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Abstract agery, biomedicine, location-based services, and so oa. Th

A wide variety of clustering algorithms exist that cater to appllarge size of many of the spatial datasets still poses siéalab
cations based on certain special characteristics of the data. BiSsues for existing shape-based clustering methods. Fu
focus is on methods that capture arbitrary shaped clusters in diigrmore, these methods also vary in terms of robustness to
the so calledspatial clustering algorithmsWith the growing size NOise in the dataset. We propose a simple, yet effective, ro-
of spatial datasets from diverse sources, the need for scalable al-
gorithms is paramount. We propose a shape-based clustering alg

rithm, ABACUS, that scales to large datasets. ABACUS is based or et
the idea of identifying théntrinsic structurefor each cluster, which ' r";
we also refer to as theackboneof that cluster. The backbone com- U 2 \z ;
prises of a much smaller set of points, thus giving this method the o+
desired ability to scale to larger datasets. ABACUS operates in twc i
stages. In the rst stage, we identify the backbone of each cluste

via an iterative process made up of globbing (or point merging) ana
point movement operations. The backbone enables easy identi- (@) Cluster Backbone (b) Recovered Clusters
cation of the true clusters in a subsequent stage. Experimentslxigure 1: Clusters obtained through the generative process

a range of real (images from geospatial satellites, etc.) and syn-

thetic datasets demonstrate the ef ciency and effectiveness of B#St, @nd scalable spatial clustering algorithm. Our agpgito
approach. In particular, ABACUS is over an order of magnitudé Pased on the hypothe5|_s that_a spatlal cluster can be-gener
faster than existing shape-based clustering methods, yet it provigi&d from a set of core points within the cluster that form the

a comparable or better clustering quality. backboneor theintrinsic shapeof the cluster. To elaborate,
consider the intrinsic shape of a set of clusters, as shown
1 Introduction in Figure 1(a). Given these core points in the backbone, a

. . i ghataset can be obtained through the following hypothetical
Clustering has been a prominent area of research within the . )
&eneranve process. Assume that each backbone point has

data mining, machine learning and statistical learning-co : S X
L ) . : : Wo parameters associated with it. Thweight parameter
munities. The choice of a clustering algorithm is strong . .
i 1, for a backbone poinp;, indicates the number of

motivated by the data or domain characteristics, such as 18 ts that can be generated fram The second parameter
data type (binary, categorical or numerical features).ifor P 9 @n P '

stance, if the clusters are expected to span Iower-dimmilbioSpread indicates the region arourwithin whichw; points

L ) . can be generated. The spread parameter can be expressed in
subspaces, then projective or subspace clustering digagit . ; ) . .
. L terms of a covariance matrix;, for a d-dimensional input
would give the better results. Similarly, when the clustaes R .
. . pace. For the sake of simplicity, we assume that the covari-
non-convex, shape-based (or spatial clustering) mettnads

identify clusters with arbitrary shapes, sizes and desssiie anCﬁ (rjr?atnx 'S a diagonal matrlxr\;v ith the var!anqealong
called for. each dimension. Now, assume that a Gaussian process gen-

. . : eratesn; < w; points at random, with meangtand the co-
Spatial clustering has been applied to data from astron-. . o o _
omy, meteorology, epidemiology, seismology, geospatial jvariance matrix ; dictating the d|_str!but|o_n of these points.

The weightw; of the backbone point is redistributed amongst
the generatech; points, either uniformly or as a function of
" Yahoo! Labs, Bangalore, India. the distance of the point frop . The covariance matrix for
YComputer Science Dept, Rensselaer Polytechnic Institus, NY, each of them; points is obtained by updating (of p;) such
USZA' ) ) ) that the variance; for each of then; points is decreased in
USs Ac'ompmer Science Dept, Rensselaer Polytechnic Institutsy, TY, proportion to weights assigned to them. The entire cobbecti
XComputer Science Dept, Rensselaer Polytechnic Institutey, Ny, Of Mi points resulting from each backbone point forms a new

USA. generation of points for the next step. This generative pro-
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(a) Initial Dataset (b) After 3 Iterations (c) After 6 Iterations (d) After 8 Iterations

Figure 2: Initial dataset (a) after 3 (b) and 6 (c) iteraticanrsd the nalbackboneafter 8 iterations of ABACUS. The dataset
(DS1) initially has 8000 points, whereas the backbone oaly888 points.

