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ABSTRACT
Animal models for human diseases are of crucial importance
for studying gene expression and regulation. In the last
decade the development of mouse models for cancer, dia-
betes, neuro-degenerative and many other diseases has been
on steady rise. Microarray analysis of patterns of gene ex-
pression in mouse models of various pathological types and
the study of molecular level changes as a result of inter-
ventions, holds lot of promise to the understanding of bi-
ological processes involved. The genes which show normal
variance across genetically identical mice are of particular
interest because they could serve as a databank for possi-
ble false positives in gene expression studies in similar kind
of mice. Also they could provide useful insights into the
biological processes behind the differential expression pat-
terns in otherwise similar mice. Our approach systemat-
ically removes variance due to experimental noise in each
of the mice and then mines for normal variance among the
identical mice.This analysis carried over six tissues sampled
from mice, resulted in several genes which showed varia-
tions among identical mice, thus enabling a comprehensive
database of normal variations in gene expression for mouse
models. A large number of these genes are known to be re-
lated to stress response, hypertension and heat shock. Also
Principal Component Analysis was done to visualize sim-
ilarity among the mice models and within the replicates.
These studies help in the design of gene expression studies
in mouse models and help in validation of the results.

Keywords: gene expression, replicates, mouse models, nor-
mal variance, immune response, hypertension, principal com-
ponent analysis

1. INTRODUCTION
High-throughput gene expression has become an important
tool to study transcriptional activity in a variety of bio-
logical samples. Mouse models are playing an important
role in the study of developmental biology, genetics, be-
havior, and disease. To interpret experimental data, the
extent and diversity of gene expression for the system un-
der study should be well characterized. An ubiquitous and
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under-appreciated problem in microarray analysis is the in-
cidence of microarrays reporting non-equivalent levels of an
mRNA or the expression of a gene for a system under repli-
cate experimental conditions. This is due to various sources
of noise contributed by the technicalities of the experiment
and also biological variation. Statistical methods have been
developed to determine the significance of the fold changes
observed between the test sample and normal sample, ac-
counting for the noise. Unfortunately little is known about
the normal variance of mouse gene expression in vivo or the
noise in the microarray data due to biological variation.

Levels of several genes vary significantly in more than one
tissue. These variances in gene expression might be one of
the reason for observing different phenotypes of transgenic
mice based on a different genetic background. These studies
will help to define the baseline level variability in mouse gene
expression and accentuate the importance of replicated mi-
croarray experiments. Furthermore, the analysis is expected
to expose some genes which have been reported previously
as differentially expressed because of pathological state or
experimental variation. Also further study of these genes
could lead us to useful insights into the biology behind the
normal gene expression variation, independently of genetics.

The use of replicates in microarray experiments is not very
widely recognized because of the prohibitive costs and the
time involved. However, the use of replicates is very impor-
tant to develop more reliable and consistent findings. A sin-
gle microarray experiment would contain significant inher-
ent noise. By pooling data from replicates, we can provide a
more reliable classification of gene expression [11]. Statisti-
cal methods have been used for analyzing replicated cDNA
microarray experiments. The authors stress that replica-
tion in microarray studies is not equivalent to duplication
and hence is not a waste of scientific resources. Experimen-
tal replication is essential to reliable scientific discovery in
genetic research. [20] developed a mathematical model to
estimate the number of replicates needed to provide data
within acceptable error limits. [11] have modeled the effect
of number of cultures, arrays, etc. on the variability in the
data (from preliminary experiments); target fold change in
data and costs of experimental components.

Although wide range of study has gone into the use of repli-
cates to minimize the effect of noise on the resultant find-
ings, little research has gone into explaining the normal vari-
ation of some genes in genetically similar species. [4] ana-
lyzed the expression profile of normal male C57Bl6, C3H,
Balb/c, DBA/2, and FVB mice, respectively, to study the
normal variance. In total, they profiled gene expression of



75 mouse samples of 15 different individuals. They used a
U74A mouse Gene array from Affymetrix to quantify tran-
script levels in brain, liver, heart, spleen, and kidney in the
five genetic backgrounds. [16] assess natural differences in
murine (i.e., mice/rats) gene expression, they used a 5406-
clone spotted cDNA microarray to quantify transcript levels
in the kidney, liver, and testis from each of 6 normal male
C57BL6 mice. They use ANOVA to compare the variance
across the six mice, to the variance among four replicate ex-
periments performed for each mouse tissue. For the 6 kidney
samples, 102 of 3,088 genes (3.3%) exhibited a statistically
significant mouse variance at a level of 0.05. In the testis,
62 of 3,252 genes (1.9%) showed statistically significant vari-
ance, and in the liver, there were 21 of 2,514 (0.8%) genes
with significantly variable expression. Immune-modulated,
stress-induced, and hormonally regulated genes were highly
represented among the transcripts that were most variable.
The expression levels of several genes varied significantly in
more than one tissue. Natural variability is also interest-
ing from a biological standpoint. Inbred mouse populations
allow us to study how gene expression varies without the
effect of genotypic variation.

The analysis of the gene expression assays from three tis-
sues in mouse (kidney, testis, and liver) have resulted in a
set of genes which have been found to have normal physi-
ological variance across the six mice. A large set of these
genes are missing from a previous analysis carried out on
the same datasets [16]. Also our method was tested on
a dataset [12], where similar analysis was conducted using
Affymetrix oligo arrays. Our approach resulted in finding of
many genes which exhibited normal variance among three
identical mice. This analysis was done over four mouse tis-
sues (brain, heart, liver, lung). We found a good number of
genes which are known to be involved in stress response and
hypertension. Some of the genes have been reported in pre-
vious studies as significantly differentially expressed, under
different pathological conditions. This calls for further anal-
ysis of these genes, before reporting them as differentially ex-
pressed genes in all further studies, involving study of gene
expression in mice using microarrays. Principal Component
Analysis has been done to capture the variance in the data
and provide a powerful tool to visualize the similarity among
the mice and within the replicates.

