
XRules: An Effective Structural Classifier for XML Data

Mohammed J. Zaki ∗

Rensselaer Polytechnic Institute

zaki@cs.rpi.edu

Charu C. Aggarwal
IBM T.J. Watson Research Center

charu@us.ibm.com

ABSTRACT
XML documents have recently become ubiquitous because
of their varied applicability in a number of applications.
Classification is an important problem in the data mining
domain, but current classification methods for XML doc-
uments use IR-based methods in which each document is
treated as a bag of words. Such techniques ignore a signifi-
cant amount of information hidden inside the documents. In
this paper we discuss the problem of rule based classification
of XML data by using frequent discriminatory substructures
within XML documents. Such a technique is more capable
of finding the classification characteristics of documents. In
addition, the technique can also be extended to cost sensi-
tive classification. We show the effectiveness of the method
with respect to other classifiers. We note that the method-
ology discussed in this paper is applicable to any kind of
semi-structured data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining

Keywords
XML/Semi-structured data, Classification, Tree Mining

1. INTRODUCTION
The classification problem is defined as follows. We have an
input data set called the training data which consists of a
set of multi-attribute records along with a special variable
called the class. This class variable draws its value from a
discrete set of classes. The training data is used to construct
a model which relates the feature variables in the training
data to the class variable. The test instances for the clas-
sification problem consist of a set of records for which only

∗This work was supported in part by NSF CAREER Award
IIS-0092978, DOE Career Award DE-FG02-02ER25538, and
NSF grant EIA-0103708.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

the feature values are known while the class value is un-
known. The training model is used in order to predict the
class variable for such test instances. The classification prob-
lem has been widely studied by the database, data mining
and machine learning communities [1, 4, 7, 10, 11, 12, 14,
15, 16]. However, most such methods have been developed
for general multi-dimensional records. For a particular data
domain such as strings or text [1, 17], classification models
specific to these domains turn out to be most effective.
In recent years, XML has become a popular way of stor-
ing many data sets because the semi-structured nature of
XML allows the modeling of a wide variety of databases as
XML documents. XML data thus forms an important data
mining domain, and it is valuable to develop classification
methods for such data. Currently, the problem of classifica-
tion on XML data has not been very well studied, in spite
of its applicability to a wide variety of problems in the XML
domain.
Since XML documents are also text documents, a natural
alternative for such cases is the use of standard information
retrieval methods for classification. A simple and frequently
used method for classification is the nearest neighbor classi-
fier [10]. This method works quite well for most text applica-
tions containing a small number of class labels. However, the
use of the text format for classification ignores a significant
amount of structural information in the XML documents.
In many cases, the classification behavior of the XML docu-
ment is hidden in the structural information available inside
the document. In such cases, the use of IR based classifiers
is likely to be ineffective for XML documents. A second, but
more promising methodology for XML mining is to directly
use association based classifiers such as CBA [16], CAEP [9]
or CMAR [13], on the XML data. Even though an XML
data record has hierarchical structure, its structure can be
flattened out into a set, which allows the use of an associa-
tion classifier. This also results in loss of structural informa-
tion, but the overall accuracy is still somewhat better than
the “bag of words” approach for a text classifier.
Recent work has focused on the use of rule based classifiers
[16] as an effective tool for data classification. Rule based
classifiers have also been extended to the string classification
problem [1]. Rule based classifiers are an interesting method
which integrate the problem of associations and classifica-
tion. These techniques provide an effective and scalable al-
ternative for classification, and often turn out to be highly
interpretable by their nature.
In this paper, we will discuss the problem of construct-
ing structural rules in order to perform the classification
task. The training phase finds the structures which are most

closely related to the class variable. In other words, the pres-
ence of a particular kind of structural pattern in an XML
document is related to its likelihood of belonging to a par-
ticular class. Once the training phase has been completed,
we perform the testing phase in which these rules are used
to perform the structural classification. We will show that
the resulting system is significantly more effective than an
association based classifier because of its ability to mine dis-
criminatory structures in the data.
The main contribution of this paper is to propose XRules,
a structural rule-based classifier for semi-structured data.
In order to do so, we also develop XMiner which mines
pertinent structures for multiple classes simultaneously. We
extend our classifier to the cost sensitive case, so that it
can handle normal as well as skewed class distributions. We
also show that our class assignment decisions are rooted in
Bayesian statistics.

2. STRUCTURAL RULES: CONCEPTS
We model XML documents as ordered, labeled, rooted trees,
i.e., child order matters, and each node has a label. We do
not distinguish between attributes and elements of an XML
document; both are mapped to the label set.

2.1 Trees and Embedded Subtrees
We denote a tree (an XML document) as T = (V, B), where
V is the set of labeled nodes, and B the set of branches.
The label of each node is taken from a set of labels (also
called items) L = {1, 2, 3, ..., m}; different nodes can have
the same label. Each branch, b = (x, y), is an ordered pair
of nodes, where x is the parent of y. The size of T is the
number of nodes in T .
We say that a tree S = (Vs, Bs) is an embedded subtree of
T = (V, B), denoted as S � T , provided i) Vs ⊆ V , and ii)
b = (x, y) ∈ Bs, if and only if x is an ancestor of y in T .
Note that in the traditional definition of an induced subtree,
for each branch b = (x, y) ∈ Bs, x must be a parent of y in
T . Embedded subtrees are thus a generalization of induced
subtrees; they allow not only direct parent-child branches,
but also ancestor-descendant branches. As such embedded
subtrees are able to extract patterns “hidden” or embedded
deep within large trees which will not be captured by the
traditional definition. If S � T , we also say that T contains
S. A (sub)tree of size l is also called a l-(sub)tree.

2.2 Cost-based Classification
The classification model discussed in this paper can be used
for the general case of cost-sensitive classification [8]. In this
section, we provide some definitions relevant to this topic.
We assume that the training database D for classification
consists of a set of |D| structures, each of which is asso-
ciated with one of k class variables. Let C = {c1 . . . ck}
be the k classes in the data. For a structure T ∈ D, we
use the notation T.c to refer to the class associated with
T . We assume that each of these structures is an XML
document that can be represented in tree format.1 There-
fore the database D is essentially a forest with N compo-
nents, so that each of the trees in the forest is labeled with
a class variable. The class label of each structure in D in-
duces a partition of the database into k disjoint parts. Let

1Tree Structured XML documents are the most widely oc-
curring in real applications. We note that even if an XML
document is not a tree, it can always be converted into one
by using a node splitting methodology [5].

Di = {T ∈ D|T.c = ci}, i.e., Di consists of all structures

with class ci. Clearly D =
� k

i=1 Di.
The goal of classification is to learn a model, R : D → C,
R(T) = cj (where T ∈ D and cj ∈ C), that can predict the
class label for an unlabeled test instance. We can find out
how well the classifier performs by measuring its accuracy.
Let D be some collection of structures T with known labels
T.c. Let η(D) = |{T ∈ D|T.c = R(T)}| denote the number
of correct predictions made by the model for examples in D.
Thus, η(Di) gives the number of correct predictions for ex-

amples with class ci, and η(D) = � k
i=1 η(Di) gives the total

number of correct predictions made by R over all classes.
The accuracy α of the classification model R on data set
D is the ratio of correct predictions to the total number of

predictions made: α(R,D) = η(D)
|D|

.

