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ABSTRACT

Security of computer systems is essential to their acceptance
and utility. Computer security officers use intrusion detec-
tion systems to assist them in maintaining computer system
security. This paper deals with the problem of differenti-
ating between masqueraders and the true user of a com-
puter terminal. Prior efficient solutions are less suited to
real time application, often requiring all training data to be
labeled, and do not inherently provide an intuitive idea of
what the data model means. Our system, called ADMIT, re-
laxes these constraints, by creating user profiles using semi-
incremental techniques. It is a real-time intrusion detection
system with host-based data collection and processing. Our
method also suggests ideas for dealing with concept drift
and affords a detection rate as high as 80.3% and a false
positive rate as low as 15.3%.

1. INTRODUCTION

Security of computer systems is vital to their utility and
acceptance. It is maintained by monitoring audit logs. The
amount of information passed over networks and the very
size of these networks has been increasing exponentially.
The quantity of traffic makes it mandatory for network ad-
ministrators and security experts to use specific tools, called
intrusion detection systems (IDS), to prune down the mon-
itoring activity. According to the 2000 Computer Security
Institute/FBI computer crime study, 85% of the 538 com-
panies surveyed, reported an intrusion or exploit of their
corporate data, with 64% suffering a loss [13]. Thus, IDS
are becoming increasingly important.

For an IDS to be powerful it must run continually, be
adaptable to user behavior changes, be fault tolerant (i.e.
crashes must not require retraining or relearning of behav-
ior), be impervious to subversion, be scalable, should impose
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minimal overhead, be configurable, and should show graceful
degradation of service[20]. Other challenges to contend with
include, determining what audit data to collect and what
data model to use to represent it, dealing with noisy, high-
dimensional, categorical audit data, and satisfying generic
requirements like automation and real-time detection [11].

The specific problem we seek to solve is that of differen-
tiation between masqueraders and the true user of a com-
puter terminal. We do so by augmenting conventional pass-
word authentication measures, with a continuously running
terminal-resident IDS program, called ADMIT (Anomaly-
based Data Mining for InTrusions), which monitors the
terminal usage by each user and creates an appropriate pro-
file and verifies user data against it.

1.1 Background

Intrusion detection systems are primarily of two types [10]:
stgnature-based, in which audit data is searched for patterns
known to be intrusive, or anomaly-based, in which aberra-
tions from normal usage patterns are searched for. The for-
mer are susceptible to new attacks and hence reliance on
these schemes is decreasing. While anomaly-based meth-
ods can detect new attacks, they are prone to higher false
positive rates, as user behavior is often erratic and hard to
model. Some methods [5] use a hybrid of the two to combine
their benefits and counter their disadvantages.

Most IDS efforts so far have been targeted at network-
level data [21], which does not solve our problem, since a
poorly chosen password may be guessed, an authorized user
may turn hostile or a terminal may be left unattended, al-
lowing an intruder to gain access without using the network.
Other efforts have been carried out using system call-level
data [7, 14]. Early methods involved immunocomputing-
based approaches by Forrest et al. [22] and recently Cabrera
et al. [3], which examined fixed-length contiguous sequences
of system calls, pertaining to privileged programs like send-
mail, known to have exploits. In a related vein, Lee et al.
[14], used a machine learning classifier, RIPPER, to pro-
duce rules to classify sequences as “normal” or “abnormal”.
However, system-call level data is far too fine grained, which
increases overhead.

Instead of network-level data, our method concentrates on
user command-level data. In doing so, even if the masquer-
ader gains access through whatever means, (s)he still runs
the risk of being detected. In contrast, the risk of detection
is much lower in IDS based on system-call or network level
data. For instance, the intruder does not have to exploit the
system calls or the network, having gained higher privileges.

Ryan et al. [18] has also suggested that every user leaves a



print on the terminal, which could be picked up using artifi-
cial neural networks (ANNs). User-profile based endeavors
include statistical-based methods such as IDES [5], NIDES
[8], and EMERALD [16], which create multi-level usage pro-
files (i.e., at user or group levels). DuMouchel [6], created
contiguous command sequence-based probability transition
matrices, which serve as user profiles. Schonlau et al [19] test
a variety of statistical methods for building user profiles.

Clustering is an unsupervised learning technique, in which
data is partitioned into meaningful subgroups called clusters
based on some similarity measure. Prior efforts using clus-
tering for intrusion detection include those by Portnoy [17]
and Zamboni [23]. Portnoy used non-real-time clustering to
group unlabeled network data and labeled them based on
the assumption that the proportion of network data that
is anomalous is very low. Zamboni observed that the dis-
tribution of test points to clusters changes significantly at
the time of attacks, which can be used as an indicator of
anomalous behavior.

The work most closely related to ours is that by Lane and
Brodley [12, 11], who used both instance-based learning [1]
(IBL) as well as Hidden Markov Models (HMM) techniques
to create user profiles for user command data. Like our
method, they too use clustering, however only for model
scaling (i.e., limiting the number of sequences representing
the user). The IBL approach by Lane [11] provides the ad-
vantage that the class of a test point is based on the points
most similar to it in the training database, rather than the
similarity of all database points, thereby limiting problem
complexity. Statistically-based anomaly-detection methods
[17] often assume that anomalies form a very small propor-
tion of audit data. But an intruder may use such “anoma-
lous” sequences repeatedly, so that their frequency becomes
high enough frequency to be labeled “normal”. However,
as the IBL approach is not statistically based, even a single
labeled point is useful and using this ploy is futile. At the
same time, a coincidence may result in contamination and
hence expert supervision is essential. Also, since nearly all
computation in IBLs takes place at run time, it is a slow
alternative. Also, IBLs do not inherently provide a method
of model scaling.

Most of the IDS efforts, thus far, require substantial train-
ing data, which must all be labeled. Also, the more success-
ful efforts are less suited to real time application; the experi-
ments conducted suggest that a considerably large sequence
of anomalous commands is crucial to the performance. Our
method suggests an environment in which these constraints
may be relaxed. Also, unlike our method, all the models
mentioned so far such as HMMs, ANNSs, etc., do not intrin-
sically convey information about the user behavior to the
security officer.

