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CHARM: An Efficient Algorithm
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Abstract
The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders
of magnitude smaller than the set of all frequent itemsets. In this paper we present CHARM, an efficient
algorithm for mining all frequent closed itemsets. It enumerates closed sets using a dual itemset-tidset search
tree, using an efficient hybrid search that skips many levels. It also uses a technique called diffsets to reduce
the memory footprint of intermediate computations. Finally it uses a fast hash-based approach to remove
any “non-closed” sets found during computation. An extensive experimental evaluation on a number of real
and synthetic databases shows that CHARM significantly outperforms previous methods. It is also linearly
scalable in the number of transactions.

1 Introduction
Mining frequent patterns or itemsets is a fundamental and essential problem in many data mining appli-
cations. These applications include the discovery of association rules, strong rules, correlations, sequential
rules, episodes, multi-dimensional patterns, and many other important discovery tasks [11]. The problem
is formulated as follows: Given a large data base of item transactions, find all frequent itemsets, where a
frequent itemset is one that occurs in at least a user-specified percentage of the database.

Most of the proposed pattern-mining algorithms are a variant of Apriori [1]. Apriori employs a bottom-
up, breadth-first search that enumerates every single frequent itemset. Apriori uses the downward closure
property of itemset support to prune the search space — the property that all subsets of a frequent itemset
must themselves be frequent. Thus only the frequent k-itemsets are used to construct candidate (k + 1)-
itemsets. A pass over the database is made at each level to find the frequent itemsets among the candidates.

Apriori-inspired algorithms [5, 13, 16] show good performance with sparse datasets such as market-
basket data, where the frequent patterns are very short. However, with dense datasets such as telecommuni-
cations and census data, where there are many, long frequent patterns, the performance of these algorithms
degrades incredibly. This degradation is due to the following reasons: these algorithms perform as many
passes over the database as the length of the longest frequent pattern. Secondly, a frequent pattern of length
l implies the presence of 2l − 2 additional frequent patterns as well, each of which is explicitly examined by
such algorithms. When l is large, the frequent itemset mining methods become CPU bound rather than I/O
bound. In other words, it is practically unfeasible to mine the set of all frequent patterns for other than
small l. On the other hand, in many real world problems (e.g., patterns in biosequences, census data, etc.)
finding long itemsets of length 30 or 40 is not uncommon [4].
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There are two current solutions to the long pattern mining problem. The first one is to mine only the
maximal frequent itemsets [2, 4, 6, 10, 12], which are typically orders of magnitude fewer than all frequent
patterns. While mining maximal sets help understand the long patterns in dense domains, they lead to a
loss of information; since subset frequency is not available maximal sets are not suitable for generating rules.
The second is to mine only the frequent closed sets [3, 14, 15, 18]. Closed sets are lossless in the sense that
they uniquely determine the set of all frequent itemsets and their exact frequency. At the same time closed
sets can themselves be orders of magnitude smaller than all frequent sets, especially on dense databases.

Our past work [18] addressed the problem of non-redundant rule generation, provided that closed sets
are available; an algorithm to efficiently mine the closed sets was not described. A natural question to ask
is whether existing methods can be used to generate closed sets? It is not feasible to generate this set
using Apriori-like [1] bottom-up search methods that examine all subsets of a frequent itemset (except when
patterns are very short). Neither is it possible to use maximal patterns [2, 4] to find the closed itemsets,
since all subsets of the maximal frequent itemsets would again have to be examined. We thus need methods
that directly enumerate the closed patterns.

Contributions We introduce CHARM 1, an efficient algorithm for enumerating the set of all frequent
closed itemsets. There are a number of innovative ideas employed in the development of CHARM; these
include: 1) CHARM simultaneously explores both the itemset space and transaction space, over a novel
IT-tree (itemset-tidset tree) search space. In contrast, most previous methods exploit only the itemset search
space. 2) CHARM uses a highly efficient hybrid search method that skips many levels of the IT-tree to
quickly identify the frequent closed itemsets, instead of having to enumerate many possible subsets. 3) It
uses a fast hash-based approach to eliminate non-closed itemsets during subsumption checking. CHARM
also utilizes a novel vertical data representation called diffset [20], recently proposed by us, for fast frequency
computations. Diffsets keep track of differences in the tids of a candidate pattern from its prefix pattern.
Diffsets drastically cut down (by orders of magnitude) the size of memory required to store intermediate
results. Thus the entire working set of patterns can fit entirely in main-memory, even for large databases.

We assume in this paper that the initial database is disk-resident, but that the intermediate results fit
entirely in memory. Several factors make this a realistic assumption. First, CHARM breaks the search space
into small independent chunks (based on prefix equivalence classes [19]). Second, diffsets lead to extremely
small memory footprint (this is experimentally verified). Finally, CHARM uses simple set difference (or
intersection) operations, and requires no complex internal data structures (candidate generation and counting
happens in a single step). The current trend toward large (gigabyte-sized) main memories, combined with
the above features, makes CHARM a practical and efficient algorithm for reasonably large databases.

We compare CHARM against previous methods for mining closed sets such as Close [14], Closet [15],
Mafia [6] and Pascal [3]. Extensive experiments confirm that CHARM provides significant improvement
over existing methods for mining closed itemsets, for both dense as well as sparse datasets.

2 Frequent Pattern Mining
Let I be a set of items, and D a database of transactions, where each transaction has a unique identifier
(tid) and contains a set of items. The set of all tids is denoted as T . A set X ⊆ I is also called an itemset,
and a set Y ⊆ T is called a tidset. An itemset with k items is called a k-itemset. For convenience we write
an itemset {A,C,W} as ACW , and a tidset {2, 4, 5} as 245. For an itemset X, we denote its corresponding
tidset as t(X), i.e., the set of all tids that contain X as a subset. For a tidset Y , we denote its corresponding
itemset as i(Y ), i.e., the set of items common to all the tids in Y . Note that t(X) =

⋂
x∈X t(x), and

i(Y ) =
⋂

y∈Y i(y). For example, t(ACW ) = t(A) ∩ t(C) ∩ t(W ) = 1345 ∩ 123456 ∩ 12345 = 1345 and
i(12) = i(1) ∩ i(2) = ACTW ∩CDW = CW . We use the notation X × t(X) to refer an itemset-tidset pair,
and call it an IT-pair.