cess is repeated until the weight assigned to each new pdimsity-basedndspectral
has reduced to one. Figure 1(b) shows the clusters obtained CLARANS [10] was one of the pioneering works in spa-
from the backbone, via this generative process. For the stiieclustering, but it is rather slow since it is a medoiddxhs
of comparison, the original dataset from which the backbopartitioning approach. The SNN (shared nearest-neighbor)
was derived is shown in Figure 2(a). Note that the numbkedgorithm [5] is an example of partitional clustering. SSN
of points generated is solely controlled by thgparameter computes a graph based on the shared nearest neighbors be-
assigned to each core point. In the real-world, we obviouslyeen every two points. The connected components of the
do not have access to the cluster backbones, but rathergnaph are the nal clusters after some threshold-based edge
have to nd the intrinsic shapes given the original datasetemoval.
Our new approach to scalable shape-based clusteringgcalle The density based approach is exemplied by DB-
ABACUS (anagram of the bold letters iarbitrary Shape SCAN [6] and DENCLUE [8], both of which can nd ar-
ClUstering viaBAckbones), is motivated by this generativbitrary shaped clusterings. However, they can be quite
approach. Given a spatial dataset, ABACUS aims to recogensitive to the parameter values, and are computationally
the intrinsic shape or backbone of the clusters, by inteliyiv expensive Q(N?2) for high dimensional data, otherwise
following the generative process in reverse. The basicigle®(N logN) with R -tree index structure). DENCLUE's
to recursively collapse a set of points into a single represelensity estimation identi es local maxima (termeénsity
tative point via an operation we cajlobbing Furthermore, attractorg in the data. Although the notion of density at-
points also move under the in uence of neighboring pointsactors is similar to the points on the backbone in ABA-
Over a few iterations, the dataset is repeatedly summariz&ddS they do not necessarily preserve the structural shape of
until the backbone emerges. This process is briey illughe clusters. Another non-parametric algorithmmean shift
trated in Figure 2, which shows the putative intrinsic shaphistering[4] — is closely related to DENCLUE.
after three, six, and eight iterations, starting from thie in  CURE [7] is a hierarchical agglomerative clustering al-
tial dataset. Once the backbone is identi ed, it is reldsivegorithm that handles shape-based clusters, but it is till e
straightforward to determine the nal set of clusters. Thisensive with its quadratic complexity, and more importantl
is especially true since the iterative globbing and movamehe quality of clustering depends enormously on the sam-
operations automatically confer two main bene ts, namglypling quality. In generalsampling based methodsuiffer
removal of noise points from the dataset, and ii) reductionwhen the clusters are of varying sizes and densities [1]. An-
the size of the dataset. Both these effects help in reducaotger hierarchical approach, CHAMELEON [9], formulates
the computational cost and memory requirements, as weltlas shape-based clustering as a graph partitioning ahgorit
in making the method robust to noise, resulting in improvétbwever, it requires a number of thresholds to be set for ef-
quality of the clustering. In the experimental section, wective clustering.
present extensive results on both synthetic and real datase The spectral clustering approach [12] is also capable
which show how scalable and effective our method is comf handling arbitrary shaped clusters. They formulate the
pared to state of the art methods; ABACUS has comparablbitrary shape clustering problem asnarmalized min-
quality of clustering, but it can outperform existing meaiso cut problem. Unfortunately the spectral approach is not
in terms of runtime by an order of magnitude or more.  really scalable, requirin@(N 2) time. Recently, a scalable
approximate spectral method was introduced [14], which
2 Related Work rst selects representative points on which the full spactr

Traditionally, spatial clustering methods have been digidclustering is performed. _ .
into the following categories -partitional, hierarchical Many efforts have focused on scaling spatial cluster-



ing. For scaling hierarchical clustering further, Breueig
called Data Bubbles Clustering is then performed on the
compressed representation. The approach proposed in [13]
shrinks clusters into dense compact regions by altering the —if =i A S
position of data points under “gravitational force” exeirtey e e
other neighboring points. Unlike [13], ABACUS repeatedly . ) .

globs points resulting in faster convergence of the algorit Figure 3: Globbing and Movemerk € 2)
SPARCL [3] is one of the latest approaches for shape-based 0 1

. 0110000
clusters. It works in two phases. In the rst phase a large 1010000 0 1
number of representatives pseudo-centerand in the sec- 1100000 0110
ond step it merges them to obtain clusters. It is linear irkthg 0000 1 1 08 A, = % 1 010
number of points in the dataset, but is sensitive to the t;ua?l 000100 1 ! 0101
of pseudo-centers. 000100 1 011 0
Most algorithms described above are unable to scale to 00011 0 (b) Updated kNN Matrix

large datasets. Due to lack of space we are unable to describe (a) Initial KNN Matrix

some of the other algorithms. } )
Figure 4: KNN matrices for sample datadet?)

3 The ABACUS Approach 3.2 Backbone Identi cation As opposed to the genera-
Our approach to shape-based clustering is motivated by {)@ model described earlier, our goal is to identify points
notion that a cluster possessesiatfinsic shapeor acore pelonging to the backbone given the original dataset. In
shape Intuitively, for a 2-dimensional Gaussian clustegssence, ABACUS follows the generative model in the re-
points around the mean of the cluster could be considered/@sse order, starting with the original dataset and cultnina
points forming the core shape of the cluster. For an aryitrafg in the identi cation of the backbone, as illustrated ig+

shaped cluster, such as shown in Figure 2(a), the intringi@ 2(d). The backbone identi cation phase consists of two
shape of the cluster is captured by Haekbonef the cluster simple operations:

(Figure 2(d)). ABACUS needs two parameters — the number

of nearest neighbors, denot&dto be considered for each =, » , N et e
point, and the nal number of clusters desired, dendted | ;5. * o’ o

Unlike some of the methods that need an absolute radiusgsa .~ ¢ ¢ ___ =" /4 o ¢ ___ \,;,‘. *
parameter, the number of nearest neighlidssindependent| ‘= .' o * iNe ° . *
of the density of a cluster. This parameter thus makes '. o * Lo Lol

ABACUS relatively robust to clusters with varying densitie

~ The ABACUS clustering approach has two phases, d&gure 5: Globbing and object movement: (red) has 8
tailed below. Inthe rst phase we identify the intrinsic g8 e5rest neighbors (blue); only 5 lie within radius These
of the clusters. In the following phase, the individual ¢tus 5 5 globbed by, and the 3 other points movebased on
are identi ed. the force vector§; .

3.1 Preliminaries Consider a datas& of N points ind-  G|obbing: Globbing involves assigning a representative to
dimensional Euclidean space. The distance between poirisyroup of points. All points that lie within @dimensional
andj is represented bgj . Thek-nearest neighbors (kNN)pal| of radiusr, around a representatieare globbed by.

of a data poini are given by the seRk(i). The nearest The globbed points are removed from the dataset and their
neighbors for all points are captured in a mathix where representative (point) is retained. Each point in the @atas

each entnyA(i;j ) is given as has aweightw assigned to it. Initially, the weight of each
N 1 ifj 2 Re(i) point is set to 1. As points are globbed by a representative,
A(ij) = 0 ifj 2 R(i) the weight of the representative is updated to re ect the
number of points globbed by it. Note that a representative
The termkNN matrixis used forA henceforth. can be globbed by another representative point. As disdusse

Figure 3 (left) shows a sample dataset and Figure 4lader, the value of the radiusis directly estimated from the
shows its corresponding kNN matrix. Figure 3 (right) showataset. Note that represents thepreadparameter in the
the sample dataset after one iteration, while Figure 4@@nerative model.
shows the corresponding updated kNN matrix. In th@@bject Movement: In our model, each point experiences a
examplek is set to 2. force of attraction from its neighboring points. Under the



in uence of these forces a point can change its positiosi% distances to makerobust to outliers.

