
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain

hussam4@rpi.edu
Rensselaer Polytechnic Institute

Troy, New York, USA

Mohammed J. Zaki
zaki@cs.rpi.edu

Rensselaer Polytechnic Institute
Troy, New York, USA

Dharmashankar Subramanian
dharmash@us.ibm.com

IBM T. J. Watson Research Center
Yorktown Heights, New York, USA

ABSTRACT
We propose an extension to the transformer neural network archi-
tecture for general-purpose graph learning by adding a dedicated
pathway for pairwise structural information, called edge chan-
nels. The resultant framework – which we call Edge-augmented
Graph Transformer (EGT) – can directly accept, process and out-
put structural information of arbitrary form, which is important
for effective learning on graph-structured data. Our model exclu-
sively uses global self-attention as an aggregationmechanism rather
than static localized convolutional aggregation. This allows for
unconstrained long-range dynamic interactions between nodes.
Moreover, the edge channels allow the structural information to
evolve from layer to layer, and prediction tasks on edges/links
can be performed directly from the output embeddings of these
channels. We verify the performance of EGT in a wide range of
graph-learning experiments on benchmark datasets, in which it
outperforms Convolutional/Message-Passing Graph Neural Net-
works. EGT sets a new state-of-the-art for the quantum-chemical
regression task on the OGB-LSC PCQM4Mv2 dataset containing
3.8 million molecular graphs. Our findings indicate that global self-
attention based aggregation can serve as a flexible, adaptive and
effective replacement of graph convolution for general-purpose
graph learning. Therefore, convolutional local neighborhood ag-
gregation is not an essential inductive bias.

CCS CONCEPTS
• Computing methodologies → Neural networks; Artificial
intelligence.

KEYWORDS
graph neural networks, graph representation learning, self-attention

ACM Reference Format:
Md ShamimHussain, Mohammed J. Zaki, and Dharmashankar Subramanian.
2022. Global Self-Attention as a Replacement for Graph Convolution. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539296

1 INTRODUCTION
Graph-structured data are ubiquitous in different areas such as
communication networks, molecular structures, citation networks,
knowledge bases and social networks. Due to the flexibility of the
structural information in graphs, they are powerful tools for com-
pact and intuitive representation of data originating from a very
wide range of sources. However, this flexibility comes at the cost of
added complexity in processing and learning from graph-structured
data, due to the arbitrary nature of the interconnectivity of the
nodes. Recently the go-to solution for deep representation learn-
ing on graphs has been Graph Neural Networks (GNNs) [17, 34].
The most commonly used GNNs follow a convolutional pattern
whereby each node in the graph updates its state based on that of
its neighbors [24, 42] in each layer. On the other hand, the pure
self-attention based transformer architecture [38] has displaced
convolutional neural networks for more regularly arranged data,
such as sequential (e.g., text) and grid-like (images) data, to become
the new state-of-the-art, especially in large-scale learning. Trans-
formers have become the de-facto standard in the field of natural
language processing, where they have achieved great success in
a wide range of tasks such as language understanding, machine
translation and question answering. The success of transformers
has translated to other forms of unstructured data in different do-
mains such as audio [8, 28] and images [7, 13] and also on different
(classification/generation, supervised/unsupervised) tasks.

Transformers differ from convolutional neural networks in some
important ways. A convolutional layer aggregates a localized win-
dow around each position to produce an output for that position.
The weights that are applied to the window are independent of
the input, and can therefore be termed as static. Also, the slid-
ing/moving window directly follows the structure of the input data,
i.e., the sequential or grid-like pattern of positions. This is an apri-
ori assumption based on the nature of the data and how it should
be processed, directly inspired by the filtering process in signal
processing. We call this assumption the convolutional inductive bias.
On the other hand, in the case of a transformer encoder layer, the
internal arrangement of the data does not directly dictate how it is
processed. Attention weights are formed based on the queries and
the keys formed at each position, which in turn dictate how each
position aggregates other positions. The aggregation pattern is thus
global and input dependent, i.e., it is dynamic. The positional infor-
mation is treated as an input to the network in the form of positional
encodings. In their absence, the transformer encoder is permutation
equivariant and treats the input as a multiset. Information is propa-
gated among different positions only via the global self-attention
mechanism, which is agnostic to the internal arrangement of the
data. Due to this property of global self-attention, distant points
in the data can interact with each other as efficiently as nearby
points. Also, the network learns to form appropriate aggregation

https://doi.org/10.1145/3534678.3539296
https://doi.org/10.1145/3534678.3539296


KDD ’22, August 14–18, 2022, Washington, DC, USA. Hussain, Zaki and Subramanian

Figure 1: A conceptual demonstration of Graph Convolution (left)
and Global Self-Attention (right). It takes three stages of convolution
for node 0 to aggregate node 6. With global self-attention, the model
can learn to do so in a single step. The attention heads are formed
dynamically for a given graph.

patterns during the training process, rather than being constrained
to a predetermined pattern.