The support [1] of an itemset X, denoted σ(X), is the number of transactions in which it occurs as a
subset, i.e., σ(X) = |t(X)|. An itemset is frequent if its support is more than or equal to a user-specified
minimum support ( min sup) value, i.e., if σ(X) ≥ min sup. A frequent itemset is called maximal if it is
not a subset of any other frequent itemset. A frequent itemset X is called closed if there exists no proper

1CHARM stands for Closed Association Rule Mining; the ’H’ is gratuitousCopyright © by SIAM. Unauthorized reproduction of this article is prohibited 458
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superset Y ⊃ X with σ(X) = σ(Y ). As a running example, consider the database shown in Figure 1. There
are five different items, I = {A,C,D, T,W} and six transactions T = {1, 2, 3, 4, 5, 6}. The table on the
right shows all 19 frequent itemsets contained in at least three transactions, i.e., min sup= 50%. Consider
Figure 2 which shows the 19 frequent itemsets organized as a subset lattice; their corresponding tidsets have
also been shown. The 7 closed sets are obtained by collapsing all the itemsets that have the same tidset,
shown in the figure by the circled regions. Looking at the closed itemset lattice we find that there are 2
maximal frequent itemsets (marked with a circle), ACTW and CDW . As the example shows, in general if
F denotes the set of frequent itemsets, C the set of closed ones, and M the set of maximal itemsets, then
we have M ⊆ C ⊆ F . Generally, the C can be orders of magnitude smaller than F (especially for dense
datasets), while M can itself be orders of magnitude smaller than C. However, the closed sets are lossless
in the sense that the exact frequency of all frequent sets can be determined from C, while M leads to a loss
of information. To find if a set X is frequent we find the smallest closed set that is a superset of X. If no
superset exists, then X is not frequent. For example, to check if ATW is frequent, we find that ACTW is
the smallest closed set that contains it; ATW is thus frequent and has the same frequency as ACTW . On
the other hand, DT is not frequent since there is no frequent closed set that contains it.

Related Work Our past work [18] addressed the problem of non-redundant rule generation, provided that
closed sets are available; an algorithm to efficiently mine the closed sets was not described in that paper.
There have been several recent algorithms proposed for this task.

Close [14] is an Apriori-like algorithm that directly mines frequent closed itemsets. There are two main
steps in Close. The first is to use bottom-up search to identify generators, the smallest frequent itemset
that determines a closed itemset. For example, consider the frequent itemset lattice in Figure 2. The item
A is a generator for the closed set ACW , since it is the smallest itemset with the same tidset as ACW . All
generators are found using a simple modification of Apriori. After finding the frequent sets at level k, Close
compares the support of each set with its subsets at the previous level. If the support of an itemset matches
the support of any of its subsets, the itemset cannot be a generator and is thus pruned. The second step in
Close is to compute the closure of all the generators found in the first step. To compute the closure of an
itemset we have to perform an intersection of all transactions where it occurs as a subset. The closures for all
generators can be computed in just one database scan, provided all generators fit in memory. Nevertheless
computing closures this way is an expensive operation.

The authors of Close recently developed Pascal [3], an improved algorithm for mining closed and
frequent sets. They introduce the notion of key patterns and show that other frequent patterns can be
inferred from the key patterns without access to the database. They showed that Pascal, even though it
finds both frequent and closed sets, is typically twice as fast as Close, and ten times as fast as Apriori.Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 459
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Since Pascal enumerates all patterns, it is only practical when pattern length is short (as we shall see in
the experimental section). The Closure algorithm [7] is also based on a bottom-up search. It performs only
marginally better than Apriori, thus CHARM should outperform it easily.

Recently two new algorithms for finding frequent closed itemsets have been proposed. Closet [15] uses a
novel frequent pattern tree (FP-tree) structure, which is a compressed representation of all the transactions
in the database. It uses a recursive divide-and-conquer and database projection approach to mine long
patterns. We will show later that CHARM outperforms Closet by orders of magnitude as support is
lowered. Mafia [6] is primarily intended for maximal pattern mining, but has an option to mine the closed
sets as well. Mafia relies on efficient compressed and projected vertical bitmap based frequency computation.
At higher supports both Mafia and CHARM exhibit similar performance, but as one lowers the support the
gap widens exponentially. CHARM can deliver over factor of 10 improvements over Mafia for low supports.

There have been several efficient algorithms for mining maximal frequent itemsets such as MaxMiner [4],
DepthProject [2], Mafia [6], and GenMax [10]. It is not practical to first mine maximal patterns and then
to check if each subset is closed, since we would have to check 2l subsets, where l is length of the longest
pattern (we can easily have patterns of length 30 to 40 or more; see experimental section). In [21] we tested
a modified version of MaxMiner to discover closed sets in a post-processing step, and found it to be too slow
for all except short patterns.

3 Itemset-Tidset Search Tree and Equivalence Classes
Let I be the set of items. Define a function p(X, k) = X[1 : k] as the k length prefix of X, and a prefix-based
equivalence relation θk [19] on itemsets as follows: ∀X,Y ⊆ I, X ≡θk Y ⇔ p(X, k) = p(Y, k). That is, two
itemsets are in the same class if they share a common k length prefix.
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ACDTWx5
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ACTx135ACDx45 ACWx1345 ADWx45

ADTWx5

ADTx5 ATWx135
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{}x123456

Figure 3. IT-Tree: Itemset-Tidset Search Tree

CHARM performs a search for closed frequent sets over a novel IT-tree search space, shown in Figure 3.
Each node in the IT-tree, represented by an itemset-tidset pair, X × t(X), is in fact a prefix-based class. All
the children of a given node X, belong to its equivalence class, since they all share the same prefix X. We
denote an equivalence class as [P ] = {l1, l2, · · · , ln}, where P is the parent node (the prefix), and each li is
a single item, representing the node Pli × t(Pli). For example, the root of the tree corresponds to the class
[] = {A,C,D, T,W}. The leftmost child of the root consists of the class [A] of all itemsets containing A as
the prefix, i.e. the set {C,D, T,W}. As can be discerned, each class member represents one child of the
parent node. A class represents items that the prefix can be extended with to obtain a new frequent node.
Clearly, no subtree of an infrequent prefix has to be examined. The power of the equivalence class approachCopyright © by SIAM. Unauthorized reproduction of this article is prohibited 460
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is that it breaks the original search space into independent sub-problems. For any subtree rooted at node
X, one can treat it as a completely new problem; one can enumerate the patterns under it and simply prefix
them with the item X, and so on.

