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ABSTRACT

Autoencoders have been successful in learning meaningful repre-
sentations from image datasets. However, their performance on text
datasets has not been widely studied. Traditional autoencoders tend
to learn possibly trivial representations of text documents due to
their confounding properties such as high-dimensionality, sparsity
and power-lawword distributions. In this paper, we propose a novel
k-competitive autoencoder, called KATE, for text documents. Due
to the competition between the neurons in the hidden layer, each
neuron becomes specialized in recognizing specific data patterns,
and overall the model can learn meaningful representations of tex-
tual data. A comprehensive set of experiments show that KATE can
learn better representations than traditional autoencoders including
denoising, contractive, variational, and k-sparse autoencoders. Our
model also outperforms deep generative models, probabilistic topic
models, and even word representation models (e.g., Word2Vec) in
terms of several downstream tasks such as document classification,
regression, and retrieval.
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1 INTRODUCTION

An autoencoder is a neural network which can automatically learn
data representations by trying to reconstruct its input at the out-
put layer. Many variants of autoencoders have been proposed re-
cently [14, 24–26, 35, 39]. While autoencoders have been success-
fully applied to learn meaningful representations on image datasets
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(e.g., MNIST [20], CIFAR-10 [15]), their performance on text datasets
has not been widely studied. Traditional autoencoders are suscepti-
ble to learning trivial representations for text documents. As noted
by Zhai and Zhang [42], the reasons include that fact that textual
data is extremely high dimensional and sparse. The vocabulary size
can be hundreds of thousands while the average fraction of zero
entries in the document vectors can be very high (e.g., 98%). Further,
textual data typically follows power-law word distributions. That
is, low-frequency words account for most of the word occurrences.
Traditional autoencoders always try to reconstruct each dimen-
sion of the input vector on an equal footing, which is not quite
appropriate for textual data.

Document representation is an interesting and challenging task
which is concerned with representing textual documents in a vec-
tor space, and it has various applications in text processing, re-
trieval and mining. There are two major approaches to represent
documents: 1) Distributional Representation is based on the
hypothesis that linguistic terms with similar distributions have
similar meanings. These methods usually take advantage of the
co-occurrence and context information of words and documents,
and each dimension of the document vector usually represents a
specific semantic meaning (e.g., a topic). Typical models in this
category include Latent Semantic Analysis (LSA) [7], probabilistic
LSA (pLSA) [12] and Latent Dirichlet Allocation (LDA) [2]. 2) Dis-
tributedRepresentations encode a document as a compact, dense
and lower dimensional vector with the semantic meaning of the doc-
ument distributed along the dimensions of the vector. Many neural
network-based distributed representation models [5, 18, 22, 27, 36]
have been proposed and shown to be able to learn better represen-
tations of documents than distributional representation models.

In this paper, we try to overcome the weaknesses of traditional
autoencoders when applied to textual data. We propose a novel au-
toencoder called KATE (for K-competitive Autoencoder for TExt),
which relies on competitive learning among the autoencoding neu-
rons. In the feedforward phase, only themost competitivek neurons
in the layer fire and those k “winners” further incorporate the ag-
gregate activation potential of the remaining inactive neurons. As
a result, each hidden neuron becomes better at recognizing specific
data patterns and the overall model can learn meaningful repre-
sentations of the input data. After training the model, each hidden
neuron is distinct from the others and no competition is needed
in the testing/encoding phase. We conduct comprehensive exper-
iments qualitatively and quantitatively to evaluate KATE and to
demonstrate the effectiveness of our model.We compareKATEwith
traditional autoencoders including basic autoencoder, denoising
autoencoder [39], contractive autoencoder [35], variational autoen-
coder [14], and k-sparse autoencoder [24]. We also compare with
deep generative models [22], neural autoregressive [18] and vari-
ational inference [27] models, probabilistic topic models such as
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LDA [2], and word representation models such as Word2Vec [28]
and Doc2Vec [19]. KATE achieves state-of-the-art performance
across various datasets on several downstream tasks like document
classification, regression and retrieval.

2 RELATEDWORK

Autoencoders. The basic autoencoder is a shallow neural network
which tries to reconstruct its input at the output layer. An autoen-
coder consists of an encoder which maps the input x to the hidden
layer: z = д(Wx + b) and a decoder which reconstructs the input
as: x̂ = o(W ′z + c); here b and c are bias terms,W andW ′ are
input-to-hidden and hidden-to-output layer weight matrices, and д
and o are activation functions. Weight tying (i.e., settingW ′ =WT )
is often used as a regularization method to avoid overfitting. While
plain autoencoders, even with perfect reconstructions, usually only
extract trivial representations of the data, more meaningful repre-
sentations can be obtained by adding appropriate regularization
to the models. Following this line of reasoning, many variants of
autoencoders have been proposed recently [14, 24–26, 35, 39]. The
denoising autoencoder (DAE) [39] inputs a corrupted version of
the data while the output is still compared with the original un-
corrupted data, allowing the model to learn patterns useful for
denoising. The contractive autoencoder (CAE) [35] introduces the
Frobenius norm of the Jacobian matrix of the encoder activations
into the regularization term. When the Frobenius norm is 0, the
model is extremely invariant to perturbations of input data, which
is thought as good. The variational autoencoder (VAE) [14] is a
generative model inspired by variational inference whose encoder
qϕ (z |x) approximates the intractable true posterior pθ (z |x), and
the decoder pθ (x |z) is a data generator. The k-sparse autoencoder
(KSAE) [24] explicitly enforces sparsity by only keeping the k high-
est activities in the feedforward phase.