Although it is often straightforward to adopt the transformer
architecture for regularly structured data such as text and images by
employing an appropriate positional encoding scheme, the highly
arbitrary nature of structure in graphs makes it difficult to represent
the position of each node only in terms of positional encodings.
Also, it is not clear how edge features can be incorporated in terms
of node embeddings. For graph-structured data, the edge/structural
information can be just as important as the node information, and
thus we should expect the network to process this information
hierarchically, just like the node embeddings. To facilitate this, we
introduce a new addition to the transformer, namely residual edge
channels – a pathway that can leverage structural information. This
is a simple yet powerful extension to the transformer framework in
that it allows the network to directly process graph-structured data.
This addition is also very general in the sense that it facilitates the
input of structural information of arbitrary form, including edge fea-
tures, and can handle different variants of graphs such as directed
and weighted graphs in a systematic manner. Our framework can
exceed the results of widely used Graph Convolutional Networks
on datasets of moderate to large sizes, in supervised benchmarking
tasks while maintaining a similar number of parameters. But our
architecture deviates significantly from convolutional networks in
that it does not impose any strong inductive bias such as the convo-
lutional bias, on the feature aggregation process. We rely solely on
the global self-attention mechanism to learn how best to use the
structural information, rather than constraining it to a fixed pattern.
Additionally, the structural information can evolve over layers and
the network can potentially form new structures. Any prediction
on the structure of the graph, such as link prediction or edge clas-
sification, can be done directly from the outputs of edge channels.
However, these channels do add to the quadratic computational
and memory complexity of global self-attention, with respect to
the number of nodes, which restricts us to moderately large graphs.
In addition to the edge channels, we generalize GNN concepts like
gated aggregation [4], degree scalers [12] and positional encodings
[15] for our framework.

Our experimental results indicate that given enough data and
with the proposed edge channels, the model can utilize global self-
attention to learn the best aggregation pattern for the task at hand.
Thus, our results indicate that following a fixed convolutional ag-
gregation pattern whereby each node is limited to aggregating its
closest neighbors (based on adjacency, distance, intimacy, etc.) is

not an essential inductive bias. With the flexibility of global self-
attention, the network can learn to aggregate distant parts of the
input graph in just one step as illustrated in Fig. 1. Since this pattern
is learned rather than being imposed by design, it increases the
expressivity of the model. Also, this aggregation pattern is dynamic
and can adapt to each specific input graph. Similar findings have
been reported for unstructured data such as images [11, 13, 32].
Some recent works have reported global self-attention as a means
for better generalization or performance by improving the expres-
sivity of graph convolutions [31, 40]. Very recently, Graphormer
[43] performed well on graph level prediction tasks on molecular
graphs by incorporating edges with specialized encodings. How-
ever, it does not directly process the edge information and therefore
does not generalize well to edge-related prediction tasks. By in-
corporating the edge-channels, we are the first to propose global
self-attention as a direct and general replacement for graph convo-
lution for node-level, link(edge)-level and graph-level prediction,
on all types of graphs.

2 RELATEDWORK
In relation to our work, we discuss self-attention based GNN mod-
els, where the attention mechanism is either constrained to a local
neighborhood (local self-attention) of each node or unconstrained
over the whole input graph (global self-attention). Methods like
Graph Attention Network (GAT) [39] and Graph Transformer (GT)
[14] constrain the self-attention mechanism to local neighborhoods
of each node only, which is reminiscent of the graph convolu-
tion/local message-passing process. Several works have attempted
to adopt the global self-attention mechanism for graphs as well.
Graph-BERT [45] uses a modified transformer framework on a
sampled linkless subgraph (i.e., only node representations are pro-
cessed) around a target node. Since the nodes do not inherently
bear information about their interconnectivity, Graph-BERT uses
several types of relative positional encodings to embed the infor-
mation about the edges within a subgraph. Graph-BERT focuses
on unsupervised representation learning by training the model to
predict a single masked node in a sampled subgraph. GROVER [33]
used a modified transformer architecture with queries, keys and
values produced by Message-Passing Networks, which indirectly
incorporate the input structural information. This framework was
used to perform unsupervised learning on molecular graphs only.
Graph Transformer [6] and Graphormer [43] directly adopt the
transformer framework for specific tasks. Graph Transformer sepa-
rately encodes the nodes and the relations between nodes to form a
fully connected view of the graphwhich is incorporated into a trans-
former encoder-decoder framework for graph-to-sequence learning.
Graphormer incorporates the existing structure/edges in the graph
as an attention bias, formed from the shortest paths between pairs
of nodes. It focuses on graph-level prediction tasks on molecular
graphs (e.g., classification/regression on molecular graphs). Unlike
these models which handle graph structure in an ad-hoc manner
and only for a specific problem, we directly incorporate graph struc-
ture into the transformer model via the edge channels and propose
a general-purpose learning framework for graphs based only on the
global self-attention mechanism, free of the strong inductive bias of
convolution. Apart from being used for node feature aggregation,



Global Self-Attention as a Replacement for Graph Convolution KDD ’22, August 14–18, 2022, Washington, DC, USA.

attention has also been used to form metapaths in heterogeneous
graphs, such as the Heterogeneous Graph Transformer (HGT) [22]
and the Graph Transformer network (GTN) [44]. However, these
works are orthogonal to ours since metapaths are only relevant in
the case of heterogeneous graphs and these methods use attention
specifically to combine heterogeneous edges, over multiple hops.
We focus only on homogeneous graphs, but more importantly, we
use attention as a global aggregation mechanism.

