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ABSTRACT

We tackle the challenging problem of mining the simplest
Boolean patterns from categorical datasets. Instead of com-
plete enumeration, which is typically infeasible for this class
of patterns, we develop effective sampling methods to ex-
tract a representative subset of the minimal Boolean pat-
terns (in disjunctive normal form – DNF). We make both
theoretical and practical contributions, which allow us to
prune the search space based on provable properties. Our
approach can provide a near-uniform sample of the mini-
mal DNF patterns. We also show that the mined minimal
DNF patterns are very effective when used as features for
classification.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

Keywords: Minimal Generator, Boolean Expression Pat-
terns, Sampling, Pattern-based Classification

1. INTRODUCTION
Frequent pattern mining, long a mainstay of data min-

ing, is moving away from complete enumeration methods
to approaches that can effectively sample the pattern space
for the most interesting patterns. This shifting trend is in
keeping with the growing complexity of the data as well as
the types of patterns sought. Whereas much research in the
past has focused on itemset mining, i.e., conjunctive pat-
terns, our focus is on the entire class of Boolean patterns in
the disjunctive normal form (DNF), i.e., disjunctions over
conjunctive patterns. Such Boolean patterns can help dis-
cover interesting relationships among attributes (e.g., gene
expression mining [22]).
Complete enumeration of all frequent Boolean patterns is

prohibitive in most real-world datasets, and thus the main
issue is how to effectively sample a representative subset,
which can in turn be used as features to build classifica-
tion models. Furthermore, we focus on the problem of min-
ing only the most simple Boolean patterns that completely
characterize a subset of the data, i.e., the minimal DNF ex-
pressions. Our work makes number of novel contributions:

i) We propose the first approach to generate a near-uniform
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sample of the minimal Boolean expressions. Our method,
based on Markov Chain Monte Carlo (MCMC) sampling,
yields a succinct subset of the simplest frequent Boolean
patterns.

ii) We propose a novel theoretical characterization of the
minimal DNF expressions, which allows us to prune the pat-
tern search space effectively. When combined with other
optimization techniques, our approach is also practically
effective. For instance, we are able to sample interesting
“support-less” patterns, i.e., where the minimum frequency
threshold is set to one. The pruning techniques can be
applied by any method (even a complete one) for mining
Boolean expressions.

iii) We perform an extensive set of experiments to demon-
strate the effectiveness of our method. In particular, we
classify a variety of datasets from the UCI Machine Learn-
ing Repository [13], and show that minimal DNF patterns
make very effective features for classification; more so than
purely conjunctive features. We also study the sample qual-
ity of our approach, as well as its scalability.

1.1 Preliminaries
Dataset: Let Z = {z1, z2, . . . , zm} be a set of binary-valued
attributes or items, and let T = {t1, t2, . . . , tn} be a set
of transactions identifiers or tids. A dataset D is a binary
relation D ⊆ Z × T . D can also be considered as a set of
tuples of the form (t, t.X) where t ∈ T and t.X ⊆ Z. Note
that any categorical dataset can easily be converted into this
format by assigning an item for each attribute-value pair.

Given dataset D, we call DT the vertical or transposed
dataset comprising tuples of the form (z, z.Y ) where z ∈
Z and z.Y ⊆ T . Table 1 shows an example dataset D
and its transpose DT . The dataset has six items Z =
{A,B,C,D,E, F} and five transactions T = {1, 2, 3, 4, 5}.
For example, the tuple (2, ACDF ) ∈ D denotes the fact that
tid 2 has four items A,C,D, F , whereas the tuple (E, 134) ∈
DT denotes the fact that item E is contained in transactions
1, 3, 4. For convenience, we write subsets without commas.
Thus {A,C,D, F} is written as ACDF, and so on.

tid set of items

1 ABE
2 ACDF
3 BEF
4 ADE
5 BF

item tidset

A 124
B 135
C 2
D 24
E 134
F 235

(a) (b)
Table 1: Dataset D (a) and its transpose DT (b)

Boolean Expressions: Let AND, OR, and NOT denote
the logical operators. We denote a negated item (NOT z)



as z̄. We also call z̄ the complement of z. We use the symbols
∧ and ∨ to denote AND and OR, respectively. For example,
A∨B and A∧B denote logical expressions A OR B, A AND
B, respectively. For conciseness we also use | in place of ∨
and we usually omit the ∧ operator. For example, A|BC|D
denotes the Boolean expression A OR (B AND C) OR D.
A literal is either an item z or its complement z̄. A clause

is either the logical AND or the logical OR of a set of liter-
als. An AND-clause contains only the AND operator over
all its literals, e.g., BCD. Likewise, an OR-clause contains
only the OR operator over all its literals, e.g., C|E|F . We
assume that a clause does not contain both a literal and its
complement – e.g., A∧ Ā leads to contradiction, and Ā∨A,
to a tautology.
We adopt the disjunctive normal form (DNF) to represent

Boolean expressions. A Boolean expression Z is said to be
in DNF if it consists of OR of AND-clauses, with the NOT
operator (if any) directly preceding only literals, written as:

Z =

k
∨

i=1

Zi =

k
∨

i=1

(zi1 ∧ zi2 ∧ · · · ∧ zimi
)

Here each zik is a literal and each Zi = (zi1 ∧ . . . ∧ zimi
) is

an AND-clause. The size or length of a Boolean expression
Z is the number of literals in Z, denoted |Z| =

∑k

i=1 mi.

Tidset and Support: Given a tuple (t, t.X) ∈ D, and
a literal l, the truth value of l in t is 1 if l ∈ t.X, and 0
otherwise. Likewise, the truth value of l̄ is 1 if l 6∈ t.X, and
0 otherwise. We say t satisfies a Boolean expression Z, if
after replacing every literal in the Boolean expression with
its truth value, the Boolean expression evaluates to true.
The set of all satisfying transactions is called the tidset of
Z, and is denoted as

T (Z) = {t ∈ T |t satisfies Z}

The number of satisfying transactions is called the support
of Z in D, denoted sup(Z) = |T (Z)|.

Minimal Boolean Expressions: Given DNF expressions
X =

∨m

i=1 Xi and Y =
∨n

j=1 Yj , where Xi and Yj are AND-
clauses, we say that X is a subset of Y , denoted X ⊆ Y , iff
there exists an injective (or into) mapping φ : X → Y , that
maps each clause Xi to φ(Xi) = Yji , such that Xi ⊆ Yji . If
X ⊂ Y and |X| = |Y | − 1, we say that X is a parent of Y ,
and Y is a child of X.

Definition 1. A DNF expression Z is said to be minimal
or minDNF (with respect to support) if there does not exist
any expression Y ⊂ Z, such that T (Y ) = T (Z). A minimal
AND-clause is called minAND for short. A minimal Boolean
expression is also called a minimal generator.