1.2 Contributions

It is our belief that current IDS techniques are not sophis-
ticated enough to completely automate the intrusion detec-
tion problem, and that expert supervision is ultimately nec-
essary. Hence, we try to minimize the work of the intrusion
analyst by providing likely alarms, rather than completely
automating the process.

ADMIT is a user-profile dependent, temporal sequence clus-
tering based, real-time intrusion detection system with host-
based data collection and processing. Using user profiles
makes it hard for intruders who have gained access to higher

privileges, to actually use them, since doing so would most
probably create a usage pattern different from the true user’s
profile. The new pattern would be labeled as an anomaly
and thus give them away.

There are several reasons why we used clustering to model
the user behavior. Firstly, it affords us automatic model
scaling. A cluster, with low variance, can be efficiently rep-
resented by its center. Hence the run time constraint in IBLs
is relaxed depending on the cluster support, i.e., the number
of sequences assigned to a cluster. Secondly, by putting a
constraint on the cluster support, we can reduce noise and
retain more relevant clusters. Thirdly, if the intra-cluster
similarity threshold (i.e., the minimum acceptable similarity
between a cluster’s center and any other sequence assigned
to it) is set high enough, some test sequences may remain
unassigned. These sequences are said to be “anomalous”
and hence an alarm (of type A) may be raised. In general,
different types of alarms can be raised; Type A refers to
a single anomalous sequence, while Type B refers to a se-
quence of type A alarms in near succession. The profile may
be updated by clustering the anomalous sequences. Finally
only the centers of the anomalous clusters are displayed to
the analyst, thereby effecting significant data reduction as
compared to the IBL scheme [11] in which all flagged se-
quences are offered to the security officer.

In designing ADMIT we preferred host-based processing
and data collection. While centralized IDS architectures [10]
offer lower processing overhead on hosts and easier defense
against subversion (just one component to protect), they
are difficult to dynamically reconfigure and do not scale.
Also, the penalty is very high if subverted. ADMIT, like
other distributed IDS [20, 15] does not have these problems
and by having a host-based architecture, distributed-related
co-ordination problems and sniffing-related methods of user
spoofing are eliminated. A preview of the ADMIT architec-
ture is presented in the next section.

2. ADMIT ARCHITECTURE

There are two main stages in our approach to mining in-
trusions. In the training phase the user profiles are created,
and in the testing phase the user command stream data is
verified against the corresponding profile. The complete ar-
chitecture of ADMIT is shown in Figure 1.

User data enters the system by the monitoring of UNIX
shell command data [11], captured via the (t)csh history file
mechanism. A recognizer for the (t)csh command language
parses user history data and emits them as a sequence of
tokens in an internal format. Also, all commands between
logging on and logging off are referred to as a session and
corresponding delimiters (*SOF* and *EOF*, respectively)
are inserted to indicate the same. We process data within
different sessions separately to avoid patterns created by co-
incidence across sessions from being incorporated into the
user profiles. An example session could be: *SOF*; Is -I; vi
t1.txt; ps -eaf; vi t2.txt; Is -a fusr/bin/*; rm -i /home/*; vi
t8.txt t4.txt; ps -ef; *EOF* (in the real data, instead of a ¢},
we have a new line character).

During training, the commands entered by a user are
stored in that user’s audit data table according to the time
of entry. During testing, the command data is directly used
to detect anomalies via online sequential classification.

We consider each process/command in the history data
together with its arguments as a single token (*SOF* and
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Figure 1: ADMIT’s Architecture: Training/Testing

*EOF* are not considered to be tokens). However, to reduce
the alphabet size, we omitted filenames in favor of a file
count as in Lane [11]. For example, the user sequence given
above is converted to the following set of tokens T' = {¢; :
0 <1< 8}, where to=1s -1, t1= vi <1>, t2= ps -eaf, tz3= vi
<1>, ta=Is -a <1>, ts=rm -i <1>, te= vi <2>, and t7=
ps -ef. The notation <n> gives the number of arguments
(n) of a command. For instance, the command vi t1.tzt is
tokenized as vi <1>, while vi t3.txt t4.tat as vi <2>.

ProfileManager is the top-level module in ADMIT; it is
responsible for the security of a terminal. It has a number
of deputies, whose operations it configures, coordinates and
decides. ProfileCreator, during training, creates profiles for
users authorized to use the terminal. During testing, Pro-
fileUpdater updates profiles for those users, while Sequence-
Ezaminer examines each sequence of tokens of process data
and determines if that is characteristic or not, of the user
thought to have produced it. Based on the decision, it takes
action specified by the ProfileManager.

The ProfileCreator and ProfileUpdater both use two sub-
modules. FeatureSelector parses the source command data
for a user, cleans it up by replacing argument names by num-
bers (e.g., cat test.txt > sort becomes cat <1> > sort) and
converts it into tokens as described above. It then converts
the token data from each session, into sequences of tokens,
whose length is specified by the ProfileManager. Cluster-
Crreator converts the input array of sequences into clusters
which form the profile of the user they originate from.

At startup, the ProfileManager initializes the ProfileCre-
ator, ProfileUpdater and SequenceExaminer with various
parameters. At training time, the ProfileCreator instructs
FeatureSelector, as to what data to parse, and how to clean
and tokenize it. The FeatureSelector makes sequences out
of the tokens, whose length is determined by the ProfileM-
anager. Thus, a sequence s, of specified length 1, is a list of
tokens, occurring contiguously in the same session of audit
data, i.e., s € T', where T is the token alphabet.

The ProfileCreator also initializes ClusterCreator and passes

on the clustering algorithm and similarity measure, specified
by the ProfileManager, so that the ClusterCreator can con-
vert the sequences into clusters which are added to the user
profile. Thus, a cluster c, is a collection of sequences of user-
initiated command data, such that all its sequences are very
similar to others within itself using some similarity measure
Sim(), but different from those in other clusters.

