
CLICKS: An Effective Algorithm for Mining Subspace
Clusters in Categorical Datasets

Mohammed J. Zaki ∗

Rensselaer Polytechnic Institute, Troy, NY

zaki@cs.rpi.edu

Markus Peters, Ira Assent, Thomas Seidl
RWTH University, Aachen, Germany

{peters,assent,seidl}@informatik.rwth-
aachen.de

ABSTRACT
We present a novel algorithm called Clicks, that finds clus-
ters in categorical datasets based on a search for k-partite
maximal cliques. Unlike previous methods, Clicks mines
subspace clusters. It uses a selective vertical method to
guarantee complete search. Clicks outperforms previous
approaches by over an order of magnitude and scales bet-
ter than any of the existing method for high-dimensional
datasets. These results are demonstrated in a comprehen-
sive performance study on real and synthetic datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms.

Keywords: Clustering, Categorical Data, K-partite Graph,
Maximal Cliques, Data Mining

1. INTRODUCTION
Clustering is one of the central data mining problems;

it aims to find “naturally” occurring groups of points in a
given dataset. Clustering of numeric (or real-valued) data
has been widely studied, but categorical (or discrete-valued,
symbolic) data has received relatively less attention. There
are several challenges in clustering categorical attributes:
i) No Natural Order: The lack of an inherent natural or-
der on the individual domains, renders a large number of
traditional similarity measures ineffective. ii) High Dimen-
sionality: Practical examples suggest that categorical data
can have many attributes, requiring methods that scale well
with dimensionality. iii) Subspace Clusters: Many categori-
cal datasets, especially sparse ones, do not exhibit clusters
over the full set of attributes, thus requiring subspace clus-
tering methods.

In this paper, we present Clicks(an anagram of the bold
letters in Subspace CLusterIng of Categorical data via max-
imal K-partite cliques), a novel algorithm for mining cat-
egorical (subspace) clusters. Our main contributions are:
1) We present a novel formalization of categorical clusters.

∗This work was supported in part by NSF CAREER Award
IIS-0092978, NSF grants EIA-0103708 & EMT-0432098, and
DOE Career award DE-FG02-02ER25538.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

We summarize the dataset as a k-partite graph, and mine
maximal k-partite cliques, which after post-processing corre-
spond to the clusters. The k-partite maximal clique mining
method is interesting in its own right. 2) Clicks uses a
selective vertical expansion approach to guarantee complete
search; no valid cluster is missed. It also merges overlapping
cliques to report more meaningful clusters. 3) Clicks ad-
dresses the main shortcomings of existing methods. Unlike
many previous categorical clustering algorithms, Clicks can
mine subspace clusters. Furthermore, it imposes no domain
constraints and is scalable to high dimensions. 4) Clicks

outperforms existing approaches by over an order of magni-
tude, especially for high-dimensional datasets. These results
are demonstrated in a comprehensive performance study on
real and synthetic datasets.

2. PRELIMINARIES
Our definition of categorical clusters is based on ideas

first proposed in [4]. Let A1, . . . , An denote a set of cate-
gorical attributes and D1, . . . , Dn a set of domains, where
Di = {vi1 , . . . , vim} is the domain for attribute Ai, and
Di ∩Dj = ∅ for i 6= j. A dataset is a subset of the cartesian
product of the attribute domains, given as D ⊆ D1×. . .×Dn.
The number n of attributes is also referred to as the dimen-
sionality of the dataset. An element r = (r.A1, . . . , r.An) ∈
D is called a record, where r.Ai ∈ Di refers to the value for
attribute Ai in r. Each record also has a unique record id
(rid), given as r.id.

Let Sj ⊆ Dij
a subset of values for attribute Aij

. A k-
subspace is defined as the cross-product S = S1 × . . .×Sk of
some subset of k attributes Ai1 , . . . , Aik

. Each Sj is called
a projection of S on attribute Aij

. If k = n, then the n-
subspace is also called a full-space. Given any two subspaces
X = X1 × . . . × Xm and Y = Y1 × . . . × Yn, we say that
X is contained within Y , denoted as X ⊆ Y , iff m ≤ n
and ∀i ∈ [1, m] there exists a unique j ∈ [1, n], such that
Xi ⊆ Yj . Given any collection S of subspaces, M ∈ S is a
maximal subspace iff there does not exist M ′ ∈ S, such that
M ⊂ M ′.

Let S = S1 × . . . × Sk be a k-subspace, with k ≤ n. A
record r = (r.A1, . . . , r.An) ∈ D belongs to S, denoted r ∈ S,
iff r.Aij

∈ Sj for all j ∈ [1, k]. The support of S in dataset
D is defined as the number of records in the dataset that
belong to it; it is given as σ(S) = |{r ∈ D : r ∈ S}|. S
is called a frequent subspace if σ(S) ≥ σmin, where σmin is
some user-defined minimum support threshold. Under at-
tribute independence, the expected support of S in D is given

as E[σ(S)] = |D|·
Qk

j=1

|Sj |

|Dij
|
. One can incorporate other ex-

pected dataset distributions by modifying the definition for
E[σ(S)]. Let α ∈ R

+. Define a density indicator function
δα(S) as follows: δα(S) = 1 iff σ(S) ≥ α ·E[σ(S)], otherwise
δα(S) = 0. S is called a dense subspace iff δα(S) = 1, that

ID A1 A2 A3

1 a1 b1 c1

2 a2 b3 c2

3 a2 b3 c3

4 a2 b1 c1

5 a2 b3 c3

6 a3 b3 c3

Table 1: Sample Categorical Dataset

is, if its expected support exceeds its actual support by a
user-defined factor α (also called density threshold).