3 NETWORK ARCHITECTURE
3.1 Preliminaries
The transformer architecture was proposed by Vaswani et al. [38] as
a purely attention-based model. The transformer encoder uses self-
attention to communicate information between different positions,
and thus produces the output embeddings for each position. In
the absence of positional encodings, this process is permutation
equivariant and treats the input embeddings as a multiset.

Each layer in the transformer encoder consists of two sublay-
ers. The key component of the transformer is the multihead self-
attention mechanism which takes place in the first sublayer, which
can be expressed as:

Attn(Q,K,V) = ÃV (1)

Where, Ã = softmax

(
QK𝑇√︁
𝑑𝑘

)
(2)

where Q,K,V are the keys, queries and values formed by learned
linear transformations of the embeddings and 𝑑𝑘 is the dimen-
sionality of the queries and the keys. Ã is known as the (softmax)
attention matrix, formed from the scaled dot product of queries and
keys. This process is done for multiple sets of queries, keys and val-
ues, hence the name multihead self-attention. The second sublayer
is the feedforward layer which serves as a pointwise non-linear
transformation of the embeddings.

3.2 Edge-augmented Graph Transformer (EGT)
The EGT architecture (Fig. 2) extends the original transformer archi-
tecture. The permutation equivariance of the transformer is ideal
for processing the node embeddings in a graph because a graph is
invariant under the permutation of the nodes, given that the edges
are preserved. We call the residual channels present in the original
transformer architecture node channels. These channels transform
a set of input node embeddings {ℎ01, ℎ

0
2, ..., ℎ

0
𝑁
} into a set of output

node embeddings (ℎ𝐿
𝑖
)𝑓 𝑖𝑛𝑎𝑙 (for 1 ≤ 𝑖 ≤ 𝑁 ), where ℎℓ

𝑖
∈ R𝑑ℎ , 𝑑ℎ

is the node embeddings dimensionality, 𝑁 is the number of nodes,
and 𝐿 is the number of layers. Our contribution to the transformer
architecture is the introduction of edge channels, which start with
an embedding for each pair of nodes. Thus, there are 𝑁 × 𝑁 input
edge embeddings 𝑒011, 𝑒

0
12, ..., 𝑒

0
1𝑁 , 𝑒

0
21, ..., 𝑒

0
𝑁𝑁

where, 𝑒𝑙
𝑖 𝑗

∈ R𝑑𝑒 , 𝑑𝑒
is the edge embeddings dimensionality. The input edge embeddings
are formed from graph structural matrices and edge features. We
define a graph structural matrix as any matrix with dimensionality
𝑁 × 𝑁 , which can completely or partially define the structure of a
graph (e.g., adjacency matrix, distance matrix). The edge embed-
dings are updated by EGT in each layer and finally, it produces a set
of output edge embeddings (𝑒𝐿

𝑖 𝑗
)𝑓 𝑖𝑛𝑎𝑙 (for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ) from which

Figure 2: Edge-augmented Graph Transformer (EGT)

structural predictions such as edge labeling and link prediction can
be performed.

From equations (1) and (2) we see that the attention matrix is
comparable with a row-normalized adjacency matrix of a directed
weighted complete graph. It dictates how the node features in a
graph are aggregated, similarly to GCN [24]. Unlike the input graph,
this graph is dynamically formed by the attention mechanism. How-
ever, the basic transformer does not have a direct way to incorporate
the input structure (existing edges) while forming these weighted
graphs, i.e., the attention matrices. Also, these dynamic graphs are
collapsed immediately after the aggregation process is done. To
remedy the first problem we let the edge channels participate in
the aggregation process as follows (as shown in Fig. 2) – in the ℓ ’th
layer and for the 𝑘’th attention head,

Attn(Q𝑘,ℓ

ℎ
,K𝑘,ℓ

ℎ
,V𝑘,ℓ

ℎ
) = Ã𝑘,ℓV𝑘,ℓ

ℎ
(3)

Where, Ã𝑘,ℓ = softmax(Ĥ𝑘,ℓ ) ⊙ 𝜎 (G𝑘,ℓ
𝑒 ) (4)

Where, Ĥ𝑘,ℓ = clip ©«
Q𝑘,ℓ

ℎ
(K𝑘,ℓ

ℎ
)𝑇√︁

𝑑𝑘

ª®¬ + E𝑘,ℓ𝑒 (5)

where ⊙ denotes elementwise product. E𝑘,ℓ𝑒 ,G𝑘,ℓ
𝑒 ∈ R𝑁×𝑁 are con-

catenations of the learned linear transformed edge embeddings.
E𝑘,ℓ𝑒 is a bias term added to the scaled dot product between the
queries and the keys. It lets the edge channels influence the atten-
tion process. G𝑘,ℓ

𝑒 drives the sigmoid 𝜎 (·) function and lets the edge
channels also gate the values before aggregation, thus controlling
the flow of information between nodes. The scaled dot product is
clipped to a limited range which leads to better numerical stability



KDD ’22, August 14–18, 2022, Washington, DC, USA. Hussain, Zaki and Subramanian

(we used [−5, +5]). To ensure that the network takes advantage of
the full-connectivity the attention process is randomly masked by
adding −∞ to the inputs to the softmax with a small probability
during training (i.e., random attention masking). Another approach
is to apply dropout [37] to the attention matrix.