If the clusters have sufficiently high intra-cluster similar-

ity and low variance, the entire cluster may be represented
by the center sequence. We define the cluster center (de-
noted s.) as the sequence having the maximum aggregate
similarity to the other sequences within the cluster. That

is, if ¢ = {so0,81,...,8n—1} is a cluster with n sequences,
then
n—1
Sc = max{z Sim(si, s;)} (1)
s;€c £ 0
j=

The clusters make up the profile for a given user. A pro-
file p, is the set of clusters of sequences of user-initiated
command data whose centers characterize the user behavior.
Thus, for user u,

Pu = {ci|(Sim(sc;,8) > 1, Vs € Ci)/\(Sim(scz’,sci) <ri# N}

where r and r’ are the intra-cluster and inter-cluster sim-
ilarity thresholds, respectively, s¢; is the center of cluster
¢i, and Sim(s1, s2) is the similarity between two sequences.
More formally, Sim : T' x T' — R, where T is the token
alphabet and [ is the length of the sequences. We expect p,,
to include several clusters to adequately capture the usage
variations for user u. Having fine grained (but not overly so)
clusters also allows us to reduce false alarms while testing.
Profiles thus created by the ProfileCreator are added to the
pool of user profiles P.

During testing, the SequenceExaminer instructs Feature-
Selector to parse, clean and tokenize command stream data
of the user u currently logged in and convert them into se-
quences. These sequences are matched against the corre-
sponding profile p,, obtained from the pool of user profiles
P by the ProfileUpdater. An alarm of type A may be sent to
the security officer for each anomalous sequence. In contrast
to the ProfileCreator’s ClusterCreator, only the anomalous
sequences, deemed so by the SequenceExaminer, are clus-
tered by the ProfileUpdater’s ClusterCreator. These can be
added to user u’s profile p,, at the behest of the analyst.

3. ADMIT ALGORITHMS

In this section, we use a running example to explain the
methods used in ADMIT during training and online testing.

To match command sequences against user profiles, it is
essential to establish a similarity measure, which we write as
Sim(s1, $2), between two categorical command sequences,
s1 and sz. It is an atomic function of the clustering and
classification process and hence should be quick. Also, it
is important to note that, we consider all commands to be
of equal importance. The following similarity metrics have
been proposed in the literature [11]: 1.) MCP (Match Count
Polynomial Bound) counts the number of slots in the two se-
quences for which both have identical tokens and the count
is the similarity score for the two sequences. For example,
if s1 = { vi <1>, ps -eaf, vi <1>, 1s -a <1>}, and s2 = {vi
<1>, Is -a <1>, rm -i <1>, vi <2>}, then MCP for s;
and s3 is 1 since they are identical only in slot 1. 2.) MCE
,(Match Count Exponential Bound) is a variant of MCP,
in that it doubles its value for each matching position. 3.)
MCAP/MCAE (Match Count with Adjacency Reward and
Polynomial/Exponential Bound) is a variant of MCP/MCE
[11], where adjacent matches are rewarded. Lane [11] re-
ported that MCAP is typically better than the others, so
we use that in our study.

In addition, we proposed using the LCS metric (Longest
Common Subsequence), which gives the length of the longest



subsequence of tokens that the two sequences have in com-
mon. It too is polynomially bounded in the length I, i.e.
O(I?) [4]. While LCS is a quadratic algorithm in comparison
to the exact match-based linear algorithms, it does represent
similarity between phase-shifted sequences. For example, for
the s; and s from above, LCS is 2, since they both share
the subsequence vi <1>,1s -a <1>. The same result may be
achieved using edit distance dot-plots with the length of the
longest diagonal corresponding to the similarity between the
sequences and other sequence alignment algorithms. Note
that all of the proposed metrics produce a similarity mea-
sure having a whole value, i.e., Sim : T' x T' — [0,1]. This
might restrict the granularity of differentiation.

3.1 Dynamic Training

Initial user profiles in ADMIT are mined in the training
phase from user commands at their host machine. There are
three main steps during training: 1) data pre-processing, 2)
clustering user sequences, and 3) cluster refinement. These
steps are described in detail below.

3.1.1 Data Pre-processing

ADMIT collects user audit data, by monitoring the com-
mand history files of the users. We use the following history
as a running example: *SOF*; Is -I; vi t1.txt; ps -eaf; vi
t2.txt; Is -a /usr/bin/*; rm -i /home/*; vi t3.txt t4.txt; ps
-ef; *EQF*

The FeatureSelector parses, cleans and tokenizes the audit
data, within each session specified by the ProfileManager.
The above command stream results in the token list, T =
{ti : 0 <i < 8}, where to=1Is -1, t1= vi <1>, to= ps -eaf, t3
=vi<1>, tg4=Is -a <1>, ts= rm -i <1>, te= vi <2>, and
t7 = ps -ef.

The FeatureSelector next creates sequences of length !
from the tokens based on the order of their creation time, as
specified by the ProfileManager. For example, if [ = 4, the
set of user sequences is given as S = {s; : 0 < < |T| -1},
where:
so={1Is-l, vi <1>, ps -eaf, vi <1> }
s1 ={ vi <1>, ps -eaf, vi <1>, Is -a <1>}
s2 = { ps -eaf, vi <1>,1s -a <1>, rm -i <1>}
s3 = {vi <1>,Is -a <1>, rm -i <1>, vi <2>}
s4 ={ls -a <1>, rm -i <1>, vi <2>, ps -ef }

3.1.2 Clustering User Sequences

Once tokens have been converted into sequences, we next
cluster them using a suitable algorithm.

K-Means [9] is an often favored clustering algorithm be-
cause it allows reallocation of samples even after assignment
and it converges quickly. The problem with basic k-means
is that the random allocation of cluster centers reduces its
accuracy. Also, k (number of clusters) and ¢ (number of iter-
ations) are hard to set to achieve a good clustering. During
each iteration, k-means first assigns each point to the closest
cluster center and then recalculates the cluster centers. The
first step takes time O(dkN), where ¢ is the cost of com-
puting similarity between any two sequences, and N is the
number of sequences to be clustered. Recalculating the clus-
ter centers based on Equation 1 takes time O(dn?), and since
there are k clusters, the time for the second step is O(dkn>)
(with the simplifying assumption that all clusters have an
equal number of points n). The cost of k-means per iteration

is then given as §kN + 0kn? = O(6k(n? + N)). Since there
are t iterations, the total cost of k-means is O(tsk(n”> + N)).
Note that for the MCP and LCS metrics, § = O(l) and
§ = O(I?), respectively.