Enumerate-Frequent([P ]):
for all li ∈ [P ] do

[Pi] = ∅;
for all lj ∈ [P ], with j > i do

I = Plilj ;
T = t(Pli) ∩ t(Plj);
if |T | ≥ min sup then

[Pi] = [Pi] ∪ {I × T};
if (DFS) then Enumerate-Frequent([Pi]); delete [Pi];

if (BFS) then
for all [Pi] do Enumerate-Frequent([Pi]); delete [Pi];

Figure 4. Pattern Enumeration
Frequent pattern enumeration is straightforward in the IT-tree framework. For a given node or prefix

class, one can perform intersections of the tidsets of all pairs of elements in a class, and check if min sup is
met; support counting is simultaneous with generation. Each resulting frequent itemset is a class unto itself,
with its own elements, that will be recursively expanded. That is to say, for a given class of itemsets with
prefix P , [P ] = {l1, l2, · · · , ln}, one can perform the intersection of t(Pli) with all t(Plj) with j > i, to obtain
a new class of frequent extensions, [Pli] = {lj | j > i and σ(Plilj) ≥ min sup}. For example, from the null
root [] = {A,C,D, T,W}, with min sup=50% we obtain the classes [A] = {C, T,W}, [C] = {D,T,W}, and
[D] = {W}, and [W ] = {}. Note that class [A] does not contain D since AD is not frequent. Figure 4 gives
a pseudo-code description of a breadth-first (BFS) and depth-first (DFS) exploration of the IT-tree for all
frequent patterns. CHARM improves upon this basic enumeration scheme, using the conceptual framework
provided by the IT-tree; it is not assumed that all the tidsets will fit in memory, rather CHARM materializes
only a small portion of the tree in memory at any given time.

Basic Properties of Itemset-Tidset Pairs We use the concept of a closure operation [9, 18] to check if a
given itemset X is closed or not. We define a closure of an itemset X, denoted c(X), as the the smallest closed
set that contains X. Recall that i(Y ) is the set of items common to all the tids in the tidset Y , while t(X)
are tids common to all the items in X. To find the closure of an itemset X we first compute the image of X
in the transaction space to get t(X). We next map t(X) to its image in the itemset space using the mapping
i to get i(t(X)). It is well know that the resulting itemset must be closed [9], i.e., c(X) = i ◦ t(X) = i(t(X)).
It follows that an itemset X is closed if and only if X = c(X). For example the itemset ACW is closed since
c(ACW ) = i(t(ACW )) = i(1345) = ACW . The support of an itemset X is also equal to the support of its
closure, i.e., σ(X) = σ(c(X)) [14, 18].

For any two nodes in the IT-tree, Xi × t(Xi) and Xj × t(Xj), if Xi ⊆ Xj then it is the case that
t(Xj) ⊆ t(Xi). For example, for ACW ⊆ ACTW , t(ACW ) = 1345 ⊇ 135 = t(ACTW ). Let us define
f : P(I) �→ N to be a one-to-one mapping from itemsets to integers. For any two itemsets Xi and Xj ,
we say Xi ≤f Xj iff f(Xi) ≤ f(Xj). The function f defines a total order over the set of all itemsets.
For example, if f denotes the lexicographic ordering, then itemset AC ≤ AD, but if f sorts itemsets in
increasing order of their support, then AD ≤ AC if σ(AD) ≤ σ(AC). There are four basic properties of
IT-pairs that CHARM leverages for fast exploration of closed sets. Assume that we are currently processing
a node P × t(P ) where [P ] = {l1, l2, · · · , ln} is the prefix class. Let Xi denote the itemset Pli, then each
member of [P ] is an IT-pair Xi × t(Xi).

Theorem 1. Let Xi × t(Xi) and Xj × t(Xj) be any two members of a class [P ], with Xi ≤f Xj, where f is
a total order (e.g., lexicographic or support-based). The following four properties hold:

1. If t(Xi) = t(Xj), then c(Xi) = c(Xj) = c(Xi ∪Xj)

2. If t(Xi) ⊂ t(Xj), then c(Xi)  = c(Xj), but c(Xi) = c(Xi ∪Xj)Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 461
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3. If t(Xi) ⊃ t(Xj), then c(Xi)  = c(Xj), but c(Xj) = c(Xi ∪Xj)

4. If t(Xi)  = t(Xj), then c(Xi)  = c(Xj)  = c(Xi ∪Xj)

Proof and Discussion:
1. If t(Xi) = t(Xj), then obviously i(t(Xi)) = i(t(Xj), i.e., c(Xi) = c(Xj). Further t(Xi) = t(Xj) implies
that t(Xi ∪Xj) = t(Xi)∩ t(Xj) = t(Xi). Thus i(t(Xi ∪Xj)) = i(t(Xi)), giving us c(Xi ∪Xj) = c(Xi). This
property implies that we can replace every occurrence of Xi with Xi ∪Xj , and we can remove the element
Xj from further consideration, since its closure is identical to the closure of Xi ∪Xj .
2. If t(Xi) ⊂ t(Xj), then t(Xi∪Xj) = t(Xi)∩ t(Xj) = t(Xi)  = t(Xj), giving us c(Xi∪Xj) = c(Xi)  = c(Xj).
Thus we can replace every occurrence of Xi with Xi ∪ Xj , since they have identical closures. But since
c(Xi)  = c(Xj) we cannot remove element Xj from class [P ]; it generates a different closure.
3. Similar to case 2 above.
4. If t(Xi)  = t(Xj), then clearly t(Xi∪Xj) = t(Xi)∩ t(Xj)  = t(Xi)  = t(Xj), giving us c(Xi∪Xj)  = c(Xi)  =
c(Xj). No element of the class can be eliminated; both Xi and Xj lead to different closures.

4 CHARM: Algorithm Design and Implementation
We now present CHARM, an efficient algorithm for mining all the closed frequent itemsets. We will first
describe the algorithm in general terms, independent of the implementation details. We then show how
the algorithm can be implemented efficiently. CHARM simultaneously explores both the itemset space
and tidset space using the IT-tree, unlike previous methods which typically exploit only the itemset space.
CHARM uses a novel search method, based on the IT-pair properties, that skips many levels in the IT-tree
to quickly converge on the itemset closures, rather than having to enumerate many possible subsets.

