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ABSTRACT
XML has become a popular method of data representation
both on the web and in databases in recent years. One of
the reasons for the popularity of XML has been its ability to
encode structural information about data records. However,
this structural characteristic of data sets also makes it a chal-
lenging problem for a variety of data mining problems. One
such problem is that of clustering, in which the structural
aspects of the data result in a high implicit dimensionality
of the data representation. As a result, it becomes more dif-
ficult to cluster the data in a meaningful way. In this paper,
we propose an effective clustering algorithm for XML data
which uses substructures of the documents in order to gain
insights about the important underlying structures. We pro-
pose new ways of using multiple sub-structural information
in XML documents to evaluate the quality of intermediate
cluster solutions, and guide the algorithms to a final solu-
tion which reflects the true structural behavior in individual
partitions. We test the algorithm on a variety of real and
synthetic data sets.
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1. INTRODUCTION
The clustering problem is defined as follows. For a database

D of records, we would like to segment the data into groups
of objects which are similar to one another. The similarity
between the objects is defined with respect to some user-
defined objective function. The clustering problem is widely
known in the literature because of its use in a large num-
ber of applications. A number of interesting methods for
clustering are discussed in [7, 11, 17]. The wide use of the
web and the flexibility of the XML representation has pop-
ularized the use of XML documents. The semi-structured
nature of XML document definitions allows the modelling of
a wide variety of databases as XML documents. The textual
nature of XML documents allows the use of standard Infor-
mation Retrieval methods on XML representations. Other
alternatives include the use of a flattened multi-dimensional
representation of the data in order to perform the clustering.
However, these methods ignore the structural information in
the data, which often turns out to be crucial for the mining
process [3, 15, 16].

The problem of structural clustering of XML documents
is a challenging task because most known clustering algo-
rithms cannot be generalized easily to take into account the
structural behavior of XML documents. There are several
reasons for this: (1) Many clustering algorithms typically
require the computation of similarity between different ob-
jects as a subroutine. The problem of computing similar-
ity between XML documents has itself been known to be a
difficult research problem. (2) Even if the computation of



similarity can be performed effectively, the use of such func-
tions is often not likely to lead to meaningful clusters. This
is because much of the clustering information is encoded in
substructures of the XML documents. This is somewhat
analogous to the problem of projected clustering [1, 2] in
which useful clustering information is encoded in subsets of
dimensions. In the case of structural data, the problem is
even more acute because a very high implicit dimensionality
is encoded in the structural behavior of the documents. (3)
Many clustering algorithms require the use of intermediate
clustering representatives to perform the clustering task ef-
fectively. The structural representation of XML documents
makes this task much more difficult.

This paper presents a structural method for clustering
XML data. In this case, the similarity within a cluster is
defined in terms of the containment of particular frequent
substructures which occur frequently in that particular seg-
ment of the data. Thus, similarity is quantified in terms
of containment of frequent substructures within a particu-
lar segment. These substructures are those analogous to
the projected dimensions used in subspace clustering [1, 2].
As we shall see, such a substructure containment definition
helps us define clusters in a very robust way, since the clus-
ters are defined not by individual substructures, but by sets
of substructures. We further note that while our methods
have been developed for the case of XML data, they are ap-
plicable to a variety of data domains such as biological data
which use structural information in the representation.

This paper is organized as follows. In Section 2, we will
discuss the related work to XML data clustering. In Section
3, we present the basic algorithm for clustering of XML doc-
uments. Section 4 discusses some algorithm implementation
issues and optimization techniques, mainly focusing on ef-
ficient approaches for mining the frequent substructures of
the XML documents. This approach concentrates on a novel
use of a sequential pattern representation of a traversal of
the tree structure. The empirical results are presented in
section 5. Section 6 contains the conclusions and summary.

2. RELATED WORK
One of the earliest work on clustering tree structured data

is the XClust algorithm [8], which was designed to cluster
XML schemas in order for efficient integration of large num-
bers of Document Type Definitions (DTDs) of XML sources.
It adopts the agglomerative hierarchical clustering method
which starts with clusters of single DTDs and gradually
merges the two most similar clusters into one larger cluster.
The similarity between two DTDs is based on their element
similarity, which can be computed according to the seman-
tics, structure, and context information of the elements in
the corresponding DTDs.

One of the shortcomings of the XClust algorithm is that
it does not make full use of the structure information of the
DTDs, which is quite important in the context of cluster-
ing tree-like structures. Two recent approaches of cluster-
ing tree structured data are also based on the hierarchical
clustering method [10, 5]. S-GRACE is a ROCK-like [6]
hierarchical clustering algorithm [10]. In [10], an XML doc-
ument is converted to a structure graph (or s-graph), and
the distance between two XML documents is defined ac-
cording to the number of the common element-subelement
relationships, which can capture better structural similarity
relationships than the tree edit distance in some cases [10].

In [5], the XML documents are modeled as rooted ordered
labelled trees, and a framework for clustering XML docu-
ments by using structural summaries of trees is presented.
The aim is to improve algorithmic efficiency without com-
promising cluster quality.

In contrast to the previous work, our XProj algorithm
employs a projection based structural approach and uses a
set of frequent substructures as the representative with re-
spect to an intermediate cluster of XML documents. As a
frequent substructure preserves more structural information
than the simple element-subelement relationships [10], the
use of multiple frequent substructures as the representative
makes structural similarity (and self-similarity) proposed for
XProj algorithm very robust and accurate. Furthermore,
multiple substructural portions of the document collection
are used to in order to associate a representative set with a
given cluster, rather than a single representative. To make
the structural similarity more comparable among different
sets of representatives and the similarity calculation more
efficient, the representatives only include the frequent sub-
structures of size l. The idea behind this design is analogous
to the projection-based subspace clustering [1, 2].

