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ABSTRACT

The current generation of data mining tools have limited
capacity and performance, since these tools tend to be se-
quential. This paper explores a migration path out of this
bottleneck by considering an integrated hardware and soft-
ware approach to parallelize data mining. QOur analysis
shows that parallel data mining solutions require the fol-
lowing components: parallel data mining algorithms, paral-
lel and distributed data bases, parallel file systems, parallel
I/0O, tertiary storage, management of online data, support
for heterogeneous data representations, security, quality of
service and pricing metrics. State of the art technology in
these areas is surveyed with an eye towards an integration
strategy leading to a complete solution.

General Terms
Scalable Knowledge Discovery and Data Mining

Keywords
Data Mining, KDD, Parallelism, Large Data Sets

1. INTRODUCTION

Knowledge discovery in databases (KDD) employs a variety
of techniques, collectively called data mining, to uncover
trends in large volumes of data. Many applications gen-
erate (or acquire) data faster than it can be analyzed us-
ing existing KDD tools, leading to perpetual data archival
without retrieval or analysis. Furthermore, analyzing suf-
ficiently large data sets can exceed the available computa-
tional resources of existing computers. In order to reverse
the vicious cycle induced by these two problematic trends,
the issues of performing KDD faster than the rate of ar-
rival and increasing capacity must simultaneously be dealt
with. Fortunately, novel applications of parallel computing
techniques should assist in solving these large problems in a
timely fashion.

Parallel KDD (PKDD) techniques are not currently that
common, though recent algorithmic advances seek to ad-
dress these problems [37; 113; 115; 54]. However, there has
been no work in designing and implementing large-scale par-
allel KDD systems, which must not only support the mining
algorithms, but also the entire KDD process, including the
pre-processing and post-processing steps (in fact, it has been
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posited that around 80% of the KDD effort is spent in these
steps, rather than mining). The picture gets even more com-
plicated when one considers persistent data management of
mined patterns and models.

Data Mining
Query Manager
Data Base
File System
1 /O Support

Figure 1: KDD Abstraction Layers
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Figure 2: Cluster of SMP Nodes

Given the infancy of KDD in general, and PKDD in partic-
ular, it is not clear how or where to start, to realize the goal
of building a PKDD system that can handle terabyte-sized
(or larger) central or distributed datasets. Part of the prob-
lem stems from the fact that PKDD draws input from di-
verse areas that have been traditionally studied in isolation.
Typically, the KDD process is supported by a hierarchical
architecture consisting of the following layers: (from bot-
tom to top) I/O Support, File System, Data Base, Query
Manager, and Data Mining as shown in Figure 1. How-
ever, the current incarnations of this architecture tend to
be sequential, limiting both problem size and performance.
To implement a successful PKDD toolkit, we need to bor-
row, adapt, and enhance research in fields such as super-,
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meta- and heterogeneous-computing environments, parallel
and distributed databases, parallel and distributed file sys-
tems, parallel I/O, mass storage systems, and so on (not to
mention the other fields that make up KDD — statistics,
machine learning, visualization, etc.).

This paper represents a first step in the process of unify-
ing these diverse technologies and leveraging them within
the PKDD system. Since form follows function, we first ex-
amine factors motivating PKDD, including trends in data
sources and applications (Section 2). We then explore tech-
niques for migrating the system requirements for PKDD and
the extant solutions (or lack thereof), i.e., the what and the
how of PKDD. These requirements follow from: the basic
requirements imposed by KDD (Section 3), current KDD
algorithmic techniques (Section 4), the trends in commod-
ity hardware design (Section 5) and software requirements
(Section 6). One difficulty in making such a survey is that
each research community has its own jargon, which we will
try to make accessible by describing it within a common
PKDD framework.

2. DATA SOURCES IMPACTING KDD

Recall that until relatively recently, data acquisition was
hard and scientists manually generated hypotheses and ex-
trapolated trends out of a few data points. Modern au-
tomated techniques for data acquisition have reversed this
trend [58; 71]. This reversal inundates users with a sea of
data, motivating the use of automated forms of hypothe-
sis generation. Here, we examine some trends focusing on
sources of data and what users are likely to want to do with
that data. Grossman et al. [42] describe prevalent forms of
user data as being in one of the following categories:

e web based data,
e business and E-commerce data,
e and scientific, engineering and health-care related data.

