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Abstract

When multiple data sources are available for clustering, an
a priori data integration process is usually required. This
process may be costly and may not lead to good clusterings,
since important information is likely to be discarded. In this
paper we propose constrained clustering as a strategy for
integrating data sources without losing any information. It
basically consists of adding the complementary data sources
as constraints that the algorithm must satisfy.

As a concrete application of our approach, we focus
on the problem of enzyme function prediction, which is a
hard task usually performed by intensive experimental work.
We use constrained clustering as a means of integrating
information from diverse sources as constraints, and analyze
how this additional information impacts clustering quality in
an enzyme clustering application scenario. Our results show
that constraints generally improve the clustering quality

when compared to an unconstrained clustering algorithm.
Keywords: constrained clustering, data integration,

enzyme clustering.

1 Introduction

In recent years, there has been a general increase in the
amount of data publicly available worldwide. This is
true for various research areas, particularly in the field
of Bioinformatics, where massive amounts of data have
been collected in the form of DNA sequences, protein
sequences and structures, information on biological
pathways, etc. This has lead to diverse and scattered
sources of biological data.

Protein function prediction, and especially enzyme
function prediction (which involves predicting the reac-
tion it catalyzes, its substrates and products), is a very
active Bioinformatics research topic. This is due to the
exponential increase in the number of proteins being
discovered because of sequenced genomes, to the dif-
ficulties in experimentally characterizing enzyme func-
tion and mechanisms, and to the potential biotechno-
logical use of newly discovered enzyme functions. Pre-
dicting a protein’s function is a hard task usually per-
formed by labor-intensive experimental work or in a
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semi-automatic manner using sequence homology. This
problem can vastly benefit from clustering techniques,
since they allow the creation of groups of similar pro-
teins which can be jointly studied. Seeing that similar
proteins are likely to have similar functions, this would
facilitate function prediction.

The manner in which biological information is gath-
ered in so many different data sets poses a challenge for
clustering algorithms. Valuable information is spread
among mostly unstandardized, redundant and incom-
plete repositories across the World Wide Web. The Pro-
tein Data Bank (PDB), for instance, which is a repos-
itory of 3D structural data, can have dozens or even
hundreds of entries for the same molecule. The various
data sources call for data integration, which is a com-
plex process due to the various issues that must be ad-
dressed. Inconsistencies and redundancies, for example,
may arise because attributes representing a given con-
cept may have different names in different databases.
Conflicts between data values may also exist, since dif-
ferent sources may have different attribute values for the
same real-world object, due to different representations,
scaling or encoding [10].

This a priori data integration is hard and may not
lead to good clustering results, since important informa-
tion is likely to be discarded in the process. A solution
to the problem of integrating various data sources with-
out losing any important information is constrained
clustering, which is simply the process of starting from
a basic clustering and adding the supplementary infor-
mation as constraints to be satisfied by the clustering
algorithm. This allows the clustering problem to be
incrementally solved, using the truly useful information
without the cost of an a priori data integration process.

In this work we use constrained clustering tech-
niques as a means of integrating information from di-
verse sources in the form of constraints, so as to ver-
ify the manner in which additional information other
than the dataset itself impacts the clustering results.
The chosen application scenario is that of clustering en-
zymes, and three different approaches are used: cluster-
ing enzyme families; clustering subfamilies when mul-



tiple families are combined; and clustering subfamilies
inside a single enzyme family, which is the problem of
determining different substrate specificities in a family
of enzymes able to recognize the same overall substrates.
Our purpose is to analyze how the integration of vari-
ous data sources in the form of constraints affects the
success of enzyme clustering, which might lead to im-
portant information about the functions and structures
of the enzymes, as well as functional diversification ac-
quired throughout family evolution.

The main contributions of this work are: the knowl-
edge of whether or not adding information from external
sources to the database is able to improve the cluster-
ing quality for this application; the different manner in
which we gathered such information and transformed it
into constraint sets for this particular biological prob-
lem; and, most importantly, the possibility of using con-
straints to cluster enzymes.

2 Related Work

Clustering is a data mining technique that groups sim-
ilar objects without any supervised information. How-
ever, in various applications there is access to additional
information or domain knowledge about the types of
groups that are sought in the data, such as comple-
mentary information about actual similarities between
object pairs. Constrained clustering emerged from the
need for ways to accommodate such information when
available [3]. It can be seen as the process of dividing
a set of N objects in some D-dimensional space into K
groups, each of which represent a significant subpopu-
lation, while satisfying the imposed constraints.

A constrained clustering algorithm may consider
either strict or flexible constraints. In the first case
all constraints must be satisfied, whereas in the latter
case the idea is to satisfy as many as possible, but not
necessarily all of them. In this work we are considering
strict instance-level constraints. A set of instance-level
constraints C' consists of declarations about pairs of
objects. A must-link constraint c¢—(i,7) indicates that
instances ¢ and j must be assigned to the same cluster,
while a cannot-link constraint c (4, ) implies they must
be placed in different clusters.

Must-link constraints are symmetric, reflexive and
transitive, which allows for additional constraints to
be inferred [4, 25]. Cannot-link constraints are not
transitive, however additional cannot-link constraints
can be inferred from the set of must-link constraints.
Considering a graph whose nodes are instances of
the dataset, whose edges (i,j) represent a must-link
constraint between instances ¢ and j, and considering
CC; and CC5 to be connected components of this
graph, it follows that:

1. if there is a must-link constraint c—(z,y) where
x € CCy and y € CCq, then c—(a,b) constraints
can be inferred for all a € CC; and b € CCy;

2. if there is a cannot-link constraint cx(z,y) where
z € CCy and y € CCs, then cx(a,b) constraints
can be inferred for all « € CC; and b € CCs [8].
Initial research in the field of constrained clustering

proposed algorithms that are able to incorporate pair-
wise constraints on whether or not instances belong to
clusters, and to learn distance metrics specific to the
problem that lead to a desirable clustering. The field
has expanded to include algorithms that use many other
types of domain knowledge to aid the clustering [3].