We notice that most of the successful applications of autoen-
coders are on image data, while only a few have attempted to
apply autoencoders on textual data. Zhai and Zhang [42] have
argued that traditional autoencoders, which perform well on im-
age data, are less appropriate for modeling textual data due to the
problems of high-dimensionality, sparsity and power-law word dis-
tributions. They proposed a semi-supervised autoencoder which
applies a weighted loss function where the weights are learned
by a linear classifier to overcome some of these problems. Kumar
and D’Haro [16] found that all the topics extracted from the au-
toencoder were dominated by the most frequent words due to the
sparsity of the input document vectors. Further, they found that
adding sparsity and selectivity penalty terms helped alleviate this
issue to some extent.

Deep generative models. Deep Belief Networks (DBNs) are
probabilistic graphical models which learn to extract a deep hierar-
chical representation of the data. The top 2 layers of DBNs form
a Restricted Boltzmann Machine (RBM) and other layers form a
sigmoid belief network. A relatively fast greedy layer-wise pre-
training algorithm [9, 10] is applied to train the model. Maaloe et
al. [22] showed that DBNs can be competitive as a topic model. Doc-
NADE [18] is a neural autoregressive topic model that estimates the
probability of observing a new word in a given document given the
previously observed words. It can be used for extracting meaningful

representations of documents. It has been shown to outperform
the Replicated Softmax model [11] which is a variant of RBMs
for document modeling. Srivastava et al. [36] introduced a type
of Deep Boltzmann Machine (DBM) that is suitable for extracting
distributed semantic representations from a corpus of documents;
an Over-Replicated Softmax model was proposed to overcome the
apparent difficulty of training a DBM. NVDM [27] is a neural vari-
ational inference model for document modeling inspired by the
variational autoencoder.

Probabilistic topic models. Probabilistic topic models, such as
probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet
Allocation (LDA) have been extensively studied [2, 12]. Especially
for LDA, many variants have been proposed for non-parametric
learning [1, 37], sparsity [8, 40, 43] and efficient inference [4, 38].
Those models typically build a generative probabilistic model using
the bag-of-words representation of the documents.

Word representation models. Distributed representations of
words in a vector space can capture semantic meanings of words
and help achieve better results in various downstream text analysis
tasks. Word2Vec [28] and Glove [33] are state-of-the-art word repre-
sentation models. Pre-training word embeddings on a large corpus
of documents and applying learned word embeddings in down-
stream tasks has been shown to work well in practice [6, 13, 29].
Doc2Vec [19] was inspired by Word2Vec and can directly learn vec-
tor representations of paragraphs and documents. NTM [5], which
also uses pre-trained word embeddings, is a neural topic model
where the representations of words and documents are combined
into a uniform framework.

With this brief overview of existing work, we now turn to our
competitive autoencoder approach for text documents.

3 K-COMPETITIVE AUTOENCODER

Although the objective of an autoencoder is to minimize the re-
construction error, our goal is to extract meaningful features from
data. Compared with image data, textual data is more challenging
for autoencoders since it is typically high-dimensional, sparse and
has power-law word distributions. When examining the features
extracted by an autoencoder, we observed that they were not dis-
tinct from one another. That is, many neurons in the hidden layer
shared similar groups of input neurons (which typically correspond
to the most frequent words) with whom they had the strongest con-
nections. We hypothesized that the autoencoder greedily learned
relatively trivial features in order to reconstruct the input.

To overcome this drawback, our approach guides the autoen-
coder to focus on important patterns in the data by adding con-
straints in the training phase via mutual competition. In competitive
learning, neurons compete for the right to respond to a subset of
the input data and as a result, the specialization of each neuron in
the network is increased. Note that the specialization of neurons is
exactly what we want for an autoencoder, especially when applied
on textual data. By introducing competition into an autoencoder,
we expect each neuron in the hidden layer to take responsibility
for recognizing different patterns within the input data. Following
this line of reasoning, we propose the k-competitive autoencoder,
KATE, as described below.
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3.1 Training and Testing/Encoding

Algorithm 1 KATE: K-competitive Autoencoder

1: procedure Training
2: Feedforward step: z = tanh(Wx + b)
3: Apply k-competition: ẑ = k-competitive_layer(z)
4: Compute output: x̂ = siдmoid(WT ẑ + c)
5: Backpropagate error (cross-entropy) and iterate

1: procedure Encoding
2: Encode input data: z = tanh(Wx + b)

The pseudo-code for our k-competitive autoencoder KATE is
shown in Algorithm 1. KATE is a shallow autoencoder with a (sin-
gle) competitive hidden layer, with each neuron competing for the
right to respond to a given set of input patterns. Let x ∈ Rd be a
d-dimensional input vector, which is also the desired output vector,
and let h1,h2, ...,hm be them hidden neurons. LetW ∈ Rd×m be
the weight matrix linking the input layer to the hidden layer neu-
rons, and let b ∈ Rm and c ∈ Rd be the bias terms for the hidden
and output neurons, respectively. Let д be an activation function;
two typical functions are tanh(x) = e2x−1

e2x+1 and siдmoid(x) = 1
1+e−x .

In each feed-forward step, the activation potential at the hidden
neurons is then given as z = д(Wx +b), whereas the activation po-
tential at the output neurons is given as x̂ = д(WT z + c). Thus, the
hidden-to-output weight matrix is simplyWT , being an instance
of weight tying.