A minDNF expression Z is thus the simplest DNF ex-
pression with tidset T (Z). Given a user-specified minimum
support threshold σmin, we say that a DNF expression Z is
frequent if sup(Z) ≥ σmin. However, note that the support
of a minDNF expression is not monotonic, since the addition
of an item to a clause causes the support to drop, whereas,
the addition of an item as a new clause causes the support
to increase. For example, sup(A) = 3, since T (A) = 124,
but sup(AB) = 1 (since T (AB) = 1) and sup(A|E) = 4
(since T (A|E) = 1234). Thus, the support of Z’s children
can be higher or lower. Further, any infrequent clause can be
made frequent by adding additional clauses. For example, if
σmin = 2, then C is infrequent, but C|F is frequent. To pre-
vent such “trivial” clauses, we also impose a minimum sup-
port threshold σc

min on the clauses. For any DNF expression
Z =

∨m

i=1 Zi, we say that Z is frequent if sup(Z) ≥ σmin,

and sup(Zi) ≥ σc
min for all i = 1, . . . ,m. Since a clauses’

support cannot exceed the support of the whole DNF ex-
pression, we have the condition that σc

min ≤ σmin (usually,
we just set them equal).

Given σmin and σc
min, the complete minDNF mining task

is to enumerate all frequent minDNF expressions. However,
given the huge search space, it is typically not feasible to
mine the complete set of minDNF expressions. Instead, we
will focus on sampling a representative subset.

Markov Chain Monte Carlo (MCMC) Methods: A
Markov chain is a mathematical model for stochastic sys-
tems with discrete or continuous states controlled by tran-
sition probabilities. A Markov chain satisfies the property
that the current state depends only on the previous state,
i.e., P (Xt+1 = st+1|Xt = st, Xt−1 = st−1, . . . , X0 = s0) =
P (Xt+1 = st+1|Xt = st) for all t ∈ N and st ∈ S, where
N and S denote the time space and state space, respec-
tively. Let pt(i, j) denote the t-step transition probability,
i.e., pt(i, j) = P (Xn+t = sn+t|Xn = sn). If for all states
si, sj ∈ S, i 6= j, there ∃ t′ ∈ N , s.t. P t(i, j) > 0 is sat-
isfied for all t > t′, we call the Markov chain aperiodic.
Given two states si and sj , we say sj is reachable from si,
if ∃ t, s.t. P t(i, j) > 0, and we denote it as si → sj . If
all state pairs are mutually reachable, we call the Markov
chain irreducible. A Markov chain that is aperiodic and ir-
reducible is called ergodic. An ergodic Markov chain has
a stationary distribution π = (πi|si ∈ S), that satisfies
three properties: (1) πi > 0. (2)

∑

si∈S πi = 1. (3) πP =

π, i.e.,
∑

si∈S πiP (i, j) = πj . The stationary distribution for

an ergodic Markov chain is unique. A Markov chain is time
reversible iff it has a stationary distribution π that satisfies
the balance condition ∀si, sj ∈ S, πiP (i, j) = πjP (j, i).

In the context of minDNF mining, each Markov state can
be taken to be a Boolean expression, with transitions al-
lowed, for example, only between parent and child expres-
sions. Starting from the empty expression, we can then
use Monte Carlo methods to perform random walks in the
expression space to sample the minimal expressions. The
main challenges include efficiency, and guaranteeing sam-
pling quality. We address these questions below.

1.2 Related Work
Mining frequent AND-clauses has been extensively stud-

ied within the context of itemset mining [14]. The notion of
minimal AND-clauses (called minimal itemset generators)
was proposed in [3]. Methods that can mine minAND ex-
pressions include [11] (that focuses on finding the succinct
minimal generators), CHARM-L [20] and Blosom [22]. The
task of mining minimal monotone DNF expressions was pro-
posed in [19], whereas Blosom [22] proposed a complete
framework to extract the minimal DNF and pure AND-
clauses, as well as the minimal CNF (conjunctive normal
form – AND of OR-clauses) and pure OR-clauses. Blo-
som uses a two-step process to mine the minDNFs. It first
mines all minimal AND-clauses, treats them as new items,
as then extracts minimal OR-clauses over these composite
AND-items. Disjunctive association rules have also been
considered in [18]; they first mine all frequent AND-clauses,
and then greedily select good OR combinations. The notion
of disjunctive emerging patterns (EPs) for classification was
proposed in [17]. Disjunctive EPs are Boolean expressions
in CNF form, such that their support is high for the positive
class and low for the negative class. However, they consider
restricted CNF expressions that must contain a clause for
each attribute. We mine general DNF expressions, without
any constraints.

As we shall see, complete mining is infeasible for all but



very high support values. Thus, the focus in recent work
has shifted to sampling based approaches. One of the ear-
liest use of sampling was for mining maximal itemsets via
randomization [15]. In the context of frequent graph mining,
[8] proposed a randomized sampling method to generate a
small representative set of frequent maximal graph patterns;
the method did not provide any sampling guarantee. The
first method to sample maximal graph patterns with uni-
form sampling via MCMC was presented in [16]. In [2], the
authors introduced a generic sampling framework to sample
the output space of frequent subgraphs, which is based on
MCMC algorithm as well. In the context of itemset mining,
[5] proposed a randomized approximation method for count-
ing the number of frequent itemsets. In [4] a Metropolis-
Hastings algorithm for sampling closed itemsets is given.
More recently, [6] presented a direct sampling approach for
mining AND-clauses. Unfortunately, direct sampling can-
not be used for sampling minDNFs since the pattern space
of minDNFs is not connected, as it is for closed AND-clauses.
We thus focus on MCMC sampling, designing an appropri-
ate transition probability matrix that ensures near-uniform
sampling of the set of minDNF patterns.

2. MINIMAL BOOLEAN EXPRESSIONS
In this section we prove some properties of minDNF ex-

pressions, which will allows us to design effective pruning
strategies while sampling.

Lemma 1. Any subset of a minimal AND-clause must
also be a minimal AND-clause.

Proof. Let X be a minAND expression, and let Y ⊂ X.
Assume that Y is not minimal. Then there exists a minAND
expression Z ⊂ Y , such that t(Z) = t(Y ). However, in this
case, t((X \Y )∪Z) = t(X), which contradicts the fact that
X is minimal. Thus, Y must be a minAND expression.

Theorem 1. A DNF expression Z =
∨n

i=1 Zi is minDNF
iff it satisfies the following two properties:

a) For any Zi, (i = 1, . . . , n), we have T (Zi) *
⋃

j 6=i
T (Zj).

In other words, for any tidset of a clause, it is can-
not be a subset of the unions of tidsets over the other
clauses.

b) If we delete any item zja from a clause Zj to yield
a new clause Z′

j = Zj \ zja, then for the resulting
DNF expression Z′ = (

∨

i 6=j
Zi)∨Z′

j, we have T (Z′) 6=

T (Z).