Two sets of projections Si and Sj , are called strongly con-
nected iff ∀va ∈ Si and ∀vb ∈ Sj , the 2-subspace {va}×{vb}
is dense. S = S1× . . .×Sk is called a strongly connected sub-
space iff Si is strongly connected to Sj for all 1 ≤ i < j ≤ k.

Definition: (Categorical Cluster) Let D be a categor-
ical dataset and α ∈ R

+. The k-subspace C = (C1×. . .×Ck)
is a (subspace) cluster over attributes Ai1 , . . . , Aik

iff it is a
maximal, dense, and strongly connected subspace in D. The
projection Ci is also called the cluster projection of C on
attribute Aij

. If k < n, then C is called a subspace cluster
or a k-cluster, otherwise C is called a full-space cluster.

Our cluster definition requires the k-subspace C be dense,
i.e, it should enclose more points than expected under at-
tribute independence. Also only maximal clusters are mined
to reduce the amount of redundant information. Ideally one
would like to discover only maximal, dense subspaces as clus-
ters. However notice that density is not downward closed
(i.e., for a dense subspace Y there may exist a subspace
X ⊂ Y , such that X is not dense), which makes it diffi-
cult to prune the search space. However, we believe that
dense subspaces are more informative than say purely fre-
quent ones. To make the search for dense spaces tractable
we use the notion of strong connectedness, which is down-
ward closed. This enables new candidate subspaces to be
extended from existing (strongly connected) ones, leading
to more efficient search.

Example 1. Consider the sample dataset D given in Ta-
ble 1 with a total of three categorical attributes A1, A2, A3

and six displayed records. Here D1 = {a1, a2, a3}, D2 =
{b1, b2, b3}, D3 = {c1, c2, c3}. Let α = 2.5. Assuming that
attributes and their values are independent the expected sup-
port for any pair of values, i.e, the 2-subspace {vi} × {vj}
from different attributes Ai and Aj is E[σ({vi} × {vj})] =
1/3× 1/3× 6 = 0.67. Thus any pair of values that occurs at
least 2 times (i.e, σ({vi} × {vj}) = 2) will be dense (since
2/0.67 = 2.98 > α). Thus for α = 2.5 there is only one
full-space cluster in this dataset ({a2}×{b3}×{c3}), There
is an additional subspace cluster: ({b1} × {c1}).

On the other hand, if we use α = 1.5, then any pair
of values that occurs once will be considered dense. Thus
for α = 1.5, there are 3 full-space clusters in this dataset:
({a1, a2}×{b1}×{c1}), ({a2, a3}×{b3}×{c3}), and ({a2}×
{b3}× {c2, c3}). There are two additional subspace clusters:
({a2}× {b1, b3}), and ({a2}× {c1, c2, c3}). Note that an in-
teresting property of our approach is that the clusters found
for higher α will always be contained in a lower α, which
can allow the user to produce a cluster hierarchy.

3. RELATED WORK
Full-space clustering has been an active research topic for

a long time; more recently, since CLIQUE [1] introduced
the problem, many subspace clustering techniques have been
also been proposed. We focus here only on the relevant
research in categorical clustering.

K-modes [9] is an extension to the k-means numeric clus-
tering algorithm. COOLCAT [3] is based on the idea of
entropy reduction within the generated clusters. LIMBO [2]

is a recent information theoretic clustering based on the
information-bottleneck framework. STIRR [5] uses a non-
linear dynamical systems approach to categorical clustering.
It encodes the dataset into a weighted (with attribute-values
as vertices) graph and iteratively propagates these weights
until convergence to “basins”. The main weakness of STIRR
is that the separation of attribute values by their weights is
non-intuitive and the post-processing required to extract the
actual clusters from the basin weights is non-trivial. ROCK
[7] uses an agglomerative hierarchical clustering approach,
using the number of “links” (i.e., shared similar records) be-
tween two records as the similarity; it has O(|D|3) complex-
ity, making it unsuitable for large problems. CACTUS [4]
first builds a summary information from the dataset and it
then computes cluster projections onto the individual at-
tributes and then extends them to find cluster candidates
over multiple attributes. The extension step, though de-
scribed in the paper, was not implemented by the authors,
but our augmented implementation showed a severe perfor-
mance impact over the cactus baseline version (see Section
5.1). Note also that with the exception of CACTUS, which
mines only a limited class of subspace clusters, none of the
previous methods can mine subspace clusters.

Other previous work has focused on binary or transac-
tional data [13, 8]. Also relevant is the problem of bi-
clustering [11], which aims at finding subspace clusters on
both attributes and records. However, these methods can-
not typically handle the kinds of clusters we propose here
(e.g.,({a1, a2} × {b1} × {c1}) as shown in Example 1), since
by definition two values of the same attribute never co-occur
in any transaction, ans as such they will not be part of the
same cluster.

4. THE Clicks APPROACH
Clicks models a categorical dataset as a k-partite graph

where the vertex set (attribute values) is partitioned into k
disjoint sets (one per attribute) and edges exist only between
vertices in different partitions, indicating dense relation-
ships. The adjacency matrix of the k-partite graph serves
as a compressed representation of the data that can fit into
main memory for even very large datasets. Clicks maps the
categorical clustering problem to the problem of enumerat-
ing maximal k-partite cliques in the k-partite graph.

