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Abstract

A wide variety of clustering algorithms exist that cater to appli-
cations based on certain special characteristics of the data. Our
focus is on methods that capture arbitrary shaped clusters in data,
the so calledspatial clustering algorithms. With the growing size
of spatial datasets from diverse sources, the need for scalable al-
gorithms is paramount. We propose a shape-based clustering algo-
rithm, ABACUS, that scales to large datasets. ABACUS is based on
the idea of identifying theintrinsic structurefor each cluster, which
we also refer to as thebackboneof that cluster. The backbone com-
prises of a much smaller set of points, thus giving this method the
desired ability to scale to larger datasets. ABACUS operates in two
stages. In the �rst stage, we identify the backbone of each cluster
via an iterative process made up of globbing (or point merging) and
point movement operations. The backbone enables easy identi�-
cation of the true clusters in a subsequent stage. Experiments on
a range of real (images from geospatial satellites, etc.) and syn-
thetic datasets demonstrate the ef�ciency and effectiveness of our
approach. In particular, ABACUS is over an order of magnitude
faster than existing shape-based clustering methods, yet it provides
a comparable or better clustering quality.

1 Introduction

Clustering has been a prominent area of research within the
data mining, machine learning and statistical learning com-
munities. The choice of a clustering algorithm is strongly
motivated by the data or domain characteristics, such as the
data type (binary, categorical or numerical features). Forin-
stance, if the clusters are expected to span lower-dimensional
subspaces, then projective or subspace clustering algorithms
would give the better results. Similarly, when the clustersare
non-convex, shape-based (or spatial clustering) methods that
identify clusters with arbitrary shapes, sizes and densities are
called for.

Spatial clustering has been applied to data from astron-
omy, meteorology, epidemiology, seismology, geospatial im-
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agery, biomedicine, location-based services, and so on. The
large size of many of the spatial datasets still poses scalabil-
ity issues for existing shape-based clustering methods. Fur-
thermore, these methods also vary in terms of robustness to
noise in the dataset. We propose a simple, yet effective, ro-

(a) Cluster Backbone (b) Recovered Clusters

Figure 1: Clusters obtained through the generative process.

bust, and scalable spatial clustering algorithm. Our approach
is based on the hypothesis that a spatial cluster can be gener-
ated from a set of core points within the cluster that form the
backboneor theintrinsic shapeof the cluster. To elaborate,
consider the intrinsic shape of a set of clusters, as shown
in Figure 1(a). Given these core points in the backbone, a
dataset can be obtained through the following hypothetical
generative process. Assume that each backbone point has
two parameters associated with it. Theweight parameter
wi � 1, for a backbone pointpi , indicates the number of
points that can be generated frompi . The second parameter,
spread, indicates the region aroundpi within whichwi points
can be generated. The spread parameter can be expressed in
terms of a covariance matrix� i , for a d-dimensional input
space. For the sake of simplicity, we assume that the covari-
ance matrix is a diagonal matrix with the variance� i along
each dimension. Now, assume that a Gaussian process gen-
eratesmi < w i points at random, with mean atpi and the co-
variance matrix� i dictating the distribution of these points.
The weightwi of the backbone point is redistributed amongst
the generatedmi points, either uniformly or as a function of
the distance of the point frompi . The covariance matrix for
each of themi points is obtained by updating� i (of pi ) such
that the variance� i for each of themi points is decreased in
proportion to weights assigned to them. The entire collection
of mi points resulting from each backbone point forms a new
generation of points for the next step. This generative pro-



(a) Initial Dataset
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(b) After 3 Iterations
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(d) After 8 Iterations

Figure 2: Initial dataset (a) after 3 (b) and 6 (c) iterations, and the �nalbackboneafter 8 iterations of ABACUS. The dataset
(DS1) initially has 8000 points, whereas the backbone only has 838 points.

cess is repeated until the weight assigned to each new point
has reduced to one. Figure 1(b) shows the clusters obtained
from the backbone, via this generative process. For the sake
of comparison, the original dataset from which the backbone
was derived is shown in Figure 2(a). Note that the number
of points generated is solely controlled by thewi parameter
assigned to each core point. In the real-world, we obviously
do not have access to the cluster backbones, but rather we
have to �nd the intrinsic shapes given the original datasets.
Our new approach to scalable shape-based clustering, called
ABACUS (anagram of the bold letters inArbitrary Shape
ClUstering viaBAckbones), is motivated by this generative
approach. Given a spatial dataset, ABACUS aims to recover
the intrinsic shape or backbone of the clusters, by intuitively
following the generative process in reverse. The basic ideais
to recursively collapse a set of points into a single represen-
tative point via an operation we callglobbing. Furthermore,
points also move under the in�uence of neighboring points.
Over a few iterations, the dataset is repeatedly summarized
until the backbone emerges. This process is brie�y illus-
trated in Figure 2, which shows the putative intrinsic shape
after three, six, and eight iterations, starting from the ini-
tial dataset. Once the backbone is identi�ed, it is relatively
straightforward to determine the �nal set of clusters. This
is especially true since the iterative globbing and movement
operations automatically confer two main bene�ts, namely i)
removal of noise points from the dataset, and ii) reduction in
the size of the dataset. Both these effects help in reducing
the computational cost and memory requirements, as well as
in making the method robust to noise, resulting in improved
quality of the clustering. In the experimental section, we
present extensive results on both synthetic and real datasets,
which show how scalable and effective our method is com-
pared to state of the art methods; ABACUS has comparable
quality of clustering, but it can outperform existing methods
in terms of runtime by an order of magnitude or more.

2 Related Work

Traditionally, spatial clustering methods have been divided
into the following categories –partitional, hierarchical,

density-basedandspectral.
CLARANS [10] was one of the pioneering works in spa-

tial clustering, but it is rather slow since it is a medoid based
partitioning approach. The SNN (shared nearest-neighbor)
algorithm [5] is an example of partitional clustering. SSN
computes a graph based on the shared nearest neighbors be-
tween every two points. The connected components of the
graph are the �nal clusters after some threshold-based edge
removal.

