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Abstract

Recent research in frequent pattern mining (FPM) has
shifted from obtaining the complete set of frequent
patterns to generating only a representative (summary)
subset of frequent patterns. Most of the existing
approaches to this problem adopt a two-step solution;
in the first step, they obtain all the frequent patterns,
and in the second step, some form of clustering is used
to obtain the summary pattern set. However, the two-
step method is inefficient and sometimes infeasible since
the first step itself may fail to finish in a reasonable
amount of time. In this paper, we propose an alternative
approach to mining frequent pattern representatives
based on a uniform sampling of the output space. Our
new algorithm, Musk, obtains representative patterns
by sampling uniformly from the pool of all frequent
maximal patterns; uniformity is achieved by a variant of
Markov Chain Monte Carlo (MCMC) algorithm. Musk

simulates a random walk on the frequent pattern partial
order graph with a prescribed transition probability
matrix, whose values are computed locally during the
simulation. In the stationary distribution of the random
walk, all maximal frequent pattern nodes in the partial
order graph are sampled uniformly. Experiments on
various kind of graph and itemset databases validate
the effectiveness of our approach.

1 Introduction

Graph data are abundant in numerous scientific and
commercial application domains and they continue to
grow at a rapid rate. Existing graph mining algorithms
are falling far behind in their ability to successfully mine
such large and dense graphs. The size of the combinato-
rial search space of traditional graph mining algorithms
is a crucial bottleneck for their applicability in real-life
applications. One may opt to abort the mining process
once a desired number of frequent patterns are obtained
to cope with the scalability issue. However, the partial
result obtained may not be good representative set. For
instance, if we abort a typical depth first search pre-
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maturely, it would have explored only a small fraction
of the search space in terms of the labels (or chains).
Likewise, if we abort a breadth first search, it would
have explored frequent patterns only upto a specific size
(or level). Not only is the search space large, complete
FPM methods also produce an overwhelming number of
patterns. That is, the enormity and redundancy of the
output space of patterns is typically beyond the grasp
of human analysts.

To cope with the above problems, in recent years
researchers have proposed several ideas that compress
the frequent pattern set to a smaller summary set con-
taining representative, non-redundant and discrimina-
tive patterns. However, most of these use a two-step
process; they first extract the entire frequent pattern
set and they then summarize the set using some form of
clustering [16] or probabilistic techniques [15, 18]. The
two-step method is inefficient as it computes the entire
frequent pattern set, which can be infeasible in many
situations. Furthermore, most of these summarization
methods have been applied only in the context of item-
set patterns.

In this research, we propose Musk1, a novel fre-
quent graph pattern summarization approach based on
Markov Chain Monte Carlo simulation. It accepts a
parameter k from the user and outputs k frequent max-
imal patterns sampled uniformly from the set of all fre-
quent maximal patterns. It performs a random walk on
the frequent (sub)graph partial order and outputs every
distinct maximal pattern it visits. The transition prob-
ability of the Markov chain is set so that it is ergodic.
Furthermore, the stationary probability distribution, of
the nodes (in the partial order graph) corresponding
to the maximal frequent patterns, is uniform (i.e., all
maximal patterns have roughly the same probability of
being generated). The salient features of Musk are as
follows:

1. Musk avoids enumeration of every frequent (or
maximal) pattern, and thus is suitable for obtaining
representative frequent patterns where complete

1Musk is an anagram of the bold letters in the phrase Uniform
Sampling of k Maximal patterns.)
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pattern mining algorithms are infeasible or very
expensive.

2. Finding representative patterns by clustering a
large frequent pattern set can be very costly for
complex patterns like graph [3]. As pointed out ear-
lier, enumerating all frequent (maximal) patterns
may be infeasible. Further, clustering them may re-
quire computing O(n2) similarities which can also
be practically infeasible. Musk, on the other hand,
obtains the uniform sample of maximal patterns in
one step.

3. Musk adopts a random walk instead of traditional
breadth first or depth first exploration of the partial
order graph; the output set consists of k maximal
patterns that is guaranteed to be a uniform sample
of the set of all frequent maximal patterns.

4. Musk is generic with respect to the type of pat-
terns, since it is equally applicable to the simpler
patterns like sets, sequences, and trees, that are
subsumed by the more general graph patterns.

2 Related Work

Many recent methods have been proposed for graph
mining; these include [8, 9, 11, 20]. The focus of
these methods is to mine all frequent subgraph pat-
terns, rather than finding orthogonal or representative
patterns. There are several works guided towards find-
ing a subset of frequent patterns that are most infor-
mative, compressed, discriminative and non-redundant
[1, 2, 16, 17]. Out of those, some [1, 2] tied strongly
with set theory, as they were proposed to obtain con-
densed representation of itemset patterns, and as such
are not applicable for mining graph patterns. Many oth-
ers adopt a two-step approach that first enumerate the
entire set of frequent patterns and then apply summa-
rization techniques like clustering [17], profiling [15, 18],
and so on. However, the focus of these above meth-
ods were also on itemsets. More importantly, the post-
processing approach is not applicable for the cases when
the mining algorithm itself does not finish in a reason-
able time. Furthermore, summarization algorithms that
are based on the clustering or profiling can require the
computation of

(

n
2

)

similarity scores, which can be very
costly when the output consists of millions of frequent
patterns. In summary, if the objective is to obtain a set
of representative patterns, extracting the entire frequent
pattern set is extremely inefficient, if not infeasible.