InKATE, we represent each input text document as a log-normalized
word count vector x ∈ Rd where each dimension is represented as

xi =
loд(1 + ni )

maxi ∈V loд(1 + ni )
, for i ∈ V

where V is the vocabulary and ni is the count of word i in that
document. Let x̂ be the output of KATE on a given input x . We use
the binary cross-entropy as the loss function, which is defined as

l(x , x̂) = −
∑
i ∈V

xi loд(x̂i ) + (1 − xi )loд(1 − x̂i )

where x̂i is the reconstructed value for xi .
Let H be some subset of hidden neurons; define the energy of H

as the total activation potential for H , given as: E(H ) =
∑
hi ∈H |zi |,

i.e., sum of the absolute values of the activations for neurons in H .
In KATE, in the feedforward phase, after computing the activations
z for a given input x , we select the most competitive k neurons
as the “winners” while the remaining “losers” are suppressed (i.e.,
made inactive). However, in order to compensate for the loss of
energy from the loser neurons, and to make the competition among
neurons more pronounced, we amplify and reallocate that energy
among the winner neurons.

KATE uses tanh activation function for the k-competitive hidden
layer. We divide these neurons into positive and negative neurons
based on their activations. The most competitive k neurons are
those that have the largest absolute activation values. However, we
select the ⌈k/2⌉ largest positive activations as the positive winners,
and reallocate the energy of the remaining positive loser neurons
among the winners using an α amplification connection, where

Algorithm 2 K-competitive Layer

1: function k-competitive-layer(z)
2: sort positive neurons in ascending order z+1 ...z

+
P

3: sort negative neurons in descending order z−1 ...z
−
N

4: if P − ⌈k/2⌉ > 0 then
5: Epos =

∑P−⌈k/2⌉
i=1 z+i

6: for i = P − ⌈k/2⌉ + 1, ..., P do

7: z+i := z+i + α · Epos

8: for i = 1, ..., P − ⌈k/2⌉ do
9: z+i := 0
10: if N − ⌊k/2⌋ > 0 then
11: Eneд =

∑N−⌊k/2⌋
i=1 z−i

12: for i = N − ⌊k/2⌋ + 1, ...,N do

13: z−i := z−i + α · Eneд

14: for i = 1, ...,N − ⌊k/2⌋ do
15: z−i := 0
16: return updated z+1 ...z

+
P , z

−
1 ...z

−
N

...
...
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Figure 1: Competitions among neurons. Input and hid-

den neurons, and hidden and output neurons are fully

connnected, but we omit these to avoid clutter.

α is a hyperparameter. Finally, we set the activations of all losers
to zero. Similarly, the ⌊k/2⌋ lowest negative activations are the
negative winners, and they incorporate the amplified energy from
the negative loser neurons, as detailed in Algorithm 2.We argue that
the α amplification connections are a critical component in the k-
competitive layer. When α = 0, no gradients will flow through loser
neurons, resulting in a regular k-sparse autoencoder (regardless of
the activation functions and k-selection scheme). When α > 2/k ,
we actually boost the gradient signal flowing through the loser
neurons. We empirically show that amplification helps improve the
autoencoder model (see Sec. 4.4.1 and 4.5). As an example, consider
Figure 1, which shows an example feedforward step for k = 2. Here,
h1 and h6 are the positive and negative winners, respectively, since
the absolute activation potential for h1 is |z1 | = 0.8, and for h6 it
is |z6 | = 0.6. The positive winner h1 takes away the energy from
the positive losers h2 and h3, which is E({h2,h3}) = 0.2+ 0.1 = 0.3.
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Likewise, the negative winner h6 takes away the energy from the
negative losers h4 and h5, which is −E({h4,h5}) = −(| − 0.1| + | −

0.3|) = −0.4. The hyperparameter α governs how the energy from
the loser neurons is incorporated into the winner neurons, for both
positive and negative cases. That is h1’s net activation becomes
z1 = 0.8 + 0.3α , and h6’s net activation is z6 = −0.6 − 0.4α . The
rest of the neurons are set to zero activation.

Finally, as noted in Algorithm 1 we use weight tying for the
hidden to output layer weights, i.e., we use WT as the weight
matrix, with different biases c . Also, since the inputs x are non-
negative for document representations (e.g., word counts), we use
the sigmoid activation function at the output layer to maintain the
non-negativity. Note that in the back-propagation procedure, the
gradients will first flow through the winner neurons in the hidden
layer and then the loser neurons via the α amplification connections.
No gradients will flow directly from the output neurons to the loser
neurons since they are made inactive in the feedforward step.

Testing/Encoding. Once the k-competitive network has been
trained, we simply encode each test input as shown in Algorithm 1.
That is, given a test input x , we map it to the feature space to obtain
z = tanh(Wx+b). No competition is required for the encoding step
since the hidden neurons are well trained to be distinctive from
others. We argue that this is one of the superior features of KATE.

3.2 Relationship to Other Models

KATE vs. K-Sparse Autoencoder. The k-sparse autoencoder [24] is
closely related to our model, but there are several differences. The k-
sparse autoencoder explicitly enforces sparsity by only keeping the
k highest activities at training time. Then, at testing time, in order
to enforce sparsity, only the αk highest activities are kept where α
is a hyperparameter. Since its hidden layer uses a linear activation
function, the only non-linearity in the encoder comes from the
selection of the k highest activities. Instead of focusing on sparsity,
our model focuses on competition to drive each hidden neuron to
be distinct from the others. Thus, at testing time, no competition
is needed. The non-linearity in KATE’s encoding comes from the
tanh activation function, and the winner-take-all operation via the
top k (+ve/−ve) selection and energy reallocation/amplification.