The first research in the field proposed a modi-
fied version of COBWEB that imposes strict pairwise
constraints [24], followed by COP-KMeans [25], a con-
strained version of the well known K-Means clustering
algorithm. Shental et al. [21] explored a constrained
version of the Expectation Maximization (EM) clus-
tering algorithm. To accommodate constraint noise or
uncertainty, other methods aim at satisfying as many
constraints as possible, but not necessarily the entire
constraint set [2, 7, 26].

In recent years, much research has been done incor-
porating instance-level constraints to clustering meth-
ods [1, 4, 13, 25, 27]. This semi-supervised approach
has led to improved performance in various real-world
applications such as resolving co-references in nominal
phrases, refinement of GPS-based maps [25], and person
identification from surveillance videos [1].

Two main advantages of using constraints reported
in the literature are the improvement of the precision
to predict labels for all instances when constraints
are generated from few labeled data, and generation
of clusters with desirable geometric properties [8].
Many researchers have shown that as the number of
constraints increases, the precision of the clustering
increases as well [1, 7, 13, 15, 25, 26]. When considering
the average of several constraint sets, the performance
on label prediction is typically higher than when
constraints are not used [8].

Among the research that apply constrained cluster-
ing to biological problems, Zeng et al. [28] investigate
the problem of clustering genes using gene expression
data with additional information in the form of con-
straints generated from potentially diverse sources of bi-
ological information. The authors adapt MPCK-Means
[4] and explore methods for automatically generating
constraints from multiple sources of biological data, in-
vestigating the effectiveness of different constraint sets
and demonstrating that, when appropriate constraint
sets are employed, constrained clustering yields more bi-
ologically significant clusters than those produced only



using gene expression data. Casari et al. [5] propose a
sequence representation in the form of vectors and use
techniques of dimensionality reduction to project such
vectors in fewer dimensions and detect subgroups and
functionally important residues.

A technique that is similar to constrained clustering
in the sense that it also deals with different data sources
is consensus or ensemble clustering. The idea of consen-
sus clustering is to combine different clusterings into a
single representative clustering, which would bring out
the common organization in the different data sets and
reveal significant differences among them [9]. The main
distinction between constrained and consensus cluster-
ing is that the first uses various data sources as con-
straints to produce a single clustering, whereas the lat-
ter combines different clusterings into a single result.

3 Application Scenario

Genes and proteins are generally classified in terms of
families, subfamilies and superfamilies in a taxonomy
according to different unstandardized criteria but usu-
ally based on sequential and structural similarity. En-
zymes are a particular category of proteins that cat-
alyze chemical reactions, converting a set of substrates
in a set of products. There are different classifications
and nomenclatures for enzymes. We consider that an
enzyme family is a group of enzymes that catalyze the
same overall reaction, and different subfamilies recog-
nize different substrates as inputs for the reaction.

We want to analyze how the use of different data
sources as constraints affects the success rate of the
clustering algorithms. In our application scenario of
enzyme clustering, we consider three different problems,
all of which aim at determining patterns responsible for
functional differentiation: clustering enzyme families;
clustering enzyme subfamilies inside multiple families;
and clustering enzyme subfamilies inside a single family,
in which case we aim at their ability to recognize
different substrates. These are all challenging problems.

Enzyme Commission (EC) numbers are a numerical
classification scheme for enzymes based on the chem-
ical reactions they catalyze. As a system of enzyme
nomenclature, every EC number is associated with a
recommended name for the respective enzyme [17] and
specifies enzyme-catalyzed reactions instead of the en-
zymes themselves. The four numbers that compose the
EC number represent a progressively finer enzyme clas-
sification. Therefore, if we wanted to predict a given
enzyme’s EC number, for instance, we could do it at
four levels. Predicting the first level is the easiest, since
it could be done by detecting a remote homology. But
predicting the fourth level is extremely difficult. Sch-
noes et al. [22] estimate that 85% of the annotation

errors are caused by overprediction, which implies that
the errors are located in the lower level of the EC num-
ber. Our two approaches involving subfamily clustering
focus on this problem.

The understanding of molecular function may be
greatly facilitated by structural information. However,
unfortunately there is still a small fraction of structures
that have been experimentally resolved compared to
the large number of available amino acid sequences.
Nevertheless, there are computational methods that
allow modeling proteins that have significant degree of
identity with a protein of known structure.

Some concepts relevant to the understanding of this
work and of the data used to generate constraints are
described in the remainder of this section.

Genomic Context. Proteins are chains of amino
acid residues coded by genes, with each amino acid
being coded by a triplet of nucleotides called a codon.
In turn, genes are segments of a chromosome that
correspond to the information required to produce
proteins. The genomic context is the set of neighboring
genes in a DNA strand that may imply functional prox-
imity, since close genes are commonly co-expressed and
involved in the same biological processes. Therefore,
proteins coded by genes in similar genomic contexts
have higher probability of being involved in similar
functions, while proteins from the same family but
whose encoding genes are in very different contexts
probably present different substrate specificities. In
this work, genomic context forms an additional data
source incorporated in the form of constraints.

Sequence Alignments. Alignments are frequently
used to compare biological sequences. A global pairwise
alignment can be thought of as the process of sliding
one sequence past the other until a good match is
found [18]. In case the amino acid residues in the two
sequences are identical in a given position, a positive
score is assigned. The sum of the scores provides a
measure of alignment quality. Gaps may be introduced
to maximize score in the case when two segments
match well between the sequences, but are separated
by a different number of residues in each sequence.
Penalties are applied when gaps are introduced so as
to reduce the total score of the alignment. Instead
of analyzing whether or not the residues are identical,
their chemical properties can be considered so that
more conserved amino acid substitutions receive higher
scores. Amino acid substitution matrices are used to
determine what scores to assign to the many possible
substitutions [18]. In this work multiple sequence
alignments are used as attributes, and BLOSUM62
and PAMS30 substitution matrices are used as similarity
measures for the clustering algorithms.