To speed up the frequent substructure representative min-
ing, XProj adopts a set of high quality approximate struc-
tures, that is, sequences of tree edges. The selection of repre-
sentative substructures is based on the sequential covering
paradigm, which can be leveraged for rule based classifi-
cation. In addition, recent advances in frequent sequence
mining [9, 12, 14] can be leveraged in order to perform ap-
proximate substructure mining in an efficient way. In this
paper, we will utilize these methodologies in order to im-
prove the efficiency of the process.

3. THE XPROJ ALGORITHM
We model XML documents as ordered, labelled, rooted

trees. We do not distinguish between attributes and ele-
ments of an XML document, since both are mapped to the
label set. The basic XML clustering algorithm is imple-
mented as a partition based algorithm which tries to con-
struct partitions that maximize the structural commonal-
ities among the documents within a partition. The con-
struction of clusters of XML documents presents a number
of unique challenges which are not encountered for the case
of other kinds of multi-dimensional data sets. This is be-
cause most clustering algorithms require us to construct the
following measures on multi-dimensional records:

• A measure of similarity among the documents of differ-
ent clusters needs to be implemented. This is difficult
to achieve in a complex structural environment which
has an inherently high implicit dimensionality. In such
cases, similarity needs to be measured in terms of the
substructures in a group of documents.

• In many cases, clustering algorithms need to construct
representatives of groups of documents. While this
is easy to achieve in a multi-dimensional environment
(by simple averaging), it is not quite as easy to do so
robustly in the case of structural documents.

• A method needs to be designed for measuring the sim-
ilarity of a set of structural documents within a given
group. This is related to our earlier discussion on mea-
suring similarity among different documents.



In order to achieve these goals, we design an XML clus-
tering algorithm which works with frequent substructures of
the underlying documents. These frequent substructures are
utilized to measure the similarity between particular groups
of documents. Thus, a group of documents is defined to be
most similar, when it results in a large number of similar
substructures at a specified support level. We note that the
use of frequent substructures in order to define similarity
among documents is analogous to the concept of projected
clustering in multi-dimensional data. As in the case of pro-
jected clustering [1, 2], we are using (structural) projections
of the space in order to define similarity.

In the projected XML clustering algorithm, instead of us-
ing individual XML documents as representatives for par-
titions, we use sets of substructures of the documents as
possible representatives. A set S of substructures is said to
be a representative of a given collection, if each structure
in it appears as a frequent substructure in that collection.
In general, we would like to construct clusters of documents
which are similar enough so that the underlying frequent
structures cover a significant fraction of the tree nodes in
the collection. In order to understand this way of defin-
ing similarity, let us define the concept of coverage of XML
documents. First we define the concept of substructures.

Definition 1. A substructure T , of a rooted, ordered, la-

belled tree, T
′

, is an undirected, connected, labelled, acyclic
graph, whose vertices and edges can be one-to-one mapped

to a subset of vertices and edges of T
′

that preserves the ver-
tex labels and ancestor-descendant relationships among the
corresponding vertices.

Definition 2. Let T be a substructure of the document
R. A substructural alignment of T to R is defined to be a
correspondence from each node in T to a node in R, which
define the substructural relationship of T to R.

We note that there can be more than one possible substruc-
tural alignment of T to the document R. Also, we note that
even though a node in T corresponds to each node in R, the
reverse may not be true.

Definition 3. A structure T is defined to be frequent in
collection of XML documents R at a user defined minimum
support, min sup, if it occurs as a substructure of at least
min sup fraction of the documents in the collection R.

Definition 4. A node x in the document R is said to be
uncovered by structure T , if a substructural alignment from
T to R cannot be found so that node x aligns with some node
in T .

This definition can now be generalized to a set of structures
as opposed to a single structure. This generalization is de-
fined as follows.

Definition 5. A node x in the document R is said to
be uncovered by the set of structures T = {T1 . . . Tk}, if a
substructural alignment from any structure Ti to R cannot
be found such that node x aligns with some node in Ti.

Clearly, if a node in a document remains uncovered by the
frequent structures in a collection, this is not very good from
a clustering point of view. This provides us a natural way
to define the similarity of the documents in a collection to

a set of structures. The similarity of a document to a set of
structures in a collection is defined as the fraction of nodes
in the document which are covered by any structure in the
collection.

Definition 6. The structural similarity δ(R, T ) of a doc-
ument R to a structural collection T = {T1 . . . Tk} is defined
to be the fraction of nodes in R which are covered by some
structure in T .

We note that we use the fraction of nodes which are cov-
ered by the structural collection, since it normalizes for the
total number of nodes in the document. We can easily gener-
alize this definition to similarity between sets of documents
and sets of structures by averaging the structural similarity
over the different documents. Therefore, we have:

Definition 7. The structural similarity ∆(R, T )of the
set of documents R = {R1 . . . Rj} to the set of frequent
structures T = {T1 . . . Tk} is defined as the average struc-
tural similarity over the different documents in R to T .
Therefore, we have:

∆(R, T ) =

j∑

i=1

δ(Ri, T )/j (1)

This lays the ground for us to define the frequent sub-structural
self-similarity of a document collection.

Definition 8. For a given level of user defined minimum
support denoted by min sup, the frequent sub-structural self-
similarity of a document collection R at level l is defined as
the structural similarity ∆(R,Fl), where Fl are the set of
frequent substructures of R with l nodes.