To let the structural information evolve from layer to layer, the
edge embeddings are updated by a learnable linear transformation
of the inputs to the softmax function. The outputs of the atten-
tion heads are also mixed by a linear transformation. To facilitate
training deep networks, Layer Normalization (LN) [1] and residual
connections [19] are used. We adopted the Pre-Norm architecture
whereby normalization is done immediately before the weighted
sublayers [41] rather than after, because of its better optimization
characteristics. So, ℎ̂ℓ

𝑖
= LN(ℎℓ−1

𝑖
), 𝑒ℓ

𝑖 𝑗
= LN(𝑒ℓ−1

𝑖 𝑗
). The residual

updates can be expressed in an elementwise manner as:

ˆ̂
ℎℓ𝑖 = ℎℓ−1𝑖 + Oℓ

ℎ

𝐻
𝑘=1

𝑁∑︁
𝑗=1

Ã𝑘,ℓ
𝑖 𝑗

(V𝑘,ℓℎ̂ℓ𝑖 ) (6)

ˆ̂𝑒ℓ𝑖 𝑗 = 𝑒ℓ−1𝑖 𝑗 + Oℓ
𝑒

𝐻
𝑘=1 Ĥ𝑘,ℓ

𝑖 𝑗
(7)

Here, ∥ denotes concatenation. Oℓ
ℎ

∈ R𝑑ℎ×𝑑ℎ and Oℓ
𝑒 ∈ R𝑑𝑒×𝐻

are the learned output projection matrices, with edge embeddings
dimensionality 𝑑𝑒 and 𝐻 attention heads.

The feed-forward sublayer following the attention sublayer con-
sists of two consecutive pointwise fully connected linear layers
with a non-linearity such as ELU [10] in between. The updated em-
beddings are ℎℓ

𝑖
=

ˆ̂
ℎℓ
𝑖
+FFNℓ

h (LN(
ˆ̂
ℎℓ
𝑖
)), 𝑒ℓ

𝑖
= ˆ̂𝑒ℓ

𝑖
+FFNℓ

e (LN( ˆ̂𝑒ℓ𝑖 )). The
Pre-Norm architecture also ends with a layer normalization over
the final embeddings as (ℎ𝐿

𝑖
)𝑓 𝑖𝑛𝑎𝑙 = LN(ℎ𝐿

𝑖
), (𝑒𝐿

𝑖 𝑗
)𝑓 𝑖𝑛𝑎𝑙 = LN(𝑒𝐿

𝑖 𝑗
).

3.3 Dynamic Centrality Scalers
The attention mechanism in equation (3) is a weighted average
of the gated node values, which is agnostic to the degree of the
nodes. However, we may want to make the network sensitive to the
degree/centrality of the nodes, in order to make it more expressive
when distinguishing between non-isomorphic (sub-)graphs, similar
to GIN [42]. While this can be achieved by directly encoding the
degrees of the nodes as an additional input like [43], we aimed for
an approach that is adaptive to the dynamic nature of self-attention.
Corso et al. [12] propose scaling the aggregated values by a function
of the degree of the node, more specifically a logarithmic degree
scaler. But it is tricky to form a notion of degree/centrality for
the dynamically formed graph represented by the attention matrix
because this row-normalized matrix bears no notion of degree. In
our network, the sigmoid gates control the flow of information to a
particular node which are derived from the edge embeddings. So
we use the sum of the sigmoid gates as a measure of centrality for a
node and scale the aggregated values by the logarithm of this sum.
With centrality scalers, equation (6) becomes:

ˆ̂
ℎℓ𝑖 = ℎℓ−1𝑖 + Oℓ

ℎ

𝐻
𝑘=1 𝑠

𝑘,𝑙
𝑖

𝑁∑︁
𝑗=1

Ã𝑘,ℓ
𝑖 𝑗

(V𝑘,ℓℎ̂ℓ𝑖 ) (8)

Where, 𝑠
𝑘,𝑙
𝑖

= ln ©«1 +
𝑁∑︁
𝑗=1

𝜎 (G𝑘,ℓe𝑖, 𝑗 )
ª®¬ (9)

Here, 𝑠𝑘,𝑙
𝑖

is the centrality scaler for node 𝑖 , for attention head 𝑘 at
layer ℓ . As pointed out by Ying et al. [43], with the addition of a
centrality measure the global self-attention mechanism becomes at
least as powerful as the 1-Weisfeiler-Lehman (1-WL) isomorphism
test and potentially even more so, due to aggregation over multiple
hops. Note that commonly used convolutional GNNs like GIN are
at most as powerful as the 1-WL isomorphism test [42].