Protein Structure. The amino acid residues in a pro-
tein sequence interact with each other creating complex
folding patterns that determine the protein’s tertiary
structure, which is directly related to its function. Dif-
ferent protein sequences may fold into similar 3D struc-
tures, still maintaining function. Therefore, protein
structures are more conserved than sequences. Protein
families with different folding patterns tend to have dif-
ferent functions. Cutoff Scanning [23] is a method that
represents 3D structure as a histogram of the number
of neighbors an atom has. Different families have dis-
tinct folding patterns and, consequently, characteristic
histograms. Such histograms are used as attributes for
the clustering algorithms in this work.

Structural Alignments. Protein structural align-
ments are frequently used to detect functional
similarity.  Analogous to the sequence alignments,
the goal of a structural alignment is to find maximal
protein substructures that can be superposed so as
to maximize an objective score. A commonly used
similarity measure is the coordinate distance-based
Root Mean Square Deviation (RMSD), which measures
the spatial Euclidean distance between superposed
residues [19]. We use structural alignments to create
constraints for the clustering algorithms.

Active Sites. An enzyme’s active site is the set
of amino acid residues where the substrate binds and
the chemical reaction takes place. Chakrabarti &
Panchenko [6] studied the co-evolution of residues in
protein families and concluded that functionally impor-
tant sites tend to be conserved, while specificity deter-
mining residues are correlated with mutations in certain
positions, leading to functional diversification inside the
family, thus creating subfamilies. In this work, active
sites are used both as attributes for the clustering algo-
rithms and for creating constraints.

4 Data Sources

In this work we study three enzyme families, namely nu-
cleotidyl cyclases, protein kinases and serine proteases,
which have varying numbers of subfamilies:

o Nucleotidyl cyclases: adenylate cyclases and guany-
late cyclases;

e Protein kinases: serine/threonine kinases and tyro-
sine kinases, which will be referred to as serthrki-
nases and tyrkinases, respectively, in the remainder
of the text;

e Serine proteases: chymotrypsins,
kallikreins and trypsins.

elastases,

Our main database consists of the enzymes with
known Enzyme Commission (EC) numbers. The infor-
mation provided by Moss [17] was used to define the

EC numbers for each of our enzyme families, as shown
Table 1. In order to achieve a more reliable dataset
to use as ground truth for analyzing the clustering
results, we decided to work only with the enzymes
that had a reviewed status in the UniProt repository,
i.e. the enzymes that had been manually annotated
and reviewed. This is due to the fact that automatic
annotation methods might introduce annotation errors,
which would jeopardize the analysis of the results.

Table 1: EC Numbers according to Moss [17].

Family Subfamily EC Number(s)
. Adenylates 4.6.1.1
Nucleotidyl Cyclases Guanylates 1.6.1.2
. . Serthrkinases 2.7.11.1

Protein Kinases Tyrkinases 2.7.10.{1,2}

Chymotrypsins 3.4.21.1

Serine Proteases Elastases 3.4.21.{36,37,71}

Kallikreins 3.4.21.{34,35,118}
Trypsins 3.4.21.4

Table 2 shows the number of enzymes in each
subfamily after this filtering process. The resulting
databases comprise of each enzyme’s Universal Protein
Resources (UniProt) identification, EC number and
amino acid sequence. If different enzymes catalyze
the same reaction, they receive the same EC number.
UniProt identifiers, on the other hand, uniquely specify
a protein by its amino acid sequence.

Table 2: Number of enzymes in each subfamily.

Family Subfamily Enzymes
. Adenylates 4
Nucleotidyl Cyclases Guanylates 59
. . Serthrkinases 73
Protein Kinases Tyrkinases 10
Chymotrypsins 4
. Elastases 13
Serine Proteases Kallikreins 21
Trypsins 64

Given the subfamily labels derived from the EC
numbers, our goal is to analyze how constraints created
based on different data sources are able to aid an
unsupervised clustering process to discover the actual
subfamilies as determined by the labels.

4.1 Additional Data Sources Besides the amino
acid sequences, additional information on each enzyme
in the database was gathered. The first external piece of
data is the enzyme’s tertiary structure model, provided
by Minardi et al. [16], who also supplied the active
site of each enzyme. The aligned active sites were



obtained using Fpocket [14], a software that calculates
structural cavities, and MultiProt [20], a software that
superpositions structures. Active site residues belong to
the enzyme family’s most conserved structural cavities.

The third external data source comprises the ge-
nomic contexts for some of the enzymes. To obtain this
information, the complete genomes of several organisms
were downloaded from NCBI Entrez Genome'. Then,
a mapping from GenelD to UniProt ID was performed,
which was necessary since our databases use UniProt
identifiers, while the genomes only present GenelDs.
To build the genomic context for the enzymes present
in the genomes, a five-gene window was used. Thus,
the context of a given enzyme is simply an array
containing the five proteins that come before it and the
five that follow it in the genome, resulting in a total of
ten proteins besides the enzyme itself. Unfortunately,
we were not able to obtain the genomic context for all
enzymes in our dataset.