2. METHODOLOGY
We used three datasets of kidney, liver and testis available at
http://www.pedb.org/MSM/NORMAL provided by [16]. Six ge-
netically identical male C57BL6 mice were used to compare
the expression values of 5,406 unique mouse genes. Four sep-
arate microarray assays were conducted for each organ from
each animal, for a total of 24 arrays per organ. For half of
the replicate arrays, the experimental RNA was labeled with
the Cy3 dye and the reference RNA with the Cy5 dye; for
the other half, the labeling scheme was reversed to control
for any dye-based bias. Also the dataset of [12] was used
which contained the expression values for three mice across
the four organs of liver, heart, lung and brain. Each ex-
periment was replicated three times. Affymetrix oligo chips
were used in these experiments.

In ideal conditions, the gene expression values for each gene
should be the same across all array experiments. But due
to the technical limitations the data contains lot of inherent

noise, which could also be due to normal variation in expres-
sion of the genes across the genetically identical male mice.
Our goal is to extract those genes which are contributing to
the noise due to their biological variance.

In our paper, we try to capture the genes which show vari-
ance among the identical mice, by trying to eliminate the
variations which come in due to experimental errors and
fluctuations. We use a very robust method to exclude genes,
which would eliminate any considerable variance in the repli-
cates. Our approach is based on the following steps: 1) Cal-
culation of fold-change ratio and discretization of expression
levels for each gene, 2) Elimination of experimental noise,
3) Constructing an expression profile for each gene, and 4)
Calculating and raking by gene variability via entropy cal-
culation. We describe the steps in more detail below.

2.1 Fold-Change Ratio
We assume that we have n genes, in m mice, with r repli-
cates for each mice, for a given tissue. We denote gene
i as gi. Let Si

t denote the expression level for gene gi in
the test sample and Si

r the expression of g
i in the reference

microarray samples. We define fold-change ratio as the log-
odds ratio of the expression intensities of the test sample

over the reference sample, given as log2(
Si

t

Si
r
). To analyze the

variability, we discretize the fold-change into k bins rang-
ing from very low expression levels to very high expression
levels. The data is normalized in such a way that the me-
dian of the deviation from the median was set to the same
value for the distribution of all the log-ratios on each ar-
ray [16]. Similar analysis was done for the Affymetrix data.
The raw data containing the intensities was median centered
and scaled by the standard deviation. This normalization
technique was chosen after experimenting with other meth-
ods like linear regression and mean centering. Though none
of these methods yielded a normal distribution for the his-
togram plot of the gene expression values of all clones in a
sample, the median centered normalization technique per-
formed the best and also provided a uniform distribution
for our binning method.

If the number of bins for expression level discretization is too
small or too high, then it leads to problems in analysis. In
coarse binning, the information about the values is ignored,
and in a very fine binning, the patterns are lost. We tried
several values of k and found that k = 5 works well. The
bin intervals are determined using the uniform frequency
binning method. Other popular methods like discriminant
discretization, boolean reasoning based and entropy based
discretization can be considered [13]. In frequency binning
method we discretized the relative expression (fold-change)
into 5 levels depending on their expression value. The values
of -1.5, -0.5, 0, 0.5, and 1.5 for the fold change ratio were
taken as thresholds for very low (VL), low (L), normal (N),
high (H), and very high (VH) expression, respectively. That
is, V L ∈ (−∞,−1.5], V ∈ (−1.5,−0.5], N ∈ (−0.5, 0.5),
H ∈ [0.5, 1.5), and V H ∈ [1.5,+∞). We use the notation gi

e

to denote the expression level for gene gi in a given replicate,
where e ∈ {V L,L,N,H, V H}. The binning strategy used
in the case of Affymetrix data was slightly different. Since
the distribution was not symmetric the intervals too were
optimized such that the number of genes falling within each
bin was roughly the same. Histogram plots were constructed
for all the samples to analyze for the distribution patterns.



Rep1 Rep2 Rep3 Rep4
Mouse1 {g1

V H , g2
V L, g

3
V H , g4

L} {g1
V H , g2

V L, g
3
V H , g4

N} {g1
V H , g2

V L, g
3
V H , g4

N} {g1
V H , g2

V L, g
3
V H , g4

N}
Mouse2 {g1

V H , g2
V L, g

3
L, g

4
N} {g1

V H , g2
V L, g

3
L, g

4
N} {g1

V H , g2
V L, g

3
L, g

4
N} {g1

V H , g2
V L, g

3
H , g4

N}
Mouse3 {g1

V H , g2
N , g3

V H , g4
N} {g1

V H , g2
N , g3

V H , g4
N} {g1

V H , g2
N , g3

V H , g4
N} {g1

V H , g2
N , g3

V H , g4
L}

Mouse4 {g1
V H , g2

N , g3
V L, g

4
L} {g1

V H , g2
N , g3

V L, g
4
N} {g1

V H , g2
N , g3

V L, g
4
N} {g1

V H , g2
N , g3

V L, g
4
N}

Mouse5 {g1
V H , g2

H , g3
L, g

4
L} {g1

V H , g2
H , g3

L, g
4
L} {g1

V H , g2
H , g3

L, g
4
L} {g1

V H , g2
H , g3

L, g
4
L}

Mouse6 {g1
V H , g2

H , g3
V H , g4

L} {g1
V H , g2

H , g3
V H , g4

L} {g1
V H , g2

H , g3
V H , g4

N} {g1
V H , g2

H , g3
V H , g4

N}

Table 1: The gene expression states of 4 genes in 24 (6 mice, 4 replicates) assays, with five possible levels: Very High (VH),
High (H), Very Low (VL), Low (L) or Normal (N)

The expression levels were binned in the following 4 intervals
[−∞,−0.1), [−0.1, 0), [0, 0.3), [0.3,∞].