It is important to note that for the k-sparse autoencoder, too
much sparsity (i.e., low k) can cause the so-called “dead” hidden
neurons problem, which can prevent gradient back-propagation
from adjusting the weights of these “dead” hidden neurons. As
mentioned in the original paper, the model is prone to behaving
in a manner similar to k-means clustering. That is, in the first few
epochs, it will greedily assign individual hidden neurons to groups
of training cases and these hidden neurons will be re-enforced but
other hidden neurons will not be adjusted in subsequent epochs.
In order to address this problem, scheduling the sparsity level over
epochs was suggested. However, by design our approach does not
suffer from this problem since the gradients will still flow through
the loser neurons via the α amplification connections in the k-
competitive layer.

KATE vs. K-Max Pooling. Our proposed k-competitive operation
is also reminiscent of the k-max pooling operation [3] applied in
convolutional neural networks. We can intuitively regard k-max

pooling as a global feature sampler which selects a subset of k
maximum neurons in the previous convolutional layer and uses
only the selected subset of neurons in the following layer. Unlike
our k-competitive approach, the objective of k-max pooling is to
reduce dimensionality and introduce feature invariance via this
downsampling operation.

KATE as a Regularized Autoencoder. We can also regard our
model as a special case of a fully competitive autoencoder where
all the neurons in the hidden layer are fully connected with each
other and the weights on the connections between them are fully
trainable. The difference is that we restrict the architecture of this
competitive layer by using a positive adder and a negative adder to
constrain the energy, which serves as a regularization method.

4 EXPERIMENTS

In this section, we evaluate our k-competitive autoencodermodel on
various datasets and downstream text analytics tasks to gauge its ef-
fectiveness in learning meaningful representations in different situ-
ations. All experiments were performed on amachine with a 1.7GHz
AMD Opteron 6272 Processor, with 264G RAM. Our model, KATE,
was implemented in Keras (github.com/fchollet/keras) which is a
high-level neural networks library, written in Python. The source
code for KATE is available at github.com/hugochan/KATE.

dataset 20 news reuters wiki10+ mrd
train.size 11,314 554,414 13,972 3,337
test.size 7,532 250,000 6,000 1,669
valid.size 1,000 10,000 1,000 300
vocab.size 2,000 5,000 2,000 2,000
avg.length 93 112 1,299 124
classes/vals 20 103 25 [0, 1]
task class & DR MLC MLC regression

Table 1: Datasets: Tasks include classification (class), re-

gression, multi-label classification (MLC), and document re-

trieval (DR).

4.1 Datasets

For evaluation, we use datasets that have been widely used in
previous studies [17, 21, 30–32, 44]. Table 1 provides statistics of
the different datasets used in our experiments. It lists the training,
testing and validation (a subset of training) set sizes, the size of
the vocabulary, average document length, the number of classes
(or values for regression), and the various downstream tasks we
perform on the datasets.

The 20Newsgroups [17] (www.qwone.com/~jason/20Newsgroups)
data consists of 18846 documents, which are partitioned (nearly)
evenly across 20 different newsgroups. Each document belongs to
exactly one newsgroup. The corpus is divided by date into training
(60%) and testing (40%) sets. We follow the preprocessing steps
utilized in previous work [18, 27, 36]. That is, after removing stop-
words and stemming, we keep the most frequent 2,000 words in
the training set as the vocabulary. We use this dataset to show that
our model can learn meaningful representations for classification
and document retrieval tasks.

The Reuters RCV1-v2 dataset [21] (www.jmlr.org/papers/volume5/
lewis04a) contains 804,414 newswire articles, where each document

github.com/fchollet/keras
github.com/hugochan/KATE
www.qwone.com/~jason/20Newsgroups
www.jmlr.org/papers/volume5/lewis04a
www.jmlr.org/papers/volume5/lewis04a
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typically has multiple (hierarchical) topic labels. The total number
of topic labels is 103. The dataset already comes preprocessed with
stopword removal and stemming. We randomly split the corpus
into 554,414 training and 25,000 test cases and keep the most fre-
quent 5,000 words in the training dataset as the vocabulary. We
perform multi-label classification on this dataset.

The Wiki10+ dataset [44] (www.zubiaga.org/datasets/wiki10+/)
comprises English Wikipedia articles with at least 10 annotations
on delicious.com. Following the steps of Cao et al. [5], we only keep
the 25 most frequent social tags and those documents containing
any of these tags. After removing stopwords and stemming, we
randomly split the corpus into 13,972 training and 6,000 test cases
and keep the most frequent 2,000 words in the training set as the
vocabulary for use in multi-label classification.

The Movie review data (MRD) [30–32] (www.cs.cornell.edu/
people/pabo/movie-review-data/) contains a collection of movie-
review documents, with a numerical rating score in the interval
[0, 1]. After removing stopwords and stemming, we randomly split
the corpus into 3,337 training and 1,669 test cases and keep the
most frequent 2,000 words in the training set as the vocabulary. We
use this dataset for regression, i.e., predicting the movie ratings.

Note that among the above datasets, only the 20 Newsgroups
dataset is balanced, whereas both the Reuters and Wiki10+ datasets
are highly imbalanced in terms of class labels.

4.2 Comparison with Baseline Methods

We compare our k-competitive autoencoder KATE with a wide
range of other models including various types of autoencoders,
topic models, belief networks and word representation models, as
listed below.

LDA [2]: a directed graphical model whichmodels a document as
a mixture of topics and a topic as a mixture of words. Once trained,
each document can be represented as a topic proportion vector on
the topic simplex. We used the gensim [34] LDA implementation
in our experiments.