For many classifier models, the accuracy is often biased in fa-
vor of classes with higher probability of occurrence. In many
real applications, the cost of predicting each class correctly
is not the same, and thus it is preferable to use the notion
of cost-sensitive accuracy. For each class ci, let wi denote a
positive real number called weight, with the constraint that

� k
i=1 wi = 1. The cost-sensitive accuracy, denoted αcs, is

defined as the weighted average of the accuracy of the clas-
sifier on each class. Formally, we define

αcs(R,D) =
k�

i=1

(wi × α(R,Di)) (1)

There are several cost-models that one could use to compute
the classification accuracy:

• The proportional model uses wi = |Di|/|D|, i.e., weights
are proportional to the probability of the class in D.

• The equal model uses wi = 1/k, i.e., all classes are
weighted equally.

• The inverse model uses wi = 1/|Di|�
k
j=1

1/|Dj |
, i.e., weights

are inversely proportional to the class probability.

• The custom model uses user-defined weights wi.

Lemma 2.1. For proportional model αcs(R,D) = α(R,D).

Proof: αcs(R,D) = � k
i=1(

|Di|
|D|

α(R,Di)) = � k
i=1

|Di|
|D|

×
η(Di)
|Di|

= � k
i=1

η(Di)
|D|

= η(D)
|D|

= α(R,D)

In this paper we will contrast the inverse cost-model with
the proportional and equal model. The inverse model works
well for binary classification problems with skewed class dis-
tribution, since it gives a higher reward to a correct rare
class prediction.

2.3 Rule Support
Let D be any collections of trees with class labels drawn
from C. For a tree T , we define its absolute support in D,
denoted πA(T, D), as the number of trees in D that contain
T , i.e.,

πA(T, D) = |{S ∈ D|T � S} (2)

The (relative) support of T in D, denoted π(T, D), as the
fraction of trees in D that contain T , i.e.,

π(T, D) =
πA(T, D)

|D|
(3)

T is said to be frequent in D if π(T, D) ≥ πmin, where πmin

is a user defined minimum support threshold.
Rules are defined as entities which relate the frequent struc-
tures on the left hand side to the class variables on the right.
Such rules are able to relate the complex structural patterns
in the data to the class variable. Formally, a structural rule
is an entity of the form T ⇒ ci, where T is a structure, and
ci is one of the k classes.
This rule implies that if T is a substructure of a given XML
record x, then the record x is more likely to belong to the
class ci. The “goodness” of such an implication is defined by
two parameters which were refer to as support and strength.
The global support of T ⇒ ci in the database D, is defined as
the joint probability of T and ci, i.e., the percentage of the
trees in the database containing T and having class label ci.
Formally

π(T ⇒ ci) = P (T ∧ ci) =
πA(T,Di)

|D|
= π(T,Di)×

|Di|

|D|
(4)

The last step follows from Equation 3. The local support of
a rule T ⇒ ci is simply its relative frequency in Di, given as
π(T,Di).

2.4 Rule Strength
The strength of a structural rule can be measured by dif-
ferent measures; we focus on three: confidence, likelihood
ratio, and weighted confidence, as defined below.
Confidence: The confidence of the structural rule T ⇒ ci

is defined as the conditional probability of class ci given
T , i.e., the ratio of the number of trees containing T and
having class label ci, to the number of trees containing T in
the entire database. Formally, we define

ρ(T ⇒ ci) = P (ci|T) =
P (T ∧ ci)

P (T)
=

πA(T,Di)

πA(T,D)
(5)

Let’s assume that we have k classes (k ≥ 2), and let Ci =
C − {ci} be the set of all classes other than ci. We define

Di = D − Di to be the set of trees in D with their classes
taken from Ci. Our approach for multi-class problems (with
k > 2) is to treat them as a binary class problem as follows:
we compare each class ci with the rest of the classes taken
as a group to form a negative class Ci. That is, we compare
ρ(T ⇒ ci) with ρ(T ⇒ Ci). Using the observation that

D = Di + Di, we can rewrite Equation 5 as:

ρ(T ⇒ ci) =
πA(T,Di)

πA(T,Di) + πA(T,Di)
(6)

It is clear that ρ(T ⇒ ci) = 1 − ρ(T ⇒ Ci).
Likelihood Ratio: The likelihood ratio for a rule T ⇒ ci is
defined as the ratio of the relative support of T in examples
with class ci, to the relative support of T in examples having
negative class Ci. Formally, it is defined as follows:

γ(T ⇒ ci) =
π(T,Di)

π(T,Di)
=

πA(T,Di)

πA(T,Di)
×

|Di|

|Di|
(7)

Lemma 2.2. Likelihood ratio for a rule is related to its
confidence by the formula:

γ(T ⇒ ci) =
ρ(T ⇒ ci)

ρ(T ⇒ Ci)
×

|Di|

|Di|

Proof: From Equation 5, we get πA(T,Di) = ρ(T ⇒ ci)×

πA(T,D) (similarly for πA(T,Di)). Plugging into Equation

7, γ(T ⇒ ci) = ρ(T⇒ci)×πA(T,D)

ρ(T⇒Ci)×πA(T,D)

|Di|
|Di|

= ρ(T⇒ci)

ρ(T⇒Ci)

|Di|
|Di|

.

Weighted Confidence: We define another measure called
the weighted confidence, which combines the above two mea-
sures, given as follows:

ρw(T ⇒ ci) =
π(T,Di)

π(T,Di) + π(T,Di)
(8)

We can rewrite the Equation 8, as a weighted version of
Equation 6, as follows:

ρw(T ⇒ ci) =
πA(T,Di)/|Di|

πA(T,Di)/|Di| + πA(T,Di)/|Di|

In other words, while confidence uses absolute supports,
weighted confidence uses relative supports (i.e., weighted by
class probability). By next lemma, weighted confidence can
also be thought of as a normalized likelihood measure.

Lemma 2.3. The weighted confidence of a rule is related
to its likelihood by the formula:

ρw(T ⇒ ci) =
γ(T ⇒ ci)

γ(T ⇒ ci) + 1
(9)

Proof: From Equation 7, π(T,Di) = γ(T ⇒ ci)×π(T,Di).
Plugging into Equation 8, we get:

ρw(T ⇒ ci) = γ(T⇒ci)×π(T,Di)

γ(T⇒ci)×π(T,Di)+π(T,Di)
= γ(T⇒ci)

γ(T⇒ci)+1

Like ρ the value of ρw lies between [0, 1], while γ can take
values between [0,∞]. In our experiments, we will study the
effects of using one measure over the other. Let δ denote the
measure of strength; for confidence δ ≡ ρ 2, for weighted
confidence δ ≡ ρw, and for likelihood δ ≡ γ.