The pseudo-code for CHARM appears in Figure 5. The algorithm starts by initializing the prefix class
[P ], of nodes to be examined, to the frequent single items and their tidsets in Line 1. We assume that the
elements in [P ] are ordered according to a suitable total order f . The main computation is performed in
CHARM-Extend which returns the set of closed frequent itemsets C.

CHARM-Extend is responsible for considering each combination of IT-pairs appearing in the prefix
class [P ]. For each IT-pair Xi × t(Xi) (Line 4), it combines it with the other IT-pairs Xj × t(Xj) that
come after it (Line 6) according to the total order f . Each Xi generates a new prefix class [Pi] which is
initially empty (Line 5). At line 7, the two IT-pairs are combined to produce a new pair X × Y, where
X = Xi ∪ Xj and Y = t(Xi) ∩ t(Xj). Line 8 tests which of the four IT-pair properties can be applied by
calling ChARM-Property. Note that this routine may modify the current class [P ] by deleting IT-pairs
that are already subsumed by other pairs. It also inserts the newly generated IT-pairs in the new class [Pi].
Once all Xj have been processed, we recursively explore the new class [Pi] in a depth-first manner (Line 9).
We then insert the itemset X, an extension of Xi, in the set of closed itemsets C (Line 11), provided that
X is not subsumed by a previously found closed set (we describe later how to perform fast subsumption
checking). At this stage any closed itemset containing Xi has already been generated. We then return to
Line 4 to process the next (unpruned) IT-pair in [P ].

4.1 Dynamic Element Reordering

We purposely let the IT-pair ordering function in Line 6 remain unspecified. The usual manner of processing
is in lexicographic order, but we can specify any other total order we want. The most promising approach is
to sort the itemsets based on their support. The motivation is to increase opportunity for pruning elements
from a class [P ]. A quick look at Properties 1 and 2 tells us that these two cases are preferable over the
other two. For Property 1, the closure of the two itemsets is equal, and thus we can discard Xj and replace
Xi with Xi ∪Xj . For Property 2, we can still replace Xi with Xi ∪Xj . Note that in both these cases we do
not insert anything in the new class [Pi]! Thus the more the occurrence of cases 1 and 2, the fewer levels of
search we perform. In contrast, the occurrence of cases 3 and 4 results in additions to the set of new nodes,
requiring additional levels of processing.

Since we want t(Xi) = t(Xj) (Property 1) or t(Xi) ⊂ t(Xj) (Property 2) it follows that we should
sort the itemsets in increasing order of their support. Thus larger tidsets occur later in the ordering and weCopyright © by SIAM. Unauthorized reproduction of this article is prohibited 462
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CHARM (D, min sup):
1. [P] = {Xi × t(Xi) : Xi ∈ I ∧ σ(Xi) ≥ min sup}
2. CHARM-Extend ([P ], C = ∅)
3. return C //all closed sets

CHARM-Extend ([P ], C):
4. for each Xi × t(Xi) in [P ]
5. [Pi] = ∅ and X = Xi

6. for each Xj × t(Xj) in [P ], with Xj ≥f Xi

7. X = X ∪Xj and Y = t(Xi) ∩ t(Xj)
8. CHARM-Property([P ], [Pi])
9. if ([Pi] 
= ∅) then CHARM-Extend ([Pi], C)
10. delete [Pi]
11. C = C ∪ X //if X is not subsumed

CHARM-Property ([P ], [Pi]):
12. if (σ(X) ≥ minsup) then
13. if t(Xi) = t(Xj) then //Property 1
14. Remove Xj from [P ]
15. Replace all Xi with X
16. else if t(Xi) ⊂ t(Xj) then //Property 2
17. Replace all Xi with X
18. else if t(Xi) ⊃ t(Xj) then //Property 3
19. Remove Xj from [P ]
20. Add X × Y to [Pi] //use ordering f
21. else if t(Xi) 
= t(Xj) then //Property 4
22. Add X × Y to [Pi] //use ordering f

Figure 5. The CHARM Algorithm

maximize the occurrence of Properties 1 and 2. By similar reasoning, sorting by decreasing order of support
doesn’t work very well, since it maximizes the occurrence of Properties 3 and 4, increasing the number of
levels of processing. Note also that elements are added in sorted order to each new class [Pi] (lines 20 and
22). Thus the reordering is applied recursively at each node in the tree.

{}
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DT x 56 DW x 245

T x 1356 A x 1345
AW x 1345

W x 12345 C x 123456

DA x 45

DC x 2456

DWC x 245

WC x 12345
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Figure 6. Search Process using Tidsets
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Figure 7. Search Process using Diffsets

Example 1: Figure 6 shows how CHARM works on our example database if we sort itemsets in increasing
order of support. We will use the pseudo-code to illustrate the computation. Define the weight of an item
X as w(X) =

∑
XY ∈F2

σ(XY ), i.e., the sum of the support of frequent 2-itemsets that contain the item.
At the root level, we sort the items in increasing order of their weights. For example, if we look at the
support of 2-itemsets containing A, we find that AC and AW have support 4, while AT has support 3,
thus w(A) = 4 + 4 + 3 = 11. The final sorted order of items is then D,T,A,W , and C (their weights are
7,10,11,15, and 17, respectively).

We initialize the root class as [∅] = {D × 2456, T × 1356, A × 1345,W × 12345, C × 123456} in Line
1. At Line 4 we first process the node D × 2456 (we set X = D in Line 5); it will be combined with the
remaining elements in Line 6. DT and DA are not frequent and are pruned. We next look at D and W ; since
t(D)  = t(W ), property 4 applies, and we simply insert DW in [D] (line 22). We next find that t(D) ⊂ t(C).
Since property 2 applies, we replace all occurrences of D with DC, which means that we also change [D] to
[DC], and the element DW to DWC. We next make a recursive call to ChARM-Extend with class [DC].
Sine there is only one element, we jump to line 11, where DWC is added to the frequent closed set C. When
we return the D (now DC) branch is complete, thus DC itself is added to C.Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 463
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When we process T , we find that t(T )  = t(A), thus we insert TA in the new class [T ] (property 4). Next
we find that t(T )  = t(W ) and we get [T ] = {TA, TW}. When we find t(T ) ⊂ t(C) we update all occurrences
of T with TC (by property 2). We thus get the class [TC] = {TAC, TWC}. CHARM then makes a
recursive call on Line 9 to process [TC]. We try to combine TAC with TWC to find t(TAC) = t(TWC).
Since property 1 is satisfied, we replace TAC with TACW , deleting TWC at the same time. Since TACW
cannot be extended further, we insert it in C, and when we are done processing branch TC, it too is added to
C. All other branches satisfy property 2, and no new recursion is made; the final C consists of the uncrossed
IT-pairs shown in Figure 6.