DocNADE [18]: a neural autoregressive topic model that can
be used for extracting meaningful representations of documents.
The implementation is available at www.dmi.usherb.ca/~larocheh/
code/DocNADE.zip.

DBN [22]: a direct acyclic graph whose top two layers form a
restricted Boltzmannmachine.We use the implementation available
at github.com/larsmaaloee/deep-belief-nets-for-topic-modeling.

NVDM [27]: a neural variational inference model for document
modeling. The authors have not released the source code, but we
used an open-source implementation at github.com/carpedm20/
variational-text-tensor-flow.

Word2Vec [28]: a model in which each document is represented
as the average of the word embedding vectors for that document.
We use Word2Vecpre to denote the version where we use Google
News pre-trained word embeddings which contain 300-dimensional
vectors for 3 million words and phrases. Those embeddings were
trained by state-of-the-art word2vec skipgram model. On the other
hand, we use Word2Vec to denote the version where we train
word embeddings separately on each of our datasets, using the
gensim [34] implementation.

Doc2Vec [19]: a distributed representation model inspired by
Word2Vec which can directly learn vector representations of docu-
ments. There are two versions namedDoc2Vec-DBOWandDoc2Vec-
DM. We use Doc2Vec-DM in our experiments as it was reported to
consistently outperform Doc2Vec-DBOW in the original paper. We
used the gensim [34] implementation in our experiments.

AE: a plain shallow (i.e., one hidden layer) autoencoder, without
any competition, which can automatically learn data representa-
tions by trying to reconstruct its input at the output layer.

DAE [39]: a denoising autoencoder that accepts a corrupted
version of the input data while the output is still the original un-
corrupted data. In our experiments, we found that masking noise
consistently outperforms other two types of noise, namely Gaussian
noise and salt-and-pepper noise. Thus, we only report the results
of using masking noise. Basically, masking noise perturbs the input
by setting a fraction v of the elements i in each input vector as 0.
To be fair and consistent, we use a shallow denoising autoencoder
in our experiments.

CAE [35]: a contractive autoencoder which introduces the Frobe-
nius norm of the Jacobian matrix of the encoder activations into
the regularization term.

VAE [14]: a generative autoencoder inspired by variational in-
ference.

KSAE [24]: a competitive autoencoder which explicitly enforces
sparsity by only keeping the k highest activities in the feedforward
phase.

We implemented the AE, DAE, CAE, VAE and KSAE autoen-
coders on our own, since their implementations are not publicly
available.

Training Details: For all the autoencoder models (including AE,
DAE, CAE, VAE, KSAE, and KATE), we represent each input docu-
ment as a log-normalized word count vector, using binary cross-
entropy as the loss function and Adadelta [41] as the optimizer.
Weight tying is also applied. For CAE and VAE, additional regular-
ization terms are added to the loss function as mentioned in the
original papers. As for VAE, we use tanh as the nonlinear activation
function while as for AE, DAE and CAE, sigmoid is applied. As for
KSAE, we found that omitting sparsity in the testing phase gave us
better results in all experiments.

When training models, we randomly extract a subset of docu-
ments from the training set as a validation set, as noted in Table 1,
which is used for tuning hyperparameters and early stopping. Early
stopping is a type of regularization used to avoid overfitting when
training an iterative algorithm. We stop training after 5 successive
epochs with no improvement on the validation set. All baseline
models were optimized as recommended in original sources. For
KATE, we set α as 6.26, learning rate as 2, batch size as 100 (for
the Reuters dataset) or 50 (for other datasets) and k as 6 (for the 20
topics case), 32 (for the 128 topics case) or 102 (for the 512 topics
case), as determined from the validation set.

4.3 Qualitative Analysis

In this set of qualitative experiments, we compare the topics gener-
ated by KATE to other representative models including AE, KSAE,
and LDA. Even though KATE is not explicitly designed for the
purpose of word embeddings, we compared word representations

www.zubiaga.org/datasets/wiki10+/
www.cs.cornell.edu/people/pabo/movie-review-data/
www.cs.cornell.edu/people/pabo/movie-review-data/
www.dmi.usherb.ca/~larocheh/code/DocNADE.zip
www.dmi.usherb.ca/~larocheh/code/DocNADE.zip
github.com/larsmaaloee/deep-belief-nets-for-topic-modeling
github.com/carpedm20/variational-text-tensor-flow
github.com/carpedm20/variational-text-tensor-flow
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learned by KATE with the Word2Vec model to demonstrate that
our model can learn semantically meaningful representations from
text. We evaluate the above models on the 20 Newsgroups data.
Matching the number of classes, the number of topics is set to ex-
actly 20 for all models. For both KSAE and KATE, k (the sparsity
level/number of winning neurons) is set as 6.

soc.religion
.christian

AE line subject organ articl peopl
post time make write good

KSAE peopl origin bottom applic mind
subject pad europ role christian

KATE god christian jesu moral rutger
bibl exist religion apr christ

LDA god christian jesu church bibl
peopl christ man time life

sci.crypt
KATE govern articl law key encrypt

clipper chip secur case distribut

LDA key encrypt chip clipper secur
govern system law escrow privaci

comp.os.ms-
windows.misc

KATE ca system univers window
problem card file driver drive scsi

LDA drive card gun control disk
scsi system driver hard bu

Table 2: Topics learned by various models.