We use the notation T
π,δ
⇒ ci to denote a rule with support

π and strength δ. Our goal is to learn a structural rule-
set R = {R1, R2, · · · , Rm}, where each rule is of the form

Ri : T i π,δ
⇒ ci, with π ≥ πmin

j and with δ ≥ δmin. That is,
rules which satisfy a user-defined level of minimum support
πmin, and a global minimum strength threshold, δmin. Note
that δmin ≡ ρmin for (weighted) confidence based measure
and δmin ≡ γmin for likelihood based measure. We set the
default minimum strength values to ρmin = 0.5 and γmin =
1.0;

2.4.1 Bayesian Interpretation of Strength
Given k classes C = {c1, . . . , ck}, with Ci = C−ci. As before

Di is the portion of data set D with class ci and Di is the
remaining data set, with class in Ci. An unseen example T
should be assigned to class ci if the probability of class ci

given T , P (ci|T) is the greatest over all classes, i.e., assign
T to class ci if P (ci|T) > P (cj |T). Since we compare a class

ci against the negative class Ci, we assign T to class ci if

P (ci|T) > p(Ci|T) (10)

⇔
P (T |ci)P (ci)

P (T)
>

P (T |Ci)P (Ci)

P (T)
Bayes thm. (11)

⇔ P (T |ci)P (ci) > P (T |Ci)P (Ci) (12)

The three strength measures differ in which equation they
use for class prediction. For instance, confidence measure

2The notation ≡ denotes that the two entities are equivalent.

directly uses Equation 10, since by definition (Equation 5),
ρ(T ⇒ ci) = P (ci|T). Thus using the confidence measure T

is assigned to class ci if ρ(T ⇒ ci) > ρ(T ⇒ Ci).
The likelihood measure uses Equation 12. Rearranging the

terms in Equation 12, we get P (T |ci)

P (T |Ci)
> P (Ci)

P (ci)
. Plugging

P (T |ci) = πA(T,Di)
|Di|

= π(T,Di) (and similarly for P (T |Ci))

we get: π(T,Di)

π(T,Di)
> P (Ci)

P (ci)
. By definition of likelihood (Equa-

tion 7), we have γ(T ⇒ ci) = π(T,Di)

π(T,Di)
. Thus Bayes rule

(Equation 12) assigns T to class ci if γ(T ⇒ ci) > P (Ci)
P (ci)

.

The likelihood measure assigns T to class ci if γ(T ⇒ ci) >
γmin. If we use the default value of γmin = 1, this corre-
sponds to ignoring the ratio of class prior probabilities, i.e.,

setting the ratio P (Ci)
P (ci)

= 1. In general (for proportional

or equal cost model) it makes logical sense to use the class
priors, since in the absence of any information, we should
predict the class of T to be the class with higher prior. How-
ever, if ci is rare (inverse cost model), then it is better to
ignore the prior, since the prior ratio is biased in favor of
the class with higher probability. By setting the prior ratio
to 1, we set all classes on an equal footing.
Finally, the weighted confidence measure uses Equation 11
(consider its LHS):

LHS =
P (T |ci)P (ci)

P (T)
=

P (T |ci)P (ci)

P (T |ci)P (ci) + P (T |Ci)P (Ci)

=
1

1 + P (T |Ci)P (Ci)
P (T |ci)P (ci)

=
1

1 + π(T,Di)
π(T,Di)

× P (Ci)
P (ci)

setting
π(T,Di)

π(T,Di)
=

1

γ(T ⇒ ci)
, we get :

=
γ(T ⇒ ci)

γ(T ⇒ ci) + P (Ci)
P (ci)

Once again, ignoring class priors ratio (i.e, setting P (Ci)
P (ci)

=

1), we obtain the definition of weighted confidence in Equa-
tion 9. Thus LHS of Equation 11 corresponds to ρw(T ⇒ ci),
and by Bayes rules we assign T to class ci if ρw(T ⇒ ci) >

ρw(T ⇒ Ci).
As described above, confidence measures strength across the
entire database D. On the other hand, likelihood measures
the local tendency of the pattern to be associated with the
target class; it compares the local support of the rule for
the target class (ci) with its local support for the negative

class Ci (the rest of the classes). In skewed data sets, with
uneven class distributions, confidence is biased in favor of
the dominant class, since globally the patterns associated
with this class will have higher absolute supports compared
to the minority class. Likelihood and weighted confidence
do not have this bias, since they ignore class priors and use
local relative supports.

3. XRULES: STRUCTURAL RULE-BASED
CLASSIFICATION

The classification task contains two phases. The training
phase uses a database of structures with known classes to
build a classification model; in our case a set of structural
classification rules, called a rule-set. The testing phase takes
as input a database of structures with unknown classes, and

the goal is to use the classification model to predict their
classes.

3.1 Training Phase
At the beginning of classification we have a database D =� k

i=1 Di with known classes; Di is the set of structures with
class ci. Our goal is to learn a structural rule-set R =

{R1, R2, · · · , Rm}, where each rule is of the form Ri : T i π,δ
⇒

ci
j , with π ≥ πmin

j and with δ ≥ δmin.
There are three main steps in the training phase:

• Mining frequent structural rules specific to each class,
with sufficient support and strength. In this step, we
find frequent structural patterns for each class and
then generate those rules which satisfy a user-defined
level of minimum support for a class ci (πmin

i), and a
global minimum strength threshold, δmin.

• Ordering the rules according to a precedence relation.
Once a set of classification rules have a been gener-
ated, a procedure is required to prioritize the rule set
in decreasing level of precedence and to prune out un-
predictive rules.

• Determining a special class called default-class. Since
a classifier must predict a class for all possible test
cases, we need to choose a default class which will be
the label of a test example, if none of the rules can be
used to predict a label.

3.1.1 Mining Structural Rules
The first step is accomplished via an efficient structural-rule
mining algorithm, XMiner, which we will discuss in detail
in section 4. For the moment let us assume that XMiner

can be used to find all structural rules related to any class.
XMiner accepts as input a list of minimum support thresh-
olds for each class, i.e., πmin

j , ∀j = 1, · · · k. XMiner outputs

a set of frequent rules for each class, Rj = {R1, · · · , Rmj},
with mj rules, each rule having cj as the consequent, i.e.,

Ri : T i π
⇒ cj and π ≥ πmin

j .

3.1.2 Pruning and Ordering Rules
Since we want only predictive rules, we need to remove any
rule that lacks predictive power. Consider a rule (T ⇒ ci) ∈
Ri. If its (weighted) confidence ρ = ρw = 0.5 or if its
likelihood ratio γ = 1.0, then T cannot distinguish between
the class ci and its negative class Ci, and we prune such
a rule from Ri. In general, the acceptable range of values
for a user-defined minimum confidence threshold is ρmin ∈
(0.5, 1], while the acceptable range for minimum likelihood
is γmin ∈ (1,∞].
The goal of precedence ordering is to derive the final com-
bined rule-set R from the rule-set of each class based on a
precedence relation, �, which imposes a total order on R,
using a method analogous to that proposed in CBA [16].

Given any two rules Ri : T i πi,δi⇒ ci and Rj : T j πj ,δj
⇒ cj , we

say that Ri precedes Rj , denoted Ri�Rj , if the following
conditions are met:

1. The strength of Ri is greater than that of Rj , i.e.,
δi > δj .

2. δi = δj , but the support of Ri is greater than that of
Rj , i.e., πi > πj .