Definition (k-Partite Graph and Clique)Let D be
a categorical dataset over attributes A1, . . . , An and V =
Sn

i=1 Di. The undirected graph ΓD = (V, E) where (vi, vj) ∈
E ⇐⇒ δα({vi} × {vj}) = 1 is called the k-partite graph
of D. A subset C ⊆ V is a k-partite clique in ΓD iff every
pair of vertices vi ∈ C ∩ Di and vj ∈ C ∩ Dj (with i 6= j)
are connected by an edge in ΓD. If there is no C ′ ⊃ C such
that C ′ is a k-partite clique in ΓD, C is called a maximal
k-partite clique. A clique C is dense if δα(C) = 1 in D.

Lemma 2. Given a categorical dataset D and a k-subspace
C = C1×. . .×Ck with Cj ⊆ Dij

over attributes Ai1 , . . . , Aik
.

C is a k-cluster in D if and only if C is a maximal, dense
k-partite clique in ΓD.

Example 3. Consider the example in Table 1. Let α =
2.5, then any pair of values that occurs at least 2 times is
dense in D, and thus there is an edge between such vertices
in ΓD. The corresponding k-partite graph of D is shown in
Figure 1, using bold edges. It clearly has two clusters, one
full-space and one sub-space. If α = 1.5, then some other
(thin) edges will be added to the graph. Mining this new
graph will produce the larger set of clusters mentioned in
Example 1. It should be clear that clusters mined at α = 2.5
are contained in those at α = 1.5, since a lower α only adds
edges to ΓD.

a1

a2

b1 c1

a3

b2

b3

c2

c3

Figure 1: k-Partite Graph of D

Given a dataset D and a user-specified density threshold
α ∈ R

+, we are interested in mining all full-space and sub-
space clusters (i.e., all maximal, dense, and strongly con-
nected subspaces) in D. Since density is not downward
closed, we use the strongly-connected property to mine L,
the set of all maximal k-partite cliques in ΓD. We then
follow-up with a validation step, that verifies whether δα(C) =
1 for all cliques C ∈ L. This two-step approach is very
efficient, but it is not complete, since it is possible that
some maximal clique C ∈ L is not dense, whereas its sub-
set C ′ ⊂ C might be dense. To guarantee completeness
Clicks uses as another step the selective vertical expansion
technique to enumerate subspaces of a non-dense maximal
clique. Our experiments show that most of the final clusters
can be found using only the first two steps, but if complete-
ness is desired, all clusters will be guaranteed to be found
for an additional cost. It should be noted that even with
selective vertical expansion Clicks is faster than previous
categorical clustering methods. Note that Clicks can mine
maximal k-partite cliques for any 1 ≤ k ≤ n; if k = n,
the discovered cliques are clusters over the full set of dimen-
sions, and if k < n then the discovered cliques are subspace
clusters. We also note that Clicks is flexible enough to
mine only (maximal) frequent clusters if so desired (a minor
change in the pre-processing step accomplishes this).

Clicks(Dataset D, α, σC)
AttributeValueRanking: R =

Sn

i=1 Di

Clique C = ∅
CliqueCollection L = ∅

PreProcess(D, α, ΓD,R)
DetectMaxCliques(ΓD,L,R, C)
PostProcess(D, L, α, σC)
return L

Figure 2: The Clicks Algorithm

The basic Clicks approach consists of the three principal
stages, shown in Figure 2, as follows: 1) Pre-processing: We
create the k-partite graph from the input database D. We
also rank the attributes for efficiency reasons. 2) Clique De-
tection: We enumerate all the maximal k-partite cliques in
the graph ΓD. 3) Post-processing: We verify the support of
the candidate cliques within the original dataset to form the
final clusters. If completeness is desired we perform selective
sub-clique expansion of non-dense maximal cliques to find
the true maximal, dense cliques. Moreover, the final clusters
are optionally merged if they have significant overlap.

4.1 Pre-processing
In one scan of the dataset, Clicks collects the support

of all single and pairs of attribute values. From the pairs
it computes the dense pairs {va} × {vb}, and add an edge
(va, vb) to ΓD, creating the full k-partite graph ΓD.

Given ΓD and V =
Sn

i=1 Di = {v1, . . . , vm}, the neighbors
of an attribute value vj are defined as N(vj) = {vk ∈ V :
(vj , vk) ∈ E}. Note also that, by definition, if vj , vk ∈ Di

then vk 6∈ N(vj), since values of the same attribute never co-
occur. However, for the clique enumeration step, we have to
consider all values of an attribute to be implicitly connected.

The connectivity of vertex vj ∈ Di is defined as:

η(vj) =



N(vj) ∪ {Di\vj} if |N(vj)| > 0

0 otherwise

Intuitively, connectivity corresponds to the neighbors (N(vj))
plus the remaining values of the attribute in question (Di\vj).
However, if a given value does not co-occur with values of
other attributes it cannot be part of a k-partite clique; its
connectivity should be zero. The connectivity of a clique C
is given as follows: η(C) =

T

vj∈C
η(vj), i.e, the connectivity

common to all vertices in C. Clicks ranks the set of all at-
tribute values by decreasing connectivity for efficient clique
enumeration. Given a seed clique, Clicks adds a new vertex
to the clique based on the next highest ranked value. This
can significantly speed-up the search for maximal cliques.