4.3.1 Topics Generated by Different Models. Table 2 shows some
topics learned by various models. As for autoencoders, each topic is
represented by the 10 words (i.e., input neurons) with the strongest
connection to that topic (i.e., hidden neuron). As for LDA, each
topic is represented by the 10 most probable words in that topic.
The basic AE is not very good at learning distinctive topics from
textual data. In our experiment, all the topics learned by AE are
dominated by frequent common words like line, subject and organ,
which were always the top 3 words in all the 20 topics. KSAE learns
some meaningful words but only alleviates this problem to some
extent, for example, line, subject, organ and white still appears as
top 4 words in 6 topics. For this reason, the output of AE and KSAE
is shown for only one of the newsgroups (soc.religion.christian).
On the other hand, we find that KATE generates 20 topics that
are distinct from each other, and which capture the underlying
semantics very well. For example, it associates words such as god,
christian, jesu, moral, bibl, exist, religion, christ under the topic
soc.religion.christian. It is worth emphasizing that KATE belongs
to the class of distributed representation models, where each topic
is “distributed” among a group of hidden neurons (the topics are
therefore better interpreted as “virtual” topics). However, we find
that KATE can generate competitive topics compared with LDA,
which explicitly infers topics as mixture of words.

4.3.2 Word Embeddings Learned by Different Models. In AE,
KSAE and KATE, each input neuron (i.e., a word in the vocabulary
set) is connected to each hidden neuron (i.e., a virtual topic) with
different strengths. Thus, each row i of the input to hidden layer
weight matrix W ∈ Rd×m is taken as an m-dimensional word
embedding for word i . In order to evaluate whether KATE can
capture semantically meaningful word representations, we check if
similar or related words are close to each other in the vector space.
Table 3 shows the five nearest neighbors for some query words in
the word representation space learned by AE, KSAE, KATE and

Word2Vec. KATE performs much better than AE and KSAE. For
example KATE lists words like arm, crime, gun, firearm, handgun
among the nearest neighbors of query word weapon while neither
AE nor KSAE is able to find relevant words. One can observe that
KATE can learn competitive word representations compared to
Word2Vec in terms of this word similarity task.

4.3.3 Visualization of Document Representations. A good doc-
ument representation method is expected to group related doc-
uments, and to separate the different groups. Figure 2 shows the
PCA projections of the document representations taken from the six
main groups in the 20 Newsgroups data. As we can observe, neither
AE nor the KSAE methods can learn good document representa-
tions. On the other hand, KATE successfully extracts meaningful
representations from the documents; it automatically clusters re-
lated documents in the same group, and it can easily distinguish the
six different groups. In fact, KATE is very competitive with LDA
(arguably even better on this dataset, since LDA confuses some
categories), even though the latter explicitly learns documents rep-
resentations as mixture of topics, which in turn are mixture of
words. Figure 3 shows the T-SNE based visualization [23] of the
above document representations and we can draw a similar conclu-
sion.

4.4 Quantitative Experiments

We now turn to quantitative experiments to measure the effective-
ness of KATE compared to other models on tasks such as classifi-
cation, multi-label classification (MLC), regression, and document
retrieval (DR). For classification, MLC and regression tasks, we
train a simple neural network that uses the encoded test inputs
as feature vectors, and directly maps them to the output classes
or values. A simple softmax classifier with cross-entropy loss was
applied for the classification task, and multi-label logistic regression
classifier with cross-entropy loss was applied for the MLC task. For
the regression task we used a two-layer neural regression model
(where the output layer is a sigmoid neuron) with squared error loss.
The same architecture is used for all methods to ensure fairness.
Note that when comparing various methods, the same number of
features were learned for all of them except for Word2Vecpre which
uses 300-dimensional pre-trained word embeddings and thus its
number of features was fixed as 300 in all experiments.

4.4.1 Mean Squared Cosine Deviation among Topics. We first
quantify how distinct are the topics learned via different methods.
Let vi denote the vector representation of topic i , and let there
bem topics. The cosine of the angle between vi and v j , given as

cos(vi ,v j ) =
vT
i v j

∥v i ∥ · ∥v j ∥
, is a measure of how similar/correlated

the two topic vectors are; it takes values in the range [−1, 1]. The
topics are most dissimilar when the vectors are orthogonal to each
other, i.e., with the angle between them is π/2, with the cosine of
the angle being zero. Define the pair-wise mean squared cosine
deviation amongm topics as follows

MSCD =

√
2

m(m − 1)

∑
i, j>i

cos2(vi ,v j )

Thus, MSCD ∈ [0, 1], and smaller values of MSCD (closer to zero)
imply more distinctive, i.e., orthogonal topics.
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Model weapon christian compani israel law hockey comput space

AE

effort close hold cost made plane inform studi
muslim test simpl isra live tie run data
sort larg serv arab give sex program answer

america result commit fear power english base origin
escap answer societi occupi reason intel author unit

KSAE

qualiti god commit occupi back int run data
challeng power student enhanc govern cco inform process

tire lie age azeri reason monash part answer
7u logic hold rpi call rsa case heard

learn simpl consist sleep answer pasadena start version

KATE

arm belief market arab citizen playoff scienc launch
crime god dealer isra constitut nhl dept orbit
gun believ manufactur palestinian court team cs mission

firearm faith expens occupi feder wing math shuttl
handgun bibl cost jew govern coach univ flight

Word2Vec

assault understand insur lebanon court sport engin launch
militia belief feder isra prohibit nhl colleg jpl
possess believ manufactur lebanes ban playoff umich nasa
automat god industri arab sentenc winner subject moon
gun truth pay palestinian legitim cup perform gov

Table 3: Five nearest neighbors in the word representation space on 20 Newsgroups dataset.

(a) AE (b) KSAE (c) LDA (d) KATE

Figure 2: PCA on the 20-dimensional document vectors from 20 Newsgroups dataset.