The density based approach is exempli�ed by DB-
SCAN [6] and DENCLUE [8], both of which can �nd ar-
bitrary shaped clusterings. However, they can be quite
sensitive to the parameter values, and are computationally
expensive (O(N 2) for high dimensional data, otherwise
O(N logN ) with R� -tree index structure). DENCLUE's
density estimation identi�es local maxima (termeddensity
attractors) in the data. Although the notion of density at-
tractors is similar to the points on the backbone in ABA-
CUS they do not necessarily preserve the structural shape of
the clusters. Another non-parametric algorithm –mean shift
clustering[4] – is closely related to DENCLUE.

CURE [7] is a hierarchical agglomerative clustering al-
gorithm that handles shape-based clusters, but it is still ex-
pensive with its quadratic complexity, and more importantly,
the quality of clustering depends enormously on the sam-
pling quality. In general,sampling based methodssuffer
when the clusters are of varying sizes and densities [1]. An-
other hierarchical approach, CHAMELEON [9], formulates
the shape-based clustering as a graph partitioning algorithm.
However, it requires a number of thresholds to be set for ef-
fective clustering.

The spectral clustering approach [12] is also capable
of handling arbitrary shaped clusters. They formulate the
arbitrary shape clustering problem as anormalized min-
cut problem. Unfortunately the spectral approach is not
really scalable, requiringO(N 3) time. Recently, a scalable
approximate spectral method was introduced [14], which
�rst selects representative points on which the full spectral
clustering is performed.

Many efforts have focused on scaling spatial cluster-



ing. For scaling hierarchical clustering further, Breuniget
al. [2] propose compressing the data using representatives
called Data Bubbles. Clustering is then performed on the
compressed representation. The approach proposed in [13]
shrinks clusters into dense compact regions by altering the
position of data points under “gravitational force” exerted by
other neighboring points. Unlike [13], ABACUS repeatedly
globs points resulting in faster convergence of the algorithm.
SPARCL [3] is one of the latest approaches for shape-based
clusters. It works in two phases. In the �rst phase a large
number of representatives orpseudo-centers, and in the sec-
ond step it merges them to obtain clusters. It is linear in the
number of points in the dataset, but is sensitive to the quality
of pseudo-centers.

Most algorithms described above are unable to scale to
large datasets. Due to lack of space we are unable to describe
some of the other algorithms.

3 The ABACUS Approach

Our approach to shape-based clustering is motivated by the
notion that a cluster possesses anintrinsic shapeor a core
shape. Intuitively, for a 2-dimensional Gaussian cluster,
points around the mean of the cluster could be considered as
points forming the core shape of the cluster. For an arbitrary
shaped cluster, such as shown in Figure 2(a), the intrinsic
shape of the cluster is captured by thebackboneof the cluster
(Figure 2(d)). ABACUS needs two parameters – the number
of nearest neighbors, denotedk, to be considered for each
point, and the �nal number of clusters desired, denotedC.
Unlike some of the methods that need an absolute radius as a
parameter, the number of nearest neighborsk is independent
of the density of a cluster. This parameter thus makes
ABACUS relatively robust to clusters with varying densities.

The ABACUS clustering approach has two phases, de-
tailed below. In the �rst phase we identify the intrinsic shape
of the clusters. In the following phase, the individual clusters
are identi�ed.

3.1 Preliminaries Consider a datasetD of N points ind-
dimensional Euclidean space. The distance between pointsi
andj is represented bydij . Thek-nearest neighbors (kNN)
of a data pointi are given by the setRk (i ). The nearest
neighbors for all points are captured in a matrixA, where
each entryA(i; j ) is given as

A(i; j ) =
�

1 if j 2 Rk (i )
0 if j =2 Rk (i )

The termkNN matrixis used forA henceforth.
Figure 3 (left) shows a sample dataset and Figure 4(a)

shows its corresponding kNN matrix. Figure 3 (right) shows
the sample dataset after one iteration, while Figure 4(b)
shows the corresponding updated kNN matrix. In this
example,k is set to 2.
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Figure 3: Globbing and Movement (k = 2 )
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Figure 4: kNN matrices for sample dataset (k=2)

3.2 Backbone Identi�cation As opposed to the genera-
tive model described earlier, our goal is to identify points
belonging to the backbone given the original dataset. In
essence, ABACUS follows the generative model in the re-
verse order, starting with the original dataset and culminat-
ing in the identi�cation of the backbone, as illustrated in Fig-
ure 2(d). The backbone identi�cation phase consists of two
simple operations:

�
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�
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Figure 5: Globbing and object movement:x (red) has 8
nearest neighbors (blue); only 5 lie within radiusr . These
5 are globbed byx, and the 3 other points movex based on
the force vectorsf i .

Globbing: Globbing involves assigning a representative to
a group of points. All points that lie within ad-dimensional
ball of radiusr , around a representativex are globbed byx.
The globbed points are removed from the dataset and their
representative (point) is retained. Each point in the dataset
has aweightw assigned to it. Initially, the weight of each
point is set to 1. As points are globbed by a representative,
the weight of the representative is updated to re�ect the
number of points globbed by it. Note that a representative
can be globbed by another representative point. As discussed
later, the value of the radiusr is directly estimated from the
dataset. Note thatr represents thespreadparameter in the
generative model.
Object Movement: In our model, each point experiences a
force of attraction from its neighboring points. Under the



in�uence of these forces a point can change its position.
The magnitude of the movement is proportional to the forces
exerted on the point and the direction of movement is the
weighted sum of the force vectors. In the context of the
generative model, a point moves towards the most likely
component that is responsible for generating the point.