We do not want to use any preset value of k for the differ-
ent users in our system. Thus instead of the basic k-means
approach, we use a dynamic clustering approach to group a
user’s sequences, where clusters are grown when needed, as
shown in the pseudo-code below:

DynamicClustering (7, Su, pu, Sg):

//r is intra-cluster similarity threshold

//Su is a set of a user u’s sequences to be clustered
//pu is the user u’s profile, i.e., set of clusters

//S% is the set of user u’s cluster centers

1. Sy = Su //set of user u’s “anomalous” sequences
2. while (S5 # 0) //“anomalous” sequences exist

3 select random s. € S, — S5 as new cluster center
4 Cnew = {8c} //i-e., initialize new cluster

5. S =S5 Usc

6.  for all remaining sequences s; € S, — S,

7 if (Sim(ss, sc) >1)

8 if ( Sim(si, s,) < Sim(si,sc)Vse € S5 — sc)
9 Cnew = Cnew U {S’L}

10. recalculate cluster center, s. for cpew
11. Pu = Pu U Cnew

12. Sy = Si — cnew

Consider how DynamicClustering works on our example
sequences (with » = 3). Initially S. = S = {so, s1, s2, 83, 84},
v = S5 = 0. Within the while loop we pick a random
sequence as the new center, say so. For all remaining se-
quences in S, — S5, where S = {so}, we compute similarity
to the new center sg. Using LCS as the similarity metric
we get Sim(s1,s0) = 3 since vi <I>, ps -eaf, vi <I> is
their LCS. For the other sequences we get: Sim(s2, s0) = 2,
Sim(s3, s0) = 1, and Sim(ss,80) = 0. Since s1 passes
the threshold, we add it to the new cluster to get cpew =
{s0,s1}. Now the new Sj = {s2, 33, s4} and we repeat the
while loop. After a few steps we may find that the profile is
given as p, = {co = {s0,81},c1 = {s2},c2 = {s3,84}}.

Let’s look at the time complexity of DynamicClustering.
The for loop (line 6) takes at most O(N) time if there are N
sequences. Also, if 7 is well-chosen (i.e., reasonably high),
cluster reassignment drops considerably enough to make the
assumption that line 10 executes O(1) times for each point
during the execution of the entire algorithm. The cost of
incrementally recalculating the centers as a cluster grows in
size from 1 to nis § x (12422 4+ 3%+ ...+ n?)), i.e., O(6n®).
Hence for k clusters, it will be O(dkn®). Finally, the while
loop repeats O(k) times, where k is the number of clusters.
Thus DynamicClustering has complexity O(5k(N +n?)). As
an optimization we recalculate cluster centers lazily, for ex-
ample, every time the cluster support doubles since the last
recalculation. Lazy update improves the algorithm complex-
ity to O(8k(NN +n?)), while at the same time ensuring that a
center closely represents its cluster. Notice that this time is
typically much better than k-means, since DynamicCluster-
ing is a one-pass algorithm. It also has the advantage that
k need not be pre-set, it is found dynamically.

While clustering, we aim to produce clusters of high sim-
ilarity and low variance to deter spoofing attempts and to
allow a single sequence to represent the entire cluster. This



calls for a large number of clusters, i.e., the number of clus-
ters, k = O(IN). Thus, in general n is small and can be ne-
glected. In this case the algorithm has complexity O(I2N?)
and O(IN?) for the LCS and MCAP similarity measures,
respectively.

3.1.3 Cluster Refinement

The last step in training phase is refinement of the clusters
found above. Although DynamicClustering counters all the
basic k-means disadvantages, setting the intra-cluster sim-
ilarity r may require experimentation. Also, a cluster may
have a lot in common with another, i.e., sequences assigned
to it are as close to it as they are to another cluster. There
may also be denser sub-clusters within the larger ones. To
tackle these problems, we improve the clustering by merging
and splitting clusters as follows:

MergeClusters(r’, p,, S5):
//r'" is the inter-cluster similarity threshold
1. For each pair of clusters, ¢;, c; in profile py, i # j

2. if (Sim(ci,c;) >r')

3. ¢i = ¢; Uc; [/merge clusters

4. Recalculate center for ¢;

5. Pu = Pu — ¢; [/remove ¢; from profile
6. Su = Su — s¢;

SplitClusters(r, ts, pu, Sg):

//ts is a splitting threshold support
1. For each cluster ¢; in profile p,
2. if (cluster_support(c;) > ts)

3. DynamicClustering(r + 1, ¢i, pu, S5 )
4. Du = Pu — ¢; [/remove ¢; from profile
5. S's/ = Sﬁ - SCi
Assume that p, = {co,c1,¢c2} and 7' = 2 from above.

Let’s see how MergeClusters works. For instance, using
LCS, Sim(co,c1) = Sim(so, s2) = 2. In this case, the two
clusters should be merged to get co = {so, $1, 52} and ¢; will
be removed from the profile. Also, the center for ¢o becomes
s1. For clusters that have high support SplitClusters calls
DynamicClustering to recluster them into smaller, higher
density clusters.

In terms of time complexity MergeClusters takes O(dk?)
time, while SplitClusters takes O(6knk’) time, where k' is
the number of resultant clusters after splitting. The split-
ting algorithm splits only very large clusters; while it may
produce many sparse clusters, we found empirically, that
it still increases the probability of finding better clusters.
The main advantage of these two methods are that they are
faster than most other splitting and merging algorithms.

3.2 Online Testing

Once ADMIT creates user profiles it can be used to test
for masqueraders. Unlike training, the testing must happen
in an online manner as user sequences are produced. Testing
consists of four main steps: 1) real-time pre-processing, 2)
similarity search within the profile, 3) sequence rating, and
4) sequence classification (normal vs. anomalous). These
steps are detailed below.