Proof. If (a) is violated, we can simply delete Zi without
changing support, which would contradict the fact that Z
is minimal. Likewise, if (b) is violated, it would contradict
Z’s minimality. For the reverse direction, suppose a DNF
expression Z =

∨n

i=1 Zi satisfies properties (a) and (b). We
have to show that Z is a minDNF. Assume that Z is not
minimal. Then there exists a minDNF Y =

∨m

j=1 Yj , such

that Y ⊂ Z and T (Y ) = T (Z), which implies that there
exists an injective mapping φ that maps each Yj ∈ Y to
φ(Yj) = Zi ∈ Z, such that Yj ⊆ Zi and T (Yj) ⊇ T (Zi).
There are two cases to consider: (1) If φ is a bijection, then
m = n, and there exist a clause Yj ∈ Y , such that Yj ⊆
φ(Yj) = Zi ∈ Z. However, in this case property (b) of Z is
violated, since we can delete some item from (Zi \ Yj), and
the resulting expression will still have the same support at
Z. (2) If φ is not a bijection, then m < n, and there exists
a clause Zk ∈ Z, such that φ−1(Zk) /∈ Y . However, in this
case property (a) of Z violated, since T (Y ) = T (Z) implies
that T (Zk) ⊆

⋃

i 6=k
T (Zi). Therefore, Z must be a minimal

DNF expression.

Lemma 2. A minDNF consists of OR of minAND expres-
sions, i.e., if Z =

∨n

i=1 Zi is minDNF, then each Zi must
be a minimal AND-clause.

Proof. Assume some Zi is not a minimal AND-clause.
Then there exists a literal l ∈ Zi, such that T (Zi\l) = T (Z).
In this case we can delete l from Zi without affecting T (Z),
which violates property (b) in Theorem 1.

Lemma 3. If Z =
∨n

i=1 Zi is minDNF, for any Zi, Zj ∈
Z, we have Zi * Zj. In other words, no clause is a subset
of another clause.

Proof. Suppose Zi ⊆ Zj . Thus T (Zi) ⊇ T (Zj) and
property (a) in Theorem 1 is violated.

Please note that Theorem 1 is a sufficient condition for
Lemmas 2 and 3 but not a necessary condition. As such a
DNF expression that satisfies Lemmas 2 and 3, need not be
a minimal generator. We use this observation to reduce the
random walk state space.

Corollary 1. Any clause-wise subset (obtained by delet-
ing an entire clause) of a minDNF expression Z is also
minDNF.

Proof. The proof is similar to Lemma 1. Suppose a
clause-wise subset Zs ⊂ Z is not minDNF. Then we can re-
place Zs with its equivalent minDNF, say Z′

s, in Z, without
affecting the tidset of Z. This would contradict the mini-
mality of Z.

For example, for the example in Table 1, B|DF |E is a mini-
mal DNF generator, with tidset T (B|DF |E) = 12345. Thus
all clause-wise subsets, namely B, DF , E, B|DF , B|E,
DF |E are minDNF expressions.

Corollary 2. Disallowing the empty pattern ∅ as a valid
minDNF, then a single item is always a minimal AND-
clause and thus a minDNF as well.

In our running example in Table 1, items A, B, C, D, E
and F are all minDNFs.

3. MINDNF SAMPLING ALGORITHM
The state space for the Markov chain for the minDNF

mining consists of DNF expressions linked by immediate
subset-superset or parent-child relationships. The DNF par-
tial order is generated via the following four operations: a)
Add As Clause (AAC): add a new clause comprising a single
item into the DNF. b) Add To Clause (ATC): add an item
to an existing clause. c) Delete The Clause (DTC): Delete
a single item clause from the DNF. d) Delete From Clause
(DFC): Delete an item from a clause (with at least two
items) in the DNF. The added or deleted item can be ei-
ther an item or its complement.

Lemma 4. The partial order graph of minimal DNF gen-
erators is disconnected.

Consider the example in Table 1. We ignore negated items
for now. AB|AF |EF is a minDNF with T (AB|AF |EF ) =
123. However, all its parents are not minimal DNFs. Take
its parent B|AF |EF as an example, T (B) = 135, T (AF ) =
2, T (EF ) = 3, thus property (a) in Theorem 1 is violated.
Similarly, all its children are not minimal DNF generators.
For instance, AB|ACF |EF is not a minimal DNF genera-
tor since property (b) in Theorem 1 is violated. So, if we
only keep minDNF expressions in the partial order graph,
AB|AF |EF would become an isolated point, and would
never be reached! We provide two sampling solutions be-
low.



3.1 Sampling in Clause-wise State Space
The first, rather naive, solution is to sample in the clause-

wise state space. In particular, rather than adding or delet-
ing an item by AAC, ATC, DTC or DFC each time, we add
or delete a clause instead. From Lemma 2, every minDNF
consists of only minimal AND-clauses. Also by Corollary 1,
any clause-wise subset is also a a minDNF. Thus, the par-
tial order graph is connected and all parents of the nodes in
the graph will be minDNFs as shown in Figure 1(a). The
solid ovals represent nodes which are minDNFs. However,
this naive idea requires that we first mine the complete set
of minimal AND-clauses from the dataset. As we shall see
in the experiments, for reasonable support values mining
all possible minimal AND-clauses is very expensive or in-
tractable.

(a) Clause-wise (b) Item-wise
Figure 1: Clause- and Item-wise State Space

3.2 Sampling in Item-wise State Space
Given that the item-wise state space is disconnected, in

order to guarantee all minDNFs are reachable, we also need
to keep non-minimal DNFs in the graph. However, the goal
is to reduce the number of non-minimal DNF in the graph
to as few as possible while retaining all possible minDNFs.
The following two lemmas help in this direction.

Lemma 5. Let Z be a DNF that violates Lemma 2. No
extension of Z (by AAC or ATC operations) can result in a
minDNF.

Proof. At least one of the clauses in Z is not a minimal
AND-clause. Any future extension by adding a literal to
Z cannot be a minDNF, since all its minimal AND-clause
subsets must also be minimal by Lemma 1.

This lemma states that any DNF that violates Lemma 2
should be removed from the graph, which can greatly reduce
the size of the search space. Furthermore, we also remove
any DNF node that violates Lemma 3. Note that this prun-
ing still keeps the graph connected since it is always possible
to find other paths. As an example, for the data in Table 1,
DE|E should be removed since one of its parents DE|EF ,
which is a minimal generator, can be reached by another
path, namely from DE|F . As mentioned earlier, Defini-
tion 1 is a sufficient condition for Lemma 2 and Lemma 3,
but not a necessary condition. There still exist DNFs that
satisfy Lemma 2 and Lemma 3 but are not minimal gener-
ators.