The backbone identi�cation phase involves repeated
application of the above two steps, as illustrated in Figure5.
In the �rst step, objects are globbed starting at the dense
regions of the dataset, since that results in faster convergence
of the algorithm. Moreover, starting at the dense regions
ensures that noise points do not distort the intrinsic shapeof
the clusters by globbing points from true clusters. The dense
regions are identi�ed by smaller values for thekNN distance.
In the following second step, the representative points move
under the in�uence of forces exerted by neighboring points.
Figure 3 shows a sample dataset consisting of 7 points and
the effect of one iteration (globbing followed by movement)
on the dataset. Similarly, Figures 4(a) and 4(b) show the
initial kNN matrix A0 and the updated kNN matrixA1 after
one iteration, respectively. On convergence of the iterative
process,An represents the intrinsic shape of the clusters.
Figure 2(d) shows the backbone of the dataset in Figure 2(a),
on convergence. Note that the two steps outlined in the
algorithm are essentially simulating the generative modelin
reverse. The ABACUS algorithm is outlined in Figure 6. It

ABACUS(D0; k; C):
1. Initializewi = 1 , 8i 2 D 0

2. j = 0
3. K = compute kNN(D0)
4. r = estimateknn radius(D0; k; K)

5. repeat
6. j = j + 1
7. glob objects(D j � 1; r; k )
8. D j = move objects(D j � 1; r; k )
9. mj = number of points moved in iterationj
10. K = update kNN(D j )
11.until m j

m j � 1
< m j � 1

m j � 2

12.C= identify clusters(D j � 1; C)

Figure 6: The ABACUS Clustering Algorithm

takes three inputs – the datasetD of d-dimensional points,
the number of nearest neighborsk, and the number of �nal
clustersC. estimateknn radius computes an estimate for
the trimmed average distance to thekth nearest neighbor
for objects in the dataset. The radius is estimated by �rst
obtaining the distance to thekth nearest neighbor over a
random sample from the dataset. The average of the top 95%
percentile of these distances (arranged in ascending order) is
used as the globbing radiusr . Note that we discard the top

5% distances to maker robust to outliers.
During glob objects all points within a radiusr of a

point x are marked as being “globbed” or represented by
x. Note that not all points within the kNN ofx are within
globbing radiusr , thus the use ofr in the globbing step
ensures that only points in the close proximity ofx can
be represented byx. Such selective globbing also ensures
that outlier or noise points do not glob points belonging
to dense cluster regions. Globbing modi�es the dataset by
removing the globbed points and by updating the weight
wx of the representative point to include the weights of
all the globbed points (i.e.,wx =

P
8p s:t: dist (p;x )<r wp).

An estimate forr based on sampling is preferred for the
following reasons. First, an arbitrarily small value forr
can degrade the convergence of the backbone identi�cation
approach. On the other hand, an arbitrarily large value forr
can result in points from more than one cluster being globbed
by a representative point.

In the move objects step, a pointy in d-dimensional
space is displaced under the in�uence of its nearest neigh-
bors' force of attraction. Out of thek nearest neighbors,
only those that have not been globbed byy participate in
displacingy. The force exerted by an objectz on objecty is
proportional towz and inversely proportional todist (y; z),
wheredist () is some distance function. The updated posi-
tion of y in dimensioni is given by Equation 3.1, whereyi is
thei th dimension ofy.
(3.1)

ynew
i =

yi � wy +
P

z2 R k (y )^ d(y;z )>r zi � wz � 1
dist (y;z )

wy +
P

z2 R k (y )^ d(y;z )>r wz � 1
dist (y;z )

Figure 5 elaborates the globbing and movement steps. The
dataset(D ) j � 1 before violation of the stopping condition is
used for extracting the �nal clusters.

3.3 Stopping Condition for ABACUS One can extrapo-
late that the above two steps, of globbing and object move-
ment, repeated without a suitable stopping condition would
result in a dataset with a single point which globs all the
points in the dataset. LetD i be the dataset after iterationi .
Let D = D0 be the initial dataset, and letDf inal be the �nal
globbed dataset obtained after Line 11 of Figure 6. Cluster-
ing quality is poor ifDf inal has points that represent globbed
points from more than one natural cluster. At the same time,
if Df inal has most of the points inD0, then the algorithm
has not achieved a substantial reduction in the dataset size.
Hence, a “good” stopping condition needs to balance the re-
duction in the dataset size and the degree to whichD i cap-
tures the shape-based clusters ofD0. To express the simi-
larity betweenD i andD0 we compare their corresponding
kNN matrices. Since the sizes of the two kNN matrices are
not the same, an estimated kNN matrix for the initial set of
points is reconstructed from the kNN matrix forD i .



To formalize this notion, letA i be the kNN matrix after
iteration i . The initial kNN matrix for the dataset isA (or
A0) as shown in Figure 4(a). Let the size ofA i beN i � N i ,
whereN i is the number of points in the dataset at the end
of iteration i , andN0 = N is the number of points in the
initial database. Consider an onto functionf i : Rd ! Rd for
iterationi . Functionf i maps a pointa in the original dataset
D0 to a point inD i that has globbeda.

We would like to compute the probability that a pointb
is in the kNN set of another pointb, after iterationi . There
are two cases to consider: 1) Botha andb are globbed by
the same representativex, and 2)a and b are globbed by
different representatives,x andy respectively. Consider the
�rst case: Given thatf i (a) = f i (b) = x, i.e., botha andb
are globbed by the same pointx 2 D i , the probability thatb
is a kNN ofa can be approximated by:

(3.2) Pr[b 2 Rk (a)] /

� wx � 2
k � 2

�

� wx � 1
k � 1

�

wherewx , the weight ofx, is the number of points globbed
by x. The numerator in the above equation corresponds to
the number of ways of choosing remainingk � 2 points from
wx � 2, since we assume thata and b have already been
chosen. The denominator corresponds to the number of sets
(of points) that include pointa.