We note that the frequent sub-structural self-similarity of a
document collection provides a good understanding of the
level of homogeneity in the document collection from a sub-
structural point of view. When a collection contains noisy
and random documents, it will not be possible to mine fre-
quent structures which cover a significant fraction of nodes
in the collection. Consequently, the self-structural similar-
ity index is also likely to be low. On the other hand, for a
homogeneous collection, a very high percentage of nodes are
likely to be covered by frequent structures. Therefore, the
frequent substructural self-similarity can be used as a surro-
gate for the self-similarity behavior of collection at the struc-
tural level. Therefore, our aim is to construct the partition
of the document collection in such a way that the frequent
substructural set from the collection covers as many nodes
as possible. An interesting observation is that we have used
only frequent structures of size l in order to measure the
structural self-similarity. This is because structures of size l
cannot be fairly compared to structures of size (l+1) for the
purpose of coverage. For example, if we allow substructures
of any size to be present in the set of frequent structures,
then the structures containing only 1 node would lead to a
very high level of coverage. Thus, choosing the rank of the
substructures is analogous to choosing the dimensionality of
the projection in the case of projected clustering.

The pseudo-code for clustering of XML documents is il-
lustrated in Figure 1. The primary approach is to use a
sub-structural modification of a partition based approach in
which the clusters of documents are built around groups



Algorithm XProj(Document Set: D, Minimum Support:
min sup, Structural Size: l, NumClusters: k )
begin

Initialize representative sets S1 . . .Sk; /*See Sect. 4.3*/
while (convergencecriterion =false)
begin
Assign each document D ∈ D to one of the sets in

{S1 . . .Sk} using coverage based similarity criterion;
/* Let the corresponding document partitions be

denoted by M1 . . .Mk; */
Compute the freq. substructures of size l from each

set Mi using sequential transformation paradigm;
/*See Sect. 4.2*/

if (|Mi| × min sup) ≥ 1
set Si to frequent substructures of size l from Mi;
/* If (|Mi| × min sup) < 1, Si remains unchanged; */

end;
end

Figure 1: The Sub-structural Clustering Algorithm
(High Level Description)

of representative sub-structures. Thus, instead of a sin-
gle representative of a partition-based algorithm, we use
a substructural set representative for the structural cluster-
ing algorithm. Initially, the document set D is randomly
divided into k partitions with equal size, and the sets of
sub-structure representatives are generated by mining fre-
quent sub-structures of size l from these partitions. Sim-
ilarly, in each iteration, the sub-structural representatives
(of a particular size, and a particular support level) of a
given partition are the frequent structures from that parti-
tion. These structural representatives are used to partition
the document collection and vice-versa. We note that this
can be a potentially expensive operation because of the de-
termination of frequent substructures; in the next section,
we will illustrate an interesting way to speed it up. In or-
der to actually partition the document collection, we calcu-
late the number of nodes in a document which are covered
by each substructural set representative. A larger cover-
age corresponds to a greater level of similarity. The aim
of this approach is that the algorithm will determine the
most important localized sub-structures over time. This is
analogous to the projected clustering approach which deter-
mines the most important localized projections over time.
Once the partitions have been computed, we use them to
re-compute the representative sets. These re-computed rep-
resentative sets are defined as the frequent sub-structures
of size l from each partition. Thus, the representative set
Si is defined as the substructural set from the partition Mi

which has size l, and which has absolute support no less than
(|Mi| × min sup). Thus, the newly defined representative
set Si also corresponds to the local structures which are de-
fined from the partition Mi. Note that if the partition Mi

contains too few documents such that (|Mi|×min sup) < 1,
the representative set Si remains unchanged.

Another interesting observation is that the similarity func-
tion between a document and a given representative set is
defined by the number of nodes in the document which are
covered by that set. This makes the similarity function
more sensitive to the underlying projections in the docu-
ment structures. This leads to more robust similarity cal-
culations in most circumstances. In order to ensure ter-
mination, we need to design a convergence criterion. One

useful criterion is based on the increase of the average sub-
structural self-similarity over the k partitions of documents.
Let the partitions of documents with respect to the current
iteration be M1 . . .Mk, and their corresponding frequent
sub-structures of size l be S1 . . .Sk respectively. Then, the
average sub-structural self-similarity at the end of the cur-
rent iteration is Φ =

∑k

i=1
∆(Mi,Si)/k. Similarly, let the

average sub-structural self-similarity at the end of the the

previous iteration be Φ
′

. In the beginning of the next it-
eration, the algorithm computes the increase of the aver-

age sub-structural self-similarity, Φ − Φ
′

, and checks if it
is smaller than a user-specified threshold ǫ. If not, the al-
gorithm proceeds with another iteration. Otherwise, the
algorithm terminates. In addition, an upper bound on the
number of iterations is imposed. This is done in order to ef-
fectively handle situations in which the threshold ǫ is chosen
to be too small.

4. EFFICIENT SUBSTRUCTURE MINING
A key issue is the frequent substructure mining in each it-

eration, which can make the procedure rather expensive. In
this section, we will describe the process of efficiently finding
frequent substructure representatives by using approximate
mining techniques.

4.1 Approximate Substructure Mining
In the sub-structural clustering algorithm shown in Figure

1, there are two main time-consuming operations. One is the
mining of the representative frequent substructures of size l
from each XML document set. Another is the computation
of the alignments of a set of representative substructures in
a given XML document. This is partly due to the high com-
putational complexity of the graph isomorphism problem.
Because our goal is to cluster XML documents, we may not
need the exact algorithm to mine frequent substructures or
compute substructural alignments. One approach for im-
proving the algorithm efficiency is to use approximate data
representation in order to remove or simplify the graph iso-
morphism problem, while maintaining as much structural
relationship among tree nodes as possible.