The last additional data source is the set of vectors
produced by applying Cutoff Scanning [23] to the struc-
tural model of each enzyme. This consists of calculating
the Euclidean distance in angstroms between all pairs
of amino acid residues in the enzyme’s 3D structure.
Then, the number of pairs whose distance to each other
is less than a given cutoff is calculated. When this cut-
off is varied, a vector is created so that each position
in an enzyme’s vector denotes the number of residue
pairs within a given distance of each other. Therefore,
each enzyme has a vector that represents its folding, i.e.
the manner in which the atoms are positioned in the 3D
structure. Such vectors comprise important information
that is complementary to the amino acid sequences.

5 Generating Constraints

This section describes in detail the methods used to
create constraints based on each of the additional data
sources. Apart from clustering each of the enzyme fam-
ilies separately, we also clustered all of them together.

5.1 Structural Alignment-Based Constraints
MultiProt [20] was used to perform pairwise structural
alignments between the tertiary structure models of the
enzymes in all three families. Because it is a heuristic
method and searches not only for global alignments but
for local alignments as well, MultiProt outputs more
than one alignment. The Root Mean Square Deviation
(RMSD) of the first result reported by MultiProt,
which corresponds to the largest alignment, is used to
analyze the structural similarity between the pair of
enzymes. Since the RMSD for aligning enzyme A to
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enzyme B may differ from that of aligning enzyme B to
enzyme A, the average of the two results is used as the
structural similarity score for the pair. The smaller the
RMSD, the better the alignment and the more similar
the enzymes are.

The RMSDs for each pair of enzymes in each
family, as well as in all three families combined, were
analyzed in the search for cutoffs that could be used to
generate pairwise constraints. Since in this work we are
considering strict constraints (i.e. constraints that must
be satisfied), this search was for the cutoffs that did not
yield any false positives.

To generate must-link constraints, the following
statement must hold: “If the RMSD of an enzyme
pair is at most X, then the enzymes belong to the
same subfamily”. Therefore, a must-link constraint
exists between them, thus placing both enzymes in
the same cluster. Similarly, for cannot-link constraints
it must hold that “If the RMSD between a pair of
enzymes is at least Y, then they belong to different
subfamilies” and a cannot-link constraint exists between
them, causing the enzymes to be placed in different
clusters. Table 3 presents the zero false positive cutoffs
for each family for creating must-link (ML) and cannot-
link (CL) constraints.

Table 3: RMSD cutoffs that yield zero false positives
for each family.

Family ML CL
Nucleotidyl Cyclases 0.42 1.08
Protein Kinases 0.76 1.50
Chymotrypsins 0.58 0.32

Seri Prot Elastases 0.61  0.30
erne Troteases  gallikreins 025 0.74
Trypsins 0.25 0.86

All Three Families 0.25 1.50

In order to create constraints in a more general fash-
ion, we employ cutoffs that apply to all three families as
well as to the original dataset, which also includes unre-
viewed enzymes. Therefore, we use RMSD < 0.25 for
creating must-link constraints and RMSD > 1.62 for
cannot-link constraints. Table 4 presents the number
of constraints generated for each enzyme family before
and after expanding the constraint set using the afore-
mentioned transitivity property.

Unfortunately, these cutoffs do not yield any struc-
tural alignment-based must-link constraints for the
protein kinases family, nor cannot-link constraints for
any of the three families. However, when considering all
three families combined, several cannot-link constraints
are created between pairs of enzymes belonging to
different families and, consequently, to different subfam-



Table 4: Number of structural alignment-based con-
straints created for each family.

Famil Before After
amily ML CL ML CL
Nucleotidyl Cyclases 6 0 6 0
Protein Kinases 0 0 0 0
Serine Proteases 347 0 390 0
All Three Families 353 18,822 396 18,824

ilies. We could have lowered the cannot-link cutoff so as
to create constraints inside each family, but that would
go against our idea of generality because if a lower cutoff
had been applied to the original set of enzymes, which
also includes automatically annotated enzymes, we
would end up creating cannot-link constraints between
enzymes annotated as belonging to the same subfamily.
This would add contradiction into the constraint sets
making the strict constraint approach intractable, as it
would be impossible to satisfy all constraints.

5.2 Genomic Context-Based Constraints After
obtaining genomic contexts for some enzymes of each
family as previously described, we observed that if two
enzymes have at least one protein in common between
their genomic contexts, it always happens that they
belong to the same subfamily. Therefore, must-link
constraints are created between each pair of enzymes
whose genomic contexts have at least one protein in
common. Table 5 shows the number of constraints
created for each family before and after expanding the
constraint sets with the transitivity property.

Table 5: Number of genomic context-based must-link
constraints created for each family.

Family Before After
Nucleotidyl Cyclases 3 3
Protein Kinases 3 3
Serine Proteases 50 57
All Three Families 56 63

Very few genomic context-based must-link con-
straints are created due to the fact that most of the
enzymes do not appear in the genomes we had ac-
cess to. Nevertheless, additional constraints might be
created using the transitivity property when combined
with other constraint sets.

5.3 Active Site-Based Constraints Since the
active sites of all the enzymes in a given family are
aligned, they all have the same number of amino acid
residues. That said, two strategies are employed to cre-
ate active site-based constraints: must-link constraints
are created between all pairs of enzymes with 100%

identical active sites, and between all pairs with active
sites at least 95% identical.

We considered the strategy of creating cannot-link
constraints between all pairs of enzymes with less than
a given percentage of identical active sites. A 30% cut-
off would create some constraints exclusively for the
protein kinases family. However, if we were to apply
the same strategy to the original database, which also
contains automatically annotated enzymes, cannot-link
constraints would be created between enzymes anno-
tated as being in the same subfamily, thus introducing
contradiction into the constraint set and making the
problem intractable. Since a lower cutoff would not cre-
ate any cannot-link constraints at all, only must-link
constraints are created using active site information.

Since the number of amino acid residues in the
active sites slightly varies between families, Clustal X
[12] was used to perform Multiple Sequence Alignment
(MSA) of the active sites so we could be able to apply
the above strategies when clustering the three families
altogether. Table 6 presents the number of constraints
created in each case for each family, before and after
expanding the constraint sets with the transitivity

property.