Transition Probability Matrix: It is well known that
a regular random walk on the partial order graph favors
the nodes with higher degree [16]. In fact, if the edges
are weighted, and the graph is undirected (i.e., symmet-
ric weights: w(u, v) = w(v, u) for all connected node pairs),
then nodes are sampled proportional to the total weight of a
node s(u) =

∑

v
w(u, v). We state without proof from [16]:

In an ergodic random walk with an associated weighted con-
nected (undirected) graph, the stationary distribution of a
vertex is directly proportional to the sum of the edge weight
incident to that vertex.
Consider a random walk on the partial order graph where

there are both minimal and non-minimal DNF generators,

with the transition probability matrix P given as:

P (u, v) =

{

w(u,v)∑
x∈Nu

w(u,x)
if v ∈ Nu

0 otherwise
(1)

Here Nu denotes the neighbors of u, i.e., the set of nodes
adjacent to u. Further, let Nm

u = {v ∈ Nu|v is a minDNF}
and Nn

u = {v ∈ Nu|v is not a minDNF} denote set of u’s
neighbors that are minDNF and not minDNF, respectively.
Also, let dmu = |Nm

u | and dnu = |Nn
u | be the minDNF degree

and non-minDNF degree of expression u. Clearly the degree
of u is given as du = |Nu| = dmu + dnu. We define the weight
w(u, v) on each edge (u, v) as follows:

w(u, v) =























(1−α)c

max{dmu ,dmv }
if u and v are minDNFs

αc
dnv

if v is minDNF but u is not
αc
dnu

if u is minDNF but v is not

1 if u and v are not minDNFs

(2)

Here 0 < α < 1 is a weighting term, and c > 0 is a scaling
constant. We shall see that α controls the degree of non-
uniformity in the sampling, and along with c also affects the
convergence rate of the sampling method (it has no impact
on the correctness). From the definition, one can verify that
the edge weights in the graph are symmetric and the transi-
tion probability matrix is stochastic. Moreover, the weights
favor transitions to minDNF nodes. We prove that the de-
fined random walk converges to a stationary distribution.

Theorem 2. An ergodic random walk on the weighted
graph where the transition matrix P is defined via Eq. (1),
using the weight function in Eq. (2) is reversible. Further,
the random walk converges to a stationary distribution.

Proof. Essentially, we can show that P satisfies the de-
tailed balance condition: ∀si, sj ∈ S, πiP (i, j) = πjP (j, i).
Furthermore, the walk is finite, irreducible, and can be made
aperiodic with minor tweaking [16]. Details omitted due to
lack of space.

Definition 2. Let π denote the stationary distribution
for a Markov chain, where π(u) denotes the probability of
visiting node u. The non-uniformity of a random walk is
defined as the ratio of the maximum to the minimum prob-
ability of visiting a minDNF node.

Theorem 3. The non-uniformity of minDNF sampling
defined by Eq. (2) is bounded by the ratio 1/α.

Proof. The stationary distribution for any node v is

given as π(v) = s(v)
W

, where s(v) =
∑

y∈Nv
w(v, y) is the

total weight for node v, and W =
∑

v
s(v) is the sum of

the weights over all nodes in the Markov chain [16]. W is
a constant for a given graph, thus π(u) ∝ s(u). Let u be
a minDNF expression, with minDNF degree dmu and non-
minDNF degree dnu. The total weight for u is given as

s(u) =
∑

v∈Nu

w(u, v) = dnu ·
αc

dnu
+(1−α)c

∑

y∈Nm
u

1

max(dmu , dmy )
.

Note that
∑

y∈Nm
u

1
max(dmu ,dmy )

≤ dmu · 1
dmu

= 1. Equality is

achieved only if dmu ≥ dmy for all y ∈ Nm
u , in which case

s(u) = αc + (1 − α)c = c. On the other hand, in the worst
case we may assume that dmy ≫ dmu so that the second term
vanishes in the limit, in which case we have s(u) = αc. Thus
the worst-case non-uniformity in sampling is c

αc
= 1

α
.

The pseudo-code for the minDNF sampling algorithm is
outlined in Figure 2. The method always starts by picking a



minDNF Sampling Algorithm
Input: D, σmin, σ

c
min, k

Output: k minimal DNF generators
1. B= select a frequent item randomly
2. IF is minimal(B)
3. Output B, insert B in B
4. IF |B| == k THEN return //k minDNFs sampled
5. F = Compute-Local-Neighborhood(B)
6. P = Local-Transition-Matrix(B, F) //Eq. (1), (2)
7. Select a DNF Bnext from F proportional to P
8. Set B = Bnext, and go to Line 2

Compute-Local-Neighborhood(B)
9. For each Boolean expression f in neighborhood of B
10. IF sup(f) satisfies σc

min and σmin

11. If Lemma 2 and Lemma 3 are satisfied
12. Insert f in F
13. If conditions (a), (b) in Theorem 1 satisfied
14. Set f.min = True;

Figure 2: minDNF Sampling Algorithm

random frequent item (or its negation; we omit that here).
Given the current node B, we first check if it minimal, and
if so add it to the sampled set of patterns B. If k steps have
been performed, we stop (line 4). Otherwise, in line 5, deter-
mine all the immediate parents and children of the current
node B that satisfy support constraints, as given in the func-
tion Compute-Local-Neighborhood in lines 9-14. To get
all possible parents and children of the current node B, the
four operations AAC, ATC, DTC, DFC are used in line 9.
In Line 10 we test the support and prune out those pat-
terns that do not satisfied the conditions. In line 11, we use
Lemmas 2 and Lemma 3 to determine whether f is qual-
ified to be remain in the partial order graph. We further
test property (a) and (b) in Theorem 1 for f to determine
its minimality. Returning back to line 6, we compute the
transition probability P according to Equation 1, 2. Then
we select a DNF expression Bnext proportional to P to con-
tinue the walk in lines 7-8. Note that ideally, we should
have a burn-in period for the random walk before patterns
are output. We can start counting patterns after a sufficient
number of steps (for line 4 check). We omit these details
here, for clarity.

3.3 Optimizations

Transition Probability Matrix: Whereas Eq. (2) gives
a good guarantee on the sampling quality, it can be expen-
sive to compute, since we have to determine the minDNF
and non-minDNF degree for a node, as well as for all of
its neighbors Nu. Instead, we propose another weighting
scheme that leads to much faster sampling, without sacrific-
ing the sampling quality too much:

w(u, v) =















1 if u and v are minDNFs
c
dv

if v is minDNF but u is not
c
du

if u is minDNF but v is not

0.5 if u and v are not minDNFs

(3)

We note that if the nodes u and v are both either minDNFs
or non-minDNFs then we do not need to compute their de-
grees. Only if one of the nodes is a minDNF, we have to
compute its degree (du or dv), but we do not have to de-
termine its minDNF or non-minDNF degrees. The theorem
below, shows that sampling quality is still good:

Theorem 4. The sampling non-uniformity of weighting
scheme in Eq. (3) is bounded by 1+dm/c, where dm is max-
imum minDNF degree of a node.

Proof. Let u be a minDNF node, with minDNF degree
dmu and non-minDNF degree dnu. The total weight for u is
given as s(u) =

∑

v∈Nu
w(u, v) = dnu · c

du
+ dmu ≤ c + dmu .

The last step holds since dnu ≤ du. The least weight at any
node occurs when dmu = 0, and the most weight is when
dmu = maxu {dmu } = dm. Thus, the non-uniformity is given

as c+dm

c
= 1 + dm/c.

In practice, this weighting scheme works well. One reason
for this is that the expected minDNF degree of a node is
much better than the worst-case dm given above.

Random Walks with Jumps and Restarts: Even after
pruning, the partial order graph of sampling minimal DNF
generators is large. The walker may be thus get trapped
in local regions of the graph which consists of non-minimal
DNFs. If this happens, our algorithm will not output min-
imal DNFs even after a long run, although the samples are
guaranteed to be uniform. To avoid avoid getting stuck in
local parts, we use the following two strategies: i) Random
Walks with Random Jumps (RWRJ): In case the algorithm
outputs no minimal DNF generators even after r consecu-
tive steps, we abort the current path, and randomly jump
to any earlier minimal DNF generator in the history as its
new start. Any such node is then deleted, so that it will
not again be chosen as a jump point. ii) Random Walks
with Restart (RWR): At each step in the random walk, we
enable a certain probability r that the walker jumps back to
the root node (empty itemset). We confirm empirically that
RWRJ is the better strategy.