The magnitude of the movement is proportional to the forces During glob_objects all points within a radiug of a

exerted on the point and the direction of movement is tpeint x are marked as being “globbed” or represented by

weighted sum of the force vectors. In the context of the Note that not all points within the kNN of are within

generative model, a point moves towards the most likafjobbing radiusr, thus the use of in the globbing step

component that is responsible for generating the point. ensures that only points in the close proximity >ofcan
The backbone identi cation phase involves repeaté represented by. Such selective globbing also ensures

application of the above two steps, as illustrated in Figurethat outlier or noise points do not glob points belonging

In the rst step, objects are globbed starting at the dentwedense cluster regions. Globbing modi es the dataset by

regions of the dataset, since that results in faster coamery removing the globbed points and by updating the weight

of the algorithm. Moreover, starting at the dense regiong of the representative point t9 include the weights of

ensures that noise points do not distort the intrinsic slo@peall the globbed points (i.ewx = = g, ot gist (px)<r W)-

the clusters by globbing points from true clusters. The dersn estimate forr based on sampling is preferred for the

regions are identi ed by smaller values for tkRIN distance. following reasons. First, an arbitrarily small value for

In the following second step, the representative pointsenaan degrade the convergence of the backbone identi cation

under the in uence of forces exerted by neighboring pointapproach. On the other hand, an arbitrarily large value for

Figure 3 shows a sample dataset consisting of 7 points &ad result in points from more than one cluster being globbed

the effect of one iteration (globbing followed by movemenb)y a representative point.

on the dataset. Similarly, Figures 4(a) and 4(b) show the In the move.objects step, a pointy in d-dimensional

initial KNN matrix Ag and the updated KNN matrik, after space is displaced under the in uence of its nearest neigh-

one iteration, respectively. On convergence of the itegatbors' force of attraction. Out of th& nearest neighbors,

process,A, represents the intrinsic shape of the clusteimnly those that have not been globbed yoyarticipate in

Figure 2(d) shows the backbone of the dataset in Figure 2@3placingy. The force exerted by an objerbn objecty is

on convergence. Note that the two steps outlined in theportional tow, and inversely proportional tdist(y; z),

algorithm are essentially simulating the generative madelwheredist() is some distance function. The updated posi-

reverse. The ABACUS algorithm is outlined in Figure 6. ton ofy in dimension is given by Equation 3.1, whesg is

thei®™ dimension ofy.

ABACUS(Dg; k; C): (3.1 p

1. |nitializeWi = 1,8| 2 Do new _ Vi Wy + D 2R (y)  d(y;z)>r Zi Wy m

2.j=0 i = W, + f

3. K =compute KNN(Dg)

4. r = estimateknn_radius(Do; k; K)

W, -—t
z2 Ry (y)™Nd(y;z)>r Z dist (y;z)

Figure 5 elaborates the globbing and movement steps. The
datase{D); 1 before violation of the stopping condition is

- repeat used for extracting the nal clusters.

5
6. j=j+1
7. glob.objects®; 11 k) 3.3 Stopping Condition for ABACUS One can extrapo-
8 B y . . late that the above two steps, of globbing and object move-
9. m,—_— number of points moved in iteratign ment, repeated without a suitable stopping condition would
10. K._ L,Jnedate’ﬁ'j\"\f(Dj) result in a dataset with a single point which globs all the
11.until moasm points in the dataset. L&; be the dataset after iteration
LetD = Dg be the initial dataset, and IB%i,5 be the nal
globbed dataset obtained after Line 11 of Figure 6. Cluster-
. ] . . ing quality is poor ifD¢ina  has points that represent globbed
Figure 6: The ABACUS Clustering Algorithm points from more than one natural cluster. At the same time,
takes three inputs — the datagetof d-dimensional points, if Dsing  has most of the points iBg, then the algorithm
the number of nearest neighbdesand the number of nal has not achieved a substantial reduction in the dataset size
clustersC. estimateknn_radius computes an estimate forHence, a “good” stopping condition needs to balance the re-
the trimmed average distance to tk® nearest neighborduction in the dataset size and the degree to whicltap-
for objects in the dataset. The radius is estimated by mstres the shape-based clusterdDgf To express the simi-
obtaining the distance to the" nearest neighbor over darity betweenD; andDg we compare their corresponding
random sample from the dataset. The average of the top 9GIN matrices. Since the sizes of the two kNN matrices are
percentile of these distances (arranged in ascending)asdenot the same, an estimated KNN matrix for the initial set of
used as the globbing radius Note that we discard the toppoints is reconstructed from the KNN matrix for.