In the alternate scenario, whena andb are globbed by
different representatives, namelyx = f i (a) 6= f i (b) = y,
the probability ofb 2 Rk (a) is given by the expression

(3.3) Pr[b 2 Rk (a)] /
1

d(x; y)
�

� wx + wy � 2
k � 2

�

� wx + wy � 1
k � 1

�

Here, the numerator gives the number of ways of choosing
k � 2 points from the glob set ofx andy, i.e., the number
of possible neighborhood containing botha andb. The de-
nominator gives the number of ways of choosing the neigh-
borhood fora. The probability in Equation 3.3 depends on
two factors: 1) the number of points globbed by the rep-
resentatives ofa andb in Dn , and 2) the distance between
the representativesx and y. The larger this distance, the
smaller the probability ofb belonging toRk (a). Similarly,
the probability in Equation 3.3 is less than that in Equa-
tion 3.2. This resonates with the intuition that nearby points
should have higher probability. Note that although the kNN
relation is not symmetric, the above probabilities are sym-
metric, i.e.,Pr[b 2 Rk (a)] = Pr[a 2 Rk (b)]. Note also that
for Equations 3.2 and 3.3 to represent true probabilities, the
right hand side should be normalized by dividing by the term
Za =

P
b Pr[b 2 Rk (a)].

Let M i denote theN � N matrix with the entryM i [x; y]
representingPr[y 2 Rk (x)], i.e., M i is the reconstructed
matrix for the probabilistic kNN relationship fromD i .

3.3.1 MDL Based Stopping Condition Given the above
description, the stopping condition for ABACUS, can be
ideally formulated in terms of the Minimum Description
Length (MDL) principle [11], that takes an information
theoretic approach towards selecting a model.

The MDL principle suggests selecting the modelhi that
minimizesL(hi ) + L(D j hi ), whereL(hi ) is the number
of bits required to represent the model andL(D j hi ) is the
number of bits to encode the data given the model. Thus, the
MDL principle balances the generality and the speci�city in
model selection for the data. A simple model requires fewer
number of bits corresponding to theL(hi ) term, but it results
in a larger number of bits to represent the dataL(D j hi ).
On the contrary, a complex model would exhibit just the
opposite effect.

In the context of ABACUS, the set of hypothe-
ses/models is represented byD i (8i > 0), i.e., the set of
globbed points after each iteration. The simplest modelD1

requires the largest number of bits, but requires fewest num-
ber of bits to encodeD0. Stated another way, the simplest
model has the smallest error when it comes toreconstruction
of the original data. This is often called as thereconstruc-
tion error. For subsequent hypotheses, asL(D i ) decreases,
the additional information required to representD0 (given by
L(D0 j D i ); i > 0) increases.L (D0 j D i ) can be interpreted
as the error introduced in reconstructingD0 from D i .

As seen before,A i represents the kNN matrix forD i and
M i represent the kNN matrix “reconstructed” fromD i using
Equations 3.2 and 3.3. The probability that the reconstructed
kNN matrix M i faithfully capturesA0 is given byPr(A0 j
M i ). Since each element inA0 can be considered to be
independent,Pr(A0 j M i ) can be expressed as

(3.4) Pr(A0 j M i ) =
N 0Y

m =1

N 0Y

n =1

Pr (A0(m; n) j M i (m; n))

SinceA0 is a binary matrix, we have the expression
(3.5)

Pr (A0(m; n) j M i (m; n)) =
�

M i (m;n ) if A 0 (m; n ) = 1

1� M i (m;n ) if A 0 (m; n ) = 0

A high value forM i (m; n) whenA0(m; n) = 1 indi-
cates thatM i (m; n) can successfully represent the neighbor-
hood relationship betweenm andn. If M i (m; n) is small
whenA0(m; n) = 0 , then1 � M i (m; n) gets a high value,
thus capturing the absence of neighborhood relationship be-
tweenm andn. . The termL(D0 j D i ) normalized byN0

2,
gives the average number of bits per entry in the matrix. The
number of bits required to represent the total reconstruction
error is captured by

L(D0 j D i ) = � log Pr(A0 j M i )

= �
N 0X

m =1

N 0X

n =1

logPr (A0(m; n) j M i (m; n))(3.6)



The number of bits to represent the model depends on the
relative size ofD i , given by the expression

(3.7) L (D i ) = � log
�

j D i j
j D0 j

�

Hence the trade-off at the end of any iterationi is between
the average reconstruction error given by1

N 2
0

L(D0 j D i ) and
the size of the modelL (D i ). Generating the reconstruction
matrix entails computing the error at each entryM i (m; n).
The computation cost for each iteration is thusO(N 2),
where N is the number of points in the original dataset.
This approach is infeasible for large datasets, both in terms
of computation and in terms of the memory requirement.
To bypass this computational cost we present a simpler
alternative that tries to capture the same trade-off between
the reconstruction error and the dataset size.

3.3.2 Practical Stopping Condition Given that the pure
MDL-based stopping condition discussed above is computa-
tionally expensive, we use a more practical stopping condi-
tion for ABACUS, that nevertheless, is intuitively relatedto
the MDL based formulation.

Notice that if points are only globbed (without object
movement), it results in the sparsi�cation (reduction) of
the data. To complement the globbing, moving the points
enables further globbing in subsequent iterations. Ifgi is
the number of points globbed in an iteration andmi is the
number of points that are moved in an iteration then we have
gi / mi � 1. That is, the number of points globbed in iteration
i , is directly proportional to the number of points that move
in the previous iterationi � 1. This observation is shown in
Figure 7.
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Figure 7: The number of points moved and globbed per
iteration for a dataset with 1000K points.

Intuitively, as more points are globbed across the it-
erations, the reconstruction error obviously increases. Let
E i = L(D0jD i ) be the reconstruction error at the end of it-
erationi and let the error difference between two consecutive
iterations be� E i = E i � E i � 1. The difference between the
errors is proportional to the number of points globbed, i.e.,
� E i / gi

gi � 1
. Combining this with the previous observation

(gi / mi � 1) yields � E i / m i � 1

m i � 2
. As fewer points move in

subsequent iterations (mi < m i � 1), it re�ects the decline in
the size of the dataset, i.e.,N i < N i � 1. The ratio m i

m i � 1
(< 1)

captures the relative rate of this decline.

i+1

Iterations
0

DE

Relative Dataset size

Reconstruction Error
1

E i+1i

E

Figure 8: Balancing the two contradicting in�uences in the
clustering formulation.