One simple way of doing this is to use the set of node labels
to represent a sub-structure and use a set of frequent label
sets to approximate the corresponding set of frequent sub-
structures. Although this method is fast because of the pres-
ence of many efficient frequent itemset mining algorithms, it
no longer preserves any structural information and cannot
achieve good clustering quality. In order to alleviate this
problem, the sequence of a pre-order depth-first traversal of
the tree edges is adopted as the compromise between the
complex tree structure and its corresponding simple node
label set, where an edge is denoted by a pair of node la-
bels. The advantage of the edge sequence representation is
that it preserves both the parent-child relationship and the
ordering among the sibling nodes. For example, the edge
sequence representations of the three sub-structures in Fig-
ure 2 are 〈AB,BC, CE, AB, BD〉, 〈AB,BC, BD, BD〉, and
〈AB, BC,CE, BD, AB,BD〉, respectively. Furthermore, the
use of the sequence representation also guarantees the ability
to use efficient data mining algorithms.

The pre-order depth-first traversal of a tree structure as-
sures that a parent node is always visited prior to its child
nodes and a left sibling node is always visited prior to its
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Figure 2: Tree Structures (Illustration 1).

right sibling nodes. Based on this edge traversal ordering,
the following property holds.

Property 1. (Subsequence relationship) If a tree T1 is a
subtree of another tree T2, the edge sequence representation
of T1 must be a subsequence of the edge sequence represen-
tation of T2. 2

We note that Property 1 connects the sequence relation-
ship to the substructural relationship. The property indi-
cates that if a substructure is frequent, its corresponding
edge sequence must be frequent too. For example, the tree
structure shown in Figure 2(a) is a substructure of the tree
structure shown in Figure 2(c). Suppose the minimum sup-
port is 2, the tree shown in Figure 2(a) is frequent. And since
〈AB, BC, CE, AB,BD〉 ⊑ 〈AB, BC,CE, BD, AB,BD〉, edge
sequence 〈AB, BC, CE, AB, BD〉 is also frequent. Note
there may exist a false mapping between two tree struc-
tures and their corresponding edge sequences, where the
false mapping means although one tree is not a fully con-
nected substructure of another tree, their edge sequences
have subsequence relationship. For example, the tree shown
in Figure 2(b) is not a substructure of the tree shown in
Figure 2(c). However, there is a subsequence relationship
between their edge sequence representations. For example,
〈AB, BC, BD, BD〉 ⊑ 〈AB, BC, CE, BD, AB, BD〉 holds.
The dark edges in Figure 2(c) correspond to the edge se-
quence of 〈AB,BC, BD, BD〉. Due to the existence of po-
tential false mappings, the support of an edge sequence may
be higher than that of the corresponding tree structure.

One way to reduce the false mapping problem is to add
some constraints during the process of mining frequent se-
quences. One such constraint is that all sibling nodes should
have the same parent node. For example, the last three adja-
cent edges in sequence 〈AB,BC, BD, BD〉 indicate that the
three child nodes with labels C, D, and D have the same
parent node with a label B. However, in sequence 〈AB, BC,
CE, BD, AB, BD〉, the first BD edge does not share the
same parent node with the second BD edge. Thus the align-
ment of 〈AB,BC, BD, BD〉 in 〈AB,BC, CE,BD, AB,BD〉
is not a valid one. A simpler solution for the false mapping
problem is to allow it. Since our goal is to cluster XML docu-
ments, and the edge sequence partly preserves the structural
information, the false mapping of a subsequence relationship
still reflects a kind of similarity between the two correspond-
ing structures. Therefore, the advantages of adding such
constraints remains unclear from an effectiveness point of
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Figure 3: Tree Structures (Illustration 2)

view. While we have mentioned a possible constraint-based
solution to the false mapping problem for other data mining
problems, we chose not to use it for the clustering problem.
It is possible to adapt a number of efficient sequential pat-
tern mining algorithms to mine frequent edge sequences of
size l−1 (corresponding to l tree nodes). In our XProj algo-
rithm, we revise one of the latest sequential pattern mining
algorithms, BIDE [14], to mine frequent sequences of size
l−1. BIDE is a projection-based algorithm, which mines fre-
quent closed sequences with respect to a prefix by building
and scanning its projected database. As we are only inter-
ested in the frequent sequences of size l − 1, some enhance-
ments can be made to the BIDE algorithm. For example,
some short projected sequences in the sequence databases
cannot be used to count frequent sequences of size l−1, and
can therefore be safely pruned from the projected sequence
database. Furthermore, once the size of the current prefix
sequence reaches l−1, we do not grow it any more. Note that
the revised BIDE algorithm stops growing the current prefix
sequence once it reaches a size of l−1, and hence it will not
be subsumed by its super-sequences even if it is non-closed.
In addition, we turn off the sequence closure checking and
search space pruning. Thus, the revised BIDE algorithm
can mine the complete set of frequent sequences of size l−1.
For more details of the BIDE algorithm, we refer to [14].

There are several other potential forms of sequence repre-
sentation of a tree structure. A simple variant of the edge
sequence representation is the node label sequence. Because
it does not maintain the parent-child relationship, it pre-
serves too little structural information, and may not work
well for XML clustering. A typical example is shown in
Figure 3(a)-(c), in which we expect that the structural simi-
larity between the two trees in Figure 3(b)-(c) is larger than
that between the two trees of Figure 3(a)-(b). However, if
we examine their node label sequences (i.e., 〈B, C, D, E〉,
〈F, C, D, E〉, and 〈F, C, D, G〉), it is difficult to differentiate
the two similarities, because each pair of them has a com-
mon subsequence of size 3. Another example is shown in
Figure 3(d)-(e). Figure 3(d) and Figure 3(e) are two dif-
ferent tree structures, but they have identical node label
sequences, that is, 〈A, B, C, D, E〉. Another extreme rep-



resentation is the path sequence. In the pre-order depth-
first traversal of a tree structure, each tree node is repre-
sented by the path from the root node to itself. For ex-
ample, the path sequences of the two trees shown in Fig-
ure 3(d) and Figure 3(f), are 〈A, AB,ABC, ABD, ABE〉
and 〈F, FB, FBC, FBD, FBE〉, respectively. This exam-
ple illustrates that the path sequence representation encodes
more differentiating structural information.