4.2 Fast Subsumption Checking

Let Xi and Xj be two itemsets, we say that an itemset Xi subsumes another itemset Xj , if and only if
Xj ⊂ Xi and σ(Xj) = σ(Xi). Recall that before adding a set X to the current set of closed patterns C,
CHARM makes a check in Line 11 (see Figure 5) to see if X is subsumed by some closed set in C. In other
words, it may happen that after adding a closed set Y to C, when we explore subsequent branches, we may
generate another set X, which cannot be extended further, with X ⊆ Y and with σ(Y ) = σ(X). In this
case, X is a non-closed set subsumed by Y , and it should not be added to C. Since C dynamically expands
during enumeration of closed patterns, we need a very fast approach to perform such subsumption checks.

Clearly we want to avoid comparing X with all existing elements in C, for this would lead to a O(|C|2)
complexity. To quickly retrieve relevant closed sets, the obvious solution is to store C in a hash table. But
what hash function to use? Since we want to perform subset checking, we can’t hash on the itemset. We
could use the support of the itemsets for the hash function. But many unrelated itemsets may have the same
support. Since CHARM uses IT-pairs throughout its search, it seems reasonable to use the information
from the tidsets to help identify if X is subsumed. Note that if t(Xj) = t(Xi), then obviously σ(Xj) = σ(Xi).
Thus to check if X is subsumed, we can check if t(X) = t(C) for some C ∈ C. This check can be performed
in O(1) time using a hash table. But obviously we cannot afford to store the actual tidset with each closed
set in C; the space requirements would be prohibitive.

CHARM adopts a compromise solution. It computes a hash function on the tidset and stores in the
hash table a closed set along with its support (in our implementation we used the C++ STL – standard
template library – hash multimap container for the hash table). Let h(Xi) denote a suitable chosen hash
function on the tidset t(Xi). Before adding X to C, we retrieve from the hash table all entries with the hash
key h(X). For each matching closed set C is then check if σ(X) = σ(C). If yes, we next check if X ⊂ C. If
yes, then X is subsumed and we do not add it to hash table C.

What is a good hash function on a tidset? CHARM uses the sum of the tids in the tidset as the hash
function, i.e., h(X) =

∑
T∈t(X) T (note, this is not the same as support, which is the cardinality of t(X)).

We tried several other variations and found there to be no performance difference. This hash function is
likely to be as good as any other due to several reasons. Firstly, by definition a closed set is one that does
not have a superset with the same support; it follows that it must have some tids that do not appear in
any other closed set. Thus the hash keys of different closed sets will tend to be different. Secondly, even if
there are several closed sets with the same hash key, the support check we perform (i.e., if σ(X) = σ(C))
will eliminate many closed sets whose keys are the same, but they in fact have different supports. Thirdly,
this hash function is easy to compute and it can easily be used with the diffset format we introduce next.

4.3 Diffsets for Fast Frequency Computations

Given that we are manipulating itemset-tidset pairs, CHARM uses a vertical data format, where we maintain
a disk-based tidset for each item in the database. Mining algorithms using the vertical format have shown
to be very effective and usually outperform horizontal approaches [8, 16, 17, 19]. The main benefits of using
a vertical format are: 1) Computing the supports is simpler and faster. Only intersections on tidsets is
required, which are also well-supported by current databases. The horizontal approach on the other hand
requires complex hash trees. 2) There is automatic pruning of irrelevant information as the intersections
proceed; only tids relevant for frequency determination remain after each intersection. For databases with
long transactions it has been shown using a simple cost model, that the the vertical approach reduces the
number of I/O operations [8]. Further, vertical bitmaps offer scope for compression [17].Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 464
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Despite the many advantages of the vertical format, when the tidset cardinality gets very large (e.g.,
for very frequent items) the methods start to suffer, since the intersection time starts to become inordinately
large. Furthermore, the size of intermediate tidsets generated for frequent patterns can also become very
large, requiring data compression and writing of temporary results to disk. Thus (especially) in dense
datasets, which are characterized by high item frequency and many patterns, the vertical approaches may
quickly lose their advantages. In this paper we utilize a vertical data representation called diffsets, that we
recently proposed [20]. Diffsets keep track of differences in the tids of a candidate pattern from its parent
frequent pattern. These differences are propagated all the way from one node to its children starting from
the root. We showed in [20] that diffsets drastically cut down (by orders of magnitude) the size of memory
required to store intermediate results. Thus even in dense domains the entire working set of patterns of
several vertical mining algorithms can fit entirely in main-memory. Since the diffsets are a small fraction of
the size of tidsets, intersection operations are performed very efficiently.

d(PX)d(PY) d(PXY) PXY

t(P)

t(X)

t(Y)

Figure 8. Diffsets: Prefix P and class members X and Y

More formally, consider a class with prefix P . Let d(X) denote the diffset of X, with respect to a prefix
tidset, which is the current universe of tids. In normal vertical methods one has available for a given class
the tidset for the prefix t(P ) as well as the tidsets of all class members t(PXi). Assume that PX and PY are
any two class members of P . By the definition of support it is true that t(PX) ⊆ t(P ) and t(PY ) ⊆ t(P ).
Furthermore, one obtains the support of PXY by checking the cardinality of t(PX) ∩ t(PY ) = t(PXY ).

Now suppose instead that we have available to us not t(PX) but rather d(PX), which is given as
t(P )− t(X), i.e., the differences in the tids of X from P . Similarly, we have available d(PY ). The first thing
to note is that the support of an itemset is no longer the cardinality of the diffset, but rather it must be
stored separately and is given as follows: σ(PX) = σ(P ) − |d(PX)|. So, given d(PX) and d(PY ) how can
we compute if PXY is frequent?