D; =moveobjectsQ; 1;r;k)

12.C=identify _clusters@; 1;C)




To formalize this notion, lef\; be the kNN matrix after 3.3.1 MDL Based Stopping Condition Given the above
iterationi. The initial KNN matrix for the dataset i& (or description, the stopping condition for ABACUS, can be
Ap) as shown in Figure 4(a). Let the sizedfbeN; N;, ideally formulated in terms of the Minimum Description
whereN; is the number of points in the dataset at the eh@&ngth (MDL) principle [11], that takes an information
of iterationi, andNg = N is the number of points in thetheoretic approach towards selecting a model.

initial database. Consider an onto function RY ! RY for The MDL principle suggests selecting the mokethat
iterationi. Functionf; maps a poina in the original dataset minimizesL (h;) + L(D j h;), whereL (h;) is the number
Dy to a point inD; that has globbed. of bits required to represent the model dn( j h;) is the

We would like to compute the probability that a pomt number of bits to encode the data given the model. Thus, the
is in the kNN set of another poiflit after iterationi. There MDL principle balances the generality and the speci city in
are two cases to consider: 1) Baihandb are globbed by model selection for the data. A simple model requires fewer
the same representative and 2)a andb are globbed by number of bits corresponding to th¢h;) term, but it results
different representativeg, andy respectively. Consider thein a larger number of bits to represent the da{® j h;).
rst case: Given thaf;(a) = fi(b) = x, i.e., botha andb On the contrary, a complex model would exhibit just the
are globbed by the same po D, the probability thab opposite effect.
is a KNN ofa can be approximated by: In the context of ABACUS, the set of hypothe-

ses/models is represented By (8i > 0), i.e., the set of

Wy 2 . . . .
K 2 globbed points after each iteration. The simplest maxel
(3-2) Prlb2 Re(a)l/ W l1 requires the largest number of bits, but requires fewestnum

ber of bits to encod®y. Stated another way, the simplest

wherew, , the weight ofx, is the number of points globbednodel has the smallest error when it comegetmnstruction

by x. The numerator in the above equation correspondsOothe original data. This is often called as tfeeonstruc-

the number of ways of choosing remainig 2 points from tion error. For subsequent hypotheses [4®;) decreases,
Wy 2, since we assume thatandb have already beenthe additional information required to represBit(given by

chosen. The denominator corresponds to the number of $df0 j Di);i > 0) increasesL (Do j Di) can be interpreted
(of points) that include poirg. as the error introduced in reconstructidg from D;.

In the alternate scenario, whenandb are globbed by ~ AS seen beforé); represents the kNN matrix f@; and
different representatives, namety= fi(a) 6 fi(b) = y, Mi represent the kNN matrix “recor_1_structed” frddp using
the probability ofb 2 Ry (a) is given by the expression Equations 3.2 and 3.3. The probability that the reconstdict

kNN matrix M; faithfully capturesAg is given byPr(Ag j
Wxt+wy 2 Mi). Since each element iAy can be considered to be

1
(3.3) Prlb2 Ry(a)] / axy) fowj 1 independentPr(Aq j M;) can be expressed as
' k 1
Yo Mo

Here, the numerator gives the number of ways of choosit#y4) Pr(Aoj M;) = Pr(Ao(m;n) j Mi(m;n))
k 2 points from the glob set of andy, i.e., the number m=1 n=1
of possible neighborhood containing battandb. The de- SinceA, is a binary matrix, we have the expression
nominator gives the number of ways of choosing the neig(rgl5)
borhood fora. The probability in Equation 3.3 depends on L _ _ M (min) if Ag(m;n)=1
two factors: 1) the number of points globbed by the reE—r (Ao(m;n) j Mi(m;n)) = 1 Mi(mn) ifAg(mn)=0
resentatives oé andbin Dy, and 2) the distance between . _ _ o
the representatives andy. The larger this distance, the A high value forM;(m;n) whenAg(m;n) = 1 indi-
smaller the probability ob belonging toRy (a). Similarly, cates thaM;(m;n) can successfully represent the neighbor-
the probability in Equation 3.3 is less than that in Equi0cd relationship betweem andn. If M;(m;n) is small
tion 3.2. This resonates with the intuition that nearby oinVNe€nAo(m;n) = 0, thenl  M;(m;n) gets a high value,
should have higher probability. Note that although the kN{QUS capturing the absence of neighborhood relatlonszhlp be
relation is not symmetric, the above probabilities are sy/ffr€enm andn. . The termL (Do j D;) normalized byNo<,
metric, i.e.,Prb 2 Re(a)] = Pr[a 2 Ry(b)]. Note also that 91VeS the average ngmber of bits per entry in the matrix. T_he
for Equations 3.2 and 3.3 to represent true probabilities, lnumb.er of bits required to represent the total reconstocti
right hgnd side should be normalized by dividing by the terfiiTo" 1S captured by
Za=  ,Prib2 Re(a)]. - L(Do j D) log Pr(Ao j Mi)

LetM; denote theN N matrix with the entryM; [X; y] Ko Wo
representingPrly 2 Ri(x)], i.e., M; is the reconstructed 3 gy log Pr (Ao(m: n) j M; (m: n))
matrix for the probabilistic KNN relationship from; . =1 nel




The number of bits to represent the model depends on (ge/ m; ;) yields E;/ m ; As fewer points move in

relative size oD, given by the expression subsequent iterationsl{ < m; 1), it re ects the decline in
iDi the size of the dataset, i.&N; <N; ;. The ratio%(< 1)
j DI j captures the relative rate of this decline.

0

Hence the trade-off at the end of any iteratiols between

the average reconstruction error given@?'L(Do jDj)and __~ Reconstrucion Eror

the size of the moddl (D;). Generating the reconstruction ' \ E, ‘_E,iﬂ-‘b’e’f"
matrix entails computing the error at each ertty(m;n). I
The computation cost for each iteration is thQ$N 2), .
where N is the number of pOintS in the Original dataset. Relative Dataset size
This approach is infeasible for large datasets, both indgerm i
of computation and in terms of the memory requirement. o]
To bypass this computational cost we present a simpler

alternative that tries to capture the same trade-off betweggure 8: Balancing the two contradicting in uences in the
the reconstruction error and the dataset size. clustering formulation.