In the graph domain, methods for mining the
closed [21] and maximal [7] frequent graphs have been
proposed. Even though these two approaches generate
a smaller set of patterns, the number of patterns in both

cases can still be very large. Moreover, many patterns
in the resulting sets can be very similar, hence, they
may not be appropriate as a summary or representative
pattern set. Two recent works [3, 19] have specifically
focused on summarizing graph patterns. To overcome
the problem where the mining process may not finish,
these works do not guarantee completeness. Yan et.
al. [19] proposed the leap search approach to mine
interesting graph patterns where the interestingness is
generally defined by an objective function. The leap
search mechanism uses structural proximity to leap over
significant portions of the search space (i.e., patterns
that are similar to those already found are skipped). It
also uses the concept of frequency descending mining to
obtain a good lower bound on the objective function
value, which further helps in pruning the search space
drastically. Origami [3] is a randomized algorithm,
that randomly traverses the frequent graph partial order
to obtain a set of frequent maximal subgraphs; the
output set from this step is further filtered in a second
step so that the patterns in the final output set are very
dissimilar from each other and also are representative.

Both these approaches avoid complete enumeration,
but provide a summary set of patterns. However, they
do have limitations. Yan’s leap search approach is
mainly useful for graphs with class labels because the
objective function computation is not very suited with-
out such labels. Origami, on the other hand depends
on randomization to obtain a sample of maximal fre-
quent subgraphs; our study reveals that the sampling
of maximal frequent graphs in Origami is far from
uniform, which may result in poor quality representa-
tives. For instance, we ran Origami on the DTP (CM)
dataset (see Sec.6) with 10% support, which yielded 301
maximal frequent subgraphs. To study the sampling
uniformity, we ran it for 120,400 iterations, where each
iteration randomly samples one maximal pattern. In
this experiment, one pattern was selected a maximum
of 28,902 times, while there were 3 other maximal pat-
terns that were never generated, i.e., the randomized
algorithm that Origami uses has strongly dispropor-
tionate generation probability, which clearly affects the
quality of representativeness.

3 Problem Formulation

In this section, we define several key concepts that will
be used throughout the paper.

Graphs and Subgraphs: A graph G = (V,E),
consists of a set of vertices V = {v1, v2, . . . , vn}, and
a set of edges E = {(vi, vj) : vi, vj ∈ V }. Let LV and
LE be the set of vertex and edge labels, respectively,
and let V : V → LV and E : E → LE be the labeling
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functions that assign labels to each vertex and edge.
The size of a graph G, denoted |G| is the cardinality of
the edge set (i.e., |G| = |E|). A graph of size k is also
called a k-graph. A graph is connected if each vertex
in the graph can be reached from any other vertex. All
(sub)graphs we consider are undirected, connected and
labeled.

A graph G1 = (V1, E1) is an subgraph of another
graph G2 = (V2, E2), denoted G1 ⊆ G2, if there exists a
1-1 mapping f : V1 → V2, such that (vi, vj) ∈ E1 implies
(f(vi), f(vj)) ∈ E2. Further, f preserves vertex labels,
i.e., V(v) = V(f(v))), and preserves edge labels, i.e.,
E(v1, v2) = E(f(v1), f(v2)). f is also called a subgraph
isomorphism from G1 to G2. If G1 ⊆ G2, we also say
that G2 is a super-graph of G1. Note also that two
graphs G1 and G2 are isomorphic iff G1 ⊆ G2 and
G2 ⊆ G1. Let D be a set of graphs, then we write
G ⊆ D if ∀Di ∈ D, G ⊆ Di. G is said to be a maximal
common subgraph of D iff G ⊆ D, and 6 ∃H ⊇ G, such
that H ⊆ D.

Mining Frequent Graphs: Let D be a database (a
multiset) of graphs, and let each graph Di ∈ D have
a unique graph identifier. Denote by t(G) = {i : G ⊆
Di ∈ D}, the graph identifier set (gidset), which consists
of all graphs in D that contain a subgraph isomorphic to
G. The support of a graph G in D is then given as |t(G)|,
and G is called frequent if |t(G)| ≥ πmin, where πmin is
a user-specified minimum support (minsup) threshold.
A frequent graph is closed if it has no frequent super-
graph with the same support. A frequent graph is
maximal if it has no frequent super-graph. Denote
by F , C,M the set of all frequent, all closed frequent,
and all maximal frequent subgraphs, respectively. By
definition, F ⊇ C ⊇ M. Fig. 1(a) shows a database with
3 graphs. With a minimum support πmin = 2, there are
two maximal frequent graphs, as shown in Fig. 1(b);
their corresponding gidsets are shown in Fig. 1(c). All
possible (connected) subgraphs of the maximal frequent
graphs are frequent.

Frequent Graph Partial Order: The set of all
frequent subgraphs forms a partial order with respect
to the subgraph relationship, ⊆, which is referred to
as the partial order graph (POG). Every node in POG
corresponds to a distinct frequent graph pattern, i.e.,
each graph in POG is the canonical representative
(with the minimal DFS code [20]) for all other graphs
isomorphic to it. Every edge in POG represents a
possible extension of a frequent pattern to a larger (by
one edge) frequent pattern. The maximal elements in
POG (shown boxed) correspond to M. The bottom
element in the partial order is the empty graph (which
is frequent by default). Algorithms for enumerating all
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Figure 2: Partial Order Graph of Frequent Subgraphs

frequent subgraphs typically traverse the POG in either
depth-first or breadth-first manner, starting from the
bottom. Since, a graph can be constructed in many
different ways (depending on the order in which edges
are added), starting from the empty pattern, there are
multiple paths leading to a node in the partial order.
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Fig. 2(a) show the POG for the example data in Fig. 1.

Uniform Generation: Consider a problem instance
that has many feasible solutions. If Σ is a finite
alphabet in which we agree to encode both the problem
instances and the solutions, a relation R ∈ Σ∗ ×Σ∗ can
be interpreted as assigning to each problem instance
x ∈ Σ∗, a set of solutions {y ∈ Σ∗ : (x, y) ∈ R}.
Uniform Generation is the algorithmic process where we
generate uniformly at random, a word y ∈ Σ∗ satisfying
(x, y) ∈ R. If we consider the problem of generating a
maximal frequent graph uniformly for a given problem
instance which consists of an input graph database and
a user defined minimum support, the relation R would
be defined as: R = {(x, y) : x ∈ Σ∗ is an encoding of
D and πmin, and y ∈ Σ∗ is an encoding of a maximal
frequent graph (y ∈ M)}.