We use the diffsets recursively as we mentioned above, i.e., σ(PXY ) = σ(PX) − |d(PXY )|. So we
have to compute d(PXY ). By our definition d(PXY ) = t(PX) − t(PY ). But we only have diffsets, and
not tidsets as the expression requires. This is easy to fix, since d(PXY ) = t(PX) − t(PY ) = t(PX) −
t(PY ) + t(P ) − t(P ) = (t(P ) − t(PY )) − (t(P ) − t(PX)) = d(PY ) − d(PX). In other words, instead of
computing d(XY ) as a difference of tidsets t(PX) − t(PY ), we compute it as the difference of the diffsets
d(PY ) − d(PX). Figure 8 shows the different regions for the tidsets and diffsets of a given prefix class and
any two of its members. The tidset of P , the triangle marked t(P ), is the universe of relevant tids. The
gray region denotes d(PX), while the region with the solid black line denotes d(PY ). Note also that both
t(PXY ) and d(PXY ) are subsets of the tidset of the new prefix PX. Diffsets are typically much smaller
than storing the tidsets with each child since only the essential changes are propagated from a node to its
children. Diffsets also shrink as longer itemsets are found.

Diffsets and Subsumption Checking: Notice that diffsets cannot be used directly for generating a
hash key as was possible with tidsets. The reason is that depending on the class prefix, nodes in different
branches will have different diffsets, even though one is subsumed by the other. The solution is to keep
track of the hash key h(PXY ) for PXY in the same way as we store σ(PXY ). In other words, assumeCopyright © by SIAM. Unauthorized reproduction of this article is prohibited 465
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that we have available h(PX), then we can compute h(PXY ) = h(PX) −∑
T∈d(PXY ) T . Of course, this is

only possible because of our choice of hash function described in Section 4.2. Thus we associate with each
member of a class its hash key, and the subsumption checking proceeds exactly as for tidsets.

Differences and Subset Testing: We assume that the initial database is stored in tidset format, but
we use diffsets thereafter. Given the availability of diffsets for each itemset, the computation of the difference
for a new combination is straightforward. All it takes is a linear scan through the two diffsets, storing tids
in one but not the other. The main question is how to efficiently compute the subset information, while
computing differences, required for applying the four IT-pair properties. At first this might appear like an
expensive operation, but in fact it comes for free as an outcome of the set difference operation. While taking
the difference of two sets we keep track of the number of mismatches in both the diffsets, i.e., the cases when
a tid occurs in one list but not in the other. Let m(Xi) and m(Xj) denote the number of mismatches in the
diffsets d(Xi) and d(Xj). There are four cases to consider:

m(Xi) = 0 and m(Xj) = 0, then d(Xi) = d(Xj) or t(Xi) = t(Xj) — Property 1
m(Xi) > 0 and m(Xj) = 0, then d(Xi) ⊃ d(Xj) or t(Xi) ⊂ t(Xj) — Property 2
m(Xi) = 0 and m(Xj) > 0, then d(Xi) ⊂ d(Xj) or t(Xi) ⊃ t(Xj) — Property 3
m(Xi) > 0 and m(Xj) > 0, then d(Xi)  = d(Xj) or t(Xi)  = t(Xj) — Property 4

Thus CHARM performs support, subset, equality, and inequality testing simultaneously while computing the
difference itself. Figure 7 shows the search for closed sets using diffsets instead of tidsets. The exploration
proceeds in exactly the same way as described in Example 1. However, this time we perform difference
operations on diffsets (except for the root class, which uses tidsets). Consider an IT-pair like TAWC × 6.
Since this indicates that TAWC differs from its parent TC × 1356 only in the tid 6, we can infer that the
real IT-pair should be TAWC × 135.

4.4 Other optimizations and Correctness

Optimized Initialization: There is only one significant departure from the pseudo-code in Figure 5.
Note that if we initialize the [P ] set in Line 1 with all frequent items, and invoke CHARM-Extend then,
in the worst case, we might perform n(n − 1)/2 difference operations where n is the number of frequent
items. It is well known that many itemsets of length 2 turn out to be infrequent, thus it is clearly wasteful to
perform O(n2) operations. To solve this performance problem we first compute the set of frequent itemsets
of length 2, and then we add a simple check in Line 6 (not shown for clarity; it only applies to 2-itemsets),
so that we combine two items Xi and Xj only if Xi ∪Xj is known to be frequent. The number of operations
performed after this check is equal to the number of frequent pairs, which in practice is closer to O(n) rather
than O(n2). To compute the frequent itemsets of length 2 using the vertical format we perform a multi-stage
vertical-to-horizontal transformation on-the-fly as described in [19], over distinct ranges of tids. Given a
recovered horizontal database chunk it is straightforward to update the count of pairs of items using an
upper triangular 2D array. We then process the next chunk. The horizontal chunks are thus temporarily
materialized in memory and then discarded after processing [19].

Memory Management: Since CHARM processes branches in a depth-first fashion, its memory re-
quirements are not substantial. It has to retain all the itemset-diffsets pairs on the levels of the current
left-most branches in the search space. The use of diffsets also reduces drastically the memory consumption.
For cases where even the memory requirement of depth-first search and diffsets exceed available memory, it
is straightforward to modify CHARM to write/read temporary diffsets to/from disk, as in [17].

Theorem 2 (correctness). CHARM enumerates all frequent closed itemsets.
Proof: CHARM correctly identifies all and only the closed frequent itemsets, since its search is based
on a complete IT-tree search space. The only branches that are pruned as those that either do not have
sufficient support, or those that are subsumed by another closed set based on the properties of itemset-tidset
pairs as outlined in Theorem 1. Finally CHARM eliminates any non-closed itemset that might be generated
by performing subsumption checking before inserting anything in the set of all frequent closed itemsets C.
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 466
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5 Experimental Evaluation
Experiments were performed on a 400MHz Pentium PC with 256MB of memory, running RedHat Linux 6.0.
Algorithms were coded in C++. For performance comparison we used the original source or object code for
Close [14], Pascal [3], Closet [15] and Mafia [6], all provided to us by their authors. The original Closet code
had a subtle bug, which affected the performance, but not the correctness. Our comparison below uses the
new bug-free, optimized version of Closet obtained from its authors. Mafia has an option to mine only closed
sets instead of maximal sets. We refer to this version of Mafia below. We also include a comparison with the
base Apriori algorithm [1] for mining all itemsets. Timings in the figures below are based on total wall-clock
time, and include all preprocessing costs (such as vertical database creation in CHARM and Mafia).

Benchmark Datasets We chose several real and synthetic database benchmarks [1, 4], publicly available
from IBM Almaden (www.almaden.ibm.com/cs/quest/demos.html), for the performance tests. The PUMS
datasets (pumsb and pumsb*) contain census data. pumsb* is the same as pumsb without items with 80%
or more support. The mushroom database contains characteristics of various species of mushrooms. The
connect and chess datasets are derived from their respective game steps. The latter three datasets were
originally taken from the UC Irvine Machine Learning Database Repository. The synthetic datasets (T10
and T40), using the IBM generator, mimic the transactions in a retailing environment.