3.2.1 Real-time Data Pre-processing

Capture user-based process data in real time. We use
the following user data as an example: *SOF*; vi t4.txt; vi

td.txt; vi t4.txt; Is -a /home/*; rm -i /home/turbo/tmp/*;
Is -a /home/*; vi t2.txt t4.txt; ps -ef;*EOF*.

The FeatureSelector parses, cleans and tokenizes the audit
data specified to get the token set T' = {t; : 0 < i < 8}, ¢
=vi<l>, t) =vi<l>, th=vi<l>, th =ls-a <1>,t), =
m -i <1>, th = 1s -a <1>, tg = vi <2>, th = ps -ef.

Next the FeatureSelector creates sequences from tokens,
using | = 4 as in training to get S’ = {s; : 0 < < |T'| -1}
sp = {vi <1>,vi <1>,vi <I>,ls -a <1>}
sh = {vi <1>,vi <1>]s -a <1>,;rm -i <1>}
sy = {vi <1>ls -a <1>,;m -i <1>ls -a <1>}
sy = {ls -a <1>;rm -i <1>]s -a <1>,vi <2>}
sy = {rm -i <1>ls -a <1>,vi <2>,ps -ef}

3.2.2 Profile Search

For each newly created sequence, we compute the highest
similarity value within u’s profile (assuming for the moment,
that these new sequences come from user u), i.e., for each
sequence, we find the most similar cluster in p,. Define the
similarity between a sequence s; and a profile p,, as follows:
Sim(s;, pu) = maxc; ep, {Sim(s;, sc; }. For example, assume
pu = {co = {so0,s%,82},c1 = {s5,54}} from section 3.1.3
(cluster centers are indicated with **’). Then Sim(sg, p,) =-

max(Sim(sg, Sco ), STM(80, Sey)) = max(Sim(sp, s1), Sitm(sg, s3))

= maz(3,2) = 3. Similarly Sim(s},p.) = 3, Sim(sh, p.) =
3, Sim(ss,p.) = 3, and Sim(sy, p.) = 2.

Although the search for the closest cluster takes time
O(dk), since we expect a user to have many clusters, one
may use more efficient methods like those suggested in [2],
where cluster centers may be clustered using K-means using
an efficient data structure like a k-d tree to store the clusters
in the profile and hence speed up profile search.

3.2.3 Sequence Rating

Simply using the similarity measure between the current
sequence s; being evaluated and the profile p, to determine
the user authenticity is not advisable. The data is too noisy
and a high false positive rate results in the absence of a fil-
ter. It is a good idea to approximate the user authenticity,
based on the sequences seen so far. In other words, we use
the past sequences to determine, if the current sequence is
just noise or if it is a true change from profile. We call this
process sequence rating and we use a number of possible rat-
ing metrics to reduce noise in our prediction, namely LAST n,
WEIGHTED, and DECAYED_WEIGHTS.

LAST n:  The arithmetic mean of the similarities of the last
n sequences. It has finite memory and captures temporal
locality present in user command stream. The rating R; for
the jth sequence is calculated as
L T 1 Sim(sy,pu) i >

R; =

LY Sim(shpa) M j<n
For the five new sequences, using this rating metric with
n = 3, we would get the following ratings: Ro = R;1 = Ry =
R3 = 3, and R4 = 8/3 = 2.67. The drawbacks of LAST n
are that it is hard to choose n and all the last n sequences
are treated equally. As n increases, performance approaches
that of the arithmetic mean of all sequences.
WEIGHTED: The weighted mean of the last rating and the
current sequence’s similarity. The the rating R; for the jth



sequence is calculated as
R; = ax Sim(s},p.) + (1 —a) x Rj_1

where Rop = Sim(sg,p.). For example, if o = 0.33, then
Ro = R1 = R» = R3 = 3, and R4 = 2.66. In general, it is
more sensitive than LAST n, and one doesn’t have to fix n.
However, it is hard to choose an optimal weight ratio.
DECAYED_WEIGHTS: A variant of the weighted mean. Instead
of using a constant o weight ratio, we vary it according to the
sequence number. We thought of diminishing the sensitivity
of the system as time passes. Doing this counters the effects
of concept drift (i.e., shift in user profiles), which increases
as time passes by, giving lesser sensitivity as the sequence id
increases. The rating R; for jth sequence is calculated as

R; = aj * Sim(s;,pu) + (1 — ;) * Rj_1
Here weight varies with sequence id, and is given as

aj = @it , g = 1

aj-1+1—1log(;%5)

Thus «; is a decaying weight as long as 1 —log(;535) > 0
As an example, if y = 4100 and z = 7500, then Ry = Ry =
Ry = R3 = 3, and R4 = 2.66.

3.2.4 Prediction: Normal vs. Anomalous

Once sequences have been rated, we need to classify them
as either “normal”, i.e., true user, or as “anomalous”, i.e.,
a possible masquerader. This classification is based on the
rating R; for a given sequence sj.

Normal Sequences. We use a threshold value on the rating
of a sequence to determine if it is normal or not. The lower
accept threshold, Taccrpr, is the threshold rating for a
sequence, which, if exceeded by the test sequence’s rating,
causes the system to label that sequence as having originated
from the true user. It is generally an empirically selected
value. A normal sequence is added to the profile p,, to the
cluster it is the closest to. For example, with Taccrpr =
2.7, for WEIGHTED rating metric (@ = 0.33) no alarm will be
raised for sg, since Rop = 3 > 2.7. Similarly, s}, s5, s5 are all
deemed to be normal; they are assigned to the nearest profile
cluster, e.g., co = {so, s1, s2, 8b, 51}, co = {83, 54, 5%, 85}, and
cluster centers are recalculated lazily.