Explaining the method for the first dataset with the help of
an example, let us consider the expression of 4 genes in six
mice with 4 array replicates in each, as shown in Table 1.
The analysis of the second dataset also employs the same
methodology, only that the initial binning step is slightly
variant.

2.2 Elimination of Experimental Noise
In order to eliminate the noise due to experimental fluctu-
ations, we process the data taking one mice at a time. For
every mice the genetic expression signatures are obtained
and compared across all r replicates. Only those genes
which show consistent expression signature in all r replicates
are chosen and the ones which show even a slight deviation
in any of the replicates are eliminated. This methodology
takes a very stringent approach towards eliminating even
the slightest errors due to technical noise. One shortcoming
of this approach is that it would not eliminate any genes
which show high fluctuations in the range (−0.5, 0.5) . In
our study of normal variance to identify genes which have
been falsely reported as differentially expressed, the genes
which we might fail to eliminate do not contribute to the
databank anyway, because they lie in the normal expression
range. So, our approach would eliminate most of the noise
which comes due to technical/experimental issues. This op-
eration is done on all m mice, as a result of which we have
gene expression signatures in all the mice with minimal ex-
perimental noise.

Gene Expression
Mouse1 (F1) {g1

V H , g2
V L, g

3
V H}

Mouse2 (F2) {g1
V H , g2

V L, g
4
N}

Mouse3 (F3) {g1
V H , g2

N , g3
V H}

Mouse4 (F4) {g1
V H , g2

N , g3
V L}

Mouse5 (F5) {g1
V H , g2

H , g3
L, g

4
L}

Mouse6 (F6) {g1
V H , g2

H , g3
V H}

Table 2: Gene expressions after elimination of experimental
noise

Table 2, illustrates this process on our example data. For
example consider Mouse1. Since gene g4 is differentially
expressed as L in replicate 1, but as N in the other three
replicates, we eliminate g4 from further consideration. The
resulting expression signatures for Mouse1 and other mice
from our example are shown in Table 2.

2.3 Gene Expression Profile
Let Fj represent the gene expressions of the j-th mice after

the elimination of experimental noise. The Fj ’s contain the
expression level (very high, high, normal, low, very low) in-
formation of each gene in each of them mice in our example.
Some values could be missing due to elimination in the first
stage. The Fj values, for our example of six mice, are shown
in Table 2.

From the Fj values we construct a frequency table, which
contains the number of occurrences of each gene for each dis-
cretized expression level (VH, H, N, L, VL). The frequency
of every distinct (gene gi, expression level e) pair across all
Fj , is used to populate the frequency table. The frequency
for gene gi and expression level e is given as f i

e =
Pm

j=1 δ
i
e(j),

where m is the number of mice, and δi
e(j) is a characteristic

function that notes the presence/absence of gene gi at level
e in mouse j, defined as: δi

e(j) = 1, if g
i
e ∈ Fj , and δi

e(j) = 0,
if gi

e 6∈ Fj . The frequency table obtained for our example is
shown in Table 3. As an example, g2, has expression level
V L in mice 1 and 2, level N in mice 3 and 4, and level H in
mice 5 and 6. Thus the expression profile for g2 is given by
the vector (0, 2, 2, 0, 2), as shown in the table.

f i
V H f i

H f i
N f i

L f i
V L

Gene g1 6 0 0 0 0
Gene g2 0 2 2 0 2
Gene g3 3 0 0 1 1
Gene g4 0 0 1 1 0

Table 3: Expression Profile: Frequency table for the four
genes

2.4 Entropy-based Variability Ranking
The genes that show presence in more than one discrete
level are of interest to us. The frequency table is analyzed
further to identify those genes which show considerable vari-
ance by their presence in more than one state. To capture
the variance in a gene’s expression level, the entropy mea-
sure was used. Entropy gives us the amount of disorder in
the expression values of a gene, and thus is a measure of the
normal variance, since the noise due to experimental varia-
tion is eliminated prior to this step. The entropy measure
for a gene gi is given as follows, E(gi) = −

Pk

e=1 p
i
e log2(p

i
e),

where k is the number of discrete expression levels, and pi
e

is the probability of gene gi having expression level e, which

is given as pi
e =

fi
e

P

k
j=1

fi
j

.