4.2 Enumerating k-partite Maximal Cliques
The clique detection phase is based on a backtracking

search, that at each step, adds only those vertices to a clique
that are in the connectivity set of the clique. If more than
one such vertex exists, attribute value ranking is used to
break the tie. Clicks uses a recursive algorithm that at
each stage tries to expand the current clique to ensure max-
imality. It is similar in spirit to the Bron-Kerbosch (BK)
algorithm [10], but whereas BK enumerates regular cliques,
Clicks is designed for k-partite cliques. The pseudo-code
for the clique detection phase is shown in Figure 3.

Initially DetectMaxCliques is called with the empty clique
C and the full, ranked attribute value set R as a list of
possible vertices to be used for an extension. In general,
R represents the set of vertices that can be used to extend
the current clique C. Upon return, the clique collection L
contains all maximal k-partite cliques in the dataset.

Note that foreach statements process attribute value rank-
ings (based on connectivity) in descending order. The pred-
icate Φ(C) evaluates to true iff i) we want to mine subspace
clusters, or ii) we want to mine full space clusters and C
contains at least one attribute value for every attribute of
the dataset. Otherwise Φ(C) is false. The set RD contains
all elements of R that have their deleted flag set. Similarly,
RP is the subset of R that contains all elements that have
their processed flag set.

DetectMaxCliques(Graph ΓD, CliqueList L,
AttributeValueRanking R, Clique C)

1. if (R = ∅) then
2. if (η(C) = ∅ and Φ(C)) then L = L ∪ C
3. return
4. RD = RP = ∅
5. foreach v in R−RD −RP do
6. C′ = C ∪ {v}; R′ = ∅;
7. RD = RD ∪ {v}
8. foreach v′ in R−RD do
9. if (v′ ∈ η(v)) then R′ = R′ ∪ {v′}
10. if (v is first value in R) then RP = R′

11. if (Φ(R′ ∪ C′)) then
12. DetectMaxCliques(ΓD,L,R′, C′)

Figure 3: The Clicks Clique Detection

DetectMaxCliques starts by checking if the current clique
C is maximal (lines 1-2). If R = ∅ then there are no more el-
ements to extend C, thus C is potentially maximal. If in ad-

dition η(C) = ∅ then C is a maximal clique, since an empty
connectivity set means there are no additional vertices con-
nected to all vertices in C. The only test that remains to
be done is whether full/sub-space cliques are desired. For
subspace clusters Φ(C) is always true, whereas for full-space
clusters Φ(C) is true only if C contains at least one value
from each attribute. Thus, C is added to the set of maximal
cliques L iff Φ(C) is true (line 2), and the search is continued
at the previous level (line 3).

If R 6= ∅ then C can potentially be extended with vertices
in R. The outer loop (line 5) attempts to add a value v to
C in an effort to create a yet larger clique C ′ (line 6). Note
also that at any given point in time R contains only those
attribute values that are connected to C. Hence, adding
v ∈ R to C will yield another clique C ′. We mark v as
deleted (RD = RD ∪ {v}), indicating that it was already
considered in the clique construction (line 7).

To maintain the condition that all attribute values in R
are connected to C, a R′ matching C ′ needs to be con-
structed before the recursive call. The inner foreach loop
(line 8) scans all attribute values that were possible exten-
sions to C and selects only those (line 9) that are in the
connectivity set of v that was added to C in line 6. For
the first vertex in R, we maintain a list of nodes already
considered in RP (line 10).

Finally, the algorithm recurses on the newly created clique
C′ with its matching attribute value ranking R′. If only full-
dimensional clusters are to be detected we can prune part of
the search space at this point; we can stop the recursion if
the new clique C ′ cannot be extended to cover at least one
value from all attributes, i.e, we recurse only if Φ(R′ ∪ C′)
is true (lines 11-12).

Both RD and RP are also used for pruning. Consider two
possible extensions v1 and v2 of a clique C. If an extension
by v1 was attempted before, the set of possible extensions
to v2 (R′) does not need to contain v1. If a clique contain-
ing both v1 and v2 exists, it was discovered when C was
extended by v1, because in that case v1 and v2 form a dense
2-subspace and, hence, v2 was part of the R′ accompanying
v1. The set RD prunes these cases by recording every value
that has already been used to extend C. Similarly, if v2

was already part of the R′ accompanying v1, it need not be
considered as an extension to C. This latter case is guarded
against by the processed attribute values RP .

b1 c1 b3 c3 a1 c2 a3a2 b2

c1 b3 a1

a1

b1 c1 b3 c3 a1 c2 a3

c1 b3 c2 a3

c2 c2 a3

c1 b3b3 a1

Figure 4: Clique Finding

Example 4. Consider the k-partite graph encoding ΓD

in Figure 1. An attribute value ranking of V is as fol-
lows: a2(7), b1(6), c1(6), b3(6), c3(5), a1(4), c2(4), a3(4),
b2(0), where the connectivity cardinalities |η(v)| are given in
parentheses. Figure 4 shows a run of DetectMaxCliques on
this example. Vertices depicted without circles denote search

paths that were pruned due to RP , whereas bold squares indi-
cate that a maximal clique was found. By following the edges
up to the root we can construct the corresponding cliques.
The R′ sets can be read from the figure by computing the
union of all children of a node. For example, R′ for clique
{a2, b1} (in the leftmost path) is {c1, b3, a1}. This example
shows all five full and subspace maximal cliques. For exam-
ple {a2, b1, c1, a1} is a full space clique, whereas {a2, b1, b3}
is a subspace clique.