Anomalous Sequences. An anomalous sequence is one that
doesn’t pass the Taccrpr threshold (e.g., s} is anomalous,
since R4 = 2.66 < 2.7). This may occur as the result of any
one of three phenomena: 1) noise, e.g., from typing errors,
randomness, etc., 2) concept drift, e.g., working on a differ-
ent project, etc., and 3) masquerader, i.e., the one we want
to detect. A lone anomalous sequence is most likely noise. A
number of sequences which do not get assigned in near suc-
cession suggest a change in the behavior, and are more likely
to be an intrusion or concept drift, as compared to evenly
distributed anomalous sequences, which are more likely to
be noise. The larger the number of anomalous sequences
in near succession, the more suspicious the identity of the
user. However, these sequences do not have to be contigu-
ous, otherwise IDS spoofing, in which harmful commands
are inserted between normal commands to confuse the IDS,
would be possible. To get a better estimate of the type of
the behavioral change (i.e., noise or otherwise), we use clus-
tering of anomalous sequences on the basis of their sequence

ids. Also, we would like to put off clustering anomalous
sequences as far as possible, to better estimate the size of
behavioral change. However as the size increases beyond a
certain threshold T¢iyster, we raise a different type of alarm,
called type B alarm. We borrow from Zamboni [23], the idea
of monitoring the rate of change of cluster production. A
sharp increase in the rate indicates an intrusion.

Thus, incremental clustering of anomalous sequences is
basically temporal locality mining. Informally, an anoma-
lous cluster is a chain of anomalous sequences, such that
the mean difference in the sequence ids of consecutive pairs
is within r; called the incremental intra-cluster prorimity
threshold and the maximum difference in the sequence ids
of consecutive pairs is within 7} called the incremental inter-
cluster prozimity threshold. The incremental clustering al-
gorithm works as follows:

IncrementalClustering(s;, S;’ STy Ty iy Duy SS)

// s is an anomalous sequence

// S, is the list of anomalous sequences

// ri and r; are the intra and inter incremental cluster prox-
imity thresholds

// pu is the profile we are updating incrementally

// Sg is the set of cluster centers for p,

// r is intra-cluster threshold used in DynamicClustering
1. if the maximum difference in adjacent sequence ids of
S,;I < r} and the mean difference in list of sequences ids < r;

2. S, =S,Us
If (|S, | > Teiuster)// the cluster threshold

Raise an alarm of type B

3

4.

5. else .
6. DynamicClustering(r,S, , pu, Sg)

7. S.={si}

In line 1, the if conditions maintain nearness between
members of an anomalous sequence cluster. Inline 2, anoma-
lous sequences conforming to the constraints are added to
the anomalous cluster. In line 4 we raise a type B alarm,
if the cluster has grown beyond a threshold size. All such
clusters are interpreted to be a significant change from pro-
file. In line 6, since the cluster does not satisfy the con-
straints, the sequences within it are mined using Dynam-
icClustering on the basis of the Sim function and added
to the profile, and the s; is added to a new cluster. Con-
sider how IncrementalClustering works on our example. Ini-
tially, p, = {co,cl},S’;’ = 0,r = 3,S; = {s1,s3}. Since
R4 =2.66 < (TaccrpT = 2.7), hence s; = s}y. In line 2, s
is assigned to S;’. In line 6, p, = p, U (cs = {s4}) Note that
in general, a sequence may get a different label depending
on the rating metric used (for the same value of TaccerT).

Thus, after testing the sequence stream S’, the profile will
become p, = {CO = {301 51, 82, 361 311}7 C2 = {537 S4, 312’ Sg}a
cs = {s4}

4. APPLICATION STUDY

In the discussion below SELF refers to the true user and
OTHER to the masquerader. The system classifies a com-
mand stream as ACCEPT if it considers it to be from the
true user (SELF), otherwise it classifies the stream as RE-
JECT.

IDS are evaluated on the basis of accuracy, efficiency and
usability [15] according to the following metrics: 1) De-



tection Rate gives the percentage of attacks that a system
detects, i.e., the percentage of OTHER sequences that re-
ceives a rating below Taccepr (or OTHER REJECT). 2)
False Positive Rate is the percentage of SELF sequences that
the system incorrectly determines to be intrusive, i.e., the
percentage of SELF sequences that receive a rating below
Taccepr (or 100 - SELF ACCEPT). 3) Time-To-Alarm
(TTA) [11] is the mean time to alarm generation, i.e., the
mean number of sequences between two sequences that re-
ceive a rating below Taccepr. It is a measure of the sys-
tem’s sensitivity and efficacy in detecting intrusions in real
time. 4) Data reduction is a measure of the system’s usabil-
ity in terms of reducing the data the network security officer
has to browse through.

As such high SELF ACCEPT and OTHER REJECT are
desirable, as they indicate a low false positive rate and a high
detection rate, i.e., high accuracy. A high TTA indicates
that there is considerable time between alarms, which is
desirable for SELF since SELF should not raise alarms, but
is undesirable for OTHER.

For our experimental study, we use command stream data
collected from eight UNIX users from Purdue University [11]
over varying periods of time (USERO and USERI1 are the
same person working on different projects). The time over
which the data for each user was collected is not known, so
we use the number of sessions as an indicator of time. Since
there were 500 sessions for the user with the fewest sessions,
we use the first 500 sessions from each user as our dataset.
We further split the data for each user into five overlapping
folds (i.e., blocks) of 225 sessions each (i.e., sequence num-
bers 0-224, 69-293, 138-362, 207-431, 275-499). Each of the
folds is used independently of the others for testing and the
results reported are the average over the five folds.

For training and testing, each fold of 225 sessions is fur-
ther split into two parts, the first 125 sessions are used for
training and the latter 100 for testing. In each fold, for each
user, the system creates a profile of SELF by training on 125
sessions of SELF data. It then independently tests the first
250 sequences of the last 100 sessions of the corresponding
fold, for all users, including SELF, against this profile. Un-
less otherwise indicated, we perform experiments using LCS
similarity measure and using the DECAYED _WEIGHTS rating
metric with y=6750 and z=7500. The intra-cluster thresh-
old similarity » = 3, the sequence length [=5, the cluster
support ts = 15, and inter-cluster threshold r’ = 2.