3. δi = δj and πi = πj , but Ri contains a smaller number
of nodes than Rj , i.e., |T i| < |T j |.

4. If none of the above is true, then T i occurs lexicograph-
ically before T j . We note that the lexicographic order-
ing of tree structures is based on a pre-order traversal
of the nodes in the tree.

For precedence ordering, we sort the rules across all classes
using � to derive the final ordered rule-set R =

� k
i=1 Ri.

In the testing phase, the ordered rules are used in various
ways to predict the target class for a new structure with
unknown class.

3.1.3 Determining Default Class
A rule T ⇒ ci is said to match a given tree S, when its
antecedent, T , is a substructure of S, i.e., T � S. A rule
set R is said to cover an example tree S, if at least one
rule matches S. In general, a rule set may not necessarily
cover all examples (even in the training set D). Since a
classifier must provide coverage for all possible cases, we
need to define a default label, denoted default-class, which
will be chosen to be the label of a test example, if none of
the rules match it.
Let ∆ = {S ∈ D | 6 ∃(Ri : T i ⇒ ci

j) ∈ R ∧ (Ti � S)}, be the
set of examples from the training set D which are not covered
by the ordered rule-set R. Let ∆i = {S ∈ ∆|S.c = ci} be
the set of uncovered training examples with class ci.
A simple way to choose the default-class is to pick the ma-
jority class in ∆, i.e., default-class = arg maxci{|∆i|}. If
∆ = ∅, then pick default-class to be the majority class in D.
The problem with this method is that it does not take into
consideration the real cost of the classes (it uses the pro-
portional cost model by default). The approach we adopt
is to choose the class that maximizes the cost-sensitive ac-
curacy of the resulting rule-based classifier. Let η(D) de-
note the number of correct predictions for data set D using
our rule-set R. If ∆ 6= ∅, then the default class is given

as default-class = arg maxci{
wi|∆i|
|Di|

} (see lemma below). If

∆ = ∅, then the default class is the one with maximum
weight wi (obtained by setting ∆i = Di). It is clear that
such a technique is superior from the perspective of a cost-
sensitive approach.

Lemma 3.1. The cost-sensitive accuracy is maximized for

default-class = arg maxcj{
wj |∆j |

|Dj |
}.

Proof: Assume ∆ 6= ∅. The base accuracy for a given class

ci in Di is given as α(R,Di) = η(Di)
|Di|

. By Equation 1 the

overall base cost-sensitive accuracy is given as

αcs
old(R,D) =

�
i∈[1,k]

wiη(Di)

|Di|

Assume that we pick class cj as the default class. This affects
only the accuracy of class cj due to the addition of correct
predictions for class cj in ∆, whereas the accuracy of all
ci 6= cj remains unchanged. Therefore, we have α(R,Dj) =
η(Dj)+|∆j |

|Dj |
. The new overall accuracy is then given by

αcs(R,D) =
wj(η(Dj) + |∆j |)

|Dj |
+

�
i∈[1,k],i6=j

wiη(Di)

|Di|

After simplifying, we get αcs(R,D) =
wj |∆j |

|Dj |
+ αcs

old(R,D).

Since αcs
old(R,D) remains the same no matter which class

we pick as default, the overall accuracy is maximized for the

class yielding the maximum value of
wj |∆j |

|Dj |
.

If ∆ = ∅, we set ∆j = Dj . So the class yielding maximum
accuracy is the one with maximum wj .

Corollary 3.1. For the proportional cost model, the ac-
curacy is maximized if the default class is the majority class
in ∆ (or in D if ∆ = ∅).

Proof: Assume ∆ 6= ∅. Substituting wi = |Di|
|D|

in wi|∆i|
|Di|

,

the term to be maximized, we get |∆i|
|D|

. This is maximized

for the class with the maximum value of |∆i|, i.e., the ma-
jority class in ∆. If ∆ = ∅, then setting ∆i = Di gives the
desired result.
As described above we prune all unpredictive rules having
ρmin = 0.5 or γmin = 1.0. Also recall that when building
a model we always compare the confidence of the rule on
class ci versus its negative class Ci. In some cases, the rules
may be poorly related to an example. This happens when
the average (weighted) confidence or likelihood of the rules
which are matched by a given example are close to 0.5 or 1.0,
respectively, for a given class ci. This means that the rule is
equally predictive of ci as well as Ci, and thus not suitable
for classification. If the user sets ρmin > 0.5 or γmin > 1.0
any example with matching rules having average (weighted)
confidence in the range [1 − ρmin, ρmin] or having average
likelihood is in the range [1/γmin, γmin], is assumed to be an
ambiguous case, which cannot be accurately classified. Such
ambiguous vases are added to the default set ∆ (essentially
treating them as examples having no matching rule in R),
which is used for the final determination of default-class as
described above.

3.2 Testing Phase
At the end of training our classification model is complete.
It consists of an ordered collection of predictive rules R,
and a default-class. The testing phase takes as input the
classification model, and a data set D′ of examples with
unknown classes. The goal of testing phase is to predict the
class for each test example. There are two main steps in
testing:

• Rule Retrieval: Find all matching rules for an example
for a test example.

• Class Prediction: Combine the statistics from each
matching rule to predict the most likely class for the
test example.

The rule retrieval step is simple; for each test example S in
the database D′, we find the set of all matching rules, called

the matching rule-set, R(S) = {Ri : T i δi

⇒ ci|T i � S}.
For predicting the class of S ∈ D′, we can use several dif-
ferent approaches for combining the statistics of the match-
ing rule-set R(S). There are two cases to be considered:
First, if R(S) = ∅, when there are no matching rules. In
this case, the class is predicted to be the default class, i.e.,
S.c = default-class. On the other hand, if R(S) 6= ∅, then
let |R(S)| = r. Also let Ri(S) denote the matching rules in
R(S) with class ci as the consequent, and let |Ri(S)| = ri.

Each rule in Ri(S) is of the form T j δj

⇒ cj
i , with δj ≥ δmin.

Any matching rule T k ∈ R(S) − Ri(S) is more predictive
of a class other than ci. However, XMiner finds the sup-
port of T k all classes (see Section 4), so we can compute

the strength of T k for the negative class Ci (T k δn

⇒ Ci). The

strength of T k for ci, i.e., the rule T k δk

⇒ ci is given as
δk = 1 − δn if δ ≡ ρ (or δ ≡ ρw), and as δk = 1/δn if δ ≡ γ
(by Equations 5, 7, 8). Thus, for each class ci we can find
the strength of each structural rule for that class. A match-
ing rule with ρ > 0.5 or γ > 1.0 corresponds to a rule with
positive predictive power for ci, while a matching rule with
ρ < 0.5 or γ < 1.0 is more predictive of the negative class,
and thus has negative predictive power for ci.
There are several possible methods for combining evidence:

• Average Strength: Compute the average rule strength

for each class ci given as δµ
i =

� r
j=1

δj

r
. If δµ

i ≥ δmin

then we classify S as having class ci. If δµ
i has de-

fault δmin values (0.5 for ρmin and 1.0 for γmin) for
all classes, it means that the test instance cannot be
easily predicted using the rules, and the class is as-
signed as the default class. The approach can be gen-
eralized to the case where δµ

i is ambiguous, i.e., when
ρµ

i ∈ [1 − ρmin, ρmin] for (weighted) confidence, and
when γµ

i ∈ [1/γmin, γmin] for likelihood. In such a
case, we assign S.c to be the default class.