Table 6: Number of active site-based must-link con-
straints created for each family.

Family Before After
100% 95% 100%  95%
Nucleotidyl Cyclases 88 249 88 434
Protein Kinases 10 12 10 12
Serine Proteases 50 158 50 296
All Three Families 148 419 148 742

6 Constrained Clustering Algorithms

In order to analyze the effect of integrating multiple
data sources as constraints into the clustering process,
we study constrained and unconstrained versions
of well known clustering algorithms K-Medoids and
K-Means.  The unconstrained versions are imple-
mented as described by Han & Kamber [10]. The
constrained versions for both algorithms are adapted
from COP-KMeans [25].

6.1 K-Medoids We implement the constrained
and unconstrained versions of K-Medoids because the
main data source, which consists of the amino acid
sequences, is categorical. Clustering algorithms require
that all objects have the same number of attributes in
order for the difference between each attribute of an
object pair to have a meaning. Since the lengths of
the sequences vary, we performed multiple sequence



alignments (MSAs) between all sequences in each
family using Clustal X [12], and the results are used as
the enzymes’ attributes for the clustering algorithm. A
MSA was also performed between all enzyme sequences
in all three families in order to apply K-Medoids to
the problems of clustering families and clustering
subfamilies inside multiple families.

Using the multiple sequence alignments is a
straightforward approach, since sequence information
is much more readily available than structural data.
Regardless, we also test using the active sites as
attributes instead of the MSAs. This way we are able
to assess how the use of structural information as the
main dataset to which constraints are added compares
to using the more common sequence information.

Three different similarity measures are used for the
categorical attributes: BLOSUM62 and PAM30, which
are amino acid substitution matrices commonly used
in protein sequence alignments, and the complement of
the Hamming distance, which is simply the number of
identical amino acids excluding gaps.

6.2 K-Means We implement K-Means so as to take
advantage of the information provided by the previously
described Cutoff Scanning [23] vectors, which are cre-
ated using a step of 0.2A varying from 0A to 30A, total-
izing 151 distances. Therefore, each vector has 151 posi-
tions, with the first element being the number of amino
acid residue pairs in the enzyme’s 3D structure whose
alpha-carbons are virtually in the same position (OA
distance), the second element being the number of pairs
whose alpha-carbons are at most 0.2A apart, and so on.

The vectors are either normalized or not. For these
numerical attributes we use squared Euclidean distance
as the distance measure for K-Means.

7 Results and Discussion

Both K-Medoids and K-Means are performed with all
constraint sets and combinations thereof. We study
each constraint set separately in order to assess the ef-
fect that the corresponding data source has on clustering
quality. Additionally, the constraint set combinations
are studied in order to analyze the improvement multi-
ple additional data sources provide, as well as the effect
of increasing the number of constraints.

Parameter Settings. As previously described in
Section 6, the attributes (feature vectors) used by K-
Medoids are either the results of multiple sequence
alignments or the aligned active sites. The comple-
ment of the Hamming distance, and BLOSUMG62 and
PAM30 substitution matrices are used by K-Medoids
as similarity measures. For K-Means, the attributes are
the 151-dimension distance vectors, with the attributes

being either normalized or not, and squared Euclidean
distance is used as the algorithm’s distance metric.

The number of clusters K is the actual number of
subfamilies in each family, namely K = 2 for nucleotidyl
cyclases and protein kinases, and K = 4 for serine
proteases. When clustering all three families combined,
we analyze results for K = 8, which is the total number
of subfamilies, as well as the results for K = 3 so as to
verify the performance of the algorithms at separating
the three enzyme families.

Evaluation Criteria. Since we are comparing the
clustering results to the ground truth provided by the
EC numbers, we use external validation to analyze the
clusters. External criteria measure whether or not the
objects are randomly structured. Three metrics are
used in order to compare the results of the various
settings, all of which are based on the purity of the
clusters in comparison to the actual partitions (i.e. the
true subfamilies): purity, entropy and EP-Ratio.

The probability that cluster c¢; contains objects
from partition p; is given by p;; = %
P; of cluster ¢; is the maximum value of p;;, whereas
the purity of the whole clustering is the weighted sum
of the purity of each cluster: Po = Y, ‘Iccil‘Pi’ with
|c| being the total number of objects. The larger
the purity, the better the clustering. However, since
maximum purity would be achieved if each object was
put in its own cluster, extra metrics are required to
properly analyze the clusters.

Entropy is a popular supervised learning metric
which measures the amount of uncertainty in the cluster
assignment. The smaller the entropy, the better the
clustering. The entropy F; for each cluster is given by
E; = =) pijlog, pij, with the entropy for the entire
clustering being the weighted sum of the individual
cluster entropies: Ec = Iﬁj‘IEi.

The main metric we use for comparing results,
which we call the clustering’s EP-Ratio, is simply
the ratio between entropy and purity. Therefore, the
smaller the EP-Ratio, the better the clustering.

Assessment Methodology. In order to analyze
the effect of each constraint set and combinations
thereof, we compare the EP-Ratios for the thirty rep-
etitions of the constrained algorithms against the EP-
Ratios for the unconstrained algorithms. To do so, we
use paired observations, performing a straightforward
analysis: the two sets of thirty EP-Ratios are treated
as one sample of thirty pairs, each corresponding to the
same random seed in the constrained and unconstrained
algorithms. We calculate the difference in EP-Ratios for
each pair and then the confidence interval of these dif-
ferences. If such confidence interval includes zero, the

. The purity




result of the constrained version is not significantly dif-
ferent from that obtained by the unconstrained version
of the algorithm at the given level of confidence [11]. In
this work we consider 99% and 95% confidence intervals.