AND- and OR-Clause Cache: To further improve exe-
cution time, we pre-compute the frequent AND-clauses and
OR-Clauses of length 2, and store them in a hash table, so
that they can be used to quickly test for the valid ATC and
AAC operations. For example, when we apply ATC opera-
tions on a clause Zi in DNF Z, we first get all frequent can-
didate items Iij to be added for each literal zij ∈ Zi. Then
the candidate items to be added by ATC for the clause Zi

are {
⋂

j
Iij |zij ∈ Zi }. We can do so quickly by looking

up the candidate items in the hash table. This step avoids
searching the whole Z space when we apply ATC operations
and thus improves the efficiency.

Fast Minimality Determination: Since we perform ran-
dom walks on a partial order graph that consists of both
minimal and non-minimal DNFs, Lemma 6 and Lemma 7
mentioned below can help to quickly determine the mini-
mality of a DNF when performing random walks without
explicitly testing properties (a), (b) in Theorem 1, which
can save a lot of computational overhead.

Lemma 6. Let Z =
∨m

i=1 Zi, with m ≥ 2, be a general
DNF expression that violates property (a) in Theorem 1. Let
T (Zk) ⊆

⋃

j 6=k
T (Zj). By adding an item to clause Zk in Z,

the resulting DNF cannot be minDNF.

Proof. The tidset of a clause is anti-monotonic. By

adding an item x to clause Zk, resulting in clause Z
′

k, i.e.,

Z
′

k = Zk ∧ x, we still have T (Z
′

k) ⊆
⋃

j 6=k
T (Zj). Hence

property (a) is violated.

However, note that adding an item to other clauses rather
than Z1 in Z can result in a minDNF node.

Lemma 7. Let Z =
∨m

i=1 Zi be a general DNF expression,
with m ≥ 2, and let clause Zk ∈ Z violate property (b) in
Theorem 1. Adding an item to clause Zk cannot result in a
minimal DNF expression.



Proof. Since Zk violates property (b) in Theorem 1,
there exists item x ∈ Zk, such that T (Zk)∪ (

⋃

j 6=k
T (Zj)) =

T (Z
′

k)∪(
⋃

j 6=k
T (Zj)), where Zk = Z′

k∧x. Let Z
′′

k = Zk∧y =

Z′
k ∧ x ∧ y and consider the DNF expression Z′′ = Z

′′

k ∨
(
∨

j 6=k
Zj). Assume that Z′′ is minDNF, which implies that

(Z
′

k ∧ x ∧ y) is minAND by Lemma 1. This in turn implies

that the difference set Dy = T (Z
′

k∧y)−T (Z
′

k∧x∧y) is non-
empty. We consider three cases: (1) If Dy ⊆

⋃

j 6=k
T (Zj),

then T (Z
′

k∧x∧y)∪(
⋃

j 6=k
T (Zj)) = T (Z

′

k∧y)∪(
⋃

j 6=k
T (Zj)),

which contradicts the assumption that Z′′ is a minDNF.

(2) If Dy ∩
⋃

j 6=k
T (Zj) = ∅, then we have Dy ⊆ T (Z

′

k) ⊆

T (Z
′

k) ∪ (
⋃

j 6=k
T (Zj)) = T (Zk) ∪ (

⋃

j 6=k
T (Zj)), which im-

plies that Dy ⊆ T (Zk) = T (Z
′

k ∧x). However, by definition,

Dy ⊆ T (Z
′

k ∧ y). Hence Dy ⊆ T (Z
′

k ∧ x) ∩ T (Z
′

k ∧ y) =

T (Z
′

k ∧ x ∧ y). But thus implies that Dy = ∅, which con-

tradicts the assumption that Z
′

k ∧ x ∧ y is minAND. (3) If
Dy *

⋃

j 6=k
T (Zj) and D ∩

⋃

j 6=k
T (Zj) 6= ∅ then we can

divide Dy into two parts Dy = D′
y ∪ D′′

y , such that D′
y ⊆

⋃

j 6=k
T (Zj), D

′′
y ∩

⋃

j 6=k
T (Zj) = ∅, and D′

y 6= ∅, D′′
y 6= ∅.

Similar to step (2), D′′
y ⊆ T (Z

′

k ∧ x ∧ y), which implies that
Dy = D′

y ∪D′′
y = T (Z′

k ∧ y)−T (Z′
k ∧x∧ y) = D′

y. However,
this implies that D′′

y = ∅, which is a contradiction. From the
three cases above, we conclude that Z′′ is not minDNF.

Once again, note that adding an item to Zj , j 6= k, may
possibly generate a minimal DNF. Consider an example from
Table 1 again, with DNF D|BF . It violates property (b) in
Theorem 1 since T (D|BF ) = T (D|F ) and D|F is a mini-
mal DNF generator. However, one extension of this DNF
is BF |DE, which is a minimal DNF generator. Figure 1(b)
shows this example. The solid ovals in the figure are minimal
DNF generators, and dashed ovals represent non-minimal
DNFs.

3.4 Sampling Minimal AND-clauses

Lemma 8. The partial order graph on minimal AND-clause
is connected.

Proof. According to Lemma 1, any subset of a mini-
mal AND-clause generator is also the minimal AND-clause.
Thus, in the partial order graph a node is connected to to
all its immediate subsets/parents.

For example, if ABC is a minAND then ABC has three
parents, AB, AC and BC, which are all minANDs. Given
this connected state-space, a simple symmetric transition
probability matrix suffices to sample minAND expressions:

P (u, v) =

{ 1
max(du,dv)

if v ∈ Nu

1−
∑

x∈Nu
P (u, x) if u = v

(4)

We can use this matrix in the algorithm in Figure 2 to mine
all minAND clauses.

4. EXPERIMENTS
We evaluate the benefits of mining minDNF expressions

by using them as features for categorical data classification
task. We also evaluate the sampling quality. We compare
our results with Blosom [22], which is the only current al-
gorithm that can mine minDNF patterns (although it is a
complete method). For pure-AND clauses, we also compare
with CHARM-L [21], a state-of-the-art method for mining

minimal AND-clauses (i.e., minimal generators.) All exper-
iments are performed on a quad-core Intel i7 3.5GHz CPU,
with 16GB memory, and 2TB disk, running Linux (Ubuntu
11.10). The minDNF sampling code was implemented in
C++. All datasets and source code are available at: http:
//www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software.