3.4 SVD-based Positional Encodings
While applying the transformer on regularly arranged data such as
sequential (e.g., text) and grid-like (e.g., images) data it is customary
to use sinusoidal positional encodings introduced by Vaswani et al.
[38]. However, the arbitrary nature of structure in graphs makes it
difficult to devise a consistent positional encoding scheme. Nonethe-
less, positional encodings have been used for GNNs to embed global
positional information within individual nodes and to distinguish
isomorphic nodes and edges [29, 36]. Inspired by matrix factoriza-
tion based node embedding methods for graphs [3], Dwivedi et al.
[15] proposed to use the 𝑘 smallest non-trivial eigenvectors of the
Laplacian matrix of the graph as positional encodings. However,
since the Laplacian eigenvectors can be complex-valued for directed
graphs, this method is more relevant for undirected graphs which
have symmetric Laplacian matrices. To remedy this we propose a
method, that is more general and applies to all variants of graphs
(e.g., directed, weighted). We propose a form of positional encoding
based on precalculated SVD of the graph structural matrices. We
use the largest 𝑟 singular values and corresponding left and right
singular vectors to form our positional encodings. We use the adja-
cency matrix A (with self-loops) as the graph structural matrix, but
it can be generalized to other structural matrices since the SVD of
any real matrix produces real singular values and vectors.

A
SVD≈ UΣV𝑇 = (U

√
Σ) · (V

√
Σ)𝑇 = ÛV̂𝑇 (10)

Γ̂ = Û ∥ V̂ (11)

Where U,V ∈ R𝑁×𝑟 matrices contain the 𝑟 left and right singu-
lar vectors as columns, respectively, corresponding to the top 𝑟

singular values in the diagonal matrix Σ ∈ R𝑟×𝑟 . Here, ∥ denotes
concatenation along the columns. From (10) we see that the dot
product between 𝑖’th row of Û and 𝑗 ’th row of V̂ can approximate
A𝑖 𝑗 which denotes whether there is an edge between nodes 𝑖 and 𝑗 .
Thus, the rows of Γ̂, namely 𝛾1, 𝛾2, ..., 𝛾𝑁 , each with dimensionality
𝛾𝑖 ∈ R2𝑟 , bear denoised information about the edges and can be
used as positional encodings. Note that this form of representation
based on the dot product is consistent with the scaled dot product
attention used in the transformer framework. Since the signs of
corresponding pairs of left and right singular vectors can be ar-
bitrarily flipped, we randomly flip the signs of 𝛾𝑖 during training
for better generalization. Instead of directly adding 𝛾𝑖 to the input
embeddings of the node 𝑖 , we add a projection 𝛾𝑖 = W𝑒𝑛𝑐𝛾𝑖 , where
W𝑒𝑛𝑐 ∈ R𝑑ℎ×2𝑟 is a learned projection matrix. This heuristically
leads to better results. Since our architecture directly takes structure
as input via the edge channels, the inclusion of positional encodings
is optional for most tasks. However, positional encodings can help
distinguish isomorphic nodes [46] by serving as an absolute global
coordinate system. Thus, they make the model more expressive.



Global Self-Attention as a Replacement for Graph Convolution KDD ’22, August 14–18, 2022, Washington, DC, USA.

However, the absolute coordinates may, in theory, hamper gener-
alization, because they are specific to a particular reference frame
that depends on the input graph. But in practice, we did not find
any detrimental effect on the performance for any task.

3.5 Embedding and Prediction
Given an input graph, both node and edge feature embeddings are
formed by performing learnable linear transformations for contin-
uous vector values, or vector embeddings for categorical/discrete
values. In the case of multiple sets of features, their correspond-
ing embeddings are added together. When positional encodings 𝛾𝑖
are used, they are added to the input node embeddings. The edge
embeddings are formed by adding together the embeddings from
the graph structural matrix and the input edge feature embeddings
(when present). For non-existing edges, a masking value/vector is
used in the place of an edge feature. As input structural matrix,
we use the distance matrix clipped up to 𝑘-hop distance, i.e., D(𝑘)

where D(𝑘)
𝑖 𝑗

∈ {0, 1, ..., 𝑘} are the shortest distances between nodes 𝑖
and 𝑗 , clipped to a maximum value of 𝑘 . We use vector embeddings
of the discrete values contained in these matrices.

For node and edge classification/regression tasks, we apply a
few final MLP layers on the final node and edge embeddings, re-
spectively, to produce the output. For graph-level classification/reg-
ression we adopt one of two different methods. In global average
pooling method, all the output node embeddings are averaged to
form a graph-level embedding, on which final linear layers are ap-
plied. In virtual nodes method, 𝑞 new virtual nodes with learnable
input embeddings ℎ0

𝑁+1, ℎ
0
𝑁+2, ..., ℎ

0
𝑁+𝑞 are passed through EGT

along with existing node embeddings. There are also 𝑞 different
learnable edge embeddings 𝑒𝑖 which are used as follows – the edge
embedding between a virtual node 𝑖 and existing graph node 𝑗 is
assigned 𝑒0