Table 7 shows the codes used for each constraint
set. All following tables present the average EP-Ratios
of the constraint sets that yield results significantly
different from those produced by unconstrained versions
of the algorithms with at least a 95% level of confidence.
Asterisks indicate the difference is significant at the
95% level of confidence, but not at the 99% level, while
hyphens indicate the differences are not significant. The
best results are in bold.

Table 7: Codes used for each constraint set.
Code

Constraint Set

CL Structural Alignment-Based Cannot-Links
ML Structural Alignment-Based Must-Links
GC Genomic Context-Based Must-Links
100AS  100% Identical Active Site-Based Must-Links
95AS 95% Identical Active Site-Based Must-Links

7.1 K-Medoids with MSA In this subsection we
present and discuss the results of applying K-Medoids
using the multiple sequence alignments as attributes.
Each individual constraint set and each combination of
constraint sets are employed.

Clustering subfamilies inside a single family.
Although constrained versions of K-Medoids achieve im-
provements for the protein kinases and serine proteases
enzyme families when compared to the unconstrained
algorithm, none of the constraint sets yield results
significantly different from those produced by uncon-
strained K-Medoids for any of the three metrics at the
95% confidence level. However, significant differences
exist when applying the constraint sets for nucleotidyl
cyclases and for all three families combined, as follows.

The average EP-Ratios for the constraint sets with
significant results compared to the unconstrained K-
Medoids for the nucleotidyl cyclases family are pre-
sented in Table 8. When the complement of the
Hamming distance is used as the algorithm’s similar-
ity metric, 100% identical active site-based constraints
and their combination with genomic context-based con-
straints actually yield worse results (higher EP-Ratios)
than the unconstrained version, which means that the
subfamilies are more mixed in the resulting clusters. Us-
ing 95% identical active site-based constraints, as well
as their combination with genomic context-based con-
straints, produces better results (lower EP-Ratios) than
the unconstrained version. When the similarity metric
is either BLOSUMG62 or PAM30, all four constraint sets
yield better results than the unconstrained algorithm.

Table 8: K-Medoids with MSA - Nucleotidyl Cyclases

Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.3186 0.3186 0.3186
100AS 0.3142 0.3268 0.3142
GC & 100AS 0.3142 0.3268 0.3142
95AS 0.3050 0.3050 0.3050
GC & 95AS 0.3050 0.3050 0.3050

Clustering subfamilies in multiple families.
Table 9 presents the average EP-Ratios for the con-
straint sets with significant results when all three fam-
ilies are combined and K = 8, which is the total num-
ber of subfamilies. Unlike when clustering each fam-
ily separately, when all are combined many structural
alignment-based cannot-link constraints exist.

Table 9: K-Medoids with MSA - All 8 Subfamilies

Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.9143 1.0974 0.9792
100AS - 1.0838 0.9604
GC & 100AS - 1.0131 0.9573
95AS 0.9272 1.0086 0.9511
ML & 100AS - 1.0869* 0.9604
GC & 95AS 0.9342 1.0145 0.9511
ML, GC & 100AS - 1.0002 0.9584
ML & 95AS 0.9272 1.0086 0.9511
ML, GC & 95AS 0.9342 1.0145 0.9511
CL & GC 0.8926 1.0079 0.9071
CL & 100AS 0.8798 0.9941 0.8973
CL, GC & 100AS 0.8777 0.9236 0.8973
CL & ML 0.8926 1.0056 0.9071
CL, ML & GC 0.8926 1.0103 0.9071
CL & 95AS 0.8752 0.9092 0.8913
CL, ML & 100AS 0.8806 0.9909 0.8965
CL, GC & 95AS 0.8762 0.9210 0.8913
CL, ML, GC & 100AS 0.8800 0.9217 0.8966
CL, ML & 95AS 0.8752 0.9092 0.8913
CL, ML, GC & 95AS 0.8762 0.9210 0.8913

When using BLOSUMG62 as the algorithm’s simi-
larity metric, the resulting clusters are either worse or
not significantly different from those obtained by the
unconstrained K-Medoids unless the cannot-link con-
straint set is added, in which case the results are always
better. When using PAM30 or the complement of the
Hamming distance as similarity metrics, all constraint
sets lead to improved clusters, except when using ge-
nomic context-based constraints, structural similarity-
based must-links and their combination, in which case
the results are not significant. For Hamming, the results
of using the combination of structural alignment-based
and 100% identical active site-based constraints is sig-
nificant at 95% confidence, but not at the 99% level.

Clustering families. When clustering in the
search for the three families instead of the subfamilies



(K = 3), the result of adding the cannot-link constraint
set stands out. The constraint sets with significant re-
sults are shown in Table 10. The average EP-Ratio for
unconstrained K-Medoids is fairly high, and most sets
of must-link constraints improve it. But perfect clusters
are found when the cannot-link constraint set is applied,
no matter which must-link constraint set is used. This
implies that K-Medoids is able to perfectly separate the
three enzyme families when using structural information
in the form of cannot-link constraints.

Table 10: K-Medoids with MSA - All 3 Families

Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.4542 0.8393 0.4929
GC - 0.8383 -

100AS 0.4430 - 0.4814
GC & 100AS 0.4430 - 0.4814
95AS 0.4202 0.7745 0.4583
ML & 100AS 0.4430 - 0.4814
GC & 95AS 0.4202 0.7762 0.4583
ML, GC & 100AS 0.4430 - 0.4814
ML & 95AS 0.4202 0.7879 0.4583
ML, GC & 95AS 0.4202 0.7651 0.4583

Summary. When clustering subfamilies in a single
family, the significant improvements occur when using
active site-based and genomic context-based constraint
sets. This shows that using active sites obtained from
available enzyme structures and the genomic context
of the corresponding gene (when available) can aid the
problem of predicting the fourth and most challenging
level of the EC number. The effect of using constraint
sets may not have been significant for the other two
families because of the small number of constraints we
were able to generate. Both structural and genomic
context data are still rare in comparison with sequence
data. However, structural genome initiatives such as
the Protein Structure Initiative (PSI)? and the several
genome projects that exist worldwide will contribute to
expand the amount of available data. This information
can then be used to further improve these results,
since even small numbers of additional constraints could
imply larger constraint sets when combined with those
that already exist because of the transitivity property.