• Best Rule: Find the first rule that matches S, i.e., the
first rule in R(S). Since the rule set is ordered accord-
ing to precedence �, the first rule T ⇒ ci ∈ R(S) is
the best or most predictive (by nature of the total or-
der �, a matching rule after this one will either have
less strength, or less support or will be more specific).
We thus predict S.c = ci.

• Best K-Rules Apply average strength method for the
first K rules in R(S). This is a simple generalization
of the case discussed above.

In our experiments we used the average confidence method
for combining evidence, since it gave us the best results.
We note that for average strength-based methods, if the
classification behavior of a test instance is ambiguous (equal
to or close to default δmin values), the classifier can also
output this fact as useful information to the end user. While
classifiers traditionally strive for 100% coverage (i.e., they
predict a label of each test case), a practical application
may often benefit greatly from knowledge of the fact that
certain test instances are harder to classify than others. This
results in lower coverage, but a better understanding of the
overall classification process.

4. XMINER
In order to determine the set of rules, XRules first needs to
mine the frequent subtrees in the data. Several recent meth-
ods for tree mining have been proposed, such as FREQT [6],
TreeMiner [21], and TreeFinder [19]. FREQT is based on an
apriori-style, level-wise, candidate generation and pattern
matching based counting approach. A similar approach is
described in [20]. TreeFinder uses an Inductive Logic Pro-
gramming approach, and it is not a complete method, i.e,
it can miss many frequent subtrees, especially as support
is lowered or when the different trees in the database have
common node labels. TreeMiner uses a novel vertical rep-
resentation for fast subtree support counting. It is a com-

plete method, and outperforms a level-wise method similar
to FREQT. We thus chose TreeMiner as a basis for XMiner.
Given a dataset D with k classes, and thus k partitions Di,
one approach to mining structural rules would be to mine
each Di separately using TreeMiner, and then to combine
the results. There are two problems with this approach:
1) XRules needs to know the support of a tree T in each
class, but T may be frequent in one class Di, but not in
another Dj . 2) We would need one extra scan to count
such missing class supports, thus this approach is inefficient.
XMiner extends TreeMiner to find all frequent trees related
to some class, and also incorporates multiple minimum sup-
port criteria, one per class. This ensures that any tree gener-
ated is suitable for classification purposes. Like TreeMiner,
XMiner utilizes the vertical tree representation for fast sup-
port counting and uses a depth-first (DFS) pattern search.

4.1 Node Number, Scope, and Match Label
Let X be a k-subtree of a tree T . Let xk refer to the last node
of X. Each node in T has a well-defined number, i, according
to its position in a depth-first (or pre-order) traversal of
the tree. We use the notation ni to refer to the ith node
according to this numbering scheme (i = 0 . . . |T | − 1). Let
T (nl) refer to the subtree rooted at node nl, and let nr

be the right-most leaf node in T (nl). The scope of node
nl is given as the interval [l, r], i.e., the lower bound is the
position (l) of node nl, and the upper bound is the position
(r) of node nr. Figure 1 shows a database of 3 trees, with
2 classes; for each tree it shows the node number ni, node
scope [l, u], and node label (inside the circle).

 1 2 3

 2

 2 4

n0, [0,5]

n1, [1,3]

n2, [2,2] n3, [3, 3]

n4, [4, 4] n5, [5,5]

 1

 2 3

 4

1 2 3 4

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

0, [1, 1]
1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

0, [2, 3]
1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

1

2

1

4

0, 0, [1, 1]
1, 1, [2, 2]
2, 0, [2, 2]
2, 0, [5, 5]
2, 4, [5, 5]

0, 0, [3, 3]
1, 1, [3, 3]
2, 0, [7, 7]
2, 4, [7, 7]

1

2 4

0, 01, [3, 3]
1, 12, [3, 3]
2, 02, [7, 7]
2, 05, [7, 7]
2, 45, [7, 7]

Database D of 3 Trees

Tree T0, Class = c1

 1

 2 3

 4

n0, [0,3]

n1, [1,1]
n2, [2,3]

n3, [3,3]

 2

 1

 3 5n1, [1,2]

n2, [2,2]

n3, [3,7]

n4, [4,7]

n5, [5,5]

n6, [6,7]

n7, [7,7]

n0, [0,7]

Tree T1, Class = c2

Tree T2, Class = c1

T0 T1 T2

c1c2c1

Class Index
MinSup C1=100%, C2=100%

Prefix = {} Prefix = 1 Prefix = 12

Figure 1: Tree Mining Example

Let D denote a database of trees (i.e., a forest), and let
subtree S � T for some T ∈ D. Each occurrence of S can
be identified by its match label, which is given as the set of

matching positions (in T) for nodes in S. More formally,
let {t1, t2, . . . , tn} be the nodes in T , with |T | = n, and let
{s1, s2, . . . , sm} be the nodes in S, with |S| = m. Then S
has a match label {ti1 , ti2 , . . . tim},if and only if: 1) L(sk) =
L(tik

) for all k = 1, . . . m (where L(n) is the label for node
n, and 2) branch b(sj , sk) ∈ S iff tij is an ancestor of tik

in T . Condition 1) indicates that all node labels in S have
a match in T , while 2) indicates that the tree topology of
the matching nodes in T is the same as S. A match label is
unique for each occurrence of S in T .

4.2 Prefix Group and Scope Lists
We say that two k-subtrees X, Y are in a prefix equivalence
group iff they share a common prefix up to the (k − 1)th
node. Let P be prefix subtree of size k − 1. We use the
notation [P]k−1 to refer to its group, which contain all the
last items (k-th node) of trees that share P as their prefix.
We use the notation L(X) to refer to the scope-list of X.
Each element of the scope-list is a triple (t, s, m), where t is
a tree id (tid) in which X occurs, s is the scope of xk, and m
is a match label for X. Since a subtree can occur multiple
times in a tree, each tid can be associated with multiple
scopes and match labels.
The initial scope-lists are created for single items i that oc-
cur in a tree T . Let [l, u] be the scope of a node with label i.
Since the match label of item i is simply l we omit storing
m when dealing with the scope-lists of single items. We will
show below how to compute pattern frequency via joins on
scope-lists. Figure 1 shows the scope lists for the frequent
single items (the minimum support is 100% for both classes).
Item 5 is not shown, since it is not frequent for any class; it
has support 50% in class c1.

4.3 Tree Mining
Figure 2 shows the high level structure of XMiner. The
main steps include the computation of the frequent items
and the enumeration of all other frequent subtrees via DFS
search within each group. XMiner also maintains a global
class index showing the class for each tree in the database.
This index is used to quickly update the per class support
for a candidate tree to check if it is frequent in any class.
Figure 1 shows the class index for the example database.