4.2 Representative Substructure Selection for
Similarity Computation

Given a document partition Mi (1 ≤ i ≤ k), its corre-
sponding seed set Si may contain a large number of frequent
sub-structures of size l. Although we have adopted the se-
quence to approximate a tree structure, the computation of
the similarity function between a document and the seed set
Si is still quite costly. It will be desirable to select a small
number of high quality substructures (or sequences), and
only use this set of representative sub-structures to compute
the similarity function and the average sub-structure self-
similarity over the k partitions of the documents. We note
that the support of a frequent sub-structure with respect to
a given partition Mi usually indicates the degree of its local-
ity to Mi. Thus, a good representative sub-structure should
have a support as high as possible. One way of achieving
this goal is to simply select the top-K most frequent sub-
structures of size l as the corresponding seed set Si.

One problem with the set of the top-K most frequent
sub-structures of size l is that they may overlap a lot with
each other, and thus may not cover all the documents in
the corresponding partition. A solution to this problem is
to use the sequential covering paradigm to select a number
of frequent sub-structures which cover the documents in the
partition. Starting from the sub-structure with the highest
support, the documents covered by this sub-structure are
removed from the partition and this sub-structure is added
to the seed set. Then, the next sub-structure is retrieved, if
it covers some remaining documents in the partition. The
documents covered by this new sub-structure are removed
from the partition, and the corresponding sub-structure is
treated as a new representative sub-structure of the seed
set. This procedure is repeated until all the documents in
the partition are covered or the number of selected sub-
structures reaches a user-specified threshold.

4.3 Representative Substructure Selection for
Initialization

The XProj algorithm described in Section 3 initializes the
representative sets by randomly dividing the XML database
into k partitions and mining frequent substructures of size
l for each partition, where k is the number of clusters. We
refer to this kind of initialization method as Randomized
Initialization. One problem with this method is that it is
very hard to find some highly frequent substructures from
the randomly generated partitions. Thus, it tends to pro-
duce low quality clusters in the following iterations or needs
too many iterations to converge.

In order to generate more robust sets of representative
substructures, one method is to directly compute k high-
quality frequent sequences of size l-1 from the original database,
and use each one of them as a representative substructure for
one cluster. This results in a robust initialization. The prob-
lem is in choosing the k representative frequent sequences

of size l-1. Our criteria is that the selected k representative
sequences should be frequent and distinctive enough from
each other in order to cover as many XML documents as
possible. To achieve this goal, we adopt a variant of the se-
quential covering paradigm. We first use the revised BIDE
algorithm to find the complete set of frequent sequences of
size l-1 from the original database. We then choose one
frequent sequence which covers the greatest number of in-
put XML documents and remove the input XML documents
covered by this selected sequence from the database. Sub-
sequently, we choose another frequent sequence which can
cover the remaining input XML documents the most and
remove the corresponding covered input XML documents
from the database. This procedure continues until k repre-
sentative frequent sequences have been selected, which will
be used to create the set of initialized seeds for the algo-
rithm. One advantage of this approach is that it tends to
create highly non-overlapping clusters of documents, and
represents the entire input space fairly well for an initializa-
tion approach. We refer to this method as Coverage-based
Initialization.

Note that each initial representative set contains only one
frequent sequence, and all the initial representative sequences
have the same length. Given an XML document, R, it is pos-
sible that R supports several initial representative sequences
at the same time, and the similarity between R and any ini-
tial representative supported by R will equal the similarity
between R and another initial seed supported by R. As a
result, we need a tie-breaking rule in order to determine
which partition R should be assigned to. In XProj, we sim-
ply choose the initial seed with the lowest support among
all the R-supported seed sequences. As our experiments will
demonstrate, this heuristic works well in practice.

4.4 Other Issues
Outlier Documents. We note that the tree approximation
method discussed in Section 4.1 converts an XML document
to a sequence of tree edges. A set of frequent sequences of
size l-1 is used as a representative for a given partition of
XML documents. However, in some cases, the length of a se-
quence representation of an XML document may be shorter
than l-1. If this happens, it is hard to determine the parti-
tion to which the corresponding XML document should be
assigned. In XProj algorithm, we will temporarily treat it
as an outlier, which will not participate in the iterations of
partitioning. After XProj finds a semi-final set of k clusters,
we can compute the similarity between the outlier and each
cluster of XML documents and assign it to the most similar
cluster. If desirable, some documents with very low similar-
ity to all clusters can remain as outliers. In the following,
we will define the similarity between an outlier and a cluster
of XML documents.

Consider an outlier XML document, denoted by Ro, and
a cluster of XML documents, R = {R1 . . . Rm}. Let |Ri| de-
note the number of edges in the sequence representation of
XML document Ri, while |Ro

⋂
Ri| is the number of com-

mon edges of the sequence representations of Ro and Ri.
The similarity between Ro and R, Λ(Ro,R), is defined as
follows.

Λ(Ro,R) =
m∑

i=1

|Ro

⋂
Ri|

(|Ro| + |Ri|) × m
(2)



Highly Frequent sequences. If the XML documents to
be clustered are homogenous, their corresponding sequences
are very similar to each other even when they come from
different classes. In this case, the frequent sequence mining
algorithm will generate many highly frequent subsequences.
From the clustering point of view, these subsequences almost
appear in each XML document, and are not differentiable in
terms of their cluster membership. As a result, the highly
frequent subsequences are not useful for the clustering task
and can be removed from the clustering process. In XProj, a
user can specify a maximum support threshold, max sup, in
order to not generate the sequences with very high support.