Markov Chains: A Markov Chain is a discrete-time
stochastic process defined over a set of states S, in
terms of a matrix P of transition probabilities. The set
S is either finite or countably infinite. The transition
probability matrix P has one row and one column for
each state in S. The Markov chain is in one state at any
time, making state-transitions at discrete time-stamps
t = 1, 2, . . . and so on. The entry P (i, j) in the transition
probability matrix is the probability that the next state
will be j, given that the current state is i. For all
i, j ∈ S, we have 0 ≤ P (i, j) ≤ 1, and

∑

j P (i, j) = 1,
i.e., all the rows add up to 1.

A stationary distribution for the Markov Chain with
transition matrix P is a probability distribution π, such
that:

(3.1) π = πP

Here π is a row-vector of size |S|. Thus, the stationary
distribution is the left eigen-vector of the matrix P with
an eigenvalue of 1. We use π(i) to denote the i’th
component of this vector. A Markov Chain is reversible
if it satisfies the detailed balance equation below:

(3.2) π(u)P (u, v) = π(v)P (v, u),∀u, v ∈ S

If the state space S of a Markov Chain is the set V of
a graph G(V,E), and if for any two vertices u, v ∈ V ,
(u, v) /∈ E implies that P (u, v) = 0, then the process
is also called a random walk on the graph G. In
other words, in a random walk on a graph, the state
transitions occur only between the adjacent vertices.

Problem Definition and Discussion: Given a
database D of graphs (or any other kind of patterns),
a minimum support threshold πmin, and the number
of desired output patterns k, the objective of Musk is
to provide k maximal frequent patterns where each of

these k patterns is sampled uniformly from the pool of
all maximal frequent patterns. We emphasize the two
main objectives:

1. Obtain a set of k maximal patterns without enu-
merating all frequent (or maximal) patterns.

2. Each maximal pattern should be drawn uniformly
from an independent and identical (iid) distribu-
tion.

Objective 1 demands for only k maximal patterns.
One can run any traditional maximal graph mining
algorithm, like SPIN [7] and abort the mining process
once k maximal patterns are obtained. However, the
result-set ranks poorly in terms of representativeness,
as the output covers only a localized space of the
entire maximal frequent pattern set. Furthermore, the
patterns may be very similar to each other. Musk

achieves the objective 1 by adopting a randomized
algorithm that generates maximal frequent patterns
using a random walk on the POG. Objective 2 requires
a uniform sample of the maximal patterns, but it is
difficult to achieve when combined with objective 1.
Two main problems arise: (1) We do not know the size
of the sample space as we are not enumerating all the
maximal patterns. (2) The sample space of candidate
frequent patterns can potentially be very large, so it is
statistically difficult to achieve uniformity due to large
variance.

The first of the above two problems, in fact, draws
the connection between uniform sampling and approx-
imate counting (without explicit enumeration). It is
known that if an efficient (approximate) counter is avail-
able, an (almost) uniform generation can be achieved
efficiently and vice versa [13]. However, the counting of
maximal frequent patterns is not easy; in fact, Yang [22]
has shown that even for the most primitive pattern
class, the itemsets, the problem belongs to the complex-
ity class of #P-Complete, which consists of the hardest
counting problems. The second problem is related to the
simulation of rare events, a well known problem in sta-
tistical physics. Since, the number of maximal graphs
are much smaller than the number of frequent graphs,
and the number of actual frequent graphs can also be
much smaller than the candidate subgraphs, sampling
a maximal graph is essentially a rare event. An ob-
vious algorithm for uniform generation of a maximal
pattern would be to generate a candidate graph pat-
tern uniformly and test whether the graph is maximal.
If the test fails, repeat the experiment. This is clearly
infeasible. Firstly, it is difficult to obtain a candidate
graph uniformly from the pool of all possible candidate
graphs without actually enumerating those. Secondly,
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the success probability (probability of selecting a maxi-
mal pattern) is very small, which may require many tri-
als to obtain one maximal pattern. Problems of above
nature have been successfully handled by a family of al-
gorithms, named Monte Carlo Markov Chain (MCMC).
Musk also adopts the same approach to achieve objec-
tive 2. The detail theoretical analysis of Musk is pro-
vided in the next section.

4 Uniform Generation of Maximal Patterns

Musk follows an MCMC approach that simulates a fi-
nite Markov chain over the POG (each node is a state),
and converges to the desired distribution, i.e., the one
that assigns uniform probability to all the maximal fre-
quent patterns. Thus the k maximal patterns returned
by Musk are chosen from an iid distribution. Since we
have no specific interest regarding the distribution of
the remaining frequent (non-maximal) patterns, Musk

is different from the traditional Metropolis-Hastings
(MH) [12] algorithm. In MH, the desired stationary
distribution vector (π) is known entirely and the tran-
sition probability P (i, j) is computed using acceptance-
rejection to satisfy Eq. (3.2). On the other hand, Musk

judiciously assigns the value of P (i, j) to satisfy (3.2),
and the value of P (i, j) is computed locally while visit-
ing the node i. More importantly, the choice of the value
of P (i, j) ensures a uniform stationary distribution with
respect to the maximal frequent patterns.