𝑖 𝑗
= 𝑒0

𝑗𝑖
= 𝑒𝑖 , and the edge embeddings between two

virtual nodes 𝑖, 𝑗 , are assigned 𝑒0
𝑖 𝑗

= 𝑒0
𝑗𝑖
= 1

2 (𝑒𝑖 + 𝑒 𝑗 ). Finally, the
graph embedding is formed by concatenating the output node em-
beddings of the virtual nodes. This method is more flexible and
better suited for larger models. The centrality scalers mentioned
above are not applied to the virtual nodes, because by nature these
nodes have high levels of centrality which are very different from
the graph nodes. So a fixed scaler value of 𝑠𝑘,𝑙

𝑖
= 1 is used instead

for these virtual nodes.
For smaller datasets, we found that adding a secondary distance

prediction objective alongside the graph-level prediction task in a
multi-task learning setting serves as an effective means of regular-
ization and thus improves the generalization of the trained model.
This self-supervised objective is reminiscent of the unsupervised
link prediction objective often used to pre-train GNNs to form node
embeddings. In our case, we take advantage of the fact that we
have output edge embeddings from the edge channels (alongside
the node embeddings, which are used for graph-level prediction).
We thus pass the output edge embeddings through a few (we used
three) MLP layers and set the distance matrix up to a-hop, D(a) , as
a categorical target. Hops greater than a are ignored while calculat-
ing the loss. The loss from this secondary objective is multiplied by
a small factor ^ and added to the total loss. Note that in this case we
always use the adjacency matrix, rather than the distance matrix as

the input graph structural matrix so that the edge channels do not
simply learn an identity transformation. We emphasize that this
objective is only potentially beneficial as a regularization method
for smaller datasets by guiding the aggregation process towards a
Breadth-First Search pattern, which is a soft form of the convolu-
tional bias. In the presence of enough data, the network is able to
learn the best aggregation pattern for the given primary objective,
which also generalizes to unseen data.

4 EXPERIMENTS AND RESULTS
We evaluate the performance of our proposed EGT architecture
in a supervised and inductive setting. We focus on a diverse set
of supervised learning tasks, namely, node and edge classification,
and graph classification and regression. We also experiment on the
transfer learning performance of EGT.
Datasets: In the medium-scale supervised learning setting, we ex-
perimented with the benchmarking datasets proposed by Dwivedi
et al. [15], namely PATTERN (14K synthetic graphs, 44-188
nodes/graph) and CLUSTER (12K synthetic graphs, 41-190
nodes/graph) for node classification; TSP (12K synthetic graphs, 50-
500 nodes/graph) for edge classification; andMNIST (70K superpixel
graphs, 40-75 nodes/graph), CIFAR10 (60K superpixel graphs, 85-
150 nodes/graph) and ZINC (12K molecular graphs, 9-37
nodes/graph) for graph classification/regression. To evaluate the
performance of EGT at large-scale we consider the graph regres-
sion task on the PCQM4M and its updated version PCQM4Mv2
datasets [20] which contain 3.8 million molecular graphs with 1-
51 nodes/graph. We also experimented on tranfer learning from
PCQM4Mv2 dataset to the graph classification tasks on OGB [21]
datasets MolPCBA (438K molecular graphs, 1-332 nodes/graph) and
MolHIV (41K molecular graphs, 2-222 nodes/graph).
Evaluation Setup:We use the PyTorch [30] numerical library to
implement ourmodel. Trainingwas done in a distributedmanner on
a single node with 8 NVIDIA Tesla V100 GPUs (32GB RAM/GPU),
and 2 20-core 2.5GHz Intel Xeon CPUs (768GB RAM). Masked
attention was used to process mini-batches containing graphs of
different numbers of nodes. This allowed us to use highly parallel
tensor operations on the GPU. The results are evaluated in terms of
accuracy, F1 score, Mean Absolute Error (MAE), Average Precision
(AP), or Area Under the ROC Curve (AUC), as recommended for
each dataset. Hyperparameters were tuned on the validation set.
Full details of hyperparameters are included in the appendix and
the code is available at https://github.com/shamim-hussain/egt.

4.1 Medium-scale Performance
For the benchmarking datasets, we follow the training setting sug-
gested by Dwivedi et al. [15] and evaluate the performance of EGT
for a given parameter budget. Comparative results are presented
in Table 1. All datasets except PATTERN and CLUSTER include
edge features. From the results, we see that EGT outperforms other
GNNs (including GAT and GT which use local self-attention, and
Graphormer which uses global self-attention but without edge
channels) on all datasets except CIFAR10. We see a high level of
overfitting for all models on CIFAR10, including our model which
overfits the training dataset due to its higher capacity. The edge

https://github.com/shamim-hussain/egt


KDD ’22, August 14–18, 2022, Washington, DC, USA. Hussain, Zaki and Subramanian

Table 1: Experimental results on 6 benchmarking datasets from Dwivedi et al. [15]. Results on PATTERN and CLUSTER datasets
are given in terms of weighted accuracy. Red: best model, Violet: good model; arrow next to a metric indicates whether higher
or lower is better. Results not shown are not available for that method.