Our stopping condition is based on these observations.
If the expression

(3.8)
mi � 1

mi � 2
<

mi

mi � 1

is false then the iterative process is halted, else continued
(see line 11 in Figure 6). In other words, if the rate of decline
in the current iterationi is less than that in iterationi � 1, we
stop the globbing and movement operations.

Let us look at Figure 8 to understand this stopping
condition. Figure 8 shows the two contradicting in�uences
– dataset size and reconstruction error. The condition in
Equation 3.8 favors an increase in the ratiom i

m i � 1
, implying

that the stopping condition encourages a rapid decrease in
the size of the dataset, by the relationmi / N i . The
downward sloping arrow along the `Relative Dataset Size'
curve in Figure 8 represents this effect. In short, the stopping
condition ensures that the algorithm progresses as long as the
dataset size continues to shrink progressively.

� E i +1

� E i
< 1, if expression 3.8 is not true. As long as

the stopping condition in Equation 3.8 holds, the rate of
change of relative error difference (� E i +1

� E i
) is positive, i.e.

numerical value of the fraction� E i +1

� E i
is increasing. Hence,

the condition in Equation 3.8, does not favor a decline in
the relative error difference, which happens during later
iterations. In the context of Figure 8, this tendency to oppose
a decline in the relative error difference is depicted by the
downward sloping arrow along the `Reconstruction Error'
curve. At the iteration at which the stopping condition in
Equation 3.8 is violated, both the above effects (increasing
relative reconstruction error and the rate at which the dataset
size is decreasing) are balanced. We chose to stop at this
iteration. This is indicated by the intersection point of the
two curves in Figure 8.

At the end of the iterative process a much smaller dataset
Df inal , as compared to the original datasetD0 = D, is
obtained.



3.4 Cluster Identi�cation Once the intrinsic shape or
backbone of the clusters is identi�ed, the task remains to
isolate the individual clusters. ABACUS currently assumes
that the desired number of clustersC has been pre-speci�ed.
Below, we also discuss how one can determine the number
of clusters automatically.

3.4.1 Number of clusters speci�edGiven that the �rst
phase helps drastically reduce the noise and the size of the
dataset, the cluster identi�cation step is relatively straight-
forward if the desired number of clustersC is given. Due
to the size reduction any suitable clustering algorithm canbe
applied toDf inal in line 12 in Figure 6. In our experiments,
we applied both DBSCAN [6] and CHAMELEON [9] dur-
ing the cluster identi�cation phase of ABACUS. Both these
algorithms are able to effectively capture the clusters andare
relatively robust to noise, though the latter is more ef�cient.

3.4.2 Number of clusters unspeci�edWhen the desired
number of clustersC is not speci�ed, we propose the fol-
lowing two-step approach to identify the �nal set of clusters.
In the �rst step, one can run a connected components algo-
rithm onDf inal to obtain a set of preliminary clustersC. In
the second step, the clusters inCcan be merged to obtain the
�nal clusters.

The cluster merging process is based on two similarity
measures. LetB (Ci ; Cj ) be the points in clusterCi that
have a point fromCj in their kNN set, i.e.,B (Ci ; Cj ) =�

pi 2 Ci : 9pj 2 Rk (pi ) ^ pj 2 Cj
	

. We call
B (Ci ; Cj ) the border pointsin clusterCi with respect to
clusterCj . Note thatB (Ci ; Cj ) need not be the same as
B (Cj ; Ci ). Let E(Ci ; Cj ) be the total number of occur-
rences of points inCj in thek-neighborhood of points inCi ,
i.e., E (Ci ; Cj ) =

P
pi 2 C i

�
� � pj : pj 2 Rk (pi ) ^ pj 2 Cj

	 �
� .

Note thatE(Ci ; Cj ) may count a point multiple times if
it belongs to the neighborhood of multiple pointspi . Let
B (Ci ) be the set of all border points in clusterCi , i.e.,
B (Ci ) =

S
8C j 6= C i

B (Ci ; Cj ).
The �rst similarity metricS1 is given as

(3.9) S1(Ci ; Cj ) =
E(Ci ; Cj )

j B (Ci ; Cj ) j
> �

The higher the value of the ratio in Equation 3.9, the
greater the similarity between the clusters. A high value for
S1(Ci ; Cj ) indicates that the points inCj are close to the
border points inCi . This similarity metric captures the de-
gree of closeness, measured in terms of local neighborhood
of border points, between a cluster pair.

The second similarity measure,S2, is given as

(3.10) S2(Ci ; Cj ) =
j B (Ci ; Cj ) j

j B (Ci ) j
> �

S2 ensures that two clusters can be merged only if the

interaction “face” (fraction of border points) between thetwo
clusters is above the� threshold.

Cluster pairs are iteratively merged, starting with the
pair with highest similarity. For two clustersCi andCj to be
merged both the conditions, given by Equations 3.9 and 3.10,
must be satis�ed. Since the true number of clusters are not
speci�ed, we need to provide lower-bound thresholds (� and
� ) for the similarity criteria to continue merging of clusters.

3.5 Complexity Analysis Let us assume that ABACUS
converges aftert iterations. The number of points at the end
of each iteration is given byN0, N1, :::, N t . Initially ABA-
CUS performs a kNN computation on all the points in the
dataset –O(N 2) in the worst case for high-dimensional data,
whereasO(N logN ) for spatial datasets that are typically in
just 2 or 3 dimensions.

Let us now consider the time for the subsequent itera-
tions. For each pointp (in each iterationi ) that globs its
nearest neighbors, we have to update the kNN only for all
the affected points (line 10 in Figure 6). Since we use a kd-

Tree to store the points, a kNN search takesO(N
1� 1

d
i ) time.