4.1 State Space of the Random Walk

The frequent pattern partial order graph (POG) works
as the state space of the Markov Chain on which Musk

runs its simulation. Unlike traditional graph mining
algorithms, like gSpan [20], or DMTL [4], it walks
on the full edge-set of the POG. Put another way,
candidate generation in Musk allows all possible one-
edge extensions without restricting them to be on the
right-most path [4, 20]. Note that Musk constructs
the partial order graphs locally around the current
node. If the current node represents pattern p, its
neighbors consist of nodes corresponding to all frequent
super-patterns that have one more edge than p, and
all sub-patterns that have one-edge less than p. The
random walk chooses one neighbor (super- or sub-
pattern) according to its transition probability (see
below for details). If the current node is a new maximal
pattern that was not visited before, Musk returns
the corresponding maximal pattern to the user. The
local construction of POG is important as it avoids the
construction of the entire POG, which would require
finding all the frequent patterns.

4.2 Computing Transition Probability Matrix

A straightforward random walk on the POG does not
achieve the desired uniform distribution, since differ-
ent maximal patterns are of different sizes, and conse-
quently the number of neighbors (in the POG) adjacent
to a maximal pattern can vary a lot. Thus, a maximal
pattern is oversampled if the corresponding node in the
POG has a high degree compared to another maximal
pattern with lower degree. In fact, the stationary distri-
bution of a node is directly proportional to the degree
of that node. Below, we prove a more general statement
that uses random walk on weighted graphs.

For a graph G(V,E), with |V | = n, let w(a, b) ∈
R ≥ 0, denote the weight on edge (a, b) ∈ E; we assume
that w(a, b) = w(b, a). Consider a random walk on G,
the transition probability matrix P is given as:

P (u, v) =

{

w(u,v)
P

x∈adj(u) w(u,x) if v ∈ adj(u)

0 otherwise
(4.3)

For the case of regular random walk, the weight
associated with all the edges is assumed to be w(a, b) =
1. The following Lemma holds:

Lemma 4.1. In an ergodic random walk with an associ-
ated weighted connected (undirected) graph, the station-
ary distribution of a vertex is directly proportional to
the sum of the edge weight incident to that vertex.

Proof: Since the random walk is ergodic, it reaches a
stationary distribution. Assume that the row-vector π is
the stationary distribution vector and P is the transition
probability matrix. Now define the following:

s(v) =
∑

u∈adj(v)

w(u, v),∀v ∈ [1 . . . n](4.4)

W =
∑

v∈1...n

s(v)(4.5)

We can see that s(v) is the sum of the edge weights
associated with a node v, and for a given graph W is a
constant. We now prove that the stationary distribution

given by π(u) = s(u)
W

, for all u ∈ [1 . . . n], satisfies
Eq. (3.1).

For any x ∈ V , the left hand side (LHS) of

Eq. (3.1) is given as LHS = π(x) = s(x)
W

. Now
consider the right hand side (RHS) of Eq. (3.1) for

x. RHS = πP =
∑

v∈adj(x)
s(v)
W

∗ w(v,x)
P

y∈adj(v) w(v,y) =
∑

v∈adj(x)
s(v)
W

∗ w(v,x)
P

y∈adj(v) w(y,v) =
∑

v∈adj(x)
s(v)
W

∗

w(v,x)
s(v) =

∑

v∈adj(x)
w(v,x)

W
= s(x)

W
.

Here we used the fact that w(v, y) = w(y, v).
Since an ergodic Markov chain has a unique stationary
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distribution, we are done. Thus π(u) = s(u)
W

gives the
stationary distribution for node u, and it is directly
proportional to the sum of the edge weights incident
to u, i.e., s(u).

To achieve uniform distribution for all the maxi-
mal frequent patterns, Musk does not follow the reg-
ular random walk that weighs each edge in the POG
equally. Instead, Musk samples each maximal pattern
node in the POG with a probability that is inversely
proportional to its degree. It also ensures that the ran-
dom walk is reversible. Assuming c is a constant and dx

is the degree of node x ∈ S, where S is the state space
of the random walk, Musk assigns weight on each node
of the POG as follows:

w(u, v) =











1 if u and v both are non-maximal
c

dv
if u is non-maximal and v is maximal

c

du
if u is maximal and v is non-maximal

0 otherwise

(4.6)

The value of the constant c can be chosen as average
degree of a node in the POG; c is not critical for the
correctness of the algorithm, but it affects the conver-
gence rate to the stationary distribution. With a higher
value of c, maximal patterns are visited with a higher
probability, so the algorithm becomes efficient, but be-
cause of the slow convergence, the sampling uniformity
may not be seen until we make many iterations.

Given w(u, v) defined above, the transition proba-
bility matrix is obtained via Eq. 4.3; all the row-sums
add to 1, as required. Each entry of P is computed
locally while visiting a node. For example, if at some
time t, the random walk is at node u, Musk computes
the corresponding row of P on the fly by first obtaining
the corresponding edge weights. To do so, it needs to
test the status of a neighboring node in terms of maxi-
mality. If the node u is maximal, then all its neighbors
are frequent but non-maximal. On the other hand, if
u is non-maximal, its sub-neighbors are non-maximal,
but some of its super-neighbors may be maximal; hence,
Musk tests all super-neighbors of u for maximality.

Lemma 4.2. An ergodic random walk on the weighted
graph where the transition matrix P is defined via the
weight function in (4.6) is reversible.

Proof: Firstly, the edge weights are symmetric; if
both u and v are non-maximal, we have w(u, v) =
w(v, u) = 1; if both are maximal w(u, v) = w(v, u) = 0;
if u is maximal and v is non-maximal, or vice-versa,
w(u, v) = w(v, u) = c

dm
, where dm is the degree of the

maximal node (m ∈ {u, v}).
From the proof of Lemma 4.1, for any u, v ∈ S,

π(u) = s(u)
W

and π(u)P (u, v) = s(u)
W

∗ w(u,v)
P

x∈adj(u) w(u,x) =

s(u)
W

∗ w(u,v)
s(u) = w(u,v)

W
. Similarly, π(v)P (v, u) = w(v,u)

W
.

Since, w(u, v) = w(v, u), we have π(u)P (u, v) =
π(v)P (v, u). So, the random walk is reversible.