(3.7) L(Dj)= log

Iterations

. . . . Our stopping condition is based on these observations.
3.3.2 Practical Stopping Condition Given that the pure If the expression

MDL-based stopping condition discussed above is computa-

tionally expensive, we use a more practical stopping con(B-8)

tion for ABACUS, that nevertheless, is intuitively relatex

the MDL based formulation. is false then the iterative process is halted, else cordinue
Notice that if points are only globbed (without objectsee line 11 in Figure 6). In other words, if the rate of delin

movement), it results in the sparsi cation (reduction) dp the current iteratiom is less than that in iteratian 1, we

the data. To complement the globbing, moving the poirfp the globbing and movement operations.

enables further globbing in subsequent iterationsg; Ifs Let us look at Figure 8 to understand this stopping

the number of points globbed in an iteration angl is the condition. Figure 8 shows the two contradicting in uences

number of points that are moved in an iteration then we ha\-,é:iataset size and reconstruction error. The condition in

g / m; 1. Thatis, the number of points globbed in iteratioRquation 3.8 favors an increase in the raifé—, implying

i, is directly proportional to the number of points that movidat the stopping condition encourages a rapid decrease in

in the previous iteration 1. This observation is shown inthe size of the dataset, by the relation / N;. The

Figure 7. downward sloping arrow along the "Relative Dataset Size'

curve in Figure 8 represents this effect. In short, the stapp
: - : S : condition ensures that the algorithm progresses as lorgas t
No. points moved —+— | dataset size continues to shrink progressively.

m; m;
i1 < i
mi »2 mi 1

120000

100000 f No. points globbed -—»-- . . . .
é pomis ¢ ) g < 1, if expression 3.8 is not true. As long as
g 80000 r the stopping condition in Equation 3.8 holds, the rate of
g 60000 | change of relative error differenceiﬁ) is positive, i.e.
£ 40000 numerical value of the fractionEl‘E—*il is increasing. Hence,
2 20000 b the condition in Equation 3.8, does not favor a decline in

the relative error difference, which happens during later
iterations. In the context of Figure 8, this tendency to ggpo
a decline in the relative error difference is depicted by the
, , downward sloping arrow along the “Reconstruction Error'
Figure 7: The number of points moved and globbed pgfive. At the iteration at which the stopping condition in
iteration for a dataset with 1000K points. Equation 3.8 is violated, both the above effects (incregsin
Intuitively, as more points are globbed across the ilative reconstruction error and the rate at which thesgsta
erations, the reconstruction error obviously increasest Isize is decreasing) are balanced. We chose to stop at this
Ei = L(DojD;) be the reconstruction error at the end of iiteration. This is indicated by the intersection point o th
erationi and let the error difference between two consecutiti@o curves in Figure 8.
iterations be E; = E; E; 1. The difference betweenthe  Atthe end of the iterative process a much smaller dataset
errors is proportional to the number of points globbed, i.®¢ny , as compared to the original datasgs = D, is

Ei/ gg—l Combining this with the previous observatiombtained.

0

lterations



3.4 Cluster Identi cation Once the intrinsic shape orinteraction “face” (fraction of border points) between the
backbone of the clusters is identi ed, the task remains ¢tusters is above the threshold.
isolate the individual clusters. ABACUS currently assumes Cluster pairs are iteratively merged, starting with the
that the desired number of clusté&shas been pre-speci ed. pair with highest similarity. For two cluste® andC; to be
Below, we also discuss how one can determine the numbwerged both the conditions, given by Equations 3.9 and 3.10,
of clusters automatically. must be satis ed. Since the true number of clusters are not
speci ed, we need to provide lower-bound thresholdsfd
3.4.1 Number of clusters speci edGiven that the rst ) for the similarity criteria to continue merging of cluster
phase helps drastically reduce the noise and the size of the
dataset, the cluster identi cation step is relatively gfhde 3.5 Complexity Analysis Let us assume that ABACUS
forward if the desired number of cluste@sis given. Due converges after iterations. The number of points at the end
to the size reduction any suitable clustering algorithmtwan of each iteration is given bMo, Ny, :::, N;. Initially ABA-
applied toDsjng in line 12 in Figure 6. In our experimentsCUS performs a kNN computation on all the points in the
we applied both DBSCAN [6] and CHAMELEON [9] dur-dataset-O(N ?) in the worst case for high-dimensional data,
ing the cluster identi cation phase of ABACUS. Both thesethereaD(N log N ) for spatial datasets that are typically in
algorithms are able to effectively capture the clustersaed just 2 or 3 dimensions.
relatively robust to noise, though the latter is more efrdie Let us now consider the time for the subsequent itera-
tions. For each poinp (in each iteration) that globs its
3.4.2 Number of clusters unspeci edWhen the desired nearest neighbors, we have to update the kNN only for all
number of cluster€ is not speci ed, we propose the fol-the affected points (line 10 in Figure 6). Since we use a kd-

lowing two-step approach to identify the nal set of cluster Tree to store the points, a KNN search taRgs! il %) time.

In the rst step, one can run a connected components alget g ; g,: :::: g be the number of points that have globbed

rithm onDrina  to Obtain a set of preliminary cluste@ In  other points, in each of the iteration. The total complexity

i P 1
the second step, the cluster€dican be merged to obtain theOf the KNN searches is given y( it=1 9 Nil ). Mov-

nal clusters. : L . :
. . .. ing the points involves computing the new location based on
The cluster merging process is based on two S|m|lar{&g

meastres. LeB(C;;C;) be the points in clustec, that 2 {1 BB, Lo e s
have a point fromC; in their kNN set, i.e.B(C;;C;) = ' ‘b g

all iterations is given byD(k ! 'm;). When CLUTO!
P2 GC 9 2 Re(p)*p 2 C . Wecal . o i=1 : . .
B(C;C;) the border pointsin clusterC; with respect to is applied in Phase 2 to the set of points after the iterative

clusterC, . Note thatB (C;;C;) need not be the same af i C1° SRR T0Al TS Ne OO Tk ove temms. Let
B(Cj;Ci). Let E(Ci;C;) be the total number of occur- P '