PATTERN CLUSTER MNIST CIFAR10 TSP ZINC
% Accuracy ↑ % Accuracy ↑ % Accuracy ↑ % Accuracy ↑ F1 ↑ MAE ↓

#Param #Param #Param #Param #Param #Param #Param #Param #Param
Model ≈100K ≈500K ≈500K ≈100K ≈100K ≈100K ≈500K ≈100K ≈500K

GCN [24] 63.880 ± 0.074 71.892 ± 0.334 68.498 ± 0.976 90.705 ± 0.218 55.710 ± 0.381 0.630 ± 0.001 0.459 ± 0.006 0.367 ± 0.011
GraphSage [18] 50.516 ± 0.001 50.492 ± 0.001 63.844 ± 0.110 97.312 ± 0.097 65.767 ± 0.308 0.665 ± 0.003 0.468 ± 0.003 0.398 ± 0.002
GIN [42] 85.590 ± 0.011 85.387 ± 0.136 64.716 ± 1.553 96.485 ± 0.097 55.255 ± 1.527 0.656 ± 0.003 0.387 ± 0.015 0.526 ± 0.051
GAT [39] 75.824 ± 1.823 78.271 ± 0.186 70.587 ± 0.447 95.535 ± 0.205 64.223 ± 0.455 0.671 ± 0.002 0.475 ± 0.007 0.384 ± 0.007
GT [14] 84.808 ± 0.068 73.169 ± 0.622 0.226 ± 0.014
GatedGCN [4] 84.480 ± 0.122 86.508 ± 0.085 76.082 ± 0.196 97.340 ± 0.143 67.312 ± 0.311 0.808 ± 0.003 0.838 ± 0.002 0.375 ± 0.003 0.214 ± 0.013
PNA [12] 86.567 ± 0.075 97.690 ± 0.022 70.350 ± 0.630 0.188 ± 0.004 0.142 ± 0.010
DGN [2] 86.680 ± 0.034 72.700 ± 0.540 0.168 ± 0.003
Graphormer [43] 86.650 ± 0.033 74.660 ± 0.236 97.905 ± 0.176 65.978 ± 0.579 0.698 ± 0.007 0.122 ± 0.006

EGT 86.816 ± 0.027 86.821 ± 0.020 79.232 ± 0.348 98.173 ± 0.087 68.702 ± 0.409 0.822 ± 0.000 0.853 ± 0.001 0.143 ± 0.011 0.108 ± 0.009

Table 2: Results on OGB-LSC PCQM4M and PCQM4Mv2
datasets in terms of Mean Absolute Error (lower is better).
Results not shown are not available.

PCQM4M PCQM4Mv2

Model #Param Validate Test Validate Test-dev

GCN [24] 2.0M 0.1684 0.1838 0.1379 0.1398
GIN [42] 3.8M 0.1536 0.1678 0.1195 0.1218
GCN-VN [16, 24] 4.9M 0.1510 0.1579 0.1153 0.1152
GIN-VN [16, 42] 6.7M 0.1396 0.1487 0.1083 0.1084
GINE-VN [5, 16] 13.2M 0.1430
DeeperGCN-VN [16, 27] 25.5M 0.1398
GT [14] 0.6M 0.1400
GT (bigger model) [14] 83.2M 0.1408

GraphormerSMALL [43] 12.5M 0.1264
Graphormer [43] 47.1M 0.1234 0.1328 0.0906

EGTSmall (6 layers) 11.5M 0.1260 0.0899
EGTMedium (18 layers) 47.4M 0.1224 0.0881
EGTLarge (24 layers) 89.3M 0.0869 0.0872

channels allow us to use the distance prediction objective in a multi-
task learning setting, which helps lessen the overfitting problem
on CIFAR10, ZINC and MNIST. Also, the output embeddings of the
edge channels are directly used for edge classification on the TSP
dataset which leads to very good results. Note that, Graphormer,
which also uses global self-attention but does not have such edge
channels, performs satisfactorily for other tasks but not so much
on edge classification on the TSP dataset. Since we do not take
advantage of the convolutional inductive bias our model shows
various levels of overfitting on these medium-sized datasets. While
EGT still outperforms other GNNs, we posit that it would further
exceed the performance level of convolutional GNNs if more train-
ing data were present (we confirm this in the next section). Also, the
results indicate that convolutional aggregation is not an essential
inductive bias, and global attention can learn to make the best use
of the structural information.

4.2 Large-scale Performance
The results for the graph regression task on the OGB-LSC PCQM4M
and PCQM4Mv2 datasets [20] are presented in Table 2. We show

Table 3: Results onOGBMol datasets. EGTuses transfer learn-
ing from PCQM4Mv2, whereas GIN-VN and Graphormer use
transfer learning from PCQM4M. AP stands for Average Pre-
cision and AUC for Area Under the ROC Curve, higher is
better for both. Results not shown are not available.