Lemma 4.3. The random walk defined by Musk con-
verges to a stationary distribution.

Proof: To achieve an stationary distribution, a ran-
dom walk needs to be finite, irreducible, and aperi-
odic [10]. First, POG is finite since the number of fre-
quent pattern is finite. Second, for any two nodes u and
v in POG, there exists a positive probability to reach
from one to other, since every pattern can reach and can
in turn be reached from the ∅ pattern. Since at least
one path exists between any two patterns via the ∅ pat-
tern, the random walk is irreducible. Third, the POG
is a multi-stage graph (each stage contains patterns of
the same size), so one can make it a bipartite graph by
accumulating the vertices from alternate stages in one
partition; thus, the random walk on POG can be peri-
odic. However, such periodicity can easily be removed
by adding a self-loop with probability 1

2 at every vertex
of the POG 2 [13]. Thus the claim is proved. .

Theorem 4.1. Maximal pattern output by Musk are
generated with the same probability.

Proof: By Lemma 4.3 Musk converges to a station-
ary distribution. By Lemma 4.2, the associated edge
weights are symmetric and the detailed balance equa-
tions are also satisfied. The total edge weight inci-
dent to a maximal node u in the POG is given as
∑

v∈adj(u)
c

du
= du ∗ c

du
= c. According to Lemma 4.1,

the stationary distribution of the maximal patterns is
directly proportional to the above sum of weights, i.e.,
c. So, Musk return each maximal pattern with a uni-
form probability. .

4.3 Musk: A Complete Example Fig. 3(a) shows
the POG in Fig. 2 annotated with edge weights, and
each distinct pattern has been given a unique id. The
maximal pattern nodes are shown doubly circled. The
weight on each edge incident on maximal node 10 is
c
3 , since node 10 has degree 3. The edges without any
weight are assumed to have weight 1. Fig. 3(b) shows
the transition probability matrix P , which is computed
by setting the value of constant c to be 3. Fig. 3(c)

2In that case, Eq. (4.3) should be changed as below:

P (u, v) =

8

>

<

>

:

1
2

if u = v
w(u,v)

2∗
P

x∈adj(u) w(u,x)
if v ∈ adj(u)

0 otherwise
However, we skip this addition in the Eq. (4.3) for the benefit

of simplicity. Further, the addition of a self-loop does not have

any effect on the uniform generation claim.
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Stationary Distribution π for Musk:
(.125, .094, .094, .140, .078, .094, .094, .094, .094, .094)

π for Regular (Unweighted) Random Walk:
(.133, .101, .100, .133, .066, .100, .100, .100, .066, .101)

(c)

Figure 3: (a) POG of frequent subgraphs shown in
Fig. 2. (b) Transition probability matrix P with c =
3. (c) Stationary distribution π for Musk and regular
random walk.

contrasts the stationary distribution achieved by Musk

versus that by a regular (unweighted; where all weights
are 1) random walk. For Musk we can see that the
stationary probabilities for the maximal nodes 9 and
10 are equal, i.e. π(9) = π(10) = 0.094. For the
unweighted random walk the stationary probabilities
are: π(9) = 0.066, and π(10) = 0.101, which are not
uniform; the probability is directly proportional to their
degrees (a ratio of 2:3 respectively).

4.4 Convergence rate of random walk

We saw above that Musk converges to a unique station-
ary distribution that yields uniformly sampled maximal
patterns. We discuss about the rate at which the initial
distribution converges. The convergence rate of a ran-
dom walk has been studied extensively in spectral graph
theory [5], since it plays an important role in obtaining
efficient MCMC algorithms. A Markov chain is called
rapidly mixing if it is close to stationary after only a
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Figure 4: POG with slow mixing of random walk

polynomial number of simulation steps, where the total
number of states can be exponentially large. An algo-
rithm that is rapidly mixing is considered efficient.

If π0 is any arbitrary initial distribution (a row-
vector), then the distribution at time t is given as
πt = π0P t; where, P is the transition matrix. The con-
vergence is generally computed by the relative pointwise
distance of P t to the stationary distribution π, com-

puted as ∆(t) = maxx,y
|P t(y,x)−π(x)|

π(x) . This term can be

bounded by the eigenvalue of the graph Laplacian. If
λi, i ∈ [1 . . . n] are the eigenvalues, λ = maxi6=1|1 − λi|,
ǫ is a small constant, W is as defined in Eq. (4.5), and
t ≥ 1

1−λ
log W

ǫ minxdx
, then we have ∆(t) ≤ ǫ [5].

Unfortunately, the value of λ, W , or minxdx are
dependent on the input data and are not available to
us before starting the random walk. However, the value
of λ can be bounded by the graph diameter [5]. If a
rough estimate of the diameter of POG can be obtained
via pre-processing, an estimate of the mixing rate can
be found. In general, random walk on a graph with
smaller diameter has faster mixing rate.

The diameter of the POG can be estimated by
finding a pair of maximal graph patterns with minimal
overlap. If u and v are two such maximal nodes, and
w is the maximum common subgraph between u and
v, then the diameter of POG is equal to size(u) +
size(v) − size(w). In Fig. 4 we show a hypothetical
scenario where the mixing rate of the random walk is
not good. Region A and Region B are connected by only
the null pattern. So, once the random walk is in region
A, it takes a long time for it to go to region B and vice
versa. However, for most real life graph datasets, the
maximal patterns do have substantial overlap, and thus
the convergence is generally very good. In fact, in all
our experiments, Musk outputs a maximal pattern the
first time it is visited, since we assume that the random
walk has converged by that time. The results show that
indeed we do obtain almost uniform generation.

5 Musk: Implementation Details

The major task in Musk is to compute the transition
probability matrix P locally while performing the ran-
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dom walk. To do so, it first obtains all the neighbors of
the pattern g. Then it calculates the outgoing probabil-
ity vector for g by using the Eq. (4.3), which requires it
to distinguish the neighbors that are maximal (if any).