4.1 Classification Performance
We experimented with a wide range of datasets from the

UCI repository [13] as shown in Table 2. First, each of the 34
datasets was converted into a categorical one using entropy-
based discretization [12], as implemented in the Orange data
mining suite [10]. The total number of transactions and
items in each dataset, and the number of classes (ranging
from 2 to 24) are shown in the table. Next we ran a linear
SVM, on the original (non-discretized) dataset, as well as
on the discretized dataset, using 5-fold cross-validation. For
a given run of minDNF sampling, we converted each of the
mined minDNF patterns into a binary attribute, that takes
on the value 1 if a transaction satisfies the minDNF formula,
and 0 otherwise. This binary-valued dataset is then clas-
sified using linear SVM with 5-fold cross-validation, again
using the Orange library (which in turn uses LIBSVM [7]).
Since the sampling is randomized, we repeat the sampling
10 times, and report the averages.

For minDNF and minAND sampling the default parame-
ters are as follows: We use the random walks with random
jump approach, with j = 3. We use α = 0.9 and set c to the
average transaction length. The minimum support for the
DNF and clause were both set to 1, i.e., σmin = σc

min = 1.
Finally, we sampled k = 100 minDNF patterns. Thus, for
minDNF and minAND the number of “items” or features
is at most k for all datasets (it can be less after removing
duplicates). Note also that we do not perform any feature
selection (it may be possible to further improve the perfor-
mance if this is done).

Table 2 shows the 5-fold cross-validation classification ac-
curacy and standard-error for each algorithm, over each of
the datasets, averaged over 10 runs. The best results are
shown in bold. In the table, results for minDNF sampling
using the weight matrix in Eq. (2) are denoted as minDNF,
whereas results using the faster weight computation in Eq. (3)
are denoted as minDNF*. SVM-orig and SVMd denote the
performance of SVM on the original and discretized dataset,
respectively. Finally, non-default parameters are indicated
in the table (third row), when we compare minAND with
k = 500, and minDNF/minAND with σmin = 5%.
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Figure 3: Time (in sec) for minDNF (white dots)
and minDNF* (black dots)

minDNF Time: The total time for minDNF and minDNF*
is shown in Figure 3. The datasets are numbered in the or-
der they appear in Table 2. The running time is affected
by the number of items, since the more the items, the more



description SVM minDNF Sampling minAND Sampling
dataset cls trans items SVM-orig SVMd minDNF minDNF minDNF* minAND minAND minAND

σmin = 5% k = 500 σmin = 5%
adultsample 3 977 113 59.5±11.7 36.6±0.7 79.8±0.9 81.8±1.3 57.1±1.6 48.6±1.4 45.1±0.5 75.2±0.9
anneal 5 898 73 33.6±5.0 43.7±3.5 97.6±0.4 97.2±0.4 92.0±0.6 80.0±0.6 91.7±0.7 82.5±0.6
audiology 24 226 154 33.2±2.8 33.2±2.8 79.7±3.0 75.1±2.3 48.3±3.3 43.8±2.0 33.4±1.4 37.5±1.5
balancescale 3 625 20 87.8±1.0 87.8±1.0 71.7±1.4 74.1±1.3 72.0±1.4 46.8±3.9 74.0±1.2 15.7±7.7
breastwisc1 2 683 30 86.7±0.8 60.8±1.6 95.4±0.5 95.5±0.6 95.0±0.6 75.6±1.1 93.2±0.8 77.2±0.5
breastwisc2 2 699 90 88.0±1.1 88.0±1.1 94.4±0.6 91.9±0.9 89.4±1.0 61.5±1.0 72.2±1.3 86.6±0.9
breastwisc3 2 683 89 84.2±1.5 84.0±1.5 93.8±0.6 93.8±0.9 87.1±1.1 45.8±1.0 93.6±0.8 52.1±0.3
breastcancer 2 286 41 71.3±1.3 72.0±1.0 67.8±3.0 68.5±2.3 64.7±2.1 54.8±2.3 60.3±2.1 68.5±2.4
brownselected 3 186 182 89.8±1.5 39.2±2.1 99.5±0.4 99.0±0.6 88.3±2.1 50.4±1.8 64.4±2.5 67.9±2.9
bupa 2 345 7 50.1±3.5 54.8±3.2 63.2±2.7 63.2±2.7 63.2±2.7 54.8±3.2 54.8±3.2 54.8±3.2
car 4 1728 21 64.0±0.8 64.0±0.8 81.0±0.4 77.2±0.6 76.7±0.8 71.2±0.4 79.1±0.8 87.2±0.7
crx 2 690 53 74.8±2.5 85.4±1.1 83.6±1.5 83.7±1.5 74.1±1.5 62.1±1.5 76.4±1.3 71.9±1.2
glass 6 214 22 48.1±4.7 23.3±3.9 75.7±1.0 77.2±1.1 75.2±1.4 62.5±1.6 50.5±0.7 70.0±1.6
hayesroth 3 132 15 46.1±4.6 46.1±4.6 73.5±3.5 76.8±2.8 72.3±4.0 68.4±3.2 78.7±3.3 58.9±4.0
heartdisease 2 303 29 70.3±5.5 65.7±2.8 78.5±2.2 78.9±2.2 76.0±2.7 67.2±3.5 62.0±1.7 71.6±3.1
ionosphere 2 351 142 83.8±0.7 84.6±1.6 89.5±1.5 88.8±1.3 86.3±1.6 49.3±0.8 80.8±1.2 46.5±0.9
iris 3 150 12 93.3±2.4 68.7±2.0 94.9±1.3 95.5±1.4 94.9±1.8 95.2±1.4 95.4±1.3 94.7±1.8
lenses 3 24 9 83.0±7.7 83.0±7.7 80.3±6.8 72.5±7.9 61.6±11.1 78.2±6.2 87.0±8.3 86.2±8.2
lungcancer 3 32 157 52.9±10.3 52.9±10.3 52.1±7.5 44.6±7.5 39.3±8.2 33.2±6.1 31.7±4.3 34.4±6.8
lymphography 4 148 50 82.4±4.1 81.1±3.0 80.0±3.6 79.1±2.4 70.9±3.3 63.6±3.1 75.9±2.9 68.0±2.6
monks1 2 556 17 67.6±2.6 67.6±2.6 84.3±1.4 83.7±1.4 77.5±1.6 65.4±1.8 92.7±0.9 66.6±1.6
monks2 2 601 17 64.2±1.1 64.2±1.1 66.3±1.1 71.9±1.7 62.6±1.4 53.8±1.6 74.7±1.6 68.2±1.7
monks3 2 554 17 74.4±0.6 74.4±0.6 93.4±1.1 96.4±0.9 89.2±1.2 69.7±1.4 93.6±1.1 84.5±1.0
postoperative 3 90 20 66.7±1.8 67.8±2.1 57.4±4.3 55.1±3.8 56.3±3.1 58.4±4.7 58.2±4.2 61.6±3.4
primarytumor 21 339 37 28.6±0.6 28.6±0.6 40.2±2.0 38.6±2.1 32.6±2.1 30.0±1.7 36.2±2.5 33.9±2.3
promoters 2 106 228 72.5±6.5 72.5±6.5 74.2±3.0 65.2±3.8 62.5±3.9 57.6±3.2 65.5±4.3 66.1±4.6
shuttle 2 253 16 96.5±0.7 96.8±1.0 97.1±0.9 94.4±1.2 90.5±1.8 81.2±2.3 96.4±1.1 95.0±1.5
tictactoe 2 958 27 67.8±1.0 67.7±0.9 78.7±1.2 76.9±1.3 70.2±1.3 47.4±1.0 68.8±1.6 76.1±1.4
titanic 2 2201 8 76.8±1.1 76.8±1.1 79.0±0.9 77.9±1.0 79.0±0.9 78.9±1.0 79.1±0.9 79.0±0.9
voting 2 435 32 91.0±0.7 91.3±0.8 94.6±1.1 93.9±0.8 91.8±1.0 71.9±1.1 83.1±1.4 78.3±1.1
wdbc 2 569 64 88.9±4.3 75.9±3.8 95.3±0.8 95.5±0.8 92.9±1.0 69.6±1.0 84.8±0.9 85.2±0.8
wine 3 178 37 85.9±4.8 96.7±2.0 97.9±0.5 97.6±1.1 94.4±1.3 76.3±2.6 95.9±1.3 74.7±1.9
yeastRPR 3 186 182 89.8±1.5 39.2±2.1 99.3±0.7 99.7±0.2 87.6±2.0 59.7±2.2 73.7±1.8 43.6±2.0
zoo 7 101 36 95.1±1.5 95.1±1.5 96.3±1.6 96.2±1.5 89.5±2.1 82.5±3.5 95.5±1.9 83.2±3.7