The gazelle dataset comes from click-stream data from a small dot-com company called Gazelle.com,
a legware and legcare retailer, which no longer exists. A portion of this dataset was used in the KDD-Cup
2000 competition. This dataset was recently made publicly available by Blue Martini Software (download it
from www.ecn.purdue.edu/KDDCUP).

Typically, the real datasets are very dense, i.e., they produce many long frequent itemsets even for very
high values of support. The synthetic datasets mimic the transactions in a retailing environment. Usually
the synthetic datasets are sparser when compared to the real sets.

Database # Items Avg. Length Std. Dev. # Records Max. Pattern (sup) Levels Searched

chess 76 37 0 3,196 23 (20%) 17
connect 130 43 0 67,557 29 (10%) 12
mushroom 120 23 0 8,124 21 (0.075%) 11
pumsb* 7117 50 2 49,046 40 (5%) 16
pumsb 7117 74 0 49,046 22 (60%) 17
gazelle 498 2.5 4.9 59,601 154 (0.01%) 11
T10I4D100K 1000 10 3.7 100,000 11 (0.025%) 11
T40I10D100K 1000 40 8.5 100,000 25 (0.001%) 19

Table 1. Database Characteristics

Table 1 shows the characteristics of the real and synthetic datasets used in our evaluation. It shows
the number of items, the average transaction length, the standard deviation of transaction lengths, and the
number of records in each database. The table additionally shows the length of the longest maximal pattern
(at the lowest minimum support used in our experiments) for the different datasets, as well as the maximum
level of search that CHARM performed to discover the longest pattern. For example on gazelle, the longest
closed pattern was of length 154 (any method that mines all frequent patterns will be impractical for such
long patterns), yet the maximum recursion depth in CHARM was only 11! The number of levels skipped
is also considerable for other real datasets. The synthetic dataset T10 is extremely sparse and no levels are
skipped, but for T40 6 levels were skipped. These results give an indication of the effectiveness of CHARM
in mining closed patterns, and are mainly due to repeated applications of Properties 1 and 2 in Theorem 1.

Before we discuss the performance results of different algorithms it is instructive to look at the total
number of frequent closed itemsets and distribution of closed patterns by length for the various datasets,
as shown in Figure 9. We have grouped the datasets according to the type of distribution. chess, pumsb*,
pumsb, and connect all display an almost symmetric distribution of the closed frequent patterns with different
means. T40 and mushroom display an interesting bi-modal distribution of closed sets. T40, like T10, has a
many short patterns of length 2, but it also has another peak at length 6. mushroom has considerably longer
patterns; its second peak occurs at 19. Finally gazelle and T10 have a right-skewed distribution. gazelleCopyright © by SIAM. Unauthorized reproduction of this article is prohibited 467
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Figure 9. Number of Frequent Closed Itemsets and Distribution by Length

tends to have many small patterns, with a very long right tail. T10 exhibits a similar distribution, with the
majority of the closed patterns begin of length 2! The type of distribution tends to influence the behavior
of different algorithms as we will see below.

5.1 Performance Testing

We compare the performance of CHARM against Apriori, Close, Pascal, Mafia and Closet in Figure 10.
Since Closet was provided as a Windows executable by its authors, we compared it separately on a 900 MHz
Pentium III processor with 256MB memory, running Windows 98. In [21] we tested a modified version of
a maximal pattern finding algorithm (MaxMiner [4]) to discover closed sets in a post-processing step, and
found it to be too slow for all except short patterns.

Symmetric Datasets Let us first compare how the methods perform on datasets which exhibit a symmetric
distribution of closed itemsets, namely chess, pumsb, connect and pumsb*. We observe that Apriori, Close
and Pascal work only for very high values of support on these datasets. The best among the three is Pascal
which can be twice as fast as Close, and up to 4 times better than Apriori. On the other hand, CHARM is
several orders of magnitude better than Pascal, and it can be run on very low support values, where none of
the former three methods can be run. Comparing with Mafia, we find that both CHARM and Mafia have
similar performance for higher support values. However, as we lower the minimum support, the performance
gap between CHARM and Mafia widens. For example at the lowest support value plotted, CHARM is
about 30 times faster than Mafia on Chess, about 3 times faster on connect and pumsb, and 4 times faster on
pumsb*. CHARM outperforms Closet by an order of magnitude or more, especially as support is lowered.
On chess and pumsb* it is about 10 times faster than Closet, and about 40 times faster on pumsb. On
connect Closet performs better at high supports, but CHARM does better at lower supports. The reason is
that connect has transactions with lot of overlap among items, leading to a compact FP-tree and to faster
performance. However, as support is lowered FP-tree starts to grow, and Closet loses its edge.Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 468
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Bi-modal Datasets On the two datasets with a bi-modal distribution of frequent closed patterns, namely
mushroom and T40, we find that Pascal fares better than for symmetric distributions. For higher values
of support the maximum closed pattern length is relatively short, and the distribution is dominated by the
first mode. Apriori, Close and Pascal can hand this case. However, as one lowers the minimum support
the second mode starts to dominate, with longer patterns. These these methods thus quickly lose steam
and become uncompetitive. Between CHARM and Mafia, up to 1% minimum support there is negligible
difference, however, when the support is lowered there is a huge difference in performance. CHARM is about
20 times faster on mushroom and 10 times faster on T40 for the lowest support shown. The gap continues
to widen sharply. We find that CHARM outperforms Closet by a factor of 2 for mushroom and 4 for T40.

Right-Skewed Datasets On gazelle and T10, which have a large number of very short closed patterns,
followed by a sharp drop, we find that Apriori, Close and Pascal remain competitive even for relatively low
supports. The reason is that T10 had a maximum pattern length of 11 at the lowest support shown. Also
gazelle at 0.06% support also had a maximum pattern length of 11. The level-wise search of these three
methods is able to easily handle such short patterns. However, for gazelle, we found that at 0.05% support
the maximum pattern length suddenly jumped to 45, and none of these three methods could be run.