In this section we consider some recent trends in these areas
and examine their potential impact on KDD.

2.1 Web based data

The growth of the World Wide Web (web) is happening
at a phenomenal rate, both in terms of the amount of data
(Lawrence and Giles recently estimated that there were over
800 million accessible web pages [63; 64]) and the complexity
in the data. Hearst [45] describes information retrieval (IR)
approaches as having historically focused on extracting rele-
vant information from large bodies of coexisting information
based on user’s queries, for such applications as summariza-
tion [99]. Kosala and Blockeel [59] recently surveyed web
mining research, focusing on a contrast between IR, web
mining and database approaches. Brewington et al. [17]
have explored the use of distributed agents for IR, to dis-
tribute the load and reduce data communication costs. Text
mining is an important tool for processing web data, and dif-
fers from traditional IR because, the content is different, and
information about the data distribution and network is also
of interest.

Web content is expressed in the hypertext markup language
(HTML) and the eztended markup language (XML) which
impose additional structure on data than pure text. Flo-
rescu, et al. [36] recently proposed query language extensions
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to XML to access the semi-structured data. Heterogeneity of
data types in the web’s content is challenging, with multime-
dia data playing a large role [1; 2]. One of the fields in XML
is a document type descriptor (DTD) which indicates what
kind of information is contained in the document (for use in
say search engines, document storage or query processing).
Garofalakis et al. [40] recently described their XTRACT sys-
tem for automating selection of DTD fields from XML pages.
The dynamic nature of the data makes web mining challeng-
ing. Brewington and Cybenko have recently estimated that
95% of frequently accessed pages change within 7 days prior
to access [15] and that a significant number of web pages are
generated dynamically. This poses the problem of efficiently
tracking recent updates on popular web pages with minimal
overhead for search engines [16].

Recent advances in mobile technology have impacted the
way people interact with the web. The wireless application
protocol (WAP) specifies extensions to the XML, called the
wireless markup language [109; 110] (WML) standards to
make content viewable on small hand portable devices [111;
108]. WML is an application of XML, which specifies fea-
tures for content providers to describe layout of “stacks of
cards” on a small display interface in many portable devices.
Such specifications can profoundly impact which data will
be visible to users, and will influence what solutions are ac-
ceptable to queries. Ubiquitous computing has been used to
refer to immersing large numbers of autonomous networked
computers equipped with sensors and controllers into real
world environments [105; 106]. Wearable computing [72; 73]
refers to sensor based computing worn by the user (much like
clothing) for sensory enhancement, automated recording of
observations, and continuous networked access. Rhodes et
al. [81], recently described wearable computing as provid-
ing privacy and personalization while ubiquitous computing
provides resource management and localizes both informa-
tion and control. The integration of these two technologies
using an agent based system, Hive, seeks to provide privacy
while permitting users to perform discovery queries on the
data [81].

2.2 Business and E-Commerce Data

Both traditional and new firms have greatly expanded e-
commerce systems, which introduces both challenging KDD
problems and many hard distributed computing problems.
Kohavi and Provost [58] recently suggested that e-commerce
is the killer domain for data mining technology, due to the
accuracy of the data obtained, the ability to check the results
of mining, and the volume of data generated.

E-commerce systems require user’s trust to ensure wide-
spread adoption, with approaches such as Netbill [95] relying
on a combination of security and trust to support electronic
transactions [18]. Vendors who gather data about both in-
dividuals and customers in general seek to provide targeted
advertising via personalization. Personalization is challeng-
ing to reconcile with the users need for security, and fre-
quently relies on using cookies to monitor a user’s web access
patterns [9]. Lawrence, et al. [62] partition personalization
approaches into

e content-based filtering, where recommendations to a
customer are made based on past purchasing behavior
attributed to that customer and

o collaborative filtering, which groups customers accord-
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ing to purchase habits, making recommendations based
on those customers with similar buying habits.

The collaborative filtering schemes were found to avoid over
specialization problems which are induced by the content-
based filtering approach [62]. Lawrence, et al. [62] applied
collaborative filtering schemes in a supermarket chain, via a
client-server system. Customers were issued portable digital
assistants (PDAs) that generated recommendations. In the
deployed system, the servers did a larger amount of the KDD
computing relative to the clients [62], however, the PDAs
are expected to support more compute intensive tasks as
processor and memory capacity increases. Schafer, et al. [88]
describe several e-commerce recommender applications, and
describes several requirements for successful recommender
systems, including:

o timely delivery of the recommendation as a require-
ment for a successful recommender system and

e the problem of giving appropriate advice to new cus-
tomers (who do not have much data).