(a) AE (b) KSAE (c) LDA (d) KATE

Figure 3: T-SNE on the 20-dimensional document vectors from 20 Newsgroups dataset.

We evaluate MSCD for topics generated by AE, KSAE, LDA, and
KATE. We also evaluate KATE without amplification. In LDA, a
topic is represented as its probabilistic distribution over the vocab-
ulary set, whereas for autoencoders, it is defined as the weights on
the connections between the corresponding hidden neuron and all
the input neurons. We conduct experiments on the 20 Newsgroups

dataset and vary the number of topics from 20 to 128 and 512. Ta-
ble 4 shows these results. We find that KATE has the lowest MSCD
values, which means that it can learn more distinctive (i.e., orthog-
onal) topics than other methods. Our results are much better than
LDA, since the latter does not prevent topics from being similar.
On the other hand, the competition in KATE drives topics (i.e., the
hidden neurons) to become distinct from each other. Interestingly,
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Model

20 News

20 128 512

AE 0.976 0.722 0.319
KSAE 0.268 0.198 0.056
LDA 0.249 0.059 0.028
KATE no_amp . 0.154 0.069 0.037
KATE 0.097 0.024 0.014

Table 4: Mean squared cosine deviation among topics; smaller

means more distinctive topics.

KATE with amplification (i.e., here we have α = 6.26) consistently
achieves lower MSCD values than KATE without amplification,
which verifies the effectiveness of the α amplification connections
in terms of learning distinctive topics.

Model

20 News

128 512

LDA 0.657 0.685
DBN 0.677 0.705
DocNADE 0.714 0.735
NVDM 0.052 0.053
Word2Vecpre 0.687 0.687
Word2Vec 0.564 0.586
Doc2Vec 0.347 0.399
AE 0.084 0.516
DAE 0.125 0.291
CAE 0.083 0.512
VAE 0.724 0.747
KSAE 0.486 0.675
KATE 0.744 0.761

Table 5: Classification accuracy on 20 Newsgroups dataset.

4.4.2 Document Classification Task. In this set of experiments,
we evaluate the quality of learned document representations from
various models for the purpose of document classification. Table 5
shows the classification accuracy results on the 20 Newsgroups
dataset (using 128 topics). Traditional autoencoders (including AE,
DAE, CAE) do not perform well on this task. We observed that the
validation set error was oscillating when training these classifiers
(also observed in the regression task below), which indicates that
the extracted features are not representative and consistent. KSAE
consistently achieves higher accuracies than other autoencoders
and does not exhibit the oscillating phenomenon, which means that
adding sparsity does help learn better representations. VAE even
performs better than KSAE on this dataset, which shows the advan-
tages of VAE over other traditional autoencoders. However, as we
will see later, VAE fails to consistently perform well across different
datasets and tasks. Word2Vecpre performs on par with DBN and
LDA even though it just averages all the word embeddings in a
document, which suggests the effectiveness of pre-training word
embeddings on a large external corpus to learn general knowledge.
Not surprisingly, DocNADE works very well on this task as also
reported in previous work [5, 18, 36]. Our KATEmodel significantly
outperforms all other models. For example, KATE obtains 74.4%
accuracy which is significantly higher than the 72.4% accuracy
achieved by VAE.

Table 6 shows multi-label classification results on Reuters and
Wiki10+ datasets. Here we show both the Macro-F1 and Micro-F1

scores (reflecting a balance of precision and recall) for different
number of features. Micro-F1 score biases the metric towards the
most populated labels, while Macro-F1 biases the metric towards
the least populated labels. Both Reuters and Wiki10+ are highly
imbalanced. For example in Wiki10+, the documents belonging
to ‘wikipedia’ or ‘wiki’ account for 90% of the corpus while only
around 6% of the documents are relevant to ‘religion’. Similarly, in
Reuters, the documents belonging to ‘CCAT’ account for 47% of
the corpus while there are only 5 documents relevant to ‘GMIL’.
DocNADE works the very well on this task, but the sparse and
competitive autoencoders also perform well. KATE outperforms
KSAE on Reuters and remains competitive on Wiki10+. We don’t
report the results of DBN on Reuters since the training did not end
even after a long time.

4.4.3 Regression Task. In this set of experiments, we evaluate
the quality of learned document representations from various mod-
els for predicting the movie ratings in the MRD dataset, as shown
in Table 7 (using 128 features). The coefficient of determination,
denoted r2, from the regression model was used to evaluate the
methods. The best possible r2 statistic value is 1.0; negative values
are also possible, indicating a poor fit of themodel to the data. In gen-
eral, other autoencoder models perform poorly on this task, for ex-
ample, AE even gets a negative r2 score. Interestingly, Word2Vecpre
performs on par with DocNADE, indicating that word embeddings
learned from a large external corpus can capture some semantics of
emotive words (e.g., good, bad, wonderful). We observe that KATE
significantly outperforms all other models, including Word2Vecpre ,
which means it can learn meaningful representations which are
helpful for sentiment analysis.

Figure 4: Document retrieval on 20 Newsgroups dataset (128

features).