For the problems of clustering families or subfami-
lies in multiple families, the effect of using cannot-link
constraints is very noticeable, even leading to perfect
clusters in the first case. These structural alignment-
based cannot-link constraints are very useful since they
add structural information that the sequence-based at-
tributes do not carry. This shows that structural infor-
mation allows to separate (sub)families based on struc-
tural dissimilarity. It is likely that the cannot-link con-

Zhttp://www.structuralgenomics.org/

straints would have had the same positive effect when
clustering subfamilies inside a single family, however un-
fortunately we were unable to create them, as previously
discussed. Another factor that contributes to the larger
effect of the cannot-link constraint set is simply the large
number of constraints.

7.2 K-Medoids with Active Sites Since amino
acid sequences are much more readily available than
protein structures, using the result of a multiple se-
quence alignment as attributes is a straightforward ap-
proach. However, in this work we also study the use
of active sites as attributes. Since inside each enzyme
family the active sites are already aligned, we simply
repeat the process employed when multiple sequence
alignments are used as attributes. When combining all
three families, however, there are small differences in
the number of residues in the active sites. So we per-
form a multiple sequence alignment in order to be able
to compare amino acid residues at the same position of
different active sites. In this case, active site-based con-
straints are not employed, since the information they
would add is already embedded in the attributes.

Clustering subfamilies inside a single family.
For the protein kinases family, only genomic context-
based constraints were created, since none of the enzyme
pairs has a RMSD smaller or equal to the cutoff em-
ployed. The results yielded by these constraints are not
significantly different from those of the unconstrained
algorithm for any of the similarity metrics. This can
be explained by the very small number of constraints
generated for this family.

For the nucleotidyl cyclases family, using struc-
tural alignment-based constraints does not produce re-
sults significantly different from the unconstrained K-
Medoids for any of the similarity metrics. For PAM30,
the results of using genomic context-based constraints
are non-significant, and using the combination of ge-
nomic context-based and structural alignment-based
constraints yields worse results than when no con-
straints are applied. For BLOSUMG62 and the comple-
ment of the Hamming distance, using genomic context-
based constraints and their combination with structural
alignment-based constraints produces significantly bet-
ter results. The average EP-Ratios for the constraint
sets with significant results are shown in Table 11. All
constraint sets produce significantly better results than
the unconstrained K-Medoids for the serine proteases
family, as shown in Table 12.

Clustering subfamilies in multiple families.
Significantly better results are produced by all con-
straint sets when clustering all eight subfamilies, as
shown in Table 13.



Table 11: K-Medoids with Active Sites - Nucleotidyl

Cyclases
Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.3770 0.3784 0.3872
GC 0.3721 0.3734 -
ML & GC 0.3733 0.3687 0.3936

Table 12: K-Medoids with Active Sites - Serine Proteases

Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.4216 0.3624 0.4485
GC 0.3007 0.2889 0.3003
ML 0.3121 0.3030 0.3541
ML & GC 0.2926 0.2697 0.3049

Clustering families. When using active sites as
attributes for clustering in the search for the three fam-
ilies, perfect clusters are obtained for all similarity met-
rics and both constrained and unconstrained versions of
K-Medoids. This can be explained by the active site be-
ing directly responsible for the enzyme’s function, which
in turn is what determines enzyme families. Therefore,
using active sites as attributes is an effective way of
separating enzyme families. Unfortunately, this infor-
mation is rarely available.

Summary. When using the active sites as at-
tributes, most of the significant improvements are
obtained when using either the genomic context-
based constraints or their combination with structural
alignment-based constraints. This attests to the quality
of genomic context information, since it allows to differ-
entiate proteins belonging to the same family but with
different substrate specificities. Also, the improvements
involving combinations of constraint sets again suggest
that larger numbers of constraints lead to better results.

7.3 K-Means with Distance Arrays In this sub-
section we present and discuss the results of applying
K-Means using the 151-dimension vectors as attributes
and applying all constraint sets and their combinations.
The attributes are either normalized or not.
Clustering subfamilies inside a single family.
None of the constraint sets yield results significantly

Table 13: K-Medoids with Active Sites - All 8 Subfamilies

Constraint Set Blosum62 Hamming Pam30
Unconstrained 0.2812 0.2805 0.3312
GC 0.2329 0.2441 0.2662
ML 0.2355 0.2479 0.2897
ML & GC 0.2273 0.2418 0.2705
CL & GC 0.2338 0.2476 0.2684
CL & ML 0.2355 0.2537 0.2897
CL, ML & GC 0.2281 0.2391 0.2721

different from those produced by the unconstrained K-
Means for the protein kinases family when the attributes
are not normalized. However, when we normalize
the attributes perfect clusters are achieved for both
constrained and unconstrained versions of K-Means.

Table 14 shows the average EP-Ratios of the con-
straint sets that yield significant results for the nu-
cleotidyl cyclases family. Using genomic context-
based constraints or their combination with struc-
tural alignment-based constraints produces worse re-
sults than the unconstrained K-Means for both normal-
ized and unnormalized attributes. When normalizing
the attributes, using 95% identical active site-based con-
straints and their combination with genomic context-
based constraints yields better results than when no
constraints are employed. The improvement of using
100% identical active site-based constraints is signifi-
cant at the 95% confidence level, but not at the 99%
level.