XMiner (D, πmin
i ∀i = 1 · · ·k):

[P]0 = { frequent 1-subtrees for any class};
Enumerate-Xrules([P]0);

Enumerate-Xrules([P]):
for all elements x ∈ [P] do

[Px] = ∅;
for all elements y ∈ [P] do

R = x⊗y;
L(R) = L(x) ∩⊗ L(y);
if for any R ∈ R, R is frequent for any class

then [Px] = [Px] ∪ {R};
Enumerate-Xrules([Px]);

Figure 2: XMiner: Tree Mining for Classification

The input to Enumerate-Xrules is a set of elements of a
group [P], along with their scope-lists. Frequent subtrees
are generated by joining the scope-lists of all pairs of ele-
ments (including self-joins). Before joining the scope-lists a
pruning step can be inserted to ensure that all subtrees of
the resulting tree are frequent. If this is true, then we can
go ahead with the scope-list join, otherwise we can avoid
the join. The collection of candidate subtrees is obtained by

extending each tree in a group by adding one more item (the
last item) from another tree in the same prefix group. We
use R to denote the possible candidate subtrees that may
result from extending tree with last node x, with the tree
with last item y (denoted x⊗y), and we use L(R) to denote
their respective scope-lists.
The subtrees found to be frequent at the current level form
the elements of groups for the next level. This recursive pro-
cess is repeated until all frequent subtrees have been enu-
merated. In terms of memory management it is easy to see
that we need memory to store intermediate scope-lists for
two groups, i.e., the current group [P], and a new candidate
group [Px].

4.4 Scope-List Joins (L(x) ∩⊗ L(y))
We now describe how we perform the scope-list joins for
any two subtrees in a group [P]. Let sz = [lz, uz] denote
the scope for a node z. We say the sx is strictly less than
sy, denoted sx < sy, if and only if ux < ly. We say that sx

contains sy, denoted sx ⊇ sy, if and only if lx <= ly and
ux >= uy. When we join last elements x⊗y in a group,
there can be at most two possible outcomes, i.e., we either
add y as a child of x or as a sibling of x to the class [Px].
To check if the subtree, obtained when y is added as a
child of x, occurs in an input tree T with tid t, it is suffi-
cient to search if there exists triples (ty, sy, my) ∈ L(y) and
(tx, sx, mx) ∈ L(x), such that: i) ty = tx = t, ii) sy ⊆ sx,
and iii) my = mx.
In other words, we check 1) if x and y both occur in the
same tree T with tid t, 2) if y is within the scope of x,
and 3) that x and y are both extensions of the same prefix
subtree, P � T , whose match label is mx = my. If the three
conditions are satisfied, we add the triple (ty, sy, {my ∪ lx})
to the scope-list of y in [Px]. We refer to this case as an
in-scope test.
The second pattern checks what happens when y is added
as a (embedded) sibling of x. This happens when both x
and y are descendants of node at position j in the prefix P ,
and the scope of x is strictly less than the scope of y. To
check if y occurs as an embedded sibling in T with tid t, we
need to check if there exists triples (ty, sy, my) ∈ L(y) and
(tx, sx, mx) ∈ L(x), such that: i) ty = tx = t, ii) sx < sy,
and iii) my = mx.
If the three conditions are satisfied, we add the triple (ty, sy,-
{my ∪ lx}) to the scope-list of y in [Px]. We refer to this
case as an out-scope test.
Figure 1 shows the process of scope-list joins for both in-
scope and out-scope tests. To check if a new candidate is
frequent, one can derive a per class count using the class
index. For example, consider the tree in prefix group [1],
with the branch (1, 2). It appears in tids 0,1, and 2 (we
count only once per tid). Using the class index we find that
is occurs in classes c2, c1, c2 respectively. Its support for
class c1 is 1 and for class c2 is 2. It is thus 100% frequent
locally in both classes.

5. EMPIRICAL RESULTS
We compared our XRules structural classification approach
for XML documents against an IR classifier, as well as the
CBA classifier. For the IR classifier (IRC) centroids for each
class were constructed using a clustering process [2]. Then,
a nearest neighbor classifier was implemented on these sets
of clusters. The CBA implementation was provided to us
by its authors [16].

5.1 Data Sets
We evaluate our approach on both real and synthetic clas-
sification data sets. The advantage of using synthetic data
sets was the additional flexibility in studying the effects of
different kinds of embedded patterns and database size. On
the other hand, the real data sets help to validate the ap-
proach in a practical setting.

5.1.1 Real Datasets
We use the Log Markup Language (LOGML) [18], to de-
scribe log reports at the CS department website. LOGML
provides a XML vocabulary to structurally express the con-
tents of the log file information in a compact manner. Each
user session is expressed in LOGML as a graph, and includes
both structure and content.
The real CSLOG data set spans 3 weeks worth of such XML
user-sessions. To convert this into a classification data set we
chose to categorize each user-session into one of two class la-
bels: edu corresponds to users from an “edu” domain, while
other class corresponds to all users visiting the CS depart-
ment from any other domain. As shown in Table 1, we sep-
arate each week’s logs into a different data set (CSLOGx,
where x stands for the week; CSLOG12 is the combined data
for weeks 1 and 2). Notice that the edu class has much lower
frequency rate than other. Our goal is to minimize the cost
of classification inaccuracy based on the various models. We
use the notation CSLOGx− y to denote that we trained on
CSLOGx and tested on CSLOGy. For example, CSLOG1-2
means that we learned a model from CSLOG1 and tested
how well we could predict CSLOG2.

5.1.2 Synthetic Datasets
We constructed a synthetic data generation program simu-
lating website browsing behavior. We first construct a mas-
ter website browsing tree W based on parameters supplied
by the user. These parameters include the maximum fanout
F of a node, the maximum depth D of the tree, the total
number of nodes M in the tree, and the number of node
labels L. For each node in master tree W, we assign proba-
bilities of following its children nodes, including the option of
backtracking to its parent, such that sum of all the probabil-
ities is 1. Using the master tree, one can generate a subtree
Ti � W by randomly picking a subtree of W as the root of
Ti and then recursively picking children of the current node
according to the probability of following that link.
To create a classification data set we group users into two
classes, c1 and c2. First we generate a small pool of signature
trees for class c1, denoted Tp. Second, we generate a larger
collection of trees, denoted TD. Subset of trees from Tp are
selected as training and testing pools, and TD is also split
into training and testing sets. If a tree T ∈ TD contains a
tree from the signature pool then T has class c1, otherwise
it has class c2. To control the effects of structure in the
classification process, a fraction fc, called confusion ratio, of
trees that belong to one class (c1) are added to other class
(c2), after flattening out. This is called one-way addition. If
we also allow members of c2 to be added to c1, it is called a
two-way addition.
The different synthetic data sets generated are shown in
Table 1. For the DSx data sets, we trained on DSx-train
and tested on DSx-test. The master tree W used the values
D = 10, F = 10, M = 100, L = 10. We next generated
|TD| = 100, 000 trees for the database and |Tp| = 1000 trees
for the pool. TD was split into training and test sets by using

Table 1: Characteristics of Datasets

DB #Sessions edu other %edu %other
CSLOG1 8074 1962 6112 24.3 75.7
CSLOG2 7407 1686 5721 22.8 77.2
CSLOG12 13934 2969 10965 21.3 78.7
CSLOG3 7628 1798 5830 23.6 76.4