VAN ! o us assume that a constant fraction of points are globbed and
rences of points ig; in thek-neighborhood of points i€;, moved in each iteration, i.eg = m; = O(1) (note that this
i G ) = D ) A0 . v
Le., B(Ci;Gy) o \Pi2GCi b:p 2 R_k(p') P 2 .CJ " ..is worst case behavior for us, since the more the points are
Note thatE(C;; C;) may count a point multiple times if | he f is th o |
. . . . globbed, the faster is the convergence). Also let us assume
it belongs to the neighborhood of multiple poimgs Let hat in th b £ DoiNts i hi o
B(C,) bexthe set of all border points in clustey, i.e that in the worst case number of points in each iteration is
B(C?) _eS B(Ci:C)) " 7" N;j = O(N). Then, in the worst case, the runtime complex-
'Il'h; rs?csjirgn(ﬁiarit rln,et;ic.S is given as ity over all the iterations i©(tN + kt + N logN), where
y 1159 t is the number of iterations ardis the number of nearest
E(Ci; C)) neighbors.
iB(Ci;C)j > In summary, the complexity of ABACUS i©(N ?)
) o ) when the number of dimensions is large, since in that case
The higher the value of the ratio in Equation 3.9, th@e time for computing the initial kNN for each point would
greater the similarity between the clusters. A high value fgominate. However, for the typical 2D or 3D datasets
S1(Ci; Gj) indicates that the points i@; are close to the common in spatial clustering, ABACUS take3(tN +
border points inC;. This similarity metric captures the de-\ logN) = O(N logN) time. Practically, ABACUS is
gree of closeness, measured in terms of local neighborh@Qgch faster as compared to other algorithms as shown in

(3.9) Sl(Ci ; C] ) =

of border points, petyvegn a cluster pf_:lir. . the Tolloning eotmy Tois b bacaae e mumber ot kN
The second simiarity measuisy, is given as searches drops signi cantly in each iteration.
B(C G
(3.10) S2(Ci;Cj) = IB(Ci:G)J

1B(Ci)]

S, ensures that two clusters can be merged only if theIhttp:/glaros.dtc.umn.edu/gkhome/cluto/



Name iDj(d) [CT k ABACUS SPARCL [ SPARCL | CHAMELEON | KASP
CHAMELEON /DBSCAN | (Random)| (LOF)
DS1 8000(2) | 6 | 70 1.7s/2.6s 1.8s 4.1s 4.3s 19s
DS2 8000(2) | 6 | 70 1.3s/2.2s 1.5s 4.0s 4.2s 13s
DS3 10000 (2)| 9 | 55 1.9s/3.0s 2.5s 5.5s 5.9s 33s
DS4 8000(2) | 8 | 20 1.7s/3.4s 1.8s 4.2s 4.3s 24s
Swiss-roll | 19386 (3)| 4 | 70 4.4s/5.7s 4.9s 19.6s 19.8s 43s

Table 1: Runtime Performance on Synthetic Datasets. Absiare reported in seconds.

4 Experimental Evaluation KASP is about 10 times slower. Figures 11, 12 and 10(a)-(b)

All our experiments are conducted on a Mac G5 machiggBow the backbone and nal clusterings for these datasets.
with a 2.66 GHz processor, running the Mac 10.4 OS Xhe gures also show the number of points in the original
ABACUS is written in C++, using the Approximate Neardataset, and those in the resulting backbone. The 3D dataset
est Neighbor Library (ANN). We compare the performancdincluding the 3D protein dataset in Figure 10 (c)-(d)) ex-
of ABACUS with a range of clustering algorithms, namelpibit a predominant sparsi cation effect as compared to a
CHAMELEON [9] as implemented in the CLUTO packages;keletopization effect. Thie parameter used by ABACUS is
SPARCL [3], DBSCAN [6] implemented in C++ using R*-Shown in Column 4 of Table 1.

tree index, and nally, the K-Means based Fast Spectral Ap-

proximation (KASP) [14] obtained from its authotgwrit- 4.3 Scalability Results To study the scalability of ABA-
tenin R). Parameters were tuned for each method for best¢&.S. we used the DS-SCAL dataset, with varying number
sults. Also note that unless mentioned otherwise, we uged®h Points. The number of noise points in this dataset are set
standard clustering parametectmethod=graph, -sim=dist, constant at 5% of the total dataset size. The dimensionality
-agglofrom=3Q for CHAMELEON. For DBSCAN we used of the dataset id = 2 and the number of clusters are xed at
minPts = 15 andeps= 0:7. For the cluster identi cation 13. For each datasktis set at 70. Further, for these results,
phase of ABACUS we used these same parameters. FindH§,used CHAMELEON (with standard parameters) for the
for KASP we used =8; =100, and for SPARCL we use cluster identi cation phase.

the parameterg = 30; minPts = 15.

. A | B [C][ D [ E |
4.1 DatasetsA wide range of datasets were used to eval- 10K 0.5s 4 0.4s | 4.41%
uate ABACUS. For the scalability experiments, we use the 50K 3.0s | 4 1.1s | 4.07%
dataset DS-SCAL, from SPARCL [3], which consists of 13 100K | 5.6s | 4 1.6s | 5.2%
arbitrary shaped clusters in 2D with varying densities and 200K | 122s| 4 | 7.7s | 5.98%
number of points (up to 1 million points). DS1 —DS4, shown 400K | 265s | 4 | 25.1s | 6.94%
in Figure 11 and 12, are datasets that have been used by pre- 600K | 409s | 4 | 58.7s | 6.88%
vious methods like CURE, CHAMELEON and SPARCL. 800K | 575s | 4 | 109.9s| 7.49%
The real datasets consist of proteins of varying densities 1000K | 113.9s| 10 | 105s | 1.78%