MolPCBA MolHIV

Model #Param Test AP(%) #Param Test AUC(%)

DeeperGCN-FLAG [25, 27] 6.55M 28.42 ± 0.43 532K 79.42 ± 1.20
DeeperGCN-VN-FLAG 6.55M 28.42 ± 0.43

[16, 25, 27]
PNA [12] 6.55M 28.38 ± 0.35 326K 79.05 ± 1.32
DGN [2] 6.73M 28.85 ± 0.30 110K 79.70 ± 0.97
GINE-VN [5, 16] 6.15M 29.17 ± 0.15
PHC-GNN [26] 1.69M 29.47 ± 0.26 114K 79.34 ± 1.16

GIN-VN [16, 42] 3.4M 29.02 ± 0.17 3.3M 77.80 ± 1.82
(pre-trained)

Graphormer-FLAG [43] 119.5M 31.40 ± 0.34 47.2M 80.51 ± 0.53
(pre-trained)

EGTLarger (30 layers) 110.8M 29.61 ± 0.24 110.8M 80.60 ± 0.65
(pre-trained)

results for EGT models of small, medium and large network sizes
based on number of parameters (details are included in the ap-
pendix). Note that the PCQM4M dataset was later deprecated in
favor of PCQM4Mv2. So its test labels are no longer available and
results are given over the validation set. We include these results
for a thorough comparison with established models that report
their results on the older dataset. We see that EGT achieves a much
lower MAE than all the convolutional and local self-attention based
(i.e., GT [14]) GNNs. Its performance even exceeds Graphormer
[43], which is also a global self-attention based model and can be
thought of as an ablated variant of EGT with specialized encodings,
such as centrality, spatial and edge encodings and requires simi-
lar training time and resources. We hypothesize that EGT gets a
better result than Graphormer because of a combination of several
factors, including its edge channels, unique gating mechanism and
dynamic centrality scalers. Our model is currently the best perform-
ing model on the PCQM4Mv2 leaderboard. These results show the
scalability of our framework and further confirm that given enough



Global Self-Attention as a Replacement for Graph Convolution KDD ’22, August 14–18, 2022, Washington, DC, USA.

Table 4: Comparison of results for two ablated variants of EGT (EGT-Constrained and EGT-Simple), along with the complete
architecture with (EGT) and without (EGT w/o PE) SVD based positional encodings

PATTERN CLUSTER MNIST CIFAR10 TSP ZINC PCQM4Mv2
% Accuracy ↑ % Accuracy ↑ % Accuracy ↑ % Accuracy ↑ F1 ↑ MAE ↓ MAE ↓

Model #Param≈500K #Param≈500K #Param≈100K #Param≈100K #Param≈500K #Param≈500K #Param≈11.5M

EGT-Constrained 86.629 ± 0.041 76.701 ± 0.257 96.823 ± 0.204 65.192 ± 0.475 0.846 ± 0.001 0.174 ± 0.004 0.0934
EGT-Simple 86.813 ± 0.013 79.182 ± 0.213 98.148 ± 0.139 64.967 ± 1.263 0.831 ± 0.002 0.228 ± 0.020 0.0900
EGT w/o PE 86.812 ± 0.031 77.665 ± 0.343 99.218 ± 0.219 68.555 ± 0.624 0.853 ± 0.001 0.187 ± 0.005 0.0901

EGT 86.821 ± 0.020 79.232 ± 0.348 98.173 ± 0.087 68.702 ± 0.409 0.853 ± 0.001 0.108 ± 0.009 0.0899

data, global self-attention based aggregation can outperform local
convolutional aggregation.

4.3 Transfer Learning Performance
In order to experiment on the transferability of the representations
learned by EGT, we take an EGT model pre-trained on the large-
scale PCQM4Mv2 molecular dataset and fine-tune the weights on
the OGB molecular datasets MolPCBA and MolHIV. Although the
validation performance improvement seems to plateau for larger
models on the PCQM4Mv2 dataset at a certain point, we found
that larger pre-trained models perform better when fine-tuned on
smaller datasets, so we select the largest model (EGTLarger) with 30
layers for transfer learning experiments (it achieves a validation
MAE of 0.0869 on PCQM4Mv2, same as EGTLarge). The results are
presented in Table 3.We see that both EGT and Graphormer achieve
comparable results which exceed convolutional GNNs. Graphormer
uses pre-trained models from PCQM4M and they found it essential
to use the FLAG training method [25] to achieve good fine-tuning
results. FLAG uses an inner optimization loop to augment the node
embeddings by adding adversarial perturbations to them. However,
we do not use any form of specialized training during the fine-
tuning process. This is due to two reasons - firstly, we wanted to
evaluate our model in the conventional transfer learning setting
where the weights of a pre-trained model are simply fine-tuned
on a new dataset for a very few epochs which saves training time
and resources – whereas, FLAG training takes several times longer
training time with additional FLAG hyperparameter tuning. An-
other reason is that FLAG is an adversarial perturbation method for
node embeddings and since we have both node and edge embed-
dings (including non-existing edges) it is not clear how this method
should be adopted for our model – which requires further research.

4.4 Ablation Study
Our architecture is based upon two important ideas – global self-
attention based aggregation and residual edge channels. To analyze
the importance of these two features, we experiment with two
ablated variants of EGT: i) EGT-Simple: incorporates global self-
attention, but instead of having dedicated residual channels for
edges, it directly uses a linear transformation of the input edge
embeddings 𝑒0

𝑖 𝑗
(formed from adjacency matrix and edge features)

to guide the self-attention mechanism. The absence of edge chan-
nels means that the edge embeddings 𝑒𝑖 𝑗 are not updated from
layer to layer. So, edge classification is performed by applying MLP
layers on pairwise node-embeddings. It is architecturally similar
to Graphormer [43]. While it is slightly less expensive in terms