4.3 Post-Processing
Once the set of all the maximal k-partite (or n-partite)

cliques L have been mined, the post-processing phase in-
volves a single scan of the dataset to count, for each candi-
date clique C ∈ L, the number of transactions in the dataset
that support it. If δα(C) = 1, i.e, the support of C is at least
α times its expected support, then C is a valid clique, and
Clicks outputs it as a cluster. However, there are two chal-
lenges that remain: 1) a maximal clique may fail the density
test, whereas one of its sub-cliques may be dense. To guar-
antee completeness, Clicks allows an optional selective ver-
tical expansion approach to explore the sub-cliques induced
by a non-dense maximal clique; we give more details of this
step in the next section. 2) There may be many overlap-
ping cliques in L. In this case, it is desirable to merge those
cliques that have significant overlap into large cliques; we
give details of this step below.

Note that overlapping cliques are mainly a result of the
strict notion of strong connectedness for a cluster. For in-
stance, consider a clique C = C1 × . . . × Ck, and consider a
vertex vm such that vm is dense w.r.t. all subspaces except
for one, say Cj = {v1, . . . , vl}. Assume that vm is dense
w.r.t. all vertices in Cj except for va. In this case vm can-
not belong to the maximal clique C, but it may belong to
another maximal clique C ′ that has a high degree of over-
lapping subspaces with C. If we detect such a case, it would
be preferable to merge such cliques into a single cluster.

The enhanced post-processing step in Clicks implements
a novel method for merging a set of discovered maximal
cliques based on their common coverage, i.e., the number
of records that are common to that set of cliques. Let L
be the set of maximal cliques mined from ΓD. For ev-
ery clique Ci ∈ L let i denote its unique clique id. We
define the term cset to denote any set of clique ids. Let
C denote the database of csets obtained by replacing each
record r ∈ D with its cset, the set of clique ids that the
record belongs to, given as cset(r) = {i : r ∈ C i}. We
can then mine the cset database C to obtain all the maxi-
mal frequent csets, denoted as FC, that are above a mini-
mum frequency threshold σC, i.e., those csets that are co-
supported by a minimum number of records. Note that FC

can be efficiently mined using any maximal itemset mining
method (such as GenMax[6]). For example, consider Ta-
ble 1. Let C1 = {a2} × {b3} and C2 = {b3} × {c3} be the
only maximal cliques in ΓD. Then the cset database C is

given as: C =
n

{}, {1}, {1, 2}, {}, {1, 2}, {2}, . . .
o

. Mining

C with minimum support σC = 2 yields the maximal cset
{1, 2} suggesting that cliques C1 and C2 should be merged
into one clique: {a2} × {b3} × {c3}.

Every cset X ∈ FC is a potential set of cliques that can
be merged. However FC may itself have overlapping max-
imal csets, and of various sizes. Clearly we need a rank-
ing of csets so that merging can be done in a systematic
manner. A good ranking measure is the coverage, i.e., the
number of records in D, that belong to the clique obtained
after merging all cliques ids in a given cset. Unfortunately,
computing the coverage for each X ∈ FC can be very ex-
pensive, since it would require multiple scans of the original
database D. Instead, we introduce an approximate measure

of coverage, called coverage weight, that does not need to
access the original database D; it uses the clique support
already computed from D in the validation step, and cset
support computed while mining FC. Intuitively, the cover-
age weight is an approximation of the inclusion/exclusion
computation for the supporting records. More formally,
given any X ∈ FC, where X = {1, · · · , m} is a set of
clique ids (corresponding to cliques

˘

C1, . . . , Cm
¯

) that fre-
quently occur together, its coverage weight is defined as
ω(X) =

`
Pm

i=1 σD(Ci)
´

− (m − 1) × σC(X), where σC(X)
denotes X’s support within C. For merging decisions, all
csets in FC are sorted in decreasing order of their coverage
weight.

PostProcess(D, L, α, σC)
1. Scan D and check density of each C ∈ L
2. Perform Selective Vertical Expansion if required
3. FC = Maximal Frequent Csets in C (using σC)
4. Sort FC by decreasing coverage weight (>ω)
5. FP = ∅
6. for all X ∈ FC, such that X 6= ∅ do
7. FP = FP ∪ {X}
8. for all Y ∈ FC, such that Y >ω X do
9. Y = Y \X //remove cliques to be merged
10. L′ = L // Save the original cliques
11. L = ∅
12. for all Z = (z1, z2, · · · , zm) ∈ FP do
13. M =

Sm

i=1 Czi , where Czi ∈ L′

14. if ω(M) ≥ E[ω(M)] then
15. L = L ∪ {M}

Figure 5: Clicks Post Processing

Figure 5 shows the pseudo-code for the post-processing
phase, including the merging steps. After validating the set
of mined maximal cliques L, by counting their support and
computing their density (line 1), we call selective vertical ex-
pansion if needed (line 2). This is followed by transforming
the dataset D into the cset database C, which is mined at
minimum support σC to obtain all maximal frequent csets
FC, using GenMax [6] (line 3). This set is sorted in decreas-
ing order of coverage weight to obtain a total order (denoted
by the relationship >ω) on all maximal csets (line 4).

We then process each set X ∈ FC in order of >ω (line
6); X is added to FP (line 7) the set of processed csets,
that give the clique ids of cliques to be merged in the end.
Since no clique can be merged twice, all clique ids that occur
in X have to be removed from the not-yet-processed csets
Y >ω X (lines 8-9). Finally, we create the final set of merged
clusters L by iterating through each cset Z ∈ FP (line 12),
and and merging the cliques accordingly (line 13). Before
merging, we make a copy of L in L′ (line 10), so that we
can merge cliques identified by Z by looking at L′ (line 13),
whereas L contains only the final set of cliques. If a merged
clique M (line 14) is potentially dense we add it to the final
set of clusters (line 15).