2.3 Scientific, Engineering and Health-care Data

Scientific and engineering data has always been a popular
application domain for researchers. Traditionally, scientists
have attempted to combine theory, simulation and exper-
imentation. Modern experimentation generates large vol-
umes of data using sensor technology. This rate of data
acquisition is accelerating with the advent of sensor based
computers (this is effectively an application of the ubiqui-
tous computing described earlier), motivating distributed
KDD approaches for in situ mining of data when possi-
ble. Bioinformatics and functional genomics face challenging
problems in analyzing genetic data. However non-technical
restrictions can be imposed on data, increasing the level of
difficulty, i.e., health-care data presents special challenges,
due to a strong need for confidentiality.

Many simulations in science use simplifying assumptions to
make the model more tractable. Many phenomena which
are discrete are approximated using continuous modeling
techniques, which tend to be accurate for modeling large
numbers of entities. Simulations can be categorized by:

e whether they treat time as continuous or discrete and
their degree of synchrony,

e how they treat space, using the following approaches:

— aspatial,
— continuous space,

— discrete space
e how entities are modeled:

— Discrete aggregated
— individual based models

— continuous

Engineers and physical scientists frequently use numerical
methods for partial differential equations for modeling mate-
rials [35; 34; 33]. Recently, there has been significant interest
in biological modeling, which tends to use aspatial models
(reminiscent of homogeneous mixing models in differential
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equations [13]) or diffusion based models [11]. The aver-
age case behaviors are often assumed to dominate in many
models. However, there are systems where the average case
behavior is not representative [30]. For small, or sparse pop-
ulations, the variation in the distribution of modeled entities
tends to dominate [31], motivating a spatially explicit indi-
vidual based approach for improved simulation fidelity [101;
100; 71; 70]. Discrete event simulation is useful for modeling
asynchronous systems of entities undergoing discrete state
changes, which makes it popular for modeling computer and
network based systems [51; 65; 32]. Parallel discrete event
simulation (PDES) [38; 65; 27; 19; 83] is a widely used ap-
proach to provide capacity for modeling large numbers of
discrete individual simulation entities. In the construction of
individual based models of large populations, the efficiency
of the simulation engine strongly constrains data placement
for efficiency. Measuring the simulation trajectory should
use in situ on-line approaches when possible to avoid the
prohibitive overhead of remapping the data [68; 69; 71; 70],
and to summarize the trajectory to reduce data storage re-
quirements. KDD tools have not yet been widely used for
analyzing simulation data, significant opportunities appear
to be present for both time series analysis of the trajectory
of individual simulations (typically on-line), and for con-
trasting trajectories of multiple simulations (off-line). For
example, clustering of high dimensional data [4; 3] may be
useful for phylogenetic analysis of large populations, which
can occur via experiment [112; 90], or during simulation [71].
Hidden Markov models and association rule mining can help
in modeling and understanding protein folding [117]. Addi-
tional opportunities exist for tools to compare, contrast and
integrate simulation trajectory between continuous models
and discrete models for adaptive simulation approaches.

3. PKDD REQUIREMENTS

‘We use the range of applications to direct the derivation of a
wish-list of desirable features in a functional PKDD system.
This wish-list will guide the rest of the survey. We mainly
concentrate on aspects of PKDD that have not received wide
attention as yet.

o Algorithm Evaluation: Algorithmic aspects that need
attention are the ability to handle high dimensional
datasets, to support terabyte data-stores, to minimize
number of data scans, etc. An even more important
research area is to provide a rapid development frame-
work to implement and conduct the performance eval-
uation of a number of competing parallel methods for
a given mining task. Currently this is a very time-
consuming process, and there are no guidelines when
to use a particular algorithm over another.

e Process Support: The toolkit should support all KDD
steps, from pre-processing operations for like sampling,
discretization, and feature subset selection, to post-
processing operations like rule grouping, pruning, sum-
marization and model scoring. Other aspects include
(persistent) pattern management operations like cach-
ing, efficient retrieval, and meta-level mining.