By definition of entropy, if a gene has only one expression
level (say j), then pi

j = 1 and E(gi) = 0. On the other
hand, if a gene has the most variance (i.e., equal occurrence
at each expression level), then P i

j = 1/k for all expression

levels j, and E(gi) = −
Pk

j=1 1/k log2(1/k) = − log2(1/k) =

log2(k). In our approach genes with entropy 0, i.e., those



having no variance in expression across the mice, are dis-
carded, and the remaining genes are ranked in descending
order of their entropy (and thus variance). The entropy
ranking for the four genes (along with the probability of
each expression level) in our example are shown in Table 4.
Gene g2 and g3 are of most interest to us because they show
variation in expression states across the six mice. On the
other hand gene g1 is always high in all six mice, showing
no variance.

pi
V H pi

H pi
N pi

L pi
V L Entropy

Gene g2 0 0.33 0.33 0 0.33 1.59
Gene g3 0.6 0 0 0.2 0.2 1.37
Gene g4 0 0 0.5 0.5 0 1
Gene g1 1.0 0 0 0 0 0

Table 4: Entropy-based gene variability ranking

2.5 Weighted Expression Profiles
In our approach to experimental noise elimination, any gene
with varying expression level among the replicates is con-
sidered experimental noise, and eliminated. Instead of such
a stringent approach, we can choose to retain a gene pro-
vided it has the same expression level in a given fraction
of the replicates. For instance, gene g4 has expression level
N in three out of the four replicates for Mouse1. If we set
our threshold to 75%, then we would retain g4

N in the gene
expression for Mouse1 in Table 2.

Another approach is to construct a weighted expression sig-
nature, as follows: For every gene we record the fraction of
the replicates in which it takes a particular value. For in-
stance, for Mouse1, gene g1 always takes the value V H, so
its weighted expression is g1

V H(1.0). On the other hand, gene

g4 is N in three and L in one out of the four replicates; we
record its weighted expression as g4

N(0.75),L(0.25). We denote

by wi
e(j) the weight of gene g

i at expression level e in Mouse
j. Table 5 shows the weighted expression signatures for all
the six mice (note: if the weight is 1.0 we omit the weight;
we write g1

V H instead of g
1
V H(1.0)).

Gene Expression
Mouse1 (F1) {g1

V H , g2
V L, g

3
V H , g4

N(0.75),L(0.25)}

Mouse2 (F2) {g1
V H , g2

V L, g
3
H(0.25),L(0.75), g

4
N}

Mouse3 (F3) {g1
V H , g2

N , g3
V H , g4

N(0.25),L(0.75)}

Mouse4 (F4) {g1
V H , g2

N , g3
V L, g

4
N(0.75),L(0.25)}

Mouse5 (F5) {g1
V H , g2

H , g3
L, g

4
L}

Mouse6 (F6) {g1
V H , g2

H , g3
V H , g4

N(0.5),L(0.5)}

Table 5: Weighted gene expressions

From the weighted gene expressions, we can construct a
weighted profile using the approach in Section 2.3. The
weighted frequency for gene gi and expression level e is
given as f i

e =
Pm

j=1 w
i
e(j), where m is the number of mice.

The weighted frequency table obtained for our example is
shown in Table 6. As an example, g4, has expression levels
N(0.75) in Mouse1, N(1.0) in Mouse2, N(0.75) in Mouse3
and Mouse4, and N(0.5) in Mouse6. Thus f 4

N = 0.75 +
1.0 + 2 × 0.75 + 0.5 = 3.75, and similarly f 4

L = 2.25. Thus
the weighted expression profile for g4 is given by the vector
(0, 0, 3.75, 2.25, 0), as shown in the table.

f i
V H f i

H f i
N f i

L f i
V L

Gene g1 6 0 0 0 0
Gene g2 0 2 2 0 2
Gene g3 3 0.25 0 1.75 1
Gene g4 0 0 3.75 2.25 0

Table 6: Weighted Expression Profile

From the weighted expression profile, we can derive the
entropy-based variability ranking for each gene as shown in
Table 7. Comparing with Table 4, we find that g3 is ranked
higher in terms of variability than g2, but the overall trend
is similar.

pi
V H pi

H pi
N pi

L pi
V L Entropy

Gene g3 0.5 0.04 0 0.29 0.17 1.64
Gene g2 0 0.33 0.33 0 0.33 1.59
Gene g4 0 0 0.62 0.38 0 0.95
Gene g1 1.0 0 0 0 0 0

Table 7: Entropy-based gene variability ranking

2.6 Principal Component Analysis (PCA)
PCA [7] is a classical technique to reduce the dimensional-
ity of the data set by transforming to a new set of variables
(the principal components). It has been used in the analy-
sis of gene expression studies. Principal components (PC’s)
are uncorrelated and ordered such that the k-th PC has the
k-th largest variance among all PC’s. The k-th PC can be
interpreted as the direction that maximizes the variation of
the projections of the data points such that it is orthogonal
to the first k − 1 PC’s. PCA is sometimes applied to re-
duce the dimensionality of the data set prior to clustering.
Using PCA prior to cluster analysis may aid better extrac-
tion of the cluster structure in the data set. Since PC’s are
uncorrelated and ordered, the first few PC’s, which contain
most of the variations in the data, are usually used in clus-
ter analysis. Unless external information is available, [19]
recommend cautious interpretation of any cluster structure
observed in the reduced dimensional subspace of the PC’s.
They observe no clear trend between the number of princi-
pal components chosen and the cluster quality. [6] use PCA
analysis for extracting tissue specific signatures.

In this paper we use PCA to analyze how well the genes
we have extracted capture the normal variance between the
mice, eliminating the variance due to any other sources
to the maximum possible extent. Projection on to a 3-
dimension space (the top three PCs) allows for better vi-
sualization of the entire data set. Figure 1 shows the ar-
rangement of the samples by plotting them on the princi-
pal components derived from: 1) PCA analysis of all the
genes in the dataset, and 2) PCA analysis of only those
genes which were found to have normal variance across mice.
These plots are shown for all the three tissues under study.
Kidney and testis show non-random arrangement of the as-
say points while liver has less discernible patterns. As dis-
cussed in the next section, we observed that 1) the experi-
mental replicates belonging to any single mice cluster close
to each other, and 2) the mice (biological replicates) are also
grouped into visible clusters. Pathologically similar mice are
clustered together.