4.4 Selective Vertical Expansion
All maximal cliques L are reported by the clique detec-

tion phase, but some might be pruned out in post-processing
if they are non-dense; let LP ⊆ L denote all such pruned
cliques. Sub-cliques of a pruned clique, however, might have
required density. In such cases, to guarantee completeness
Clicks uses the selective vertical expansion approach to con-
sider all sub-cliques for each C ∈ LP , and reports all the
remaining maximal, dense cliques.

For any vertex v in the k-partite graph ΓD of a dataset
D, define its ridset to be the set of all record ids where
v occurs, given as λ(v) = {r.id : r = (r.A1, . . . , r.An) ∈

D, and r.Ai = v}. The supporting ridset for any clique C =
C1 × . . .×Ck, can then be defined as λ(C) =

T

i∈[1,k] λ(Ci),

where λ(Ci) =
S

vj∈Ci
λ(vj). For example, from the dataset

D in Table 1, we have λ(a2) = {2, 3, 4, 5}. For C = {a1, a2}×
{b1} × {c1, c2}, we have λ(C) = (λ(a1) ∪ λ(a2)) ∩ λ(b1) ∪
(λ(c1) ∪ λ(c2)) = {1, 2, 3, 4, 5} ∩ {1, 4} ∩ {1, 2, 4} = {1, 4}.
Note that the cardinality of the ridset gives the support
for the corresponding clique. For example, σD({a2}) =
|λ(a2)| = 4 and σD({a1, a2} × {b1} × {c1, c2}) = 2.

The selective vertical expansion step uses ridsets to ex-
plore all sub-cliques for each C ∈ LR. Starting from the
ridsets for the single values in C, we build larger sub-cliques
using a series of union and intersection operations on the cor-
responding ridsets. The search stops when we have found
all maximal dense sub-cliques contained within C. For each
such sub-clique, if it is not contained within an already found
maximal dense clique in L\LP , we output it as a true max-
imal, dense clique.

5. EXPERIMENTAL STUDY
This section presents a comparative study of Clicks ver-

sus CACTUS [4] and other methods like ROCK [7] and
STIRR [5]. All testing was done on a hyper-threaded In-
tel Xeon 2.8GHz with 6GB of RAM, running Linux. The
code for CACTUS was obtained from its authors.

All synthetic datasets used in our experiments were cre-
ated using the generation method proposed in [5]. The gen-
erator creates a user specified number of records that are
uniformly distributed over the entire data space. It allows
for specification of the number of attributes and the domain
size on each attribute. The generator then injects a user
specified number of additional records in designated cluster
regions, thus increasing the support of these regions above
their expected support.

In the performance studies below we use three attributes
with domain size of 100 (unless specified otherwise), and
we embed two clusters, located on the attribute values [0, 9]
and [10, 19] for every attribute. Each cluster was created by
adding an additional 5% of the original number of records
in this subspace region. In all performance tests, κ = 3 (dis-
tinguishing number) and α = 3 were chosen for CACTUS as
suggested by Ganti et al. Clicks was also configured to use
α = 3. We will show that compared to previous methods,
Clicks is orders of magnitude faster and/or delivers more
intuitive and better clustering results.

5.1 Clicks vs. ROCK and CACTUS
We first compare Clicks with ROCK [7]. Even though

ROCK assumes that inter-point similarities are given, Fig-
ure 6 shows that Clicks still outperforms ROCK by orders
of magnitude. Since ROCK is too slow, we only compare
Clicks with STIRR and CACTUS below.

We next compare with CACTUS. As noted earlier, the
available CACTUS implementation stops at the cluster pro-
jection step, but does not extend these to produce the final
clusters. Note that the reported performance in [4] focuses
only on I/O cost, and does not account for CPU cost of
extension and validation, since they were mainly interested
in showing the effectiveness of the small data summaries,
even for very large datasets. To study the impact of these
additional steps, we augmented CACTUS with the cluster
extension and validation steps.

Figure 7 shows the running time of CACTUS with and
without the additional steps, on datasets with up to 500,000
tuples. We see that CACTUS with extensions is about 3
times slower than the base-line version, and the gap is in-
creasing. This impact is largely due to the excessive number
of projections that CACTUS generates. In the remaining

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

T
im

e
(s

ec
.)

of Tuples (in 1.000)

Time vs. Tuples

ROCK
CLICKS

Figure 6: Clicks vs. ROCK

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

ec
.)

Tuples (in 100.000)

Time vs. Tuples

CACTUS (no extension)
CACTUS (with extension)

Figure 7: CACTUS Extension

0

9

19

Scenario 1
 Scenario 2
 Scenario 3

A
1
 A
2
 A
1
 A
2
 A
1
 A
2
 A
3

Attribute

Value

Figure 8: Cluster Quality Data

 0

 5

 10

 15

 20

 25

 30

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

ec
.)

Tuples (Millions)

Time vs. Tuples

CACTUS (no extension)
CLICKS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
.)

Attributes

Time vs. Attributes

CACTUS (no extension)
CLICKS

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
.)

Domain size per Attribute

Time vs. Domain Size

CACTUS (no extension)
CLICKS

Figure 9: Clicks vs. CACTUS (no extensions)

performance studies only the base-line CACTUS version is
used, since the version with extensions is too slow to be run
on larger datasets.