DB total c1 c2 %c1 %c2

DS1.train 91288 41288 50000 45.2 54.8
DS2.train 67893 17893 50000 26.4 73.6
DS3.train 100000 50000 50000 50.0 50.0
DS4.train 75037 35298 39739 47.0 53.0
DS5.train 129 66 63 51.2 48.8
DS1.test 88493 38493 50000 43.5 56.5
DS2.test 72510 22510 50000 31.0 69.0
DS3.test 100000 50000 50000 50.0 50.0
DS4.test 74880 37977 36903 50.7 49.3
DS5.test 72 42 30 58.3 41.7

a 50− 50 split. For DS1, the training and testing pool were
both of size 20, with half the trees common to both. We
set fc = 1.0, with one-way addition from c1 to c2. For DS2,
the training and testing pool were identical (of size 10), and
fc = 1.0 from c1 to c2. DS3 is the same as DS2, with with
two-way confusion. Finally DS4 is same as DS2, but with
two-way addition only half the time (fc = 0.5). The small
data set DS5 was produced by a different synthetic XML
document generator 3.

5.2 Comparative Classification Results
The IRC approach uses the actual text of the data in order
to perform the classification. Therefore, it uses a greater
amount of information than a purely structural classifier
like XRules. IRC uses both the node content and edge
information from the user-sessions. In contrast, XRules

uses only the structure (tree-format) for the classification
process. CBA uses the associations among different nodes
visited in a session in order to perform the classification.
Table 2 shows the weighted accuracy results for the three
classifiers on different data sets. The table shows the accu-
racy for all three cost models. The best accuracy is high-
lighted in bold. We can see that for all data sets and all
cost models, XRules is the best classifier. For the CSLOG
data sets, XRules delivers an accuracy between 82.99% and
85.30% for the proportional model compared to IRC’s accu-
racy from 73.76% to 77.64% and CBA’s accuracy between
75.7% to 77.23%. Thus, the accuracy of XRules is about
8-10% higher (in absolute accuracy) than that of IRC and
5-10% higher than that of CBA for the traditional Propor-
tional model. For this model, CBA appears to be a better
classifier than IRC. However, the model that CBA learns
generally has only one rule. This rule always predicts a
test case to be other. While this strategy pays off in the
proportional cost model (since other is the majority class
with 76-79% occurrence), it does not work for the equal
model (50% accuracy) and fails completely for the inverse
cost model (23-24% accuracy). IRC does a much better job
than CBA in distinguishing one class from the other. For
example consider the confusion matrix for CSLOG1-2 shown
in Table 3, which shows the number of test cases, by class,
that were correctly and incorrectly classified by the three
classifiers (with proportional cost-model). CBA essentially
labels each test case as other, thus it is ineffective for any

3provided by Elio Masciari (personal communication)

Table 2: Accuracy Results

DB Classifier Accuracy (%)
Proportional Equal Inverse

CSLOG1-2 XRules 82.99 74.83 74.75
IRC 74.81 68.00 61.19
CBA 77.23 50.00 22.77

CSLOG2-3 XRules 84.61 75.70 76.19
IRC 77.64 70.85 64.06
CBA 76.43 50.00 23.57

CSLOG12-3 XRules 85.30 75.70 76.08
IRC 76.22 69.87 63.52
CBA 76.43 50.00 23.57

CSLOG3-1 XRules 83.81 74.09 76.08
IRC 73.76 67.73 61.70
CBA 75.70 50.00 24.30

DS1 XRules 71.87 74.02 76.31
CBA 51.35 54.24 57.12

DS2 XRules 80.71 76.01 71.31
CBA 68.96 50.00 31.04

DS3 XRules 61.63 61.63 61.63
CBA 50.00 50.00 50.00

DS4 XRules 68.31 67.78 67.24
CBA 61.65 61.44 61.23

DS5 XRules 88.63 88.81 88.99
CBA 50.00 48.10 46.19

Table 3: Confusion Matrix (CSLOG1-2)

Predicted Class
XRules IRC CBA

edu other edu other edu other

edu 870 817 1177 510 0 1687
other 396 5722 1356 4366 0 5722

cost-model other than the proportional one.
For the equal and inverse cost models, we find that XRules

has higher accuracy than CBA and IRC since it explicitly
incorporates cost. In the case of the CSLOG data sets, the
accuracy of XRules is about 6% higher than that of IRC
and 25% higher than that of CBA for the equal cost model.
The situation is more pronounced for inverse model, where
the accuracy of XRules is 14% higher than that of IRC and
50% higher than CBA!
On synthetic data sets, which do not have content (only
structure), the IR classifier does not work. So we compared
only XRules and CBA. The results are shown in Table 2.
Once again, we found that CBA degenerated into a default
classifier most of the time, labeling each test case with the
majority class, though it did have a small number of rules
(less than 17) relating to the two classes. As we can see for
proportional cost model on DS1, DS3, and DS5, CBA fails
to classify the test cases correctly, delivering an accuracy
of only 50%, whereas the accuracy of XRules is 11-38%
higher. On DS2 and DS4 CBA has some discrimination
power, but the accuracy of XRules is still 12-17% higher.
For the equal and inverse model, XRules outperforms CBA
by up to 40%!
In summary, XRules gives consistently better performance
than the other classifiers for all cost models and data sets. It
works better than an associative classification approach like
CBA, which flattens out the structure into a set representa-
tion. It outperforms an IR based classifier which explicitly
learns over the content, but only implicitly over the struc-
tural information in the XML documents. Therefore, the

improved results of our structural classification process are
especially significant.

5.3 Efficiency Results
Table 4 shows the number of frequent patterns (rules) mined
by XMiner, and time for training and testing. The results
underscore the high efficiency of that XMiner (XM) engine.
The frequent trees for classification are determined in less
than 8 seconds. The total training and testing time are
comparable, since in both cases we have to find the matching
rules for each example. This is needed to determine the
default class in training, and to find the accuracy in testing.
The running time can be improved by storing the rules in
an appropriate index structure; currently XRules performs
a linear search for matching rules.