Table 2: Classification Performance: Accuracy ± Standard Error: cls denotes #classes

the number of neighbors, which affects the weight/transition
probability computation time. However, note that these re-
sults are with support one, and substantial speedup is possi-
ble for higher support values. We can observe that minDNF*
is typically over an order of magnitude faster than minDNF,
though this comes at some penalty in classification perfor-
mance, as we describe next.

minDNF versus SVMd: Our minDNF sampling algo-
rithm yields a near-uniform sample and we can see from the
classification accuracies in columns 7 & 8 that the sampled
minDNF patterns make excellent features. In 24 out of the
34 datasets, they yield the best accuracy among all meth-
ods, including SVM-orig (on the original) and SVMd (on the
discretized datasets). On three datasets, the differences be-
tween minDNF and best method is not significant. On two
datasets SVMs substantially outperform minDNF (namely,
balancescale and postoperative, where the difference is more
than 10%).

minDNF versus minAND: Comparing the Boolean ex-
pression features comprising minDNF patterns versus mi-
nAND patterns (both with k = 100), we find that minDNF
substantially outperforms minAND (see columns 7 and 10).
Although initially unexpected, it is perhaps not that sur-
prising, given the fact that minDNFs can be considered as
disjunctive rules, and are much more informative than sim-
ple conjunctive rules. Over all the 34 datasets, minDNF
sampling yields on average 2.69 clauses per DNF expression,
with a standard deviation of 1. For fairness, we also com-
pared minDNF (with k = 100) to minAND with k = 500
features (see column 11). The larger number of features
improves minAND in most cases. However, minDNF (with
k = 100) is still substantially better than minAND (k =
500); only on three datasets (lenses, monks1, and monks2)
does minAND outperform minDNF. These results indicate
that overall minDNF patterns are more effective than mi-
nAND patterns.

minDNF* Sampling: Since minDNF sampling using Eq.
(2) does take more time, we also compared with minDNF*

that uses the faster weight computation in Eq. (3). We can
see that minDNF* sampling suffers in performance com-
pared to minDNF. However, minDNF* still outperforms
SVMd on 22, SVM-orig on 21, minAND patterns (with
k = 100) on 31, and minAND (with k = 500) on 18 out
of the 34 datasets.

Effect of Support: To see the effect of minimum support
on classification accuracy, we ran minDNF and minAND
sampling with the minimum support set to 5% of the num-
ber of transactions (see columns 8 & 12). Overall, we find
that adding the frequency constraint is not that beneficial
to for minDNF sampling, since mining frequent minDNFs
improves the accuracy only slightly in 13 datasets, when
compared to the minDNFs with support one. On the other
hand, frequent minANDs are better than support-one mi-
nANDs on 26 datasets. Mining frequent expressions obvi-
ously lowers running times.

Negated Items: We also experimented with minDNF ex-
pressions containing negated items. However, in this case
the accuracy was slightly better for the negated items in
only 5 out of the 34 datasets, which unfortunately came at
the expense of a significant increase in the runtime (some-
times by orders of magnitude). We conclude that negated
items do not confer significant advantages in terms of clas-
sification (at least for the UCI datasets tested).

Our results above clearly demonstrate the value of min-
ing/sampling minDNF patterns, especially in support-less
mode (i.e., σmin = 1).

4.2 Sampling Evaluation
Having shown the effectiveness of minDNF sampling for

classification, we now study the sampling quality provided
by minDNF and the sensitivity to various parameters. We
use both small (first three) and large (last three) datasets
shown in Table 3 for these experiments. The last four are
taken from the FIMI repository [14]. The Gene dataset is
from [22], and IBM100 is a synthetic dataset generated using
the IBM itemset generator [1].
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Figure 4: Sampling Quality (RWRJ): IBM100
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Dataset trans items avg. trans len
IBM100 100 20 9.3
Gene 74 824 86.1
Chess 3196 75 37

Connect 67557 129 43
Retail 88162 16470 10.3

Kosarak 990002 41270 8.1

Table 3: Datasets

Random Walk Type: We first show the effect of the
type of random walk, i.e., random walk with random jumps
(RWRJ, j = 50) versus random walks with restart (RWR,
r = 0.02), as shown in Figures 4 and 5. With σmin = 60,
on the IBM100 dataset, there are 654 distinct minDNF pat-
terns (found using Blosom). We ran minDNF sampling for
k = 654 × 100 iterations. We use α = 0.25 and c is set to
the avg. transaction length.
If the dataset has f minDNF patterns and we perform

the uniform sampling for k = f × t steps, the number of
times m a specific pattern will be sampled is described by
the binomial distribution, B(m|k, p), where p = 1

f
. The

expected number of times a minDNF pattern is visited is
given as kp = f · t · 1

f
= t, and the standard deviation is

√

kp(1− p) =
√

t(f−1)
f

. For the IBM100 dataset, we have

f = 654 and t = 100, and thus in the ideal case we expect
to see each pattern 100 times, with standard deviation of
√

100 · 653/654 = 9.99. Figures 4 and 5 plot the number of
times each pattern is visited (a), and the count histogram
(b). The sampling statistics, namely the maximum, mini-
mum, median, and standard deviation of visits counts for
RWRJ and RWR are shown in Table 4. It is very clear that
RWRJ is much superior to the RWR strategy; its median
is closer to the ideal case, and the standard deviation is
smaller. Whereas the RWRJ strategy jumps to a node in its
history, RWR always restarts from the empty pattern. As
such RWR is biased towards sampling patterns close to the
origin, and this is reflected in the sampling quality.