5. EXPERIMENTAL RESULTS
We compared XProj with some recently developed XML

clustering algorithms. We evaluated various aspects of the
algorithm design, analyzed the algorithm sensitivity with
several important parameters, and tested scalability. The
results will show that the XProj algorithm is an extremely
effective algorithm which retains a high level of scalability.

5.1 Test Environment and Data Sets
We implemented the Xproj algorithm using Microsoft Vi-

sual C++ 6.0 and performed a thorough experimental study
on a Windows machine with AMD Athlon 2000+ and 768MB
memory installed. We used both real and synthetic data sets
to test the algorithm. These data sets are described below.
Synthetic Data Sets. We used the same sets of synthetic
XML documents which were generated by the XML gener-
ator provided by the author of [5]. The first two data sets,
denoted by DB1000DTD10MR3 and DB1000DTD10MR6,
both contain 1000 XML documents and were generated from
10 different real DTDs as shown in Figure 6, each of which
was used to generate 100 documents. The parameter MaxRe-
peats, which determines the maximum number of times a
node will appear as a child of its parent node, was set for
DB1000DTD10MR3 and DB1000DTD10MR6 at 3 and 6 re-
spectively. The actual number of repeats generated is a
random value between 0 and MaxRepeats. The parameter
NumLevels that determines the maximum number of tree
levels was set to 7 as in [5].

The third data set, DB300DTD3MR6, contained 300 syn-
thetic XML documents generated from three similar DTDs
as shown in Figure 7. Similarly, each DTD was used to gen-
erate 100 documents. The parameter MaxRepeats was set
at 6 for this dataset. Note the three DTDs in Figure 7 are
quite similar to each other, and this makes the clustering
process for this collection a quite challenging one.
Real Data Set. The real data set we used is SIGMOD
Record, which can be downloaded from http://www.acm.org/
sigmod/record/xml. It contains 140 XML documents cor-
responding to two DTDs, IndexTermsPage.dtd and Ordi-
naryIssuePage.dtd(70 XML documents for each DTD). It is
denoted by SIGMOD140DTD2.

As in [5], we used two popular information retrieval met-
rics, precision PR and recall R, to evaluate the clustering
quality. Given a cluster Ci, let its dominant DTD be Di

(i.e., the majority of its documents have a DTD Di), ai be
the number of documents in Ci which have a DTD Di, bi be
the number of documents in Ci which do not have a DTD
Di, ci be the number of documents which are not in Ci but
have a DTD Di. The precision PR and recall R are defined
as follows.

PR =

∑
i
ai∑

i
ai +

∑
i
bi

, R =

∑
i
ai∑

i
ai +

∑
i
ci

(3)

Clustering metric Chawathe Structure XProj

Precision 0.83 1 1

Recall 0.96 0.98 1

# clusters 12 11 10

Table 1: DB1000DTD10MR6 data set

5.2 Algorithm Evaluation
In this section, we will present the effectiveness, scalabil-

ity, and sensitivity analysis of the XProj algorithm.

5.2.1 Comparison with Other Algorithms
We compared XProj with two XML clustering algorithms.

One is the Chawathe algorithm, which is based on Chawathe’s
tree edit distance [4] to compute the similarity. Another
point of comparison is the latest XML clustering algorithm,
which is based on structure summaries and an enhanced tree
edit distance algorithm [5]. We denote it by the Structure
algorithm. Both algorithms are single-link hierarchial clus-
tering algorithms and the results about them are from [5].
We compared the Precision and Recall of the three algo-
rithms on data sets with both heterogeneous and homoge-
neous DTDs.

We first compared XProj with the other two algorithms
using data sets DB1000DTD10MR6 and DB1000DTD10MR3,
which were generated according to 10 heterogeneous DTDs.
In order for XProj to generate 10 clusters, we set k=10. The
minimum support min sup was set to 0.01, l was set to 4,
and the maximum support max sup was set to 0.8, and we
used the coverage based initialization to initialize the seed
sets. Also, for each partition, we adopted the sequential
coverage paradigm to choose the set of representative fre-
quent sequences of size l. Table 1 depicts the comparison
results for data set DB1000DTD10MR6. We can see that
both the XProj and Structure algorithms work very well
for this data set, and have higher precision and recall than
Chawathe’s tree edit distance based algorithm. The Struc-
ture algorithm generates one more cluster than XProj, and
has a recall of 0.98, which means that it treats 20 XML doc-
uments as outliers, while XProj can perfectly cluster all the
1000 documents into exact 10 clusters. Thus, it has better
clustering quality than the Structure algorithm. Compared
to DB1000DTD10MR6, DB1000DTD10MR3 contains some
smaller XML documents. XProj shows similar compara-
tive results for this data set as well. Both the Chawathe
and Structure algorithms generate more than 10 clusters,
but have worse clustering quality than XProj for data set
DB1000DTD10MR3.