5.1 Computing neighbors of a pattern

A neighbor of a frequent graph pattern g has two com-
ponents, super-neighbors and sub-neighbors. Graph g1

is a super-neighbor of g, if g1 ⊃ g and g1 = g ⋄ e, where
e is a frequent edge and ⋄ denotes the extension opera-
tion. So, a super-neighbor is obtained by adding an edge
to g. If the new edge e connects two existing vertices,
we call it a back edge. Otherwise, it is called a forward
edge. Adding a forward edge always adds a new vertex.
To effectively compute the super-neighbors, we precom-
pute a data structure called edge map, that stores the
frequent edges in a map Φ : LV → ℘(LV × LE) which
essentially maps a vertex label vl to all possible tuples
of (vertex, edge) label pairs. For example, in edge map,
if a vertex-label A is mapped to {(A, a), (B, a), (B, b)},
then from any vertex that is labeled with A, three dif-
ferent edge extensions, like (A,A, a), (A,B, a), (A,B, b)
are possible. The new edge can be either a forward edge
or a back edge.

A graph g2 is a sub-neighbor of g, if g2 ⊂ g and
g = g2 ⋄ e, for some frequent edge e. To obtain g’s
sub-neighbors, an edge is removed from g. Back edge
removal removes an edge, but keeps the resulting graph
connected and forward edge removal removes an edge
and isolates exactly one vertex which is also removed
from the resulting graph. For example, there are 6 sub-
neighbors of graph G1 in Fig. 1(a), that can be obtained
by removing the edges A − A, A − B, A − D, B − D
(D in middle column in 3rd row), A − C, and B − D
(rightmost D in the third row) respectively; the first
four are back edge removals whereas the last two are
forward edge removals.

5.2 Support Counting

Only the frequent patterns are part of the POG. So,
while Musk finds a neighbor (say, q) of a pattern p,
it also computes the support of q (|t(q)|) to ensure
that the pattern q is frequent, i.e., |t(q)| ≥ πmin.
Any infrequent neighbors are discarded. For support
computation, we use Ullmanns’s subgraph isomorphism
algorithm [14] with various optimizations. Associated
with any frequent graph, we also store its gidset, so
that the number of calls to Ullmann’s algorithm is as
small as possible. In the next two paragraphs we discuss
how the gidset of a neighbor of a pattern p is computed
from p’s gidset.

If a pattern q is created from a pattern p by
extending an edge e (for the case of super-neighbor),

we have t(q) ⊆ t(p), and it can be obtained as follows:
(1) Intersect t(p) and t(e); (2) Perform a subgraph
isomorphism test of pattern q against each graph in the
result of (1). The identifiers of the database graphs that
succeed the test comprise t(q).

If the pattern q is obtained from p by removing
an edge e (for the case of sub-neighbor), t(q) ⊇ t(p).
To compute the gidset of q, we first find

⋂

e∈q t(e),
the intersection of gidset of all edges of the pattern q.
It is easy to see that

⋂

e∈q t(e) ⊇ t(q) ⊇ t(p). Then,
we perform a subgraph isomorphism test of pattern q
against each graph g ∈

⋂

e∈q t(e)\t(p). The identifiers
of the graphs that succeed the test together with t(p)
comprise t(q).

5.3 Maximality checking

Maximality check for neighbors of the current pattern p
is important to fill the transition probability matrix P .
The sub-neighbors of p are not maximal, but some of the
frequent super-neighbors can potentially be maximal.
A pattern is maximal if all its super-neighbors are
infrequent. So, Musk attempts to extend each of the
super-neighbors (say q) of p. If any of the resulting
extensions is frequent, q is not maximal and the process
returns immediately. If all the extensions are found
to be infrequent, then q is noted as maximal. This
information is used in Eq. (4.6).

Musk (D, πmin, c,M, k):
1. Start with any frequent pattern p as the current node
2. Nu = all immediate frequent super-patterns of p

3 Nd = all immediate frequent sub-patterns of p

4. Let w = (1, 1, . . . 1) be a weight vector of size |N |
where, N = Nu ∪Nd

5. for each q ∈ Nu

6. if is max(q) = true

7. d = compute degree(q)
8. wq = c

d

9. Normalize w so that
P

wi = 1
10. Save Nu,Nd, w in neighborhood(p)
11. Choose the next pattern pnext with

probability proportional to w

12. is max(pnext) = true
13. insert pnext in M
14. if |M| = k exit
15. p = pnext, goto line 2

Figure 5: Musk Algorithm

5.4 Musk Pseudo-code

The pseudo-code of Musk is given in Fig. 5. It accepts
four input parameters, a graph database D, minimum
support threshold πmin, the random walk constant
parameter c (see Eq. (4.6)) and a value k for the desired
number of maximal frequent patterns. If no value for
c is used, Musk simulates a few iterations to set c as
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the average degree of the visited nodes. As we noted
earlier, the value of c does not affect the algorithm’s
correctness, but only the convergence. Generally, k is
expected to be much smaller compared to the number
of maximal patterns in the dataset.

Line 1 obtains any frequent pattern, p. Line 2
finds all possible super-neighbors of the pattern p. Line
3 finds all possible sub-neighbors of p. For all the
neighbors, their support against the database is also
obtained. If any candidate neighbor is infrequent, it is
removed and the rest of the neighbors are saved in the
neighbor list N .

To compute the transition probability, Musk runs
maximality test (line 6) on each pattern in Nu. Once
the status (maximal or frequent) of all the neighbors
is known, the weight vector is computed (line 8) and
normalized (line 9). Using the probability distribution
we choose the next step of the random walk. Along
the walk, if we visit any maximal node, we save it in
the result set, M. Musk terminates once k distinct
maximal patterns are obtained.