3. RESULTS
We applied our entropy-based method to detect normal vari-
ance in gene expression for the two datasets taken from [16]
and [12]. Due to lack of space we give a detailed account
only for the first dataset, and show some results on the latter
in the Appendix.

3.1 Kidney Tissue
For the kidney tissue, Table 9 shows the genes that were
previously unreported as having differential expression, Ta-
ble 10 shows the list of genes that were previously reported
as varying by [16] and also confirmed by our entropy-based
approach, and Table 8 shows the genes that were reported
as varying by [16] but not found by our analysis. We missed
some previously known varying genes due to our stringent
elimination of any gene that shows variable expression in
different experiments. We verified that all these genes were
dropped in our experimental noise elimination step.

UnigeneID Name Relative Expression
Mm.28100 1300002P22Rik 0.76
Mm.13859 1810055P16Rik -1.42
Mm.159813 2210418O10Rik 0.31
Mm.157135 2610023M21Rik -0.05
Mm.28386 3110001D19Rik -1.04
Mm.23682 4930453N24Rik -4.63
Mm.194940 AI194696 -2.62
Mm.22459 AI265322 0.89
Mm.447 AI447904 -1.94
Mm.163 B2m -2.07
Mm.88793 Fga -5.50
Mm.26991 H13 0.12
Mm.1192 Igj 1.00
Mm.20354 Klc1 0.13
Mm.18651 Lorsdh 0.63
Mm.1499 Pkib -1.00
Mm.1779 Scp2 -1.02
Mm.46401 Son -0.23
Mm.196591 Spi1-3 -5.52
Mm.29758 Tcp11 -5.15
Mm.1948 Tctex1 -3.87
Mm.14418 Tesp2 -3.35
Mm.18847 Wrnip 0.08

Table 8: Unconfirmed previously reported varying genes
(Kidney)

In kidney tissue around 3.5% of the 3088 genes where found
to be showing considerable variance across the six mice. As
reported by [16] we found several immune modulated and
stress responsive genes. Apart from Cish (reported pre-
viously), other hypertension related genes like Asah1 and
Adrb2 were found to show differential expression across the
six mice. Adrb2 and Asah1 are well known rat hypertension-
associated homologue also known to be play a role in hyper-
tension in humans. Also the gene Ezh2 (enhancer of zeste
homologue 2 (Drosophila)) was found to be differentially ex-
pressed. Small interfering RNA (siRNA) duplexes targeted
against Ezh2 reduce the amounts of Ezh2 protein present
in prostate cells and also inhibit cell proliferation in vitro.
Ectopic expression of Ezh2 in prostate cells induces tran-
scriptional repression of a specific cohort of genes [14]. A
gene from the solute carrier family Slc12a2, was found to

be having high normal variance among the six mice. Many
of the solute carrier genes are known to be involved in hy-
pertension. Shoc2, involved in shock response and Itga3, a
immune response related gene were also found to be differ-
entially expressed. This could be due to the varying physi-
ological state of the mice at the time of killing. These genes
were also reported by [16]. Also Psmd7, a programmed cell
death protein, was found to be variably expressed among
the six mice.

3.2 Liver Tissue
In liver tissue 23 out of 2513 genes, show significant vari-
ation in their expression levels among the six mice. CisH
and cyp4a14 were also found showing high variance in the
liver tissues as we had observed in the kidney. CXADR,
a target for experimental gene therapies for cancer [9], has
been found to be considerably varying in gene expression
among the mice. NeuroD2 was found to exhibit differential
expression levels among the six mice. Its associated protein
is necessary for development and survival of central nervous
system neurons [15]. Over expression of Hoxb6 [8] produces
early postnatal death with craniofacial and axial anomalies,
especially in the cervical region. Hoxb6 is expressed in lung
of 14 day old mouse embryos, declining in level with gesta-
tional age but still present at birth [3]. Hoxb6 is involved
in transcription factor complexes and has found to be nor-
mally varying. Also Ncor2, a nuclear receptor co-repressor
2 was found to be variably expressing, It performs combina-
torial roles of the nuclear receptor co-repressor in transcrip-
tion and development. A heat shock protein, Hspa9a, was
also found to be variably expressing. The liver was found
to have the least amount of genes whose expressions levels
varied considerably.

3.3 Testis Tissue
Out of the 3252 genes analyzed in the testis tissue, 63 were
found to be showing differential expression levels across the
six mice. R1p2, a normally varying gene in our analysis is
known to be involved in the developmental stages of mouse
[10]. Nr4a2 a nuclear receptor and RAC3 a co-activator
for nuclear/steroid receptors have been found to be dif-
ferentially expressing. [18] show that mouse RAC3 is ex-
pressed in a tissue-specific fashion and distributed mainly
in the oocytes; they found that the steroid receptor co-
activator SRC-3 (p/ CIP/ RAC3/ AIB1/ ACTR/ TRAM-1)
is required for normal growth, puberty, female reproductive
function, and mammary gland development. We hypothe-
size that RAC3 could play an important role in the devel-
opment of testis as well. Map/Erk kinase 1 (MEK1) and
MEK2 activate the Erk/MAP kinases and have been impli-
cated in cell growth and differentiation. [1] have observed
that MEK2 RNA message is expressed at high levels in all
embryonic tissues examined, including all neural tissues, and
liver. MEK1, on the other hand, is expressed at very low
levels in most embryonic murine tissue but can be detected
in developing skeletal muscle. RELNOC was another pro-
tein kinase which was found to be differentially expressing
among the six mice. Cox8a is another important and well
studied gene involved in electron transport which was found
to be differentially expressing among the mice.