Table 14: K-Means - Nucleotidyl Cyclases

Constraint Set

Unnormalized Normalized

Unconstrained 0.3702 0.3965
GC 0.3726 0.3979
ML & GC 0.3726 0.3979
100AS - 0.3848*
95AS - 0.3583
GC & 95AS - 0.3604

For the serine proteases family, none of the con-
straint sets produce results significantly different at the
99% confidence level. However, at a 95% confidence
level using 95% identical active site-based constraints
yields better results for both normalized and unnormal-
ized attributes, as shown in Table 15. Using structural
alignment-based constraints and their combination with
95% identical active site-based constraints yields worse
results than the unconstrained K-Means.

Table 15: K-Means - Serine Proteases
Constraint Set

Unnormalized Normalized

Unconstrained 1.0307 1.0095

95AS 0.9720%* 0.9550%*
ML - 1.0914*
ML & 95AS - 1.0867*

Clustering subfamilies in multiple families.
When clustering all eight subfamilies, none of the con-
straint sets yield significant results when the attributes
are normalized. For unnormalized attributes, however,
almost all constraint sets yield improved results when
compared to unconstrained K-Means, as shown in Ta-
ble 16. Only the results for four constraint sets are non-



significant at a 95% confidence level; four are significant
at the 95% confidence level but not at 99% confidence;
and all others are significant at the 99% confidence level,
especially when the cannot-link constraint set is applied.

Table 16: K-Means - All 8 Subfamilies

Constraint Set Unnormalized Normalized

Unconstrained 0.6754 0.6181
GC 0.6557* -
100AS 0.6375* -
GC & 100AS 0.6287* -
95AS 0.5998 -
GC & 95AS 0.5902 -
ML & 95AS 0.5903 -
ML, GC & 95AS 0.6036* -
CL & GC 0.5767 -
CL & 100AS 0.5888 -
CL, GC & 100AS 0.5760 -
CL & ML 0.5726 -
CL, ML & GC 0.5628 -
CL & 95AS 0.5706 -
CL, ML & 100AS 0.5698 -
CL, GC & 95AS 0.5406 -
CL, ML, GC & 100AS 0.5602 -
CL, ML & 95AS 0.5592 -
CL, ML, GC & 95AS 0.5478 -

Clustering families. When clustering in the
search for the three families, applying the cannot-link
constraint set always yields better results than when
no constraints are used with or without normalizing
the attributes. When the attributes are normalized, all
must-link constraint sets yield better results, as shown
in Table 17. Whenever the cannot-link constraint set
is employed, perfect clusters are achieved for 29 of the
30 repetitions.

Summary. The difference observed between nor-
malized and unnormalized attributes is due to the fact
that in the latter case, the effect is that each attribute
has a different weight in the clustering algorithm’s dis-
tance function. Because of the manner in which the
vectors are created (the last position corresponds to the
number of amino acid pairs within the largest distance
from each other), discrepancies in the last positions of
the vectors have higher weights. The constraint sets
are less effective when unnormalized attributes are used,
except when clustering subfamilies inside multiple fami-
lies, in which case none of the constraint sets produce re-
sults significantly different from unconstrained K-Means
with normalized attributes. When normalizing the at-
tributes, the best results are obtained when using the
active site-based constraint sets.

In the case of clustering the three families, active
site-based constraints combined with genomic context-

Table 17: K-Means - All 3 Families

Constraint Set Unnormalized Normalized

Unconstrained 0.5353 0.6431
GC - 0.5481
GC & 100AS - 0.5481
ML & GC - 0.5481
GC & 95AS - 0.5137
ML, GC & 100AS - 0.5481
ML, GC & 95AS - 0.5137
CL & GC 0.1214 0.1214
CL & 100AS 0.1214 0.1214
CL, GC & 100AS 0.1214 0.1214
CL & ML 0.1214 0.1214
CL, ML & GC 0.1214 0.1214
CL & 95AS 0.1214 0.1214
CL, ML & 100AS 0.1214 0.1214
CL, GC & 95AS 0.1214 0.1214
CL, ML, GC & 100AS 0.1214 0.1214
CL, ML & 95AS 0.1214 0.1214
CL, ML, GC & 95AS 0.1214 0.1214

based and structural alignment-based constraints yield
the best results, especially when the cannot-link con-
straint set is applied. Again, this suggests that the more
constraints, the better the clustering quality, i.e. the
more additional information we gather from external
data sources, the better the results.

8 Conclusions and Future Work

Bioinformatics is an active research area with virtually
endless data sources, since new information on biological
processes is constantly being discovered. Unfortunately,
this invaluable data is scattered throughout the World
Wide Web, so that combining the information sources
is a challenge in itself.

Despite the various initiatives in structural ge-
nomics which aim at obtaining protein structures in
large scale, the structures of the majority of newly dis-
covered enzymes will remain unknown for a long time.
In this work we integrate multiple data sources in the
form of constraints, so as to use their additional infor-
mation without the need of a full a priori data integra-
tion process. This kind of method is of great impor-
tance for annotating newly discovered enzymes, espe-
cially when using sequence data as a basis, as we do by
using multiple sequence alignments as attributes.

This framework is valuable and adequate for this
scenario because it allows using the most readily avail-
able information (amino acid sequences) as foundation
while additional information is integrated as constraints
to improve the clustering, even if it is limited to a subset
of the original dataset.

As future work, we intend to collect all reviewed en-
zymes with known EC numbers and structures in order



to perform large-scale experiments, and to validate the
constraint creation strategies, especially those that in-
volve cutoff values, such as structural alignment-based
constraints. We also intend to expand this research to
flexible constraints and to use other types of clustering
algorithms, such as COBWEB and spectral clustering.
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