Three tests on synthetic datasets were performed to com-
pare the performance of Clicks and CACTUS w.r.t. number
of records, number of attributes, and domain size, as shown
in Figure 9: 1) Dataset Size: Synthetic datasets with 10
attributes, and 100 values per attribute were used, while the
total number of records was varied from one to five million.
Both methods scale linearly over the number of records in
the dataset, but Clicks outperforms CACTUS (base-line)
by an average of 20%. If we take CACTUS with extensions
into account Clicks is at least 3-4 times faster. 2) Di-
mensionality: Clicks is especially scalable w.r.t. dimen-
sions. On a dataset with 1 million records and 100 attribute
values per dimension, Clicks outperforms CACTUS (base-
line) by a factor 2 - 3 (and thus CACTUS (extension) by at
least a factor of 6-9), when varying the number of attributes
from 10 to 50, and the gap is increasing. 3) Domain size:
Datasets with one million records and four attributes were
used to measure the performance w.r.t domain size. The
number of attribute values per attribute were varied from
50 to 500. Both methods perform equally well for less than
400 attribute values per domain. At this point, the run-
time of CACTUS dramatically increases, most likely due to
memory shortage. For large domains, Clicks is thus over
an order of magnitude faster than CACTUS.

The STIRR [5] algorithm, as implemented by Ganti et al.
was also benchmarked. STIRR outputs the non-principal
basins, i.e, weighted vertices, that identify the cluster pro-
jection on each attribute. As in the case of CACTUS, no
clusters are actually output. However, it seems clear that
the final cluster extraction step in STIRR would cost at least
as much as the extension step in CACTUS.

5.2 Cluster Quality: Synthetic Data
To evaluate the quality of the clusters, three basic sce-

narios were tested on synthetic datasets, with α = 3, and
with post-processing turned off, in order to verify the actual
reported cliques before merging. The datasets, as shown
in 8, contained 105, 000 records in scenarios one and two.

In scenario 3, 110, 000 records were used, reflecting addi-
tional 5000 records in the third cluster. In all scenarios,
attributes have 100 values, but clusters are embedded only
on the ranges drawn. For example, scenario 1 has two at-
tributes with two well separated clusters, one on attribute
values [0−9] and another on [10−19] on A1 and A2; there are
no clusters on attribute values [20 − 99] even though there
are points in the dataset, chosen uniformly at random, in
that range.
Scenario 1: used a dataset with clear separation of the
two clusters on ranges [0 − 9] and [10 − 19]. Clicks de-
tected both the clusters on the appropriate attribute values.
The CACTUS implementation reported 240 cluster projec-
tions per attribute. These represented all subsets of size 3
of {0, . . . , 9} and {10, . . . , 19}. They are part of the clus-
ter projection but do not satisfy the maximality condition.
Our CACTUS extension connected all subsets of {0, . . . , 9}
on the first attribute with the corresponding subsets on the
second attribute. Similarly, all subsets of {10, . . . , 19} were
connected on both attributes, yielding 115, 200 clusters (re-
flecting the lack of maximality of the projections). The
STIRR algorithm reported weights of about 0.15 for the
attribute values [0, 19] on both attributes, while the weights
of the attribute values in [20, 99] were computed to be about
0.08. According to the interpretation in [5] this corresponds
to a single cluster on [0, 19] × [0, 19], confirming the lack of
separation found in [4].
Scenario 2: used a dataset with a slight overlap between
two clusters on one of the two attributes. Clicks detected
three initial cliques, two of which represented the original
clusters and an additional clique on [7, 9] × [0, 19]. Note
that the third clique is correct according to our cluster defi-
nition. However, the merge step in the post-processing step
could optionally merge this third clique with one of the two
primary cliques. CACTUS, on the other hand, reported 480
cluster projections, which were subsets of the three clusters
that Clicks reported. STIRR reported different weights
for attribute values (i) outside the clusters, (ii) inside one
cluster, and (iii) inside both clusters. A non-trivial post-
processing step external to STIRR could perhaps separate
the attribute values based on these weights.

Scenario 3: used a dataset with two clearly separated
clusters and a third cluster that fully overlaps with the first
cluster on attribute A1, and with the second cluster on at-
tributes A2 and A3. Clicks reported two initial cliques on
[0, 19] × [10, 19] × [10, 19] and [0, 9] × [0, 9] × [0, 9], respec-
tively. These cliques were also the final clusters generated
by Clicks. This behavior is correct w.r.t. the cluster defini-
tion, as [10, 19]× [10, 19]× [10, 19] is not maximal. CACTUS
reported non-maximal subsets that yield about 312 million
possible combinations. Verification of their correctness was
not possible on our current machine due to the complexity of
the extension operation. As in scenario 1, STIRR reported
weights of about 0.15 where a single cluster is present, 0.21
where clusters overlap, and 0.08 on all other attribute val-
ues. Again, it is not obvious how to extract actual clusters
from these weights.

These results confirm that Clicks is superior to both
CACTUS and STIRR in detecting even the simplest of clus-
ters!

5.3 Post-Processing and Selective Expansion
We also assessed the effectiveness of the post-processing

and selective vertical expansion steps. Due to space limita-
tions, we only give the conclusions. In the post-processing
step, we found that the merging time was not affected by
the chosen σC value, since only a small fraction of the to-
tal execution time is spent validating and merging clusters.
We also found that selective expansion can be between 2-5
times slower than the baseline method, mainly due to the
building of ridsets. The added overhead of selective min-
ing was at most linear (in the number of records) w.r.t. the
base-line, making it a computationally viable option even
for large datasets. Most importantly, even with vertical min-
ing enabled Clicks is faster than other methods on many
datasets.