Importantly, many of the genes that we found to vary nor-
mally have been reported previously to be differentially ex-
pressed because of a pathological process or experimental



UnigeneID Name Expression Entropy
Mm.5598 Adrb2 0.30 0.28
Mm.22747 AI415104 0.40 0.30
Mm.13148 AI450991 -0.49 0.30
Mm.22183 AI785303 0.39 0.24
Mm.14189 AI841487 -0.34 0.28
Mm.22547 Asah1 0.53 0.30
Mm.20722 AU022875 0.44 0.24
Mm.28639 AU041016 0.43 0.28
Mm.29987 B230114J08Rik -0.56 0.28
Mm.24143 Bbp 0.47 0.24
Mm.25848 Bckdha 0.50 0.28
Mm.157101 C330007P06Rik 0.28 0.24

Mm.354 Calb1 1.46 0.28
Mm.34246 Calm -0.05 0.29
Mm.2018 Cbfb -0.55 0.30
Mm.10124 Chetk -0.51 0.28
Mm.25836 Cldn8 1.43 0.28
Mm.22409 Clic4 0.54 0.30
Mm.2735 Cubn 1.48 0.28
Mm.21965 D5Ertd593e -0.56 0.28
Mm.21103 D7Wsu105e 0.45 0.29
Mm.19726 Dnahc11 -0.35 0.30

Mm.56 Dscr1 0.37 0.22
Mm.140186 Eif4ebp2 0.42 0.28
Mm.5027 Ezh1 0.56 0.30
Mm.57075 Fau-ps3 0.20 0.30
Mm.28480 Fkbp3 -0.27 0.28
Mm.193539 H1f2 1.33 0.30
Mm.156892 Hnrpd -0.50 0.30
Mm.2849 Hspa9a 0.38 0.24
Mm.14099 Hzf-pending -1.55 0.28
Mm.28223 Idb4 0.50 0.24
Mm.29590 Idh3b 0.41 0.22
Mm.57035 Itga3 0.54 0.24
Mm.7362 Lmnb2 -1.47 0.30
Mm.4088 Ltc4s 0.48 0.30
Mm.2395 Mea1 0.50 0.28
Mm.8866 Mllt10 -0.46 0.28
Mm.19170 Mnpep-pending -0.47 0.30
Mm.16366 Mtcp1 0.44 0.28
Mm.22508 Mtx -1.40 0.30
Mm.57230 Neurod3 -0.10 0.22
Mm.1131 Npdc1 0.32 0.28
Mm.4918 Nr3c1 0.55 0.24
Mm.56948 Nt5 1.35 0.22
Mm.7952 Peg3 0.56 0.30
Mm.826 Pigf 0.99 0.30

Mm.18347 Psmd7 -0.42 0.22
Mm.2404 Ptpn16 0.92 0.24

Mm.180561 Rbpsuh 0.31 0.28
Mm.33376 Shoc2-pending 0.49 0.28
Mm.4168 Slc12a2 0.78 0.22
Mm.27330 Smarce1 0.37 0.22
Mm.10704 Snx12 0.60 0.24
Mm.154045 Tacstd2 1.43 0.28

Mm.112 Tcea3 0.56 0.30
Mm.2215 Tcof1 0.43 0.28
Mm.88645 Tes -1.50 0.30
Mm.24096 Thbd 0.60 0.24
Mm.23959 Trim13 -0.66 0.28
Mm.10153 Twg-pending 0.54 0.24
Mm.21846 Ubl3 0.54 0.30
Mm.1298 Zfp36 0.63 0.28

Table 9: Previously unreported genes with normal variance
(Kidney)

UnigeneID Name Expression Entropy
Mm.101274 2010008E23Rik -0.47 0.29
Mm.10826 Umod 1.35 0.22
Mm.1339 chgb -0.40 0.28
Mm.13445 261000803Rik 1.40 0.24
Mm.14097 Tapbp -0.48 0.30
Mm.1541 Snta1 0.28 0.28
Mm.15811 Bcl6 -0.18 0.30
Mm.17224 - 0.70 0.30
Mm.17353 - -1.53 0.22
Mm.17974 - 0.29 0.22
Mm.18535 - -0.70 0.30
Mm.18571 Brf1 0.25 0.22
Mm.19187 Ptma 0.62 0.28
Mm.19310 Cors-pending 1.46 0.28
Mm.19316 - -1.84 0.28
Mm.200415 - 0.39 0.30
Mm.20046 Epb4.9 1.54 0.30
Mm.205791 - 1.35 0.30