(PROT,; see Figure 10(c)), natural images (NATIMG; see

Figure 13), and geospatial satellite images (GEOIMG; segple 2: ABACUS Scalability Results. The size of the
Figure 14). dataset is varied keeping the noise at 5% of the dataset size

(d=2;k =70;C = 30). A: Dataset size (no. of points), B:
4.2 Results on Synthetic Datasetdable 1 shows run- Time fort iterations, C: Number of iterationt){D: Time for

time performance of ABACUS and other algorithms on sonpyase 2, E: Dataset size aftéterations (% of initial size).
popular datasets in the literature. The runtime for ABA-

CUS with both CHAMELEON and DBSCAN in phase 2

is shown in Column 5. ABACUS is considerably mor%ataset, the largest being a dataset with 1 million poirtte T

ef cient as compared to KASP or CHA.MELEON' I:Ortable breaks down the total execution time of ABACUS into
these relatively small datasets ABACUS is comparableg)

i k h k h I 2 h
SPARCL(random), and has an advantage over SPAR e time taken by the backbone phase (Column 2) and the

. ) ) hster identi cation phase (Column 4). The number of iter-
(LOF) and CHAMELEON in terms of the execution t'meationst, and the size of the nal dataset (as a percentage of

the initial dataset) after iterations are shown in Columns
3 and 5, respectively. We can observe that the time for
backbone identi cation increases with increasing sizenhef t

The rst column in Table 2 species the size of the

Zhttp://www.cs.umd.edu/mount/ANN/
Shttp://www.cs.berkeley.edufjordan/fasp.html



100000 — faster than SPARCL(random/LOF; run wikh = 100 and
e F minPts = 15) and DBSCAN. KASP was too slow to be
10000 e ] run on more than 100K points.

1000

100 F o

Time (sec)

1 KASP ---EF---
16 Chameleon - |
SPARCL(LOF) ><
SPARCL(random) - -
| ABACUs ,,,Q,,

. . . . . |
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# of points x 1000 (d=2)
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(b) Initial DS2: 8000 points

Figure 9: Scalability: ABACUS versus other algorithms. ™A T R~
. { ‘ r’ i \\ A TR
Note the log scale on the y-axis. AR A ‘

. o i SRR TRV
datasets. Also, different datasets exhibit varying degjode b by
dataset reduction. The time taken by the cluster identi ca
tion phase is proportional to the dataset reduction actieve .0l
This is evident from the observation that the time taken b Wk
Phase 2 on the 1000K dataset is ten times less than that tor _ o

(c) DS1 Backbone: 838 points : 909 points

the 800K dataset. This reduction is purely a factor of the
density of the points and also the relative position of th
points. Figure 9 compares the execution time of ABACUS
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(a) Swissroll: 19386 points (b) Swissroll: 2471 points

(e) DS1 Clusters (f) DS2 Clusters

Figure 11: ABACUS Results: Initial Dataset, Backbone, and
Final Clustering on DS1 and DS2.

4.4 Results on Real Dataset®Ve applied ABACUS to
several image datasets, containing natural images (NA-
TIMG), as well as satellite images (GEOIMG). For the nat-
ural image results shown in Figure 13, we rst applied a pre-
processing step, whereby the RGB (Red-Green-Blue) val-
ues for each pixel in the image are obtained. ABACUS is
-, then run on the RGB 3D data. For each row in Figure 13,
the original image is followed by the clustering resultsnfro
(c) Proteins: 14669 points (d) Proteins: 2023 points ~ ABACUS and K-Means. It is quite clear that ABACUS
yields a better segmentation/clustering of these images. K
Figure 10: ABACUS on 3D datasets (Initial Data, anfleans results in clusters that have granularities withémrth
Backbone/Clusters) whereas ABACUS yields more uniform clusters, i.e., it has a
smoothening effect on the objects, resulting in objectétray
with other competing algorithms. For ABACUS the time rainiform color. For instance, the entire pyramid has the same
ported is the total execution time, i.e., time for the iteeat color using ABACUS (Fig. 13(h)), in contrast to K-Means
backbone step, and the cluster nding step. We can clearsults (Fig. 13(i)), where it appears somewhat patchy. Re-
observe that as the dataset size increases, ABACUS get pudts for CHAMELEON and KASP are omitted due to space
gressively better. ABACUS is about two orders of magntonsiderations.
tude faster than CHAMELEON, and an order of magnitude Table 3 shows comparative running time among the




Name iDj(d) C | ABACUS (CHAMELEON) | K-Means| CHAMELEON | SPARCL (LOF) [ KASP

Horse 154401 (3)| 5 31.2s 4.5s 868.6s 41.8 1325s

Mushroom| 154401 (3)| 15 29.3s 18.6s 797.3s - 1589s

Pyramid | 154401 (3)| 5 11.3s 2.1s 743.2s - 1441s

Road 154401 (3)| 4 14.9s 1.9s 779.4s - 1369s
Table 3: Runtime Performance on NATIMG Datasets. K-Meard@émented in Matlab.

Name iDj(d) C | ABACUS (CHAMELEON) | CHAMELEON | SPARCL (LOF/Random) KASP
GEOIMG1 | 37876 (2) | 3 7.6s 42.7s 4.4s/3.6s 103s
GEOIMG2 | 62417 (2) | 10 35.1s 100.5s 21.5s/5.7s 310s
GEOIMGS3 | 143269 (2)| 4 136.3s 519.3s 70.4s/17.9s -

Table 4: Runtime Performance on GEOIMG Datasets.