Let g1; g2; :::; gt be the number of points that have globbed
other points, in each of the iteration. The total complexity

of the kNN searches is given byO(
P t

i =1 gi � N
1� 1

d
i ). Mov-

ing the points involves computing the new location based on
the kNN. If m1; m2; :::; mt represents the number of points
that move in each iteration, the total cost of moving across
all iterations is given byO(k �

P t
i =1 mi ). When CLUTO1

is applied in Phase 2 to the set of points after the iterative
process, the computational cost isO(N t logN t ). Hence the
total computational cost is the sum of the above terms. Let
us assume that a constant fraction of points are globbed and
moved in each iteration, i.e.,gi = mi = O(1) (note that this
is worst case behavior for us, since the more the points are
globbed, the faster is the convergence). Also let us assume
that in the worst case number of points in each iteration is
N i = O(N ). Then, in the worst case, the runtime complex-
ity over all the iterations isO(tN + kt + N logN ), where
t is the number of iterations andk is the number of nearest
neighbors.

In summary, the complexity of ABACUS isO(N 2)
when the number of dimensions is large, since in that case
the time for computing the initial kNN for each point would
dominate. However, for the typical 2D or 3D datasets
common in spatial clustering, ABACUS takesO(tN +
N logN ) = O(N logN ) time. Practically, ABACUS is
much faster as compared to other algorithms as shown in
the following section. This is because the number of kNN
searches drops signi�cantly in each iteration.

1http://glaros.dtc.umn.edu/gkhome/cluto/



Name jD j(d) C k ABACUS SPARCL SPARCL CHAMELEON KASP
CHAMELEON / DBSCAN (Random) (LOF)

DS1 8000 (2) 6 70 1.7s / 2.6s 1.8s 4.1s 4.3s 19s
DS2 8000 (2) 6 70 1.3s / 2.2s 1.5s 4.0s 4.2s 13s
DS3 10000 (2) 9 55 1.9s / 3.0s 2.5s 5.5s 5.9s 33s
DS4 8000 (2) 8 20 1.7s / 3.4s 1.8s 4.2s 4.3s 24s

Swiss-roll 19386 (3) 4 70 4.4s / 5.7s 4.9s 19.6s 19.8s 43s

Table 1: Runtime Performance on Synthetic Datasets. All times are reported in seconds.

4 Experimental Evaluation

All our experiments are conducted on a Mac G5 machine
with a 2.66 GHz processor, running the Mac 10.4 OS X.
ABACUS is written in C++, using the Approximate Near-
est Neighbor Library (ANN)2. We compare the performance
of ABACUS with a range of clustering algorithms, namely
CHAMELEON [9] as implemented in the CLUTO package,
SPARCL [3], DBSCAN [6] implemented in C++ using R*-
tree index, and �nally, the K-Means based Fast Spectral Ap-
proximation (KASP) [14] obtained from its authors3 (writ-
ten in R). Parameters were tuned for each method for best re-
sults. Also note that unless mentioned otherwise, we used the
standard clustering parameters-clmethod=graph, -sim=dist,
-agglofrom=30) for CHAMELEON. For DBSCAN we used
minP ts = 15 andeps = 0 :7. For the cluster identi�cation
phase of ABACUS we used these same parameters. Finally,
for KASP we used = 8 ; � = 100, and for SPARCL we use
the parametersK = 30; minP ts = 15.

4.1 DatasetsA wide range of datasets were used to eval-
uate ABACUS. For the scalability experiments, we use the
dataset DS-SCAL, from SPARCL [3], which consists of 13
arbitrary shaped clusters in 2D with varying densities and
number of points (up to 1 million points). DS1 – DS4, shown
in Figure 11 and 12, are datasets that have been used by pre-
vious methods like CURE, CHAMELEON and SPARCL.
The real datasets consist of proteins of varying densities
(PROT; see Figure 10(c)), natural images (NATIMG; see
Figure 13), and geospatial satellite images (GEOIMG; see
Figure 14).

4.2 Results on Synthetic DatasetsTable 1 shows run-
time performance of ABACUS and other algorithms on some
popular datasets in the literature. The runtime for ABA-
CUS with both CHAMELEON and DBSCAN in phase 2
is shown in Column 5. ABACUS is considerably more
ef�cient as compared to KASP or CHAMELEON. For
these relatively small datasets ABACUS is comparable to
SPARCL(random), and has an advantage over SPARCL
(LOF) and CHAMELEON in terms of the execution time.

2http://www.cs.umd.edu/� mount/ANN/
3http://www.cs.berkeley.edu/� jordan/fasp.html

KASP is about 10 times slower. Figures 11, 12 and 10(a)-(b)
show the backbone and �nal clusterings for these datasets.
The �gures also show the number of points in the original
dataset, and those in the resulting backbone. The 3D datasets
(including the 3D protein dataset in Figure 10 (c)-(d)) ex-
hibit a predominant sparsi�cation effect as compared to a
skeletonization effect. Thek parameter used by ABACUS is
shown in Column 4 of Table 1.

4.3 Scalability ResultsTo study the scalability of ABA-
CUS, we used the DS-SCAL dataset, with varying number
of points. The number of noise points in this dataset are set
constant at 5% of the total dataset size. The dimensionality
of the dataset isd = 2 and the number of clusters are �xed at
13. For each datasetk is set at 70. Further, for these results,
we used CHAMELEON (with standard parameters) for the
cluster identi�cation phase.

A B C D E
10K 0.5s 4 0.4s 4.41%
50K 3.0s 4 1.1s 4.07%
100K 5.6s 4 1.6s 5.2%
200K 12.2s 4 7.7s 5.98%
400K 26.5s 4 25.1s 6.94%
600K 40.9s 4 58.7s 6.88%
800K 57.5s 4 109.9s 7.49%
1000K 113.9s 10 10.5s 1.78%

Table 2: ABACUS Scalability Results. The size of the
dataset is varied keeping the noise at 5% of the dataset size
(d = 2 ; k = 70; C = 30). A: Dataset size (no. of points), B:
Time for t iterations, C: Number of iterations (t), D: Time for
Phase 2, E: Dataset size aftert iterations (% of initial size).