Mm.208 1110060D06Rik -0.10 0.22
Mm.21228 2610101J03Rik -0.67 0.22
Mm.22513 kifc3 0.36 0.24
Mm.23452 - -1.79 0.22
Mm.23473 - 0.64 0.30
Mm.23565 - -1.97 0.24
Mm.23689 - 0.58 0.28
Mm.23853 - 0.69 0.24
Mm.24044 - 0.71 0.22
Mm.24108 - 0.58 0.30
Mm.24192 - -0.34 0.29
Mm.24395 - 0.38 0.22
Mm.24529 1100001F19Rik 0.27 0.30
Mm.25120 - -0.86 0.22
Mm.25497 - -2.36 0.22
Mm.27302 - 0.41 0.22
Mm.27311 AI463227 0.42 0.22
Mm.27725 A2m -3.72 0.24
Mm.27797 - 0.26 0.24
Mm.29381 Au021460 -1.42 0.28
Mm.29595 - 0.76 0.30
Mm.29932 - -1.91 0.28
Mm.30227 - -3.04 0.22
Mm.30266 Cnot7 0.03 0.28
Mm.30266 - -0.06 0.20
Mm.30605 - 0.65 0.22
Mm.31748 - 1.24 0.24
Mm.31764 - -2.62 0.22
Mm.31773 - -1.53 0.22
Mm.31992 - -1.91 0.24
Mm.32508 - -2.08 0.22
Mm.32758 - 0.78 0.24
Mm.334 Solt -1.08 0.30

Mm.34248 Dab2 1.55 0.29
Mm.4407 And 0.31 0.20
Mm.44199 - 0.32 0.24
Mm.4592 Cish 1.45 0.28
Mm.54120 - -0.61 0.22
Mm.604 - -1.69 0.24
Mm.6407 - -0.75 0.22
Mm.75983 - -1.95 0.22
Mm.87470 - -2.31 0.22
Mm.9199 Pole2 -0.30 0.24

Table 10: Previously reported (common) varying
genes (Kidney)



intervention. One recent study used microarrays to inves-
tigate the differential gene expression patterns during pre-
implantation mouse development [10]. Rpl12 was reported
to be differentially expressed while we found it to be nor-
mally varying in the testis tissue. PUFA (polyunsaturated
fatty acids) feeding can influence Protein Kinase C (PKC)
activity [2]. Itrp1 is another gene which has been reported
as differentially expressed [5] in papillary thyroid carcinoma,
while we found this gene to be normally varying in kid-
ney tissues. Another study investigated the effects of acet-
aminophen on gene expression in the mouse liver [17]. Eight
of the genes reported to differ in response to acetaminophen,
including CisH2, and Hsp40, were genes we found to vary
normally.

3.4 PCA Analysis
Examining the PCA plots visually gives us a good idea of
how our approach has faired (see Figure 1). In the case
of capturing normal variance in kidney tissue, our method
was able to separate the noisy data and group the assays
into distinguishable clusters. By eliminating the experimen-
tal noise we expect the replicates to form a close group for
each of the mice. In the case of the kidney tissue for genes
with normal variance, the assays arrange into two clusters.
One of the clusters has assays which include the replicates
from four mice (M1, M2, M5, M6), while the other clus-
ter has mice M3 and M4. This indicates that there is a high
similarity among these mice in kidney tissue. Similar results
were obtained after the analysis of testis tissue. However the
same mice did not cluster together as those from the kidney
analysis. This shows that the normal expression patterns
are tissue specific and cannot be generalized on the whole.
In the case of liver tissue no clear patterns were visible on
performing the PCA analysis. To summarize, kidney gene
expression patterns from the third and the fourth mice are
fundamentally different from the other ones. In the testis,
the first two mice are systematically different from the last
four mice. No pattern was observed in liver. PCA can be ad-
ditionally used as a platform to compare the performance of
different methodologies to determine normal variance. The
performance can be judged visually on the basis how well
the replicates cluster together or measure the goodness of
the clusters.

3.5 Other Datasets
We applied our entropy-based methodology on the Affymetrix
dataset from [12]. Some of the genes showing normal vari-
ance for Lung tissue are shown in Table 11. Similar results
were obtained for other tissues (Brain, Heart, Liver); we
omit the results due to lack of space.

4. CONCLUSION
The methodology followed here has significant advantages
over the ANOVA analysis [16] used on the same datasets.
One of the main advantages being that this method is very
robust to outliers. By binning the expression values we are
minimizing the effect of a few outliers as far as possible.
The possible use of even a single outlier skews the F-statistic
thus giving a false positive for differentially expressing genes
in normal identical mice. But the binning methodology
seems to give an unfair advantage to those genes which fall
in the center of the bins (more variance allowed), over the
ones which lie close to the interval boundaries. The inter-

val boundaries on inspection, revealed very few genes exist-
ing near the bin interval cuts. We found many more genes
which showed higher variability than those reported in the
existing database. Also it has been observed that the genes
which were missing from our results were eliminated during
the first step of pruning where genes showing the slightest
experimental variation were eliminated. If the data is ex-
tremely noisy, containing high levels of both experimental
and biological variance, or if the number of experiments is
large, this pruning step might eliminate most of the genes.
To avoid this, the weighted profile method can be used to
characterize the variance. Also the underlying assumptions
about the distributions of the populations and the indepen-
dence of the samples, required by the ANOVA analysis, are
not necessary for our methodology. Since our methodology
makes use of the frequency distributions in the bins, the
entropy measure calculated can be compared across vari-
ous experimental setups. The dependence on the size of the
experiments (number of experimental and biological repli-
cates) is less compared to the F-statistic measure.