The 10 DTDs used to generate DB1000DTD10MR6 and
DB1000DTD10MR3, are quite different from each other,
and most clustering algorithms can achieve reasonable qual-
ity with them. However, the three DTDs used to generate
data set DB300DTD3MR6 are quite similar to each other,
which makes the clustering quite challenging. The Structure
algorithm was unable to identify groups of XML documents
without using tree summaries and the calculated PR values
were lower than 0.3 [5]. We were very interested in the per-



Clustering metric Structure XProj

Precision 0.78 1

Recall 0.78 1

# clusters 3 3

Table 2: DB300DTD3MR6 data set

formance of XProj on DB300DTD3MR6 data set with ho-
mogeneous DTDs. For this data set, we chose l = 4, k = 3,
min sup = 0.01, and max sup = 0.8. XProj can cluster
DB300DTD3MR6 with perfect quality. As shown in Table 2,
even with structure summaries turned on, the Structure al-
gorithm can only achieve a precision of 0.78 and a recall
of 0.78. These are much lower than those of XProj. This
demonstrates that XProj also works well for difficult data
sets with homogeneous DTDs. The reason for this is that the
XProj algorithm is able to differentially find substructures
which can discriminate between the different DTDs. Note
the perfect results for XProj in the above experiments can
only be achieved by using the Coverage based Initialization
method with some tuned input parameters. First, we com-
pare the performance between Coverage based Initialization
and Randomized Initialization. Then, we present some sen-
sitivity analysis to illustrate that XProj can generate good
clustering results over a wide range of parameters.

5.2.2 Randomized Initialization vs. Coverage based
Initialization

In Section 4.3 we proposed Coverage based Initialization
in order to generate more robust seed sets of representa-
tive substructures than Randomized Initialization. We com-
pared the two methods on data sets DB1000DTD10MR6,
DB300DTD3MR6, and SIGMOD140DTD2. In the exper-
iments, we set min sup at 0.01, max sup at 0.8, sequence
length parameter l at 4, and the number of clusters at the
number of DTDs. Table 3 shows the comparison results in
terms of the algorithm precision. We can see that Coverage
based Initialization provides more than 20% higher precision
than Randomized Initialization for both DB1000DTD10MR6
and DB300DTD3MR6 data sets. This indicates that Cov-
erage based Initialization is very helpful in improving the
clustering quality of the algorithm. The SIGMOD140DTD2
data set is simple, and both methods achieve the same preci-
sion when the parameter l is not too small. However, Cover-
age based Initialization still outperforms Randomized Initial-
ization with a small l for this data set. For example, when l
equals 3, XProj with Coverage based Initialization has a pre-
cision 100%, while the precision of XProj with Randomized
Initialization is only 89.8% for this data set. All our re-
sults over a variety of parameter values show similar trends
as suggested in Table 3. This suggests that Coverage based
Initialization is able to avoid the local optima in which the
randomized method may get trapped. This can improve the
clustering quality significantly.

5.2.3 Sensitivity Analysis
We used DB300DTD3MR6 and SIGMOD140DTD2 to per-

form the sensitivity analysis with some important input pa-
rameters. Here, we are interested in how the sequence length
parameter l, the minimum support threshold min sup, and
the maximum support threshold max sup affect the algo-
rithm’s clustering quality.

Data sets Rand. Init. Cover. Init.

DB1000DTD10MR6 0.734 1

DB300DTD3MR6 0.737 1

SIGMOD140DTD2 1 1

Table 3: Comparison: Randomized and Coverage

based Initialization (Precision).
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Figure 4: Sensitivity analysis (Varying l, SIG-
MOD140DTD2 and DB300DTD3MR6).

We first tested the impact of the sequence length param-
eter l on the clustering quality. Figure 4 shows the results
with respect to precision. In the experiment, we set the num-
ber of clusters at 3 and 2 for data sets DB300DTD3MR6 and
SIGMOD140DTD2, and fixed min sup and max sup at 0.01
and 0.8 respectively. We can see that when we change the
sequence length l from 3 to 6 the precision is always higher
than 92.0% for data set DB300DTD3MR6. This is much
better that the best precision that can be achieved by the
Structure algorithm. For data set SIGMOD140DTD2 the
precision is always 100.0%. This illustrates that the XProj
algorithm is able to perform effectively within practical se-
quence length parameter limits.

We then evaluated the impact of the minimum support
min sup and the maximum support max sup to the cluster-
ing quality of XProj. We fixed the length parameter l at
4 and used the difficult data set DB300DTD3MR6. From
Table 4 we see that different combinations of the minimum
and maximum support thresholds have different precisions.
However, for a variety of minimum and maximum support

max sup min sup Precision

0.6 0.01 0.951

0.7 0.01 0.965

0.8 0.01 1.0

0.6 0.02 0.933

0.7 0.02 0.935

0.8 0.02 0.942

0.6 0.03 0.927

0.7 0.03 0.927

0.8 0.03 0.930

Table 4: Sensitivity analysis (Varying min sup and
max sup, DB300DTD3MR6).



thresholds, XProj algorithm always achieves much higher
precision than the Structure algorithm.

5.2.4 Scalability Test
We used all the three synthetic data sets and the real

data set SIGMOD140DTD2 to test clustering scalability by
replicating them from 2 to 16 times. For all these data
sets, we fixed the minimum support, min sup, at 0.1, the
maximum support, max sup, at 0.8, sequence length l at
4, and the number of clusters, k, at the number of DTDs
used to generate the corresponding data sets. As we can
see from Figure 5, XProj shows linear scalability against
the number of XML documents. This is because both the
sequential pattern mining and cluster assignment procedures
scale linearly with data set size. This is a useful property,
since it means that the algorithm can easily be scaled up to
very large data sets.
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Figure 5: Scalability test.