Table 4: Number of Rules and Time

DB Sup Rules Train Time (s) Testing
XM Total Time (s)

CSLOG1-2 0.3% 28911 5.5 469.7 425.8
CSLOG2-2 0.3% 19098 3.6 273.9 277.5
CSLOG12-3 0.35% 29028 7.4 858.8 447.9
CSLOG3-1 0.2% 31661 4.8 470.8 487.4
DS1 0.3% 883 7.2 147.6 152.4
DS2 0.3% 1589 5.9 210.2 231.1
DS3 0.3% 739 7.6 137.7 129.5
DS4 0.3% 900 5.8 140.1 125.5
DS5 15% 347 0.2 0.3 0.1

5.4 Choice of Rule Strength
We next study how the choice of strength measure affects
the accuracy of XRules, as shown in Table 5. The best
results are in bold. For the proportional model, confidence
performs better than both likelihood and weighted confi-
dence. Its accuracy is typically 2-4% higher on CSLOG and
as much as 20% higher on DSx data sets. This is in agree-
ment based on the Bayesian interpretation in section 2.4.1.
On the other hand, with the exception of DS2 and DS4, like-
lihood and weighted confidence perform better than confi-
dence with equal cost model. The weighted confidence has
a slight (if insignificant) edge over likelihood (for both pro-
portional and equal costs).
The likelihood measure has a slight edge over weighted confi-
dence for the inverse cost model on CSLOG data sets. These
results are in agreement with the discussion in section 2.4.1.
The only exceptions are DS2 and DS4 where confidence does
better. The reason is that in these data sets the confusion
factor complicates the decision making, since one-way (two-
way) addition adds patterns from one class to the other (and
vice-versa). On DS5, all measures give the same result.
In summary, we conclude that confidence is a better measure
for proportional model and either likelihood or weighted con-
fidence is better for equal or inverse costs. The right choice
of strength measure depends on the data set characteristics
and cost model. If we expect many patterns with similar
global supports but different local supports of rare classes,
the likelihood/weighted confidence measure will usually pro-
vide better results.

5.5 Effect of Minimum Strength
Table 6 shows the effect of varying the minimum likelihood
γmin on the accuracy of prediction for CSLOG1-2. Best ac-
curacy for each cost model is in bold. For proportional cost
model, the accuracy tends to increase up to a point (82.87%
for γmin = 5) and then starts to drop. The same effect

Table 5: Effect of Strength Measure

DB Strength Proportional Equal Inverse
CSLOG1 γ 81.09 74.73 74.75

ρ 82.99 72.33 68.28
ρw 81.43 74.83 74.61

CSLOG2 γ 82.34 75.70 76.19
ρ 84.61 73.95 70.56

ρw 82.62 75.69 75.89
CSLOG12 γ 81.22 74.09 76.08

ρ 85.30 73.69 68.96
ρw 82.54 75.70 75.76

CSLOG3 γ 81.22 74.09 76.08
ρ 83.81 73.02 71.38

ρw 81.35 74.07 75.90
DS1 γ 71.30 73.68 76.07

ρ 71.87 71.69 71.51
ρw 71.73 74.02 76.31

DS2 γ 55.06 61.65 68.23
ρ 80.71 76.01 71.31

ρw 60.45 65.06 69.68
DS3 γ 61.63 61.63 61.63

ρ 61.45 61.45 61.45
ρw 61.45 61.45 61.45

DS4 γ 58.29 58.88 59.47
ρ 68.31 67.78 67.24

ρw 61.23 61.62 62.00
DS5 γ 88.63 88.81 88.99

ρ 88.63 88.81 88.99
ρw 88.63 88.81 88.99

is observed for inverse model, but the model continues to
improve until γmin = 10. For the equal cost model, the ac-
curacy tails off at the very beginning. Similar results were
obtained for other strength measures. These results suggest
that by choosing an appropriate γmin one can get a model
that can behave like ρ for the proportional model (e.g., at
γmin = 5, we get 82.87% accuracy compared to 82.99% ac-
curacy using confidence, in Table 5), and can improve the
accuracy for the inverse model.

Table 6: Effect of Likelihood Ratio (CSLOG1-2)

γmin Proportional Equal Inverse #Rules Time
1 81.09 74.73 74.75 28911 432.2
2 81.57 74.67 74.85 28553 428.9
3 82.38 73.83 75.46 25698 378.7
4 82.68 72.58 75.32 24190 355.9
5 82.87 72.14 75.72 17732 270.3
6 82.56 69.93 76.47 12006 180.5
7 82.42 69.37 76.17 10008 149.3
8 82.04 67.81 76.35 8936 134.6
9 81.53 66.27 76.50 8424 126.1
10 81.48 65.79 76.54 8199 123.5
15 80.73 62.62 76.25 7848 120.9
20 79.90 60.28 76.20 7636 121.9

6. CONCLUSIONS AND SUMMARY
In this paper, we discussed an effective rule based classifier
for XML data called XRules. The technique mines frequent
structures from the data in order to create the classification
rules. XRules is cost-sensitive and uses Bayesian rule based
class decision making. Methods for effective rule prioriti-
zation and testing were also proposed in this paper. The

technique was implemented and compared against CBA as
well as an IR classifier. Since the technique performs better
than the CBA classifier, this indicates that the system relies
on the classification information hidden in the structures for
an effective rule generation process. Furthermore, it outper-
forms the IR based method in spite of the greater amount of
input used by the latter. The results show that structural
mining can provide new insights into the process of XML
classification.

7. REFERENCES
[1] C. C. Aggarwal. On Effective Classification of Strings

with Wavelets. SIGKDD, 2002.
[2] C. Aggarwal, S. Gates, P. Yu. On the merits of using

supervised clustering to build categorization systems.
SIGKDD, 1999.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules. VLDB Conference, 1994.

[4] K. Alsabti, S. Ranka, V. Singh. CLOUDS: A Decision
Tree Classifier for Large Datasets. SIGKDD, 1998.

[5] R. Andersen et al. Professional XML. Wrox Press Ltd,
2002.

[6] T. Asai, et al. Efficient substructure discovery from
large semi-structured data. 2nd SIAM Int’l Conference
on Data Mining, 2002.

[7] W. W. Cohen. Fast Effective Rule Induction. Int’l
Conf. Machine Learning, 1995.

[8] P. Domingos. MetaCost: A general method for making
classifiers cost sensitive. SIGKDD, 1999.

[9] G. Dong, X. Zhang, L. Wong, J. Li. CAEP:
Classification by Aggregating Emerging Patterns. Int’l
Conference on Discovery Science, 1999.

[10] R. Duda, P. Hart. Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[11] J. Gehrke, V. Ganti, R. Ramakrishnan, W.-Y. Loh.
BOAT: Optimistic Decision Tree Construction.
SIGMOD, 1999.

[12] M. James. Classification Algorithms, Wiley, 1985.
[13] W. Li, J. Han, J. Pei. CMAR: Accurate and Efficient

Classification Based on Multiple Class-Association
Rules. IEEE Int’l Conf. on Data Mining, 2001.

[14] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[15] R. Rastogi, K. Shim. PUBLIC: A Decision Tree
Classifier that Integrates Building and Pruning. VLDB,
1998.

[16] B. Liu, W. Hsu, Y. Ma. Integrating Classification and
Association Rule Mining. SIGKDD, 1998.

[17] K. Nigam, A. K. McCallum, S. Thrum, T. Mitchell.
Text Classification from labeled and unlabeled
documents using EM. Machine Learning,
39(2/3):103-134, 2000.

[18] J. Punin, M. Krishnamoorthy, M. Zaki. LOGML: Log
markup language for web usage mining. In WEBKDD
Workshop (with SIGKDD), August 2001.

[19] A. Termier, M-C. Rousset, M. Sebag. TreeFinder: a
First Step towards XML Data Mining. IEEE Int’l Conf.
on Data Mining, 2002.

[20] K. Wang, H.Q. Liu. Discovering Typical Structures of
Documents: A Road Map Approach. SIGIR, 1998.

[21] M. J. Zaki. Efficiently Mining Frequent Trees in a
Forest. SIGKDD, 2002.