Our approach to identify genes which show significant vari-
ation in their expression levels among the six mice has re-
sulted in a set of stress response and hypertension genes
which where not found in a earlier work [16] . Sah, Cox,
Cyp4a series of genes are well studied hypertension related
genes. This has been observed in spite of stringent crite-
ria to eliminate experimental noise. Also the percentage of
the genes which show normal variance are found to be ex-
actly the same as the ones obtained in the earlier work even
though the approaches followed by the two authors is totally
different. This was observed at significance levels of two fold
for the log2 based ratios. Similar analysis was done with
higher significance values which resulted in fewer numbers
of genes to be normally varying. These set of genes represent
stronger candidates showing normal variance in their expres-
sion levels. The approach though simple in nature seems to
perform considerably well and there is around 65% overlap
in the results of this approach and the earlier one which is
considered as a benchmark for studying normal variance in
mice. Also a vast number of normally varying genes genes
where found from the [12] dataset in brain, heart and lung
tissues. These are ranked on the basis of the entropy mea-
sure and depending on the user needs the database can be
referred for top x% of the normally varying genes found. Ap-
proximately 4% of the 15,000 clone id’s present on the chip
seem to exhibit normal variance among the identical mice in
all of these tissues. Quite a few of these genes have been re-
ported as differentially expressed in gene expression studies
under various pathological conditions. The authors suggest
caution to investigators in the case where they observe these
genes to be varying in their analysis. Further quantification
studies need to be done before reporting them. Also the
analysis can be conveniently modified to find the control
genes which show negligible variance, which could be useful
for normalization techniques which make use of the control
genes. Also PCA could offer a powerful visualization tool
to see which of the mice or the replicates are systematically
similar to each other. We observed that the third and the
fourth mice were very different from the other four in the
kidney tissue. In the testis the first two mice were systemat-
ically different from the other four. In liver no clear pattern
was discernible. This leads us to believe that normal vari-
ance is tissue specific.
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Figure 1: Principal component analysis of all genes (left column) and genes with normal variance (right column). Three
tissues were studied: Kidney (top row), Testis (middle row), and Liver (bottom row). Results for all 6 mice and 4 replicates
are shown



gene name unigene id biological process molecular function entropy
Bcl7c Mm.2898 0.3
Cbx1 Mm.29055 chromatin assembly/disassembly chromatin binding 0.3
Igfbp3 Mm.29254 regulation of cell growth insulin-like growth

factor binding
0.3

Eno3 Mm.29994 glycolysis phosphopyruvate
hydratase

0.3

Ptger3 Mm.30424 G-protein signaling, coupled to IP3 sec-
ond messenger (phospholipase C acti-
vating)

protein binding 0.3

Scn8a Mm.3076 adult walking behavior 0.3
Entpd2 Mm.31308 purine ribonucleoside diphosphate

catabolism
apyrase 0.3

Itih1 Mm.3227 serine protease in-
hibitor

0.3

Madh5 Mm.33951 common-partner SMAD protein phos-
phorylation

0.3

Eln Mm.34170 0.3
Rxra Mm.3470 transcription regulation ligand-dependent

nuclear receptor
0.3

DXErtd242e Mm.34942 0.3
Krtap6-3 Mm.3504 0.3
Gdf8 Mm.3514 cytokine 0.3
Il11 Mm.35814 cytokine 0.3
Rad54l Mm.3655 DNA repair DNA helicase 0.3
Pl2 Mm.37203 hormone 0.3
Slc2a3 Mm.3726 carbohydrate transport 0.3
Piga Mm.3781 post-translational membrane targeting 0.3
Pou2f2 Mm.37811 transcription regulation transcription factor 0.3
Elavl2 Mm.3823 nucleic acid binding 0.3
Prrx1 Mm.3869 developmental processes DNA binding 0.3
Tcf15 Mm.3881 transcription regulation transcription factor 0.3
Fgf15 Mm.3904 signal transduction growth factor 0.3
Csnk Mm.3975 0.3
Tbxas1 Mm.4054 prostaglandin metabolism thromboxane-A

synthase
0.3

4933406G12Rik Mm.409 0.3
Xist Mm.4095 0.3
Csnb Mm.4105 0.3
Mc2r Mm.41498 G-protein coupled receptor protein sig-

naling pathway
0.3

Oprm Mm.4191 G-protein signaling, adenylate cyclase
inhibiting pathway

0.3

Mcpt8 Mm.41979 proteolysis and peptidolysis serine-type en-
dopeptidase

0.3

Myo1f Mm.42019 cytoskeleton organization and biogene-
sis

calmodulin binding 0.3

Slc8a1 Mm.4211 calcium ion transport calmodulin binding 0.3
Phka1 Mm.42254 glycogen metabolism phosphorylase

kinase
0.3

AA536748 Mm.4328 0.3
Nxph2 Mm.44246 receptor binding 0.3
Itgav Mm.4427 integrin-mediated signaling pathway cell adhesion recep-

tor
0.3

Epha5 Mm.4466 transmembrane receptor protein tyro-
sine kinase signaling pathway

ephrin receptor 0.3

Impdh1 Mm.45234 purine nucleotide biosynthesis IMP dehydroge-
nase

0.3

Tcf1 Mm.455 transcription regulation transcription factor 0.3
2810417H13Rik Mm.45765 0.3
Foxa1 Mm.4578 transcription regulation transcription factor 0.3
Pvt1 Mm.4608 0.3
Chrna7 Mm.4611 synaptic transmission GABA-A receptor 0.3
Snrpa Mm.4633 0.3
Cdh3 Mm.4658 homophilic cell adhesion calcium-dependent

cell adhesion
molecule

0.3

Tnfsf8 Mm.4664 immune response cytokine 0.3
Irebf1-pending Mm.470 transcription regulation DNA binding 0.3
Htr1a Mm.4716 G-protein coupled receptor protein sig-

naling pathway
0.3

Table 11: Genes with normal variance in Lung tissue
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