All the experiments assume that training data is labeled.
However, this is not a hard requirement. After clustering
the training data it can be labeled easily, with substantial
decrease in the work of the security officer. This relaxes
the requirements imposed by other methods, at no addi-
tional cost. In the following graphs, we plot the variation
in ADMIT’s performance as a function of its configuration
parameters, generally varied one at a time.

4.1 Effect of Sequence Length

The accuracies resulting from different sequence lengths
varied from user to user. Hence we report the mean of the
readings of all users. We tested the performance for sequence
length I = {2, 3,4, 5, 6,7, 8, 9, 10, 12, 15, 20}. A different
Taccrpr was used for each value of [ 1. Also, the intra-
cluster threshold similarity was set as r = I — 2 and the

1Empirically we determined that Taccepr = 0.55 * 1 + 0.1
gave us high accuracy for each length.

training data set sizes were 150 sessions long. Otherwise the
experimental setup was identical to that mentioned above.
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Figure 2: Effect of Sequence Length

As [ decreases, the mean accuracy, i.e., the mean of SELF
ACCEPT and OTHER REJECT, increases and OTHER
TTA decreases as visible in Figure 2. However, for very
small sequences =2, SELF ACCEPT becomes very high,
while OTHER REJECT drops below an acceptable level.
This is because for all sequence lengths, (I —r) is a constant
viz. 2. Hence, as sequence length decreases, the ratio, I*T’"
increases. This ratio is more closely related to the amount
of variance tolerable in the cluster than (I —r). Ideally, we
would like the ratio to be identical for all values of [, but r is
a whole number. Thus, as the ratio increases, the variance
increases and hence the model gets more generalized. For
=2, OTHER REJECT drops, as the model becomes too

general.
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As shown in Figure 3, mean cluster support also increases
with smaller length, since the more general the model, the
more the sequences that can be assigned to a user. Cluster
support is crucial in determining the extent to which classifi-
cation time improves over the IBL method, thereby increas-
ing applicability to real-time use. Clustering time drops
as fewer clusters are produced. Although mean accuracy
for small values of [ is very high, the difference between the
SELF ACCEPT and OTHER REJECT percentages is cause
for worry. Also, a cluster having a low value of I_T’“ implies
unacceptably high variance within the cluster, thereby di-
minishing the capacity of the cluster center to represent the
entire cluster. This variance was particularly disturbing as it
increases the vulnerability of IDS spoofing. It was not possi-
ble to make the r vary sufficiently to minimize its effects on
the performance, as it must be a whole value and variations
in either direction introduced a considerable, rather than
gradual, change in performance (see Section 4.5). Hence,



a suitable choice for sequence length with reasonably high
mean accuracy and low difference in SELF ACCEPT and
OTHER REJECT percentages to counter spoofing is 5. As
we used LCS, for the similarity measure, the time for train-
ing does not increase linearly with sequence length, as evi-
dent from the graph.

4.2 Effect of Training Data Size

The training data set size is an indicator of the amount
of concept drift in the user data. Learning from too much
historical data may incorporate irrelevant concepts in the
user profile. It also indicates the amount of training data
required to create a satisfactory profile. Taccrepr was fixed
at 2.75 for these experiments, and the training data set sizes
used were {50, 75, 100, 125, 150, 200, 250, 275} sessions. As
evident from Figure 4, as training data size decreases, SELF
ACCEPT and SELF TTA decrease, since fewer concepts are
being learnt. OTHER REJECT increases steadily for the
same reason. The average of SELF ACCEPT and OTHER
REJECT, i.e., mean accuracy tends to peak at about 125
sessions of training data and dip on either side.
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Figure 4: Effect of Training Data Size

For training sets of size greater than 125 sessions, there is
a tendency to learn too many concepts (i.e., sequence clus-
ters), all of which may not be relevant to the user currently
due to the principle of temporal locality. The reverse hap-
pens for training sets of size less than 125 sessions. Again, a
large difference between the SELF ACCEPT and OTHER
REJECT is not good. Hence, 125 sessions is a suitable train-
ing dataset size for our data.

4.3 Effect of Sequence Rating Metric

Performance variation as a function of sequence
rating metric
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Figure 5: Effect of Rating Metric

Performance of different rating metrics depends on differ-

ent Taccepr values, so we use different values determined
empirically. We tried out three of the methods described
earlier viz. LAST_n, WEIGHTED and DECAYED WEIGHTS.

For LASTn we use n = 20, for WEIGHTED we set a =
0.05 and for DECAYED_WEIGHTS, we used z = 7500 and y =
6500. From Figure 5 it is evident that the performance of
DECAYED_WEIGHTS is the most satisfactory because although
LAST_n has a lower OTHER TTA as compared to DECAYED_-
WEIGHTS, its SELF TTA is significantly smaller as well. How-
ever, the accuracy measures for LAST n have a smaller dif-
ference than those for DECAYED_WEIGHTS. However, choice of
the metric depends upon the security policy in place. For
example, in a policy where security is premium and having
a relatively high false alarm rate is tolerable, LAST n is a
good choice. In most other cases, DECAYED_WEIGHTS would
be preferred.

4.4 Sensitivity Variation

Performance variation as a function of sensitivity
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Figure 6: Effect of Sensitivity

Sensitivity is a critical feature of an IDS. It is an indicator
of the response time of the IDS. Overly sensitive IDS re-
sponds to noise and hence has a high false positive rate. For
different rating metrics, sensitivity varies dramatically. We
prefer to define sensitivity in terms of the weight of current
sequence’s similarity to the profile in the current sequence’s
rating, i.e., for LAST_n, WEIGHTED and DECAYED_WEIGHTS, the
sensitivity is %, o and a; respectively. For example, for
LAST_n, WEIGHTED, DECAYED_WEIGHTS, Weight = 0.01 would
imply n=100, o = 0.01, a; = 0.01 respectively. For these
experiments, we fixed Taccgpr and use LAST n rating met-
ric.

Figure 6 shows that as the weight of the current sequence’s
similarity to the profile increases, SELF TTA and OTHER
TTA decreases due to noise being logged by the IDS. A less
sensitive IDS has a slow response time.