Maximum Minimum Median Std
RWRJ 157 32 101 19.0
RWR 547 15 89 60.5

Table 4: Sampling Statistics: IBM100

Convergence Rate: One important issue in using MCMC
sampling is to determine when the initial distribution con-
verges to the stationary distribution and how fast the conver-
gence rate is. It is well known that the mixing time is closely
related to the spectral gap, γ = |λ1 − λ2| = |1 − λ2|, which
is defined as the absolute difference between the largest
λ1 = 1 and the second largest eigenvalue λ2 of the tran-

sition matrix P [9]. The larger the spectral gap, the faster
the walk converges. Unfortunately, we cannot compute the
entire transition matrix P ; the whole point of sampling is
to avoid enumerating all the minDNF patterns. An alter-
native strategy to measure the convergence rate is to com-
pute the total variation distance, defined as vd(P t(s, .), π) =
0.5

∑

q∈S |P t(s, q)− π(q)|, where s is the initial state, P t is
the transition matrix at time t, and π is the desired station-
ary distribution.

Figures 4(c) and 5(c) plot the variation distance for the
RWRJ and RWR sampling methods. Here we compute the
variation distance empirically. To be more specific, we esti-
mate P t(s, q) at time t via the count histogram, converted
into a probability distribution of visitations, to each pattern
q from the initial empty pattern s = ∅. We compute the
variation distance after every 1000 steps. We can see that
the distance converges to slightly around 0.12 for RWRJ
and to 0.36 for RWR, indicating that RWRJ is the better
strategy. We also ran experiments on the Gene and Chess
datasets, and obtained similar results (figures omitted due
to space constraints).

α, c, j npats mean std max min med time
j = 3 636.2 15.7 10.0 60.2 1 14 98.8s
j = 5 635.2 15.7 8.9 48.0 1 15.8 100.2s
j = 10 636 15.7 8.1 45.2 1 16.4 100.2s
j = 50 629 15.9 7.6 38.2 1 16 100.2s
j = 100 637.4 15.7 7.6 39.6 1 16.2 101.6s
α = 0.1 654 15.3 5.4 34 1.6 15 74.8s
α = 0.25 654 15.3 5.3 34.2 2.6 15 80s
α = 0.5 654 15.3 5.6 35.4 2.2 15 89.4s
α = 0.75 651.8 15.3 7.0 39.4 1 16 96.8s
α = 0.9 634.8 15.8 7.6 37.8 1 16.4 101.7s
c = 5 633.2 15.8 7.3 35.8 1 16.4 125.6s

c = avg(9.3) 632.8 15.8 7.5 45.4 1 16 100.0s
c = max(17) 639 15.7 7.9 47.2 1 16.2 88.8s

c = 50 633.2 15.8 8.8 50.6 1 15.8 79.1s

Table 5: Effect of Parameters: IBM100

Effect of α, c, j: Table 5 shows the effect of these three pa-
rameters on the sampling quality on IBM100 with σmin = 60.
We set k = 10000 iterations. We run each experiment 5
times, and report the average number of distinct minDNFs
sampled (npats), mean, standard deviation (std), maximum,
minimum, and median (med) of the visit counts, and the
average total time. Ideal sampling should yield a mean
visit count of k/f = 15.3, and a standard deviation of
√

k/f(1− 1/f) = 3.9, since IBM100 has f = 654 minDNF
patterns for σmin = 60. First, we look at the effect of j,
fixing c = avg and α = 0.9. Larger j results in a smaller
standard deviation, and ideally j should not be constrained.
However, for many of the classification datasets the random
walk could get trapped in a local region, and therefore, we



set j = 3 in our earlier experiments. Next, we look at the
effect of α, setting j = 50 and c = avg. We find that larger
α takes more time, with a slight increase in std, most likely
due to the constraint on j. Lastly, we fix j = 50, α = 0.9
and vary c. Larger c values take lesser time, but also result
in higher deviation. The average c value (9.3 for IBM100)
offers an acceptable choice.

Dataset 1% 5% 10% 20%
IBM100 1m50s 45.5s 40.2s 20.9s

* 17.5s 1.6s 14.5s 9.9s
Gene 3h45m12s 46m13s 31m1s 3m45s
* 19m11s 6m52s 5m23s 3m36s

Chess 11h26m11s 6h41m34s 5h23m29s 4h28m33s
* 1h6m8s 59m22s 42m15s 28m33s

Connect 15h52m47s 8h23m18s 7h59m22s 6h31m39s
* 4h44m2s 2h19m22s 1h58m53s 1h34m48s

Retail 50m4s 1m6s 35.0s 3.1s
* 59m25s 21.5s 12.8s 4.7s

Kosarak 27h58m43s 2h24m39s 9m55s 3m41s
* 8h31m4s 20m3s 2m14s 1m40s

Table 6: Running Time: minDNF and minDNF*

Scalability: Table 6 shows the time to sample the small
(with k = 1000) and large datasets (with k = 100) for vari-
ous support thresholds using minDNF and minDNF*. Blo-
som was unfortunately not able to mine the complete set
of patterns for any of these datasets for the support levels
shown even after 24hours for the smaller datasets, and 48hrs
for the large ones. We note that whereas minDNF provides
better theoretical guarantee, minDNF* is significantly faster
(by as much as an order of magnitude). We also compared
minAND sampling time with Blosom-MA and CHARM-L,
both of which can mine minimal AND-clauses. For example,
for the Gene dataset with 10% support, minAND took 0.7s
to sample 1000 patterns, whereas CHARM-L took 40m54s
and Blosom-MA took 2h58m56s. For lower support val-
ues, neither of these methods could finish within 24hours,
whereas for 1% support minAND finished in 1.3s. These re-
sults confirm that complete mining is practically infeasible,
whereas sampling provides a viable alternative.

5. CONCLUSIONS
In this paper we presented the first approach to mine the

simplest Boolean patterns, namely the minimal DNF expres-
sions. We propose a novel weighting scheme to compute the
transition probability matrix for the Markov chain Monte
Carlo sampling algorithm, which bounds the amount of non-
uniformity in the sampling. Since the method can be slow in
practice, we also suggest a faster alternative, that yields ef-
fective sampling quality as well. We perform an extensive set
of experiments to test various design parameters, and jus-
tify our choices. Finally, somewhat surprisingly, we found
that the minimal DNF patterns make very effective features
for classification. Via an extensive set of experiments on
UCI datasets, we show that our method outperforms simple
AND-clause based features, as well as the SVMmethod, typ-
ically by a wide margin, though it does suffer in the runtime
comparison. However, the faster weight computation ap-
proach yields significantly faster running times, with some
loss in the classification accuracy. The minDNF features
still remain the effective across the different classifiers. Per-
haps the most interesting aspect of the classification study
is that we use support-less patterns (with minimum support
one), and do not perform any feature selection. Our future
work will target more effective feature selection by consider-
ing other interestingness criteria for the patterns while sam-
pling, such as their discrimination power. Efficiency still
remains an issue, which may be tackled by implementing
the approach on multi-core processors, as well and utilizing
graphics computing units (GPUs), since the MCMC meth-
ods are inherently parallel.
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[4] M. Boley, T. Gärtner, H. Grosskreutz, and I. Fraunhofer.
Formal concept sampling for counting and threshold-free
local pattern mining. In SIAM Data Mining Conf., 2010.

[5] M. Boley and H. Grosskreutz. Approximating the number
of frequent sets in dense data. Knowledge and Information
Systems, 21(1):65–89, 2009.

[6] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct
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