The �rst column in Table 2 speci�es the size of the
dataset, the largest being a dataset with 1 million points. The
table breaks down the total execution time of ABACUS into
the time taken by the backbone phase (Column 2) and the
cluster identi�cation phase (Column 4). The number of iter-
ationst, and the size of the �nal dataset (as a percentage of
the initial dataset) aftert iterations are shown in Columns
3 and 5, respectively. We can observe that the time for
backbone identi�cation increases with increasing size of the



 0.1

 1

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

T
im

e 
(s

ec
)

# of points x 1000 (d=2)

DBScan
KASP

Chameleon
SPARCL(LOF)

SPARCL(random)
ABACUS

Figure 9: Scalability: ABACUS versus other algorithms.
Note the log scale on the y-axis.

datasets. Also, different datasets exhibit varying degrees of
dataset reduction. The time taken by the cluster identi�ca-
tion phase is proportional to the dataset reduction achieved.
This is evident from the observation that the time taken by
Phase 2 on the 1000K dataset is ten times less than that for
the 800K dataset. This reduction is purely a factor of the
density of the points and also the relative position of the
points. Figure 9 compares the execution time of ABACUS

(a) Swissroll: 19386 points (b) Swissroll: 2471 points

(c) Proteins: 14669 points (d) Proteins: 2023 points

Figure 10: ABACUS on 3D datasets (Initial Data, and
Backbone/Clusters)

with other competing algorithms. For ABACUS the time re-
ported is the total execution time, i.e., time for the iterative
backbone step, and the cluster �nding step. We can clearly
observe that as the dataset size increases, ABACUS get pro-
gressively better. ABACUS is about two orders of magni-
tude faster than CHAMELEON, and an order of magnitude

faster than SPARCL(random/LOF; run withK = 100 and
minP ts = 15) and DBSCAN. KASP was too slow to be
run on more than 100K points.

(a) Initial DS1: 8000 points (b) Initial DS2: 8000 points

(c) DS1 Backbone: 838 points (d) DS2 Backbone: 909 points

(e) DS1 Clusters (f) DS2 Clusters

Figure 11: ABACUS Results: Initial Dataset, Backbone, and
Final Clustering on DS1 and DS2.

4.4 Results on Real DatasetsWe applied ABACUS to
several image datasets, containing natural images (NA-
TIMG), as well as satellite images (GEOIMG). For the nat-
ural image results shown in Figure 13, we �rst applied a pre-
processing step, whereby the RGB (Red-Green-Blue) val-
ues for each pixel in the image are obtained. ABACUS is
then run on the RGB 3D data. For each row in Figure 13,
the original image is followed by the clustering results from
ABACUS and K-Means. It is quite clear that ABACUS
yields a better segmentation/clustering of these images. K-
Means results in clusters that have granularities within them,
whereas ABACUS yields more uniform clusters, i.e., it has a
smoothening effect on the objects, resulting in objects having
uniform color. For instance, the entire pyramid has the same
color using ABACUS (Fig. 13(h)), in contrast to K-Means
results (Fig. 13(i)), where it appears somewhat patchy. Re-
sults for CHAMELEON and KASP are omitted due to space
considerations.

Table 3 shows comparative running time among the



Name jD j(d) C ABACUS (CHAMELEON) K-Means CHAMELEON SPARCL (LOF) KASP
Horse 154401 (3) 5 31.2s 4.5s 868.6s 41.8 1325s

Mushroom 154401 (3) 15 29.3s 18.6s 797.3s - 1589s
Pyramid 154401 (3) 5 11.3s 2.1s 743.2s - 1441s

Road 154401 (3) 4 14.9s 1.9s 779.4s - 1369s

Table 3: Runtime Performance on NATIMG Datasets. K-Means implemented in Matlab.

Name jD j(d) C ABACUS (CHAMELEON) CHAMELEON SPARCL (LOF/Random) KASP
GEOIMG1 37876 (2) 3 7.6s 42.7s 4.4s / 3.6s 103s
GEOIMG2 62417 (2) 10 35.1s 100.5s 21.5s / 5.7s 310s
GEOIMG3 143269 (2) 4 136.3s 519.3s 70.4s / 17.9s -

Table 4: Runtime Performance on GEOIMG Datasets.

(a) Initial DS3: 10000 points (b) Initial DS4: 8000 points

(c) DS3 Backbone: 1077 points (d) DS4 Backbone: 2211 points

(e) DS3 Clusters (f) DS4 Clusters

Figure 12: ABACUS Results: Initial Dataset, Backbone, and
Final Clustering on DS3, and DS4.

competing algorithms on the NATIMG images. The number
of pixels in these images is also shown (the images are
481 � 321 in size, giving a total of 154401 pixels). Due
to its simplicity, K-Means is much faster than ABACUS, but
at the same time, K-Means is sensitive to small variations
in the color space, resulting in inferior clustering quality.
DBSCAN had to be forcefully terminated since it did not
�nish even after 6hrs for all the datasets in NATIMG. For
the Mushroom, Pyramid, and Road datasets SPARCL (LOF)

(a) Horse (b) ABACUS (c) K-Means

(d) Mushroom (e) ABACUS (f) K-Means

(g) Pyramid (h) ABACUS (i) K-Means

(j) Road (k) ABACUS (l) K-Means

Figure 13: ABACUS and K-Means on NATIMG: Horse
(C = 5 ), Mushroom (C = 15), Pyramid (C = 5 ), and Road
(C = 4 ).

had to be manually terminated, since it failed to terminate
even after a30 minutes (probably due to some bug in the
code). We also applied ABACUS to geospatial satellite
imagery. For instance, Figure 14(a) shows the original image



of Baghdad. The image was pre-processed using Sobel
edge mask before a half-toning �lter is applied. The half-
toned image is shown in Figure 14(b). Note that the pre-
processing results in clearer half-toning, but does not aidin
the clustering directly. ABACUS with CHAMELEON for
phase two results in the clusters shown in Figure 14(c). As
seen, the clusters correspond to the land masses separated
by the Tigris river. Although SPARCL took less time, the
clustering quality was far inferior, as shown in Figure 14(d).
Figure 14 shows two other examples of applying ABACUS
to geospatial data taken from Earth-as-Art site4 (Landsat-7
Satellite). Figure 14(e) is a satellite image of the Netherlands
delta region, whereas Figure 14(f) is an image of Himalayan
Snow-capped peaks in China.