45 Effect of Intra-cluster Threshold

The intra-cluster similarity threshold r controls the amount
of variance permitted within a cluster and hence it decides
how tightly the profile fits the test data. We tested the
performance for all possible values of r, i.e., 1, 2, 3, and 4
(since I = 5). Figure 7 shows that as the value of 7 increases,
SELF ACCEPT increases and OTHER REJECT decreases.
This is because the model progresses from over-fitting to
becoming too generalized. Also important, is the steep rate
at which it switches in performance at one value of r to the
next, due to the whole values of the similarity metric chosen.



Performance variation as a function of r
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4.6 Effect of Test Data Size
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Figure 8: Effect of Test Data Size

The test data size is crucial as human behavior is con-
stantly changing and the performance degrades as a result
of being tested on concepts not learnt during the training
phase. Also, it emphasizes the rate at which user behavior
changes, i.e., concept drift. We tested the model developed
for test data sizes of {100, 150, 200, 250, 300, 400, 500, 600,
700} sequences. Figure 8 shows that as test data size in-
creases, performance hardly varies. This is probably due to
the lack of sufficient concept drift in the user behavior to
register. The variation of TTA is a result of the fact that if
there are no anomalous sequences in a test set, the TTA is
assumed to be the size of the set.

4.7 Effect of Similarity Metric

We tried out two similarity measures, viz. MCAP and
LCS. According to results from Lane [11], MCAP performs
better than MCP, MCE and MCEP, hence we did not test
them. Note that the empirically selected Taccrpr corre-
sponding to each metric is different.

As seen in Figure 9, LCS is slower than MCAP in terms
of performance as it is an O(I?) algorithm (see rightmost set
of bars). However, since small ! yields good accuracy, we
chose a small sequence length (I=>5), and the cost overhead
is tolerable. On the other hand LCS outperforms MCAP in
all categories other than OTHER TTA. Thus choosing the
similarity measure involves a tradeoff between two of our
desirable characteristics viz. minimal overhead versus accu-
racy. We opt for accuracy, as we believe that the overhead
becomes truly intolerable at training time, which is done
at initialization. The overhead incurred during the testing
phase, we believe is acceptable in return for the resultant
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accuracy.

4.8 Real-time Learning

In the next set of experiments, we allowed real-time learn-
ing as well, i.e., concepts learnt during testing are added to
the profile. We use /_sup to denote the minimum number of
anomalous sequences seen so far, for online clustering to be
applied to group them. In the extreme bars of Figure 10 for
each performance measure, we see that real-time learning
improves SELF ACCEPT marginally, while OTHER RE-
JECT decreases substantially. This suggests that IDS per-
form better when they do not learn during real-time (for
l_sup = 00, i.e., never invoke online clustering). This is be-
cause, in the absence of expert supervision, the IDS is fooled
easily. In other words, although new concepts are learnt, due
to which SELF ACCEPT increases, new concepts are learnt
from the masquerader as well and hence OTHER REJECT
decreases.

This problem can be remedied in a number of ways: 1)
Before admitting new clusters to the profile, we do send a
warning to the security officer, who can then guide the sys-
tem. 2) We could create user classes by clustering across
user profiles [11], i.e., such classes could possibly differen-
tiate users on the basis of their skill, or the types of ap-
plications they were using. Thus each user would belong
to a class. We could admit new clusters to the profile if
they existed in profiles of other users belonging to the same
user class. 3) We can monitor the rate at which the profile
is changing, i.e., the rate at which new clusters are being
added to the profile. If that changes dramatically, we could
stop admitting clusters to the profile[23]. 4) To avoid creat-
ing clusters for noise, cluster a list of anomalous sequences
only if they meet certain support requirements, i.e., l_sup.

In Figure 10, where we have tested option 4) from above,
SELF ACCEPT increases and so does OTHER REJECT as
l_sup increases, due to elimination of noise from the concepts
learnt.

It was observed that when we tested option 3) from above,
by monitoring the number of incrementally mined clusters
during real-time learning, the mean ratio of clusters pro-
duced when tested with OTHER data as compared to SELF
data is 1.85. Thus, nearly twice the number of clusters are
produced during times of attacks as compared to during
times of normal usage. Also it was observed that during
times of normal usage, the number of type B alarms raised
is 2.41 times that produced during testing against OTHER
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data, i.e., larger clusters of anomalous sequences are pro-
duced during times of attacks.

5. DISCUSSION

Our system achieves approximately 80% detection rate
and 15% false positive rate. While these numbers are lower
than those reported by Ryan et al [18] (96% and 7% respec-
tively) and DuMouchel et al [6] (78% and 6.6% respectively),
their dataset is different, and it is thus not meaningful to
directly compare these numbers. On the other hand, our
results are better than those reported by Lane and Brod-
ley [12] (74% and 28% respectively), who used the same data
as in this paper. The advantages of ADMIT over the other
implementations are that it requires a much shorter train-
ing time, summarizes the data and achieves model scaling
simultaneously. ADMIT is better suited to real-time appli-
cation than the methods of DuMouchel and Lane, as it can
use shorter window sequences. Keep in mind that raw ac-
curacy numbers only give a partial picture of the complex
process of detecting intrusions. For instance in setting pa-
rameters to maximize accuracy in ADMIT, we have traded
off time and sensitivity by using the LCS algorithm and rat-
ing metrics respectively. Also, our work does not advocate
the use of LCS, DECAYED_WEIGHTS, etc. It rather represents
the advantages of using them in comparison to others. The
actual selection of parameters depends on the security policy
requirements. Also, as the training data can be clustered,
only the centers require to be labeled by the security officer,
thereby reducing the requirement of labeled data.

Future Work: . Open problems that we plan to address
include reducing amount of training data required by estab-
lishing user classes and using sequences from user class as
initial clusters for user believed to belong to that class (as in
section 4.8). Other improvements would be using different
parameters for different users and parameter selection using
cross-validation. Integration with profiles based on biomet-
ric data, e.g., keystroke monitoring are future directions of
research.
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