T10, though a sparse dataset, is problematic for Mafia. The reason is that T10 produces long sparse
bitvectors for each item, and offers little scope for bit-vector compression and projection that Mafia relies
on for efficiency. This causes Mafia to be uncompetitive for such datasets. Similarly Mafia fails to do well
on gazelle. However, it is able to run on the lowest support value. The diffset format of CHARM is resilient
to sparsity (as shown in [20]) and it continues to outperform other methods. For the lowest support, on T10
it is twice as fast as Pascal and 15 times better than Mafia, and it is about 70 times faster than Mafia on
gazelle. CHARM is about 2 times slower than Closet on T10. The reason is that the majority of closed
sets are of length 2, and the tidset/diffsets operations in CHARM are relatively expensive compared to the
compact FP-tree for short patterns (max length is only 11). However, for gazelle, which has much longer
closed patterns, CHARM outperforms Closet by a factor of 160!
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Figure 11. Size Scaleup on Different Datasets

Scaling Properties of CHARM Figure 11 shows how CHARM scales with an increasing number of
transactions. For this study, we kept all database parameters constant, and replicated the transactions from
2 to 16 times. Thus, for example, for T40, which has 100K transactions initially, at a replication factor of
16, it will have 1.6 million transactions. At a given level of support, we find a linear increase in the running
time with increasing number of transactions.

Effect of Branch Ordering Figure 12 compares three ordering methods — lexicographic order, increasing
by support, and decreasing by support. Decreasing order is the worst, while processing class elements in
increasing order is the best. Similar results were obtained for the other datasets. All results for CHARM
reported above used increasing branch ordering.Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 470
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DB 50% 20% DB 0.1% 0.05% DB 1% 0.5%

connect 0.68MB 1.17MB gazelle 0.13MB 1.24MB T40I10D100K 0.39MB 0.52MB

Table 2. Maximum Memory Usage (Using Diffsets)

Memory Usage Figure 13 shows how the memory usage, for storing the tidsets and diffsets, changes as
computation progresses. The total usage for tidsets is generally under 10MB, but for diffsets it is under
0.2MB, a reduction by a factor of 50! The sharp drop to 0 (the vertical lines) indicates the beginning of
a new prefix class. Table 2 shows the maximum memory usage for three datasets for different values of
support. Here also we see that the memory footprint using diffsets is extremely small even for low values of
support. These results confirm that for many datasets the intermediate diffsets can easily fit in memory.

6 Conclusions
We presented and evaluated CHARM, an efficient algorithm for mining closed frequent itemsets. CHARM
simultaneously explores both the itemset space and tidset space using the new IT-tree framework, which
allows it to use a novel search method that skips many levels to quickly identify the closed frequent itemsets,
instead of having to enumerate many non-closed subsets. We utilized a new vertical format based on diffsets,
i.e., storing the differences in the tids as the computation progresses. An extensive set of experiments
confirms that CHARM can provide orders of magnitude improvement over existing methods for mining
closed itemsets. It also scales linearly in the number of transactions.

It has been shown in recent studies that closed itemsets can help in generating non-redundant rules
sets, which are typically a lot smaller than the set of all association rules [18]. An interesting direction of
future work is to develop methods to mine closed patterns for other mining problems like sequences, episodes,
multi-dimensional patterns, etc., and to study how much reduction in their respective rule sets is possible.
It also seems worthwhile to explore if the concept of “closure” extends to metrics other than support. For
example, for confidence, correlation, etc.

Acknowledgments
We would like to thank Lotfi Lakhal and Yves Bastide for providing us the source code for Close and Pascal,
Jiawei Han, Jian Pei, and Jianyong Wang for sending us the executable for Closet, and Johannes Gehrke
for the Mafia algorithm. We thanks Roberto Bayardo for providing us the IBM real datasets, and Ronny
Kohavi and Zijian Zheng of Blue Martini Software for giving us access to the Gazelle dataset.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 471



siam
2001/12/2
page

✐

✐

✐

✐

✐

✐

✐

✐

Bibliography

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast discovery of association
rules. In U. Fayyad and et al, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI Press, Menlo Park, CA, 1996.

[2] Ramesh Agrawal, Charu Aggarwal, and V.V.V. Prasad. Depth First Generation of Long Patterns. In
7th Int’l Conference on Knowledge Discovery and Data Mining, August 2000.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with counting
inference. SIGKDD Explorations, 2(2), December 2000.

[4] R. J. Bayardo. Efficiently mining long patterns from databases. In ACM SIGMOD Conf. Management
of Data, June 1998.

[5] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for
market basket data. In ACM SIGMOD Conf. Management of Data, May 1997.

[6] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal frequent itemset algorithm for transac-
tional databases. In Intl. Conf. on Data Engineering, April 2001.

[7] D. Cristofor, L. Cristofor, and D. Simovici. Galois connection and data mining. Journal of Universal
Computer Science, 6(1):60–73, 2000.

[8] B. Dunkel and N. Soparkar. Data organization and access for efficient data mining. In 15th IEEE Intl.
Conf. on Data Engineering, March 1999.

[9] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer-Verlag, 1999.

[10] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In 1st IEEE Int’l Conf. on
Data Mining, November 2001.

[11] J. Han and M. Kamber. Data Mining: Concepts and Techniuqes. Morgan Kaufmann Publishers, San
Francisco, CA, 2001.

[12] D-I. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering the maximum frequent set.
In 6th Intl. Conf. Extending Database Technology, March 1998.

[13] J. S. Park, M. Chen, and P. S. Yu. An effective hash based algorithm for mining association rules. In
ACM SIGMOD Intl. Conf. Management of Data, May 1995.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association
rules. In 7th Intl. Conf. on Database Theory, January 1999.

[15] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent closed itemsets. In
SIGMOD Int’l Workshop on Data Mining and Knowledge Discovery, May 2000.

[16] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large
databases. In 21st VLDB Conf., 1995.Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 472



siam
2001/12/2
page

✐

✐

✐

✐

✐

✐

✐

✐

[17] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-charging vertical
mining of large databases. In ACM SIGMOD Intl. Conf. Management of Data, May 2000.

[18] M. J. Zaki. Generating non-redundant association rules. In 6th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, August 2000.

[19] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data
Engineering, 12(3):372-390, May-June 2000.

[20] M. J. Zaki and K. Gouda. Fast vertical mining using Diffsets. Technical Report 01-1, Computer Science
Dept., Rensselaer Polytechnic Institute, March 2001.

[21] M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for closed association rule mining. Technical
Report 99-10, Computer Science Dept., Rensselaer Polytechnic Institute, October 1999.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 473