5.4 Real Dataset
We applied Clicks on several real datasets, but here we

present results only on Mushroom; see [12] for more details.
The Mushroom dataset (from UCI Machine Learning Repos-

itory – http://www.ics.uci.edu/mlearn) contains 8124 records
and 22 categorical attributes. Each record describes one
Mushroom specimen in terms of 22 physical properties (e.g.,
color, odor, and shape) and contains a label designating the
specimen as either poisonous (3916 records) or edible (4208
records).

None C1 C2 C3 C4 C5
P 5.1 0.0 21.3 0.0 0.0 3.5

E 3.8 2.4 0.0 0.8 6.3 0.0

C6 C7 C8 C9 C10 C11
P 0.0 0.0 0.0 0.0 0.0 2.4

E 9.5 0.6 1.6 1.8 17.9 0.0

C12 C13 C14 Others

P 0.0 0.0 16.0 0.0

E 2.4 0.6 0.0 4.0

Table 2: Mushroom: Confusion Matrix (Full Space)
None C1 C2 C3 C4 C5 C6

P 0.0 0.0 21.3 0.0 0.0 3.5 0.0

E 0.0 2.4 0.0 0.8 6.3 0.0 9.5

C7 C8 C9 C10 C11 C12 C13
P 0.0 0.0 0.0 0.0 2.4 0.0 0.0

E 0.6 1.6 1.8 17.9 0.0 2.4 0.6

C14 C15 C16 C17 C18 C19
P 16.0 0.4 2.6 0.3 0.1 1.7

E 0.0 0.0 0.0 0.2 7.6 0.0

Table 3: Mushroom: Confusion Matrix (Subspace)

Clicks was configured to run with a low α value of 0.4
as the dataset is very sparse. Not surprisingly, many of
the candidate clusters were overlapping. By assigning each

record to the first cluster that contains it, the confusion
matrices shown in Tables 2 and 3 were generated for full
dimensional and subspace clustering, respectively. The two
rows represent the two original classes, poisonous(P) and
edible (E), while the columns represent the clusters that
Clicks generated. Each cell records the percentage of points
that belong to that cell (e.g., in Table 2, 21.3% of all points
belong to cluster C2 and have the label ’P’). Note, that the
class attribute was not used in the clustering.

Full-dimensional clustering initially yielded 256 candidate
clusters which were then reduced to 213 clusters using a σC

value of 0.5% for the post-processing step. Out of the 213
total clusters, 14 of them account for 87.1% of all points;
these clusters with highest support values are shown explic-
itly (C1 to C14) in Table 2, while the other smaller clus-
ters are grouped under the column Others. Note that these
smaller clusters account for only 4% of all points, and thus
one can safely discard these clusters to yield 14 useful full-
dimensional clusters which show perfect purity w.r.t. the
class label. About 9% of the records could not be grouped
(column None) in any cluster.

For the subspace case Clicks produced 596 initial clusters
(including full-space clusters). This number was reduced to
553 by merging with a σC setting of 5%. As in the full di-
mensional case, a large number of clusters overlapped. By
assigning each record to the first cluster that contains it,
Table 3 was obtained. All points can be covered by only
19 clusters, of which C1 −C14 are full-dimensional (same as
before), and there are five new subspace clusters C15 −C19.
The subspace clusters clearly improved the result w.r.t. the
unclustered records, since all records are now covered by
some cluster (the None column has 0% of points, as op-
posed to 8.9% in the full dimensional case). Cluster C17

and C18 show minor impurities (less than 1%) w.r.t. the
class label. By using all 553 clusters a perfectly pure clus-
tering is obtained. However, this level of granularity will be
inappropriate for most applications.
Acknowledgment: We would like to thank Venkatesh Ganti
for providing the source code for CACTUS and STIRR, and
Eui-Hong “Sam” Han for the ROCK implementation.

6. REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for
data mining applications. In SIGMOD Conf., 1997.

[2] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.
LIMBO: Scalable clustering of categorical data. In 9th Int’l
Conf. on Extending DataBase Technology, March 2004.

[3] D. Barbara, Y. Li, and J. Couto. Coolcat: an entropy-based
algorithm for categorical clustering. In CIKM Conf., 2002.

[4] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS:
Clustering categorical data using summaries. SIGKDD, 1999.

[5] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering
categorical data: An approach based on dynamical systems. In
VLDB Conf., August 1998.

[6] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent
itemsets. In ICDM Conf., November 2001.

[7] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering
algorithm for categorical attributes. In ICDE Conf., 1999.

[8] E. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering
based on association rule hypergraphs. In SIGMOD DMKD
Workshop, 1997.

[9] Z. Huang. Extensions to the k-means algorithm for clustering
large data sets with categorical values. Data Mining and
Knowledge Discovery, 2(3), 1998.

[10] H.C. Johnston. Cliques of a graph - variations on the
Bron-Kerbosch algorithm. International Journal of Computer
and Information Sciences, 5(3), 1976.

[11] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for
biological data analysis: a survey. IEEE/ACM Trans. on
Computational Biology and Bioinformatics, 1(1):24–45, 2004.

[12] M. Peters and M. J. Zaki. CLICK: Clustering categorical data
using k-partite maximal cliques. CS TR 04-11, RPI, 2004.

[13] K. Wang, C. Xu, and B. Liu. Clustering transactions using
large items. In CIKM Conf., 1999.