Table 4 summarizes the runtime for each algorithm.
The parameters used for SPARCL (LOF) wereK =
30; minP ts = 15; C = 3 . The reduction in the size of
the original GEOIMG1 dataset at the end of phase 1 was
83.6%. For GEOIMG2 and GEOIMG3 again, SPARCL is
more ef�cient as compared to ABACUS. The reduction ob-
tained at the end of phase 1 of ABACUS for GEOIMG2 and
GEOIMG3 is 55.44% and 56.43%, respectively. This ex-
plains the larger time taken by ABACUS. For all GEOIMG
experiments, we usedk = 30. Note that KASP ran out of
memory for GEOIMG3 (we used = 15; � = 100).

Name ABACUS SPARCL CHAME- KASP
(Chameleon) (LOF) LEON

10K 0.91/0.97 0.94/0.96 1.0/1.0 0.43/0.55
50K 0.95/0.97 0.94/0.96 0.99/0.99 0.44/0.56
100K 0.95/0.965 0.91/0.96 0.99/0.99 0.43/0.55
200K 0.95/0.974 0.91/0.95 0.99/0.98 -
400K 0.95/0.974 0.95/0.98 0.99/0.99 -
600K 0.95/0.974 0.91/0.96 0.99/0.99 -
800K 0.99/0.99 0.95/0.98 0.99/0.99 -
1000K 0.95/0.97 0.91/0.95 0.98/0.99 -

Table 5: Clustering quality results on synthetic datasets.
Each entry shows the Purity/NMI Score

4.5 Clustering Quality Results Since arbitrary shaped
clusters do not respect similarity measures in the metric
sense, internal clustering quality measures such as sum-of-
squared error with respect to the cluster mean are essen-
tially meaningless. As a result, we utilize external quality
measures to evaluate the performance of ABACUS. External
quality measures evaluate the clustering quality as compared
to the ground truth clustering. For evaluating the clustering
quality of ABACUS, we use two external criteria –purity
scoreandNormalized Mutual Information(NMI). Purity is
given bypurity (Ca ; Cgt ) = 1

N

P i = k
i =0 maxj kci

a \ cj
gt k, where

Ca andCgt denote the clusterings obtained from ABACUS
and the ground truth, respectively, andci

a denotes thei th

4http://earthasart.gsfc.nasa.gov/

(a) GEOIMG-1: Baghdad(b) Sobel �lter/halftoning

(c) ABACUS: 3 clusters (d) SPARCL: 3 clusters

(e) GEOIMG-2: Nether-
lands

(f) GEOIMG-3: Hi-
malaya

(g) ABACUS: 10 Clusters (h) ABACUS: 4 clusters

Figure 14: Clusters in the GEOIMG datasets

cluster fromCa . Although purity is a simple measure with
an easy interpretation, it tends to be biased towards a clus-
tering with higher number of clusters. Normalized mutual
information (NMI) overcomes this drawback. NMI is given
by NMI (Ca ; Cgt ) = I (Ca ;Cgt )

H ( Ca )+ H ( Cgt )
2

whereI denotes the mu-

tual information:I (Ca ; Cgt ) =
P

k

P
j

kci
a \ cj

gt k
N log

N kci
a \ cj

gt k

kci
a kk cj

gt k
andH denotes the Entropy:

H (Cm ) = �
P

j
kcj

m k
N log kcj

m k
N ; m 2 f a; gtg. Both purity

and NMI scores lie in the range[0; 1].
Before measuring the clustering quality, we eliminate

the noise points, since different algorithms deal with noise
points differently. Note that since we do not know the ground
truth for the real datasets (NATIMG and GEOIMG), and we
also do not know it for the synthetic datasets DS1-DS4, we
cannot use the external quality measures for these datasets.

To evaluate the clustering quality of the different meth-



ods, Table 5 shows the Purity and NMI scores for the syn-
thetic datasets we used earlier in the scalability experiments
(DS-SCAL), where we know the ground truth (i.e., there are
C = 13 true clusters). We can see that the purity score and
NMI are both fairly stable across the methods. The quality
scores for ABACUS are comparable or better to those for
SPARCL. On the other hand, the clustering quality obtained
from CHAMELEON is the best. Note that the memory re-
quirement for KASP makes it inoperable beyond datasets of
size 100K. Also its purity and NMI scores were rather poor.

4.6 Parameter Sensitivity ResultsWe performed experi-
ments to test the sensitivity of ABACUS to the input param-
eterk (number of nearest neighbors). For a given dataset, we
alterk and record the clustering quality. We selected the syn-
thetic dataset with 800K points (2D with 13 clusters) for this
experiment. Figure 15 shows the execution time and purity
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Figure 15: ABACUS: Sensitivity tok, Execution time and
Purity

as the number of nearest neighborsk is increased. For the
range ofk shown, clusters remain intact at the end of phase
1. As a result the purity score remains almost the same. Al-
though this might not be true for much higher values ofk
for which true clusters can get split. From Figure 15(a) one
can see that the execution time increases linearly as thek pa-
rameter is gradually increased, since the time to compute the
kNN increases linearly withk.

5 Conclusion

In this paper we proposed a scalable and robust algorithm
ABACUS for clustering large spatial point datasets. The
algorithm is based on the notion that each spatial cluster can
be represented by its intrinsic shape, commonly known as the
skeleton within the image processing community and as the
backbone in this work. To identify the backbone, ABACUS
performs two steps (globbing and movement) iteratively,
resulting in a substantially reduced dataset that still captures
the shape of the clusters. Finding clusters in the backbone
amounts to identifying clusters in the original dataset. From
the experimental evaluation we see that the algorithm is
more scalable as compared to contemporary arbitrary shaped
clustering algorithm.

Eliminating the dependency of the second phase of
ABACUS on the number of true clusters is a task for the
future.
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