6 Experimental Results

There are three main objectives for the empirical eval-
uation. Firstly, we want to experimentally validate our
claim that Musk samples each maximal pattern uni-
formly. Secondly, we want to show that the set of maxi-
mal patterns obtained by Musk is much better in terms
of non-redundancy in comparison to the same number of
patterns obtained by traditional maximal pattern min-
ing algorithms. Finally, we want to evaluate the perfor-
mance of Musk in terms of execution time.

6.1 Uniform Pattern Generation

We used the DTP (CM) AIDS antiviral screening
dataset 3, which contains 1084 graphs (confirmed mod-
erately active chemical compounds), with an average
graph size of 45 edges and 43 vertices.

We first compare the uniform generation capability
of Musk with that of Origami [4]. Origami is a
two-stage algorithm that obtains a set of maximal
frequent graph patterns and summarizes them via a
local-optimal algorithm in the post-processing step. In
this experiment, our focus is only at the first stage
of Origami, where a randomized algorithm is used to
obtain a set of maximal frequent patterns. Both Musk

and Origami uses random walks to obtain one maximal
pattern in each iteration. We allow both the algorithms
to run for sufficiently large number of iterations, and
analyze the number of times each pattern is visited.
The intuition is that in the case of uniform generation

3http://dtp.nci.nih.gov/docs/aids/aids data.html
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Musk Origami Ideal

Median Std Median Std Median Std

367 185.7 16 2048 400 19.97

(e) Comparison between Musk, Origami and Ideal case

Figure 6: Uniform Generation on DTP dataset

each maximal pattern will be visited (generated) nearly
equal number of times. We set the support value
πmin sufficiently high so that the number of maximal
pattern is small and a large number of iterations can be
performed in a reasonable amount of time.

Fig. 6 shows the results with πmin = 10%; the
exact number of maximal patterns is 301 and we ran
both Musk and Origami for 120,400 iterations, so that
in the case of ideal uniform generation, each maximal
pattern would be generated 400 times. For Origami,
the distribution is very skewed as seen in Fig. 6(a),
which shows the frequency histogram of visit counts.
That is, the x-axis shows the number of times a pattern
is visited, and the y-axis shows how many patterns fall
in that bin. We can see clearly that many patterns are
visited only a few times, but there are some patterns
that are visited many many times. Fig. 6(b) shows
the visit counts for each of the 301 maximal patterns.
For example, Origami generates one maximal pattern
28902 (out of 120K iteration) times, whereas 3 (out of
301) patterns were never generated. The median of the
visit counts is 16 (see Table in Fig. 6(e)), so half of
the patterns have in fact been generated less than 16
times! Keep in mind that the ideal uniform generator
visits each pattern 400 times. On the other hand, as
seen in the histogram in Fig. 6(c), and the individual
per-pattern counts in Fig. 6(d), Musk yields a much
more uniform distribution. In fact, Musk had visited
all the 301 patterns at least once by 5553 iterations. The
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minimum, median and the maximum visit counts were
51, 367, and 1137 respectively. Note that the median
value is sufficiently close to the actual mean (400), in
comparison to the case of Origami. Note also that
Musk has a much smaller standard deviation of 185.7
compared to 2048 for Origami, further justifying the
superiority of Musk.

The question remains, how good is Musk’s uniform
distribution in practice? Let us contrast Musk with a
perfect uniform sampler. If the dataset has m maximal
patterns and we perform the uniform generation for
r · m iterations, the number of times (k) an specific
pattern will be picked is described by the binomial
distribution, B(k, n, p), where n = r · m and p = 1

m
.

The expected number of times a maximal pattern is
obtained is np = r · m · 1

m
= r, and the standard

deviation is
√

np(1 − p) =
√

r(m−1)
m

. If we increase

n (by increasing r) sufficiently, the distribution would
resemble a normal distribution, for which mean and
median values are the same. Thus, in the ideal case,
with r = 400, and m = 301 as in our running example,
we expect that the median visitation count is r = 400,

with a standard deviation of
√

400(301−1
301 ) = 19.97 (as

noted in Table 6(e)). We can see that the distribution
curve of Musk is also approaching a normal curve; but
the peak value is slightly less than 400 and it has a
longer right tail. If we increase the number of iterations,
more uniformity would be seen. On the other hand, for
Origami, the distribution curve is completely distorted.
Note here, for Musk a perfect uniformness with a finite
number of iterations also depends on the mixing rate of
the random walk and the value of c.

Itemset Patterns: We also analyzed Musk for item-
set patterns. For this case an edge of the itemset POG
connects two frequent itemsets of size z and z−1, where
both have z − 1 items in common. It is easy to analyze
uniformness for itemsets, because the number of neigh-
bors of a node in the POG for itemsets is directly pro-
portional to the size of the pattern, whereas for graph
data, the connectedness of a pattern plays an important
role in finding its neighbor count.

We took the following two datasets used in [6],
the real dataset, chess, and the synthetic dataset,
T40I10D100K (we refer to it as T40). It was shown
in [6] that the maximal patterns in these two datasets
follow very different distributions in terms of their sizes.
For instance, chess has a symmetric distribution (close
to normal), with an average and maximum pattern
length of 10.25 and 16, respectively. T40 has an
exponentially decaying distribution, where most of the
maximal patterns have size 2 and then the number of

Dataset Size # Maximal Avg Longest
Length Length

Chess 3196 11463 10.25 16

T40 100,000 21692 3.92 13
(a) Itemset Datasets
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Figure 7: Itemset Datasets
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Musk URW Ideal

Dataset Median Std Median Std median std

Chess 200 16.27 201 42.58 200 14.14
T40 201 24.74 125 112.06 200 14.14

(e) Comparison between Musk, URW, and Ideal

Figure 8: Uniform Generation on Itemset dataset

patterns drops sharply for longer lengths, though there
is a small peak at size 7. The longest maximal has a
length of 13. Fig. 7(a) shows the dataset characteristics,
and Fig. 7(b) plots the size distribution of the maximal
patterns.

