalizing the range of b to the length of
the interval (Emin . . . Emax). The list of values is scanned, and a count is kept for each bucket.

In the second step, we scan the histogram and search for the existence of extreme points. A clusterability
determination is made using the guidelines discussed in Section 4.1, and a suitable cutoff bucket c is chosen
based on the existence of an initial large maximum followed by an initial large minimum (a spike, as in
Figure 5) in the histogram. If no spike is found then the cutoff value must be approximated (see the
experiments section for examples).

4.2.2 Seed Centroid Determination

We then construct G and determine connected components by performing a depth-first search on G with the
added restriction that two nodes are adjacent if the bucket index that their edge falls into is ≤ c. Note that
this is identical to performing the search on G

′

and restricting adjacency to those nodes with + edges. The
centroids of these connected point sets are the centroids in the output set.

Input: a data set D and number of buckets b

Output: a clusterability classification and
initial set of centroids

Step 1: find all edge lengths including Emin & Emax

for each length
find normalized index
increment bucket counter for index

Step 2: scan histogram
find or approximate c
output clusterability
generate adjacency matrix
find connected components
for each connected component

output centroid

Figure 7: Clusterability and Seed Generation Algorithm

The clusterability information referred to in
step two is the quantity and type of extreme
points in the histogram curve. The presence of
several maxima followed by minima with a large
span in between (spikes) indicates high cluster-
ability, since it demonstrates concentrations of
different types of edge lengths. The lack of any
large gaps between maximum and minimum val-
ues indicates uniformity, whereas several small
extrema indicates a small degree of separability.

There are several means of approximating
c in the absence of a pronounced first spike.
One method is to take c as some fraction of
the bucket that represents the highest maximum
value. Another method is to fix c as some small
percentage of the total number of buckets. Finally we also envision using our techniques in conjunction with
a visualization tool that allows the user to interactively choose the cut-off threshold and see the effect on the
cluster seeds and number of clusters. Furthermore, in high dimensional spaces our approach can be used to
identify projected cluster seeds in smaller dimensional subspaces [1, 2, 15].

We now give a high-level description of the complete algorithm (see Figure 4.2.2. We take as input a
sample data set D, along with the number of buckets to be used for the edge length histogram. In O(n2)
time, where n is the number of points in the data sample mathD, we compute all pairwise edge lengths. We
then normalize the lengths using the maximum Emax and minimum Emin edge found. The final task in step
1 is to construct the edge histogram.

In step 2 we scan the histogram looking for a good cut-off point c. The best scenario is for perfectly
clusterable datasets, as shown in figure 5, where we find two peaks in the edge distributions, one corresponding
to the internal edges and the other to the external edges. For other non-perfectly clustered datasets we have
to approximate c as discussed above.
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Once the cut-off has been chosen, we use it to obtain the signed graph or the graph of internal edges and
find its connected components. The cluster seed is the centroid of all the points in a connected component.

5 Experimental Results

In this section we present the results of our experiments using the graph-based centroid detection algorithm.
We begin with a description of the experiments performed and then give details of our results. In all
experiments, Euclidean distance was the metric used.

The experiments were designed to show two things: performance in which we demonstrate the effect of
dimensionality increase on running time and accuracy in which we show the results of centroid detection on
easily visualizable (2 and 3-d) data sets. For small data sets, (< 3000) points, the entire data set is used. For
larger data sets a random sample is used. The experiments were performed on a PentiumII 233 processor
with 64M of memory, running Linux 2.0.36.
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Figure 8: Effect of dimensionality on runtime.

For the performance evaluation (Figure 8), we use the
DS1 data set from BIRCH, as well as a data set containing
roughly 500 values of Dow and Nasdaq closing prices. In
order to increase the dimensionality of each data set, the
first column of values is duplicated several times at the end
of each record. So for example a file with 100 dimensions
created from a 2-dimensional file will have each record with
the first value, the second value, and then 98 copies of the
first value.

For the accuracy evaluation (Figures 9- 15), we show the
points of the original data set, with our detected centroids
as darker, enlarged points. The histogram plot for each data
set is also shown for evaluation. Figures 9- 11 show closing
values for the S&P500 and the Dow, the S&P500 and the
Nasdaq, and the Dow and the Nasdaq indices. Figure 12
shows the DS2 data set from BIRCH, and Figure 13 shows a 3-dimensional version of DS2 made using the
procedure described above. Figure 14 shows a set of ellipsoid clusters drawn free-hand and Figure 15 shows
a 3-dimensional version of the data set in Figure 14.

Performance Evaluation The effect on runtime for sample sizes of 2000 and 3000 points, respectively
for DS1, and the entire data set (roughly 500 ) for DowNasdaq is shown. In the plots, the x-axis represents
the dimension of the test file and the y-axis shows the run time. As can be seen from the plots, we achieve
linear performance as dimensionality increases.

Accuracy Evaluation Figures 9- 15 show the edge length frequency histograms and detected centroids
for several types of data sets. For all examples a bold, vertical line in the histogram indicates the chosen
cutoff point c. In all but the final two sets (Figures 14- 15) c is approximated.

6 Conclusions and Future Work

We have presented a framework and methodology for determining clusterability of a data set, loosely based
upon the ideas presented in [16]. Our work is based on an examination and graph-based traversal of the
frequency histogram of edge-lengths between points in the data set. Part of the output of our system is an
estimate of the value for k, which is required input for any variation of the most popular class of distance-
based clustering methods. In addition to k we generate a set of seed centroids that can be used as intelligent
starting points for any k-means style algorithm. The sensitivity of our algorithm is tunable, and so multiple
centroids can be generated for algorithms that can exploit them, e.g. [12]. Our technique can be used in
conjunction with a visualization tool that allows the user to interactively choose the cut-off threshold and see
the effect on the cluster seeds and number of clusters. Furthermore, in high dimensional spaces our approach
can be used to identify projected cluster seeds in smaller dimensional subspaces [1, 2, 15].
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Figure 9: S&P500/Dow data set: c = 2, k = 9.
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Figure 10: S&P500/Nasdaq data set: c = 2, k = 21.
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Figure 11: Dow/Nasdaq data set: c = 2, k = 19.

Several possibilities for improvement of this system exist. The most striking shortcomings are the sensi-
tivity to noise, the need for sampling, and the need for automated detection of a reasonable cutoff point for
estimating pseudo-internal and pseudo-external edges. Eventually, the determination of a representative set
of centroids may even serve as an intelligent means of sampling a large data set. We also plan to test several
k-means type and distance based algorithms by first seeding them with our cluster centers and to evaluate
the resulting improvement.

We have only scratched the surface of the information that is available from the edge length histogram.
Further analysis of the buckets beyond any initial spike will more than likely provide a wealth of as of yet
untapped information, especially with respect to non-uniformity among cluster sizes (detection of proper

clusterings as opposed to perfect ones).
We believe the framework to be a useful basis for the classification of data sets in terms of their cluster-

ability and that this may eventually serve as a substitute for clustering altogether. Our group is currently
working on a means of assigning an index of clusterability to a data set. Given a data set, a value in the
range [0 . . . 1] would be generated, where uniform data sets would be assigned a value of 0 and perfectly

clusterable data sets would be assigned a value of 1. Clusterability detection is an important, difficult and
as of yet largely unexplored problem space.
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Figure 12: DS2 data set: c = 6, k = 99.
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Figure 13: DS2.3d data set: c = 7, k = 99.
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Figure 14: Ellipsoid data set: c = 80, k = 5.
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Figure 15: 3D-Ellipsoid data set: c = 99, k = 5.
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