e Location Transparency: The PKDD system should be
able to seamlessly access and mine datasets regardless
of their location, be they centralized or distributed.
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e Data Type Transparency: The system should be able
to cope with heterogeneity (e.g., different database
schemas), without having to materialize a join of mul-
tiple tables. Other difficult aspects deal with han-
dling unstructured and semistructured data, includ-
ing: (hyper-)text, spreadsheets, and a variety of other
data types.

o System Transparency: This refers to the fact that the
PKDD system should be able to seamlessly access file
systems, databases, or data archives. Databases and
data warehouses represent one kind of data reposito-
ries, and thus it is crucial to integrate mining with
DBMS to avoid extracting data to flat files. On the
other hand, a huge amount of data remains outside
databases in flat-files, web-logs, etc. The PKDD sys-
tem must therefore bridge the gap that exists today
between databases and file-systems [24]. This is re-
quired since database systems today offer little func-
tionality to support mining applications [5], and most
research on parallel file systems and parallel I/O has
looked at scientific applications, while data mining op-
erations have very different workload characteristics.

o Security, QoS and Pricing: In an increasingly net-
worked world, one constantly needs access to propri-
etary third-party and other remote datasets. The two
main issues that need attention here are security and
Quality-of-Service (QoS). We need to prevent unau-
thorized mining, and we need to provide cost-sensitive
mining to guarantee a level of performance. These is-
sues are paramount in web-mining for e-commerce.

o Availability, Fault Tolerance and Mobility: Distributed
and parallel systems have more points of failure than
centralized systems. Furthermore temporary discon-
nections (which are frequent in mobile computing en-
vironments) and reconnections by users should be tol-
erated with a minimal penalty to the user. Many real
world applications cannot tolerate outages, and in the
presence of QoS guarantees and contracts, outages can
breach the agreements between providers and users.
Little work has been done to address this area as well.

In the discussion below, due to space constraints, we choose
to concentrate only on the algorithmic and hardware trends,
and system transparency issues (i.e., parallel I/O and par-
allel and distributed databases), while briefly touching on
other aspects.

4. MINING METHODS

Faster and scalable algorithms for mining will always be
required. Parallel and distributed computing seems ide-
ally placed to address these big data performance issues.
However, achieving good performance on today’s multipro-
cessor systems is a non-trivial task. The main challenges
include synchronization and communication minimization,
work-load balancing, finding good data layout and data de-
composition, and disk I/O minimization.

The parallel design space spans a number of systems and al-
gorithmic components such as the hardware platform (shared
vs. distributed), kind of parallelism (task vs. data), load
balancing strategy (static vs. dynamic), data layout (hori-
zontal vs. vertical) and search procedure used (complete vs.
greedy).
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Recent algorithmic work has been very successful in showing
the benefits of parallelism for many of the common data
mining tasks including association rules [6; 23; 43; 118; 46],
sequential patterns [93; 114], classification [92; 52; 116; 97],
regression [107] and clustering [53; 29; 84].

The typical trend in parallel mining is to start with a sequen-
tial method and pose various parallel formulations, imple-
ment them, and conduct a performance evaluation. While
this is very important, it is a very costly process. After all,
the parallel design space is vast and results on the paral-
lelization of one serial method may not be applicable to other
methods. The result is that there is a proliferation of par-
allel algorithms without any standardized benchmarking to
compare and provide guidelines on which methods work bet-
ter under what circumstances. The problem becomes even
worse when a new and improved serial algorithm is found,
and one is forced to come up with new parallel formulations.
Thus, it is crucial that the PKDD system support rapid de-
velopment and testing of algorithms to facilitate algorithmic
performance evaluation.

One recent effort in this direction is discussed by [96], which
emphasizes the importance of and presents a set of cost mea-
sures that can be applied to parallel algorithms to predict
their computation, data access, and communication perfor-
mance. These measures make it possible to compare differ-
ent parallel implementation strategies for data-mining tech-
niques without benchmarking each one.

A different approach is to build a data mining kernel that
supports common data mining operations, and is modular
in design so that new algorithms or their “primitive” com-
ponents can be easily added to increase functionality. An
example is the MKS [8] kernel. Also, generic set-oriented
primitive operations were proposed in [37] for classification
and clustering, which were integrated with a parallel DBMS.