6. CONCLUSIONS AND SUMMARY
In this paper, we presented a projected clustering algo-

rithm for XML documents. The algorithm works with the
use of subspace projections for finding multiple substruc-
tures which represent the seed sets for individual clusters.
The use of multiple substructures to represent seed sets
results in a robust clustering approach for the algorithm.
At the same time, we discuss how to use a sequential pat-
tern based approach for finding the substructures of interest
from the documents. Since sequential pattern mining is a
well studied problem, known algorithms can be leveraged
for finding the relevant frequent substructures. This results
in an efficient approach which can be used over very large
data sets. We also show the qualitative advantages of the
method over the best known techniques for XML document
clustering.
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customer.dtd

<!ELEMENT customer (name,address)>
<!ELEMENT name (firstname,lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT address (street+, city, state,
   zip)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

fruitbasket.dtd

<!ELEMENT FruitBasket (#PCDATA|Apple
  Orange)*>
<!ELEMENT CitrusBasket (Orange*)>
<!ELEMENT Apple EMPTY>
<!ELEMENT Orange(#PCDATA)>
<!ELEMENT Apple kind CDATA "McIntosh"
   rotten (true|false) #REQUIRED>
<!ELEMENT Orange sizeCm NMTOKEN "15">

personal.dtd

<!ELEMENT personnel (person)+>
<!ELEMENT person (name,email*,url*,link?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT name (#PCDATA|family|given)*>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA #REQUIRED>
<!ELEMENT link EMPTY>

bookstore.dtd

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+),
   publisher, price)>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

memo.dtd

<!ELEMENT memo (to, from, date,
   subject?,body)>
<!ATTLIST memo security (public |
   cern) 'public'>
<!ATTLIST memo lang CDATA #IMPLIED>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (para+)>
<!ELEMENT para (#PCDATA | emph)*>
<!ELEMENT emph (#PCDATA)>

population.dtd

<!ELEMENT population (continent*)>
<!ELEMENT continent (name, country*)>
<!ELEMENT country (name, province*)>
<!ELEMENT province (name, city*)>
<!ELEMENT city (name, pop)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT pop (#PCDATA)>

newspaper.dtd

<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE (HEADLINE,
   BYLINE, LEAD, BODY,NOTES)>
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BYLINE (#PCDATA)>
<!ELEMENT LEAD (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>
<!ATTLIST ARTICLE AUTHOR CDATA
   #REQUIRED>
<!ATTLIST ARTICLE EDITOR CDATA
   #IMPLIED>
<!ATTLIST ARTICLE DATE CDATA
   #IMPLIED>
<!ATTLIST ARTICLE EDITION CDATA
   #IMPLIED>

recipes.dtd

<!ELEMENT collection (description, recipe*)>
<!ELEMENT description ANY>
<!ELEMENT recipe (title, ingredient*,
   preparation, comment?,nutrition)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT ingredient (ingredient*,
   preparation)?>
<!ATTLIST ingredient name CDATA
   #REQUIRED amount CDATA #IMPLIED
   unit CDATA #IMPLIED>
<!ELEMENT preparation (step*)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT nutrition EMPTY>
<!ATTLIST nutrition protein CDATA
   #REQUIRED carbohydrates CDATA
   #REQUIRED fat CDATA #REQUIRED
   calories CDATA #REQUIRED alcohol
   CDATA #IMPLIED>

tvschedule.dtd

<!ELEMENT TVSCHDULE (CHANNEL+)>
<!ELEMENT CHANNEL (BANNER,DAY+)>
<!ELEMENT BANNER (#PCDATA)>
<!ELEMENT DAY (DATE, (HOLIDAY|
   PROGRAMSLOT+))+>
<!ELEMENT HOLIDAY (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT PROGRAMSLOT (TIME, TITLE,
   DESCRIPTION?)>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ATTLIST TVSCHDULE NAME CDATA
   #REQUIRED>
<!ATTLIST PROGRAMSLOT VTR CDATA
   #IMPLIED>
<!ATTLIST TITLE RATING CDATA #IMPLIED>
<!ATTLIST TITLE LANGUAGE CDATA
   #IMPLIED>

catalog.dtd

<!ELEMENT CATALOG (PORODUCT+)>
<!ELEMENT PORODUCT (SPECIFICATIONS+,OPTIONS?,PRICE+,NOTES?)>
<!ATTLIST PORODUCT NAME CDATA #IMPLIED CATEGORY (HandTool|Table|Shop-Professional) "HandTool" PARTNUM CDATA
   #IMPLIED PLANT (Pittsburgh|Milwaukee|Chicago) "Chicago" INVENTORY (InStock|Backordered|Disconinued) "InStock">
<!ELEMENT SPECIFICATIONS (#PCDATA)>
<!ATTLIST SPECIFICATION WEIGHT CDATA #IMPLIED POWER CDATA #IMPLIED>
<!ELEMENT OPTIONS (#PCDATA)>
<!ATTLIST OPTIONS FINISH (Metal|Polished|Matte) "Matte" ADAPTER (Included|Optional|NotApplicable) "Included" CASE (HardShell
   |Soft|NotApplicable) "HardShell">
<!ELEMENT PRICE (#PCDATA)>
<!ATTLIST PRICE MSRP CDATA #IMPLIED WHOLESALE CDATA #IMPLIED STREET CDATA #IMPLIED SHIPPING CDATA #IMPLIED>
<!ELEMENT NOTES (#PCDATA)>

Figure 6: Heterogeneous DTDs for synthetic data.

bookstore1.dtd

<!ELEMENT entry (book*)>
<!ELEMENT book (title,author+,
   publisher, price )>
<!ATTLIST book year CDATA
   #REQUIRED)>
<!ELEMENT author (last, first)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

bookstore2.dtd

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+|editor+)
   publisher, price )>
<!ATTLIST book year CDATA
   #REQUIRED)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

bookstore3.dtd

<!ELEMENT bib (book*)>
<!ELEMENT book (title,author+,
   publisher, cost )>
<!ATTLIST book year CDATA
   #REQUIRED)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT cost (#PCDATA)>

Figure 7: Homogeneous DTDs for synthetic data.