4.4.4 Document Retrieval Task. We also evaluate the various
models for document retrieval. Each document in the test set is used
as an individual query andwe fetch the relevant documents from the
training set based on the cosine similarity between the document
representations. The average fraction of retrieved documents which
share the same label as the query document, i.e., precision, was
used as the evaluation metric. As shown in Figure 4, VAE performs
the best on this task followed by DocNADE and KATE. Among the
other models, DBN and LDA also have decent performance, but the
other autoencoders are not that effective.
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Model

Reuters Wiki10+

128 512 128 512

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

LDA 0.408 0.703 0.576 0.766 0.442 0.584 0.305 0.441
DBN - - - - 0.330 0.513 0.339 0.536
DocNADE 0.564 0.768 0.667 0.831 0.451 0.585 0.423 0.561
NVDM 0.215 0.441 0.195 0.452 0.187 0.461 0.036 0.375
Word2Vecpre 0.549 0.712 0.549 0.712 0.312 0.454 0.312 0.454
Word2Vec 0.458 0.648 0.595 0.761 0.205 0.318 0.234 0.325
Doc2Vec 0.004 0.082 0.000 0.000 0.289 0.486 0.344 0.524
AE 0.025 0.047 0.459 0.651 0.016 0.040 0.382 0.569
DAE 0.275 0.576 0.489 0.685 0.359 0.560 0.375 0.534
CAE 0.024 0.045 0.549 0.726 0.091 0.168 0.404 0.547
VAE 0.325 0.458 0.490 0.594 0.342 0.497 0.373 0.511
KSAE 0.457 0.660 0.605 0.766 0.449 0.594 0.471 0.614

KATE 0.539 0.716 0.615 0.767 0.445 0.580 0.446 0.580
Table 6: Comparison of MLC F1 score on Reuters RCV1-v2 and Wiki10+ datasets.

Model

MRD

128 512

LDA 0.287 0.226
DBN 0.277 0.369
DocNADE 0.404 0.424
NVDM 0.199 0.191
Word2Vecpre 0.409 0.409
Word2Vec 0.143 0.136
Doc2Vec 0.052 0.032
AE -0.001 0.203
DAE 0.067 0.100
CAE 0.018 0.118
VAE 0.111 0.355
KSAE 0.152 0.365
KATE 0.463 0.516

Table 7: Comparison of regression r2 score on MRD dataset.

4.4.5 Timing. Finally, we compare the training time of vari-
ous models. Results are shown in Table 8 for the 20 Newsgroups
dataset, with 20 topics. Our model is much faster than deep gener-
ative models like DBN and DocNADE. It is typically slower than
other autoencoders since it usually takes more epochs to converge.
Nevertheless, as demonstrated above, it significantly outperforms
other models in various text analytics tasks.

4.5 KATE: Effects of Parameter Tuning

Having demonstrated the effectiveness of KATE compared to other
methods, we study the effects of various hyperparameter choices
in KATE, such as the number of topics (i.e., hidden neurons), the
number of winners k and the energy amplification parameter α .
The default values for the number of topics is 128, with k = 32 and
α = 6.26. Note when exploring the effect of the number of topics,
we also vary k to find its best match to the given number of topics.
Figure 5 shows the classification accuracy on the 20 Newsgroups
dataset, as we vary these parameters. We observe that as we in-
crease the number of topics or hidden neurons (in Figure 5a), the
accuracy continues to rise, but eventually drops off. We use 128
as the default value since it offers the best trade-off in complex-
ity and performance; only relatively minor gains are achieved in

increasing the number of topics beyond 128. Considering the num-
ber of winning neurons (see Figure 5b), the main trend is that the
performance degrades when we make k larger, which is expected
since larger k implies lesser competition. In practice, when tuning
k , we find that starting by a value close to around a quarter of the
number of topics is a good strategy. Finally, as we mentioned, the
α amplification connection is crucial as verified in Figure 5c. When
α = 2/k = 0.0625, which means there is no amplification for the
energy, the classification accuracy is 71.1%. However, we are able to
significantly boost the model performance up to 74.6% accuracy by
increasing the value of α . We use a default value of α = 6.26, which
once again reflects a good trade-off across different datasets. It is
also important to note that across all the experiments, we found
that using the tanh activation function (instead of sigmoid function)
in the k-competitive layer of KATE gave the best performance. For
example, on the 20 Newsgroups data, using 128 topics, KATE with
tanh yields 74.4% accuracy, while with sigmoid it was only 56.8%.

5 CONCLUSIONS

We described a novel k-competitive autoencoder, KATE, that explic-
itly enforces competition among the neurons in the hidden layer by
selecting the k highest activation neurons as winners, and reallo-
cates the amplified energy (aggregate activation potential) from the
losers. Interestingly, even though we use a shallow model, i.e., with
one hidden layer, it outperforms a variety of methods on many dif-
ferent text analytics tasks. More specifically, we perform a compre-
hensive evaluation of KATE against techniques spanning graphical
models (e.g., LDA), belief networks (e.g., DBN), word embedding
models (e.g., Word2Vec), and several other autoencoders including
the k-sparse autoencoder (KSAE). We find that across tasks such as
document classification, multi-label classification, regression and
document retrieval, KATE clearly outperforms competing methods
or obtains close to the best results. It is very encouraging to note
that KATE is also able to learn semantically meaningful represen-
tations of words, documents and topics, which we evaluated via
both quantitative and qualitative studies. As part of future work,
we plan to evaluate KATE on more domain specific datasets, such
as bibliographic networks, for example for topic induction and sci-
entific publication retrieval. We also plan to improve the scalability
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Model LDA DBN DocNADE NVDM Word2Vec Doc2Vec AE DAE CAE VAE KSAE KATE
Time (s) 399 15,281 4,787 645 977 992 566 361 729 660 489 1,214

Table 8: Training time of various models (in seconds).

(a) Effect of number of topics (b) Effect of k (c) Effect of α

Figure 5: Effects of hyper-parameters.

and effectiveness of our approach on much larger text collections
by developing parallel and distributed implementations.
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