(a) Horse

(b) ABACUS

s : i
e g

]

0 | R

(e) ABACUS

(c) K-Means

(a) Initial DS3: 10000 points (b) Initial DS4: 8000 points

(d) Mushroom

(c) DS3 Backbone: 1077 points (d) DS4 Backbone: 2211 points

(h) ABACUS

(i) K-Means

(g) Pyramid

(e) DS3 Clusters (f) DS4 Clusters

Figure 12: ABACUS Results: Initial Dataset, Backbone, &
Final Clustering on DS3, and DS4.

() Road

of pixels in these images is also shown (the images @igure 13: ABACUS and K-Means on NATIMG: Horse
481 321in size, giving a total of 154401 pixels). DugC =5), Mushroom C = 15), Pyramid C = 5), and Road

to its simplicity, K-Means is much faster than ABACUS, bu(C = 4).

at the same time, K-Means is sensitive to small variations

in the color space, resulting in inferior clustering qualithad to be manually terminated, since it failed to terminate
DBSCAN had to be forcefully terminated since it did nogven after &30 minutes (probably due to some bug in the

(k) ABACUS

() K-Means

competing algorithms on the NATIMG images. The number

nish even after 6hrs for all the datasets in NATIMG. Focode). We also applied ABACUS to geospatial satellite
the Mushroom, Pyramid, and Road datasets SPARCL (LOfgagery. For instance, Figure 14(a) shows the original enag



of Baghdad. The image was pre-processed using Sobel
edge mask before a half-toning Iter is applied. The half-
toned image is shown in Figure 14(b). Note that the pre-
processing results in clearer half-toning, but does notraid
the clustering directly. ABACUS with CHAMELEON for
phase two results in the clusters shown in Figure 14(c). As
seen, the clusters correspond to the land masses separated
by the Tigris river. Although SPARCL took less time, the (a) GEOIMG-1: Baghdadb) Sobel lIter/halftoning
clustering quality was far inferior, as shown in Figure 24(d
Figure 14 shows two other examples of applying ABACUS
to geospatial data taken from Earth-as-Art $if¢&andsat-7
Satellite). Figure 14(e) is a satellite image of the Neteak
delta region, whereas Figure 14(f) is an image of Himalayan
Snow-capped peaks in China.
Table 4 summarizes the runtime for each algorithm.
The parameters used for SPARCL (LOF) weke = (c) ABACUS: 3 clusters  (d) SPARCL: 3 clusters
30;minPts = 15;C = 3. The reduction in the size of
the original GEOIMG1 dataset at the end of phase 1 was
83.6%. For GEOIMG2 and GEOIMG3 again, SPARCL is
more ef cient as compared to ABACUS. The reduction ob-
tained at the end of phase 1 of ABACUS for GEOIMG2 and
GEOIMGS3 is 55.44% and 56.43%, respectively. This ex-
plains the larger time taken by ABACUS. For all GEOIMG
experiments, we usekl = 30. Note that KASP ran out of (€) GEOIMG-2: Nether{f) GEOIMG-3: Hi-
memory for GEOIMG3 (we used = 15; = 100). lands malaya

Name ABACUS SPARCL | CHAME- KASP
(Chameleon)| (LOF) LEON
10K 0.91/0.97 0.94/0.96| 1.0/1.0 0.43/0.55
50K 0.95/0.97 | 0.94/0.96| 0.99/0.99 | 0.44/0.56
100K 0.95/0.965 | 0.91/0.96| 0.99/0.99 | 0.43/0.55
200K 0.95/0.974 | 0.91/0.95| 0.99/0.98 -

400K 0.95/0.974 | 0.95/0.98| 0.99/0.99 -

gggi 00%59//00%794 ggéjggg 833;833 : (9) ABACUS: 10 Clusters (h) ABACUS: 4 clusters

1000K | 0.95/0.97 | 0.91/0.95| 0.98/0.99 - Figure 14: Clusters in the GEOIMG datasets

Table 5: Clustering qual_ity results on synthetic datasetg,ster fromC,. Although purity is a simple measure with
Each entry shows the Purity/NMI Score an easy interpretation, it tends to be biased towards a clus-
tering with higher number of clusters. Normalized mutual

4.5 Clustering Quality Results Since arbitrary Shapedmformatlon (NMI) overcomes this drawback. NMI is given
clusters do not respect similarity measures in the met{) NMI | (CaiCat ) herel denotes th
sense, internal clustering quality measures such as sum>d (G Gor) = H(Ca)r HCqt) wherel denotes the mu-

squared error with respect to the cluster mean are esstaahnformatmn (G Cgt) =
tially meaningless. As a result, we utilize external qyali® P kc,\ d « log N kep\ oy k
measures to evaluate the performance of ABACUS. External | N ’ kef kkcly K
quality measures evaluate the clustering quality as coetbaH (G, ) = . kCnJT X log kcj 'm 2 f a;gtg. Both purity
to the ground truth clustering. For evaluating the clustgriand NMI scores lie in the ranqg 1].
quality of ABACUS, we use two external criteriapurity Before measuring the clustering quality, we eliminate
scoreand Normalized MutualalnformatlomNMl) Purity is  the noise points, since different algorithms deal with eois
given bypurity (G; Gyt) = i—o Max; kc,\ c' k, where points differently. Note that since we do not know the ground
G and G denote the clusterlngs obtalned from ABACU&uth for the real datasets (NATIMG and GEOIMG), and we
and the ground truth, respectively, adg denotes thé™ also do not know it for the synthetic datasets DS1-DS4, we
cannot use the external quality measures for these datasets
" http://earthasart.gsfc.nasa.gov/ To evaluate the clustering quality of the different meth-

andH denotes the Entropy:




ods, Table 5 shows the Purity and NMI scores for the syn- Eliminating the dependency of the second phase of
thetic datasets we used earlier in the scalability experimeABACUS on the number of true clusters is a task for the
(DS-SCAL), where we know the ground truth (i.e., there afeture.

C = 13 true clusters). We can see that the purity score and

NMI are both fairly stable across the methods. The qualily Acknowledgements
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