5. HARDWARE MODELS AND TRENDS

The current hardware trends reflect that memory and disk
capacity are increasing at a much higher rate than their
speed. Furthermore, CPU capacity is roughly obeying
Moore’s law, which predicts doubling performance approxi-
mately every 18 months. To combat bus and memory band-
width limitations, caching is used to improve the mean ac-
cess time, giving rise to Non-Uniform Memory Access ar-
chitectures. To accelerate the rate of computation, modern
machines frequently increase the number of processing el-
ements in an architecture. Logically, the memory of such
machines is kept consistent, giving rise to a shared memory
model, called Symmetric Multiprocessing (SMP) in the ar-
chitecture community and shared everything in the database
community [28; 104]. However, the scalability of such archi-
tectures is limited. So, for higher degrees of parallelism, a
cluster of SMP nodes is used a network is used to permit co-
operation between SMP nodes, as shown in Figure 2. This
model, called shared-nothing in database literature, is also
the preferred architecture for parallel databases [28].

Redundant arrays of independent (or inezpensive) disks,
called RAID [22], has gained popularity to increase I/O
bandwidth and storage capacity, reduce latency, and (op-
tionally) support fault tolerance. In many systems, since
the amount of data exceeds that which can be stored on
disk, tertiary storage is used, typically consisting of one or
more removable media devices with a juke box to swap the
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loaded media.

In addition to the current trends, there have been other
ideas to improve the memory and storage bottlenecks. Ac-
tive Disks [82] and Intelligent Disks [55] have been proposed
as a means to exploit the improved processor performance
of embedded processors in disk controllers to allow more
complex I/O operations and optimizations, while reducing
the amount of traffic over a congested I/O bus. Intelligent
RAM (IRAM) [61] seeks to integrate processing elements
in the memory. Active disks and IRAM are not currently
prevalent, as the required hardware and systems software
are not commonly available.

6. SOFTWARE INFRASTRUCTURE

Since our goal is to use commodity hardware, much of the
support for our desired functionality is pushed back into
the software. Much of the support for the exploitation of
parallelism in PKDD has not been developed. In this section
we discuss some of the system transparency issues in PKDD
systems, i.e., support for seamless access to databases and
file systems and parallel I/O. We review selected aspects of
these areas.

The most common database constructions currently in use
are relational databases, object oriented databases, and ob-
ject-relational databases. The data base layer ensures refer-
ential integrity and provides support for queries and trans-
actions on the data [77]. The data base layer is frequently
accessed via a query language, such as SQL. We are pri-
marily interested in parallel and distributed database sys-
tems [28; 104], which have data sets spanning disks. The pri-
mary advantages of such systems are that capacity of storage
is improved and that parallelizing of disk access improves
bandwidth and (for large I/O’s) can reduce latency. Early
parallel database research explored special-purpose database
machines for performance [48]. However, the current pref-
erence is to use available parallel platforms, with shared-
nothing paradigm as the architecture of choice. Shared-
nothing database systems include Teradata, Gamma [26],
Tandem [102], Bubba [12], Arbre [66], etc. We refer the
reader to [28; 104; 56] for excellent survey articles on parallel
and distributed databases. Parallel database research into
data partitioning (over disks) methods used is particularly
relevant to PKDD. Parallel database partitioning methods
include:

e simple round-robin partitioning, where records are dis-
tributed evenly among the disks,

e hash partitioning, which is most effective for applica-
tions requiring associative access and

e range partitioning clusters records with similar attrib-
utes together.

Most parallel data mining work to-date has used a round-
robin approach to data partitioning. Other methods might
be more suitable. Exploration of efficient multidimensional
indexing structures for PKDD is required [39]. The vast
amount of work on parallel relational query operators, par-
ticularly parallel join algorithmns, is also of relevance [79].
The use of DBMS views [77] to restrict the access of a DBMS
user to a subset of the data, can be used to provide security
in KDD systems.
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Distributed File Systems (DFS) support collections of many
small files [86; 14; 10] while providing location transparency,
and in some cases operation during periods of disconnec-
tion (as happens when mobile clients are used). Parallel
I/0O and file systems techniques are geared to handling large
data sets in a distributed memory environment (a few large
files), and appear to be a better fit than DFS for manag-
ing the large data sets found in KDD applications. Parallel
File Systems and Parallel I/O techniques have been widely
studied; Kotz maintains an archive and bibliography [60],
which has a nice reference guide [98]. Use of parallel I/O
and file systems becomes necessary if RAID devices have in-
sufficient capacity (due to scaling limitations) or contention
for shared resources (e.g. buses or processors) exceeds the
capacity of SMP architectures. The Scalable I/O initiative
(SIO) includes many groups, including the Message Pass-
ing Interface (MPI) forum, which has adopted a MPI-IO
API [103] for parallel file management. MPI-IO is layered
on top of local file systems. MPI uses a run time type
definition scheme to define communication and I/O entity
types. The ROMIO library [103] implements MPI-IO in Ar-
gonne’s MPICH implementation of MPI. ROMIO automates
scheduling of aggregated I/O requests and uses a middleware
layer, called ADIO, to provide portability and isolate imple-
mentation dependent parts of MPIO. PABLO, another SIO
member group, has created the portable parallel file systems
(PPFS II), designed to support efficient access of large data
sets in scientific applications with irregular access patterns.
More information on parallel and distributed I/O and file
systems appears in [60; 20; 41; 87; 75; 76; 89; 91].