We compare Musk with the unweighted random
walk (URW), where the maximal patterns are sampled
with respect to their length (see Lemma 4.1). Fig. 8
shows the results. For chess, r = 200, and the number of
maximal patterns is m = 11463. For chess both Musk

and URW obtain a normal distribution of visitation
counts, with medians essentially coinciding with the
ideal value of 200. However, Musk has a much better
uniformity with a standard deviation value of 16.27

659 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



(close to the ideal of 14.14) compared to 42.58 for URW
(see Fig. 8(e)). This difference is reflected in the normal
curves; Musk has a more centralized distribution (thin),
whereas URW has more wider distribution.

For T40, we have r = 200 and m = 21692. Musk

still achieves a bell-shape curve (except for 6 patterns
that were visited between 3-10 times), whereas URW
shows a bimodal distribution similar to the length dis-
tribution of the maximal patterns in this dataset. The
median and standard deviation for URW are substan-
tially different from the ideal, whereas Musk’s median
and std-dev are close to ideal. The above experiments
show the superiority of Musk in terms of uniform pat-
tern generation compared to Origami, which uses a
biased random walk, as well as compared to the regular
unweighted random walk.

6.2 Quality and Performance Experiments

Whereas the primary aim of Musk is to sample uni-
formly from the set of maximal patterns, i.e., to find rep-
resentative maximal patterns, a secondary objective is
that these patterns should be different from each other.
We can therefore evaluate the quality of Musk’s out-
put by computing the average distance between pairs of
output patterns. The distance between two graphs is

given as follows: δ(Gi, Gj) = 1 − |mcs(Gi,Gj)|
max(|Gi|,|Gj |)

, where

mcs() returns the maximum common subgraph.
We generated a dense synthetic dataset of 10,000

random labeled graphs, with an average of 44.15 vertices
and 105.52 edges, and with labels randomly chosen
between 1 and 10. With πmin = 1%, the dataset
has 32,553,571 frequent patterns. Gaston [11], one the
fastest graph mining algorithms, took around 8 hours
to completely mine the dataset. SPIN [7], another
maximal graph mining algorithm, broke after a few
hours with a memory allocation error, so it was not
possible to get an exact estimate of the number of
maximal frequent graphs.

We compare the quality of the k representative pat-
terns returned by Musk with the set of k maximal pat-
terns returned by DMTL [4]. The patterns are obtained
by modifying DMTL in such a way that a maximal-
ity test is added to each frequent pattern it returns.
Fig. 9(a) shows the average pairwise distance as we se-
lect k maximal patterns from Musk and DMTL, with
k varying from 50 to 500. We can see that Musk has a
much higher quality; the average distance is around 90%
compared to under 60% for DMTL. Fig. 9(b)-(c) also
show the time and number of distinct frequent nodes
visited by Musk when extracting k = 300 maximal
patterns. For instance Musk visits only about 9,000
frequent patterns, compared to the complete 325 mil-
lion frequent patterns, to enumerate all 300 maximal
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Figure 9: Musk Quality & Time

patterns, in about 15,000s (≈ 4 hours). In contrast
DMTL returns in only 102s, but gives absolutely no
guarantee about the uniformity of the sample; in fact,
it returns maximal patterns that are much similar (due
to the depth first exploration). Hence, with respect to
the quality of the patterns, the timing of Musk is in-
deed good. If one wants to obtain such highly non-
redundant (average difference 90%) patterns by clus-
tering the set M, (s)he requires to obtain all pair-wise
distances, which is very costly for graph. For example,
just computing all pair-wise distances for the above 300
patterns took approximately 1 hour, and the cost grows
quadratically.

Note that, each iteration of Musk is costlier com-
pared to each iteration of a traditional maximal pattern
mining algorithm. Here, by an iteration we mean all the
steps required to output a new maximal pattern. How-
ever, note that Musk’s objective is to take a uniform
sample of the maximal patterns, where the number of
maximal patterns is huge. If the number of maximal
patterns is not large, it may be better to just use a
complete maximal pattern mining algorithm. On the
contrary, when a dataset has an enormous number of
maximal patterns, Musk is the best tool, as it outputs
a uniform sample of the desired number of maximal pat-
terns.

Musk is particularly efficient when the ratio |M|
|F|

is not too small. For instance, in Fig. 3, we have 2
maximal patterns and at stationary distribution the
probability of the random walk to be on a maximal
node is 0.188(.094 + .094). So, roughly 20% time
of the random walk is spent on the maximal nodes.
Musk is very efficient for these cases, since the mixing
rate will be high as the maximal patterns would share
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many common frequent sub-patterns. On the other
hand, when |M| ≪ |F|, then the proportion of time
Musk spends in a maximal pattern node is very small,
and there will be small overlap between the maximal
nodes, leading to slow sampling times. For these
datasets, Origami is a better alternative than Musk.
Note that Origami starts with an empty pattern and
always walks upward towards the maximal patterns by
taking a random edge. So, the number of frequent
patterns Origami visits to reach a maximal node is
linear in terms of the size of the maximal pattern.
Off course, there is no guaranty of uniform generation.
It is also worth pointing that Origami walks on a
directed POG graph, from more general to more specific
patterns (bottom to top). On the other hand, Musk

walks on an undirected graph, following both up- and
down-neighbors. Theoretical analysis of random walks
on directed graph is more complex, so it remains
an open question whether it is possible to provide a
uniform sampling guaranty by adopting an Origami

style random walk.

7 Conclusions

In this paper we presented Musk, an MCMC based
algorithm to obtain a uniform sample of size k consisting
of maximal graph patterns. Musk is useful for domains
where complete pattern search is not feasible, and in
cases where the number of possible maximal patterns
is relatively large. We showed experimentally that it
yields a nearly uniform and good quality sample, close
to the ideal case.
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