Users of PKDD systems are interested in maximizing perfor-
mance. Prefetching is an important performance enhancing
technique that can reduce the impact of latency by over-
lapping computation and I/O [25; 57; 78]. In order for
prefetching to be effective, the distributed system uses hints
which indicate what data is likely to be used in the near fu-
ture. Generation of accurate hints (not surprisingly) tends
to be difficult since it relies on predicting a program’s flow
of control. Many hint generation techniques rely on traces
of a program’s I/O access patterns. [57] surveyed a range of
trace driven techniques and prefetching strategies, and pro-
vided performance comparisons. [67] recently used machine
learning tools to analyze I/O traces from the PPFS, rely-
ing on artificial neural networks for on-line analysis of the
current trace, and hidden markov models to analyze data
obtained by profiling. [21] developed SpecHint which gen-
erates hints via speculative execution. We conjecture that
PKDD techniques can be used to identify reference patterns,
to provide hint generation and to address open performance
analysis issues [80].

As we noted earlier, integration of various systems compo-
nents for effective KDD is lagging. The current state of
KDD tools can accurately be captured by the term flat-file
mining, i.e., prior to mining, all the data is extracted into
a flat file, which is then used for mining, effectively bypass-
ing all database functionality. This is mainly because tra-
ditional databases are ill-equipped to handle/optimize the
complex query structure of mining methods. However, re-
cent work has recognized the need for integrating of the
database, query management and data mining layers [7; 85].
[7] postulated that better integration of the query manager,
database and data mining layers would provide a speedup.
[85] confirmed that performance improvements could be at-
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tained, with the best performance obtained in cache-mine
which caches and mines the query results on a local disk.
SQL-like operators for mining association rules have also
been developed [74]. Further, proposals for data mining
query language [44; 49; 50; 94] have emerged. We note
that most of this work is targeted for serial environments.
PKDD efforts will benefit from this research, but the opti-
mization problems will of course be different in a parallel
setting. Some exceptions include the parallel generic prim-
itives proposed in [37], and Data Surveyor [47], a mining
tool that uses the Monet database server for parallel clas-
sification rule induction. We further argue that we need a
wider integration of parallel and distributed databases and
file systems, to fully mine all available data (only a modest
fraction of which actually resides in databases). Integration
of PKDD and parallel file systems should enhance perfor-
mance by improving hint generation in prefetching. Inte-
grated PKDD can use parallel file systems for storing and
managing large data sets and use distributed file systems as
an access point suited to mobile clients for management of
query results.

7. CONCLUSIONS

The requirements of KDD systems follow from what kinds
of data users have, and what the users are likely to want to
do with the data. We explored these issues, and how trends
in networking, commerce, and science impacted these re-
quirements. These requirements were presented as a list of
desirable design features of parallel KDD systems and mo-
tivated a brief survey of existing algorithmic and systems
support for building such large-scale mining tools. We fo-
cused on the state-of-the-art in databases, file systems and
parallel I/O techniques. We observe that implementing an
effective PKDD system requires integration of these diverse
sub-fields into a coherent and seamless system. Emerging is-
sues in PKDD include benchmarking, security, availability,
mobility and QoS, motivating fresh research in these disci-
plines. Finally, PKDD approaches may be used as a tool
in these areas (e.g. hint generation for prefetching in paral-
lel I/0), resulting in a bootstrapping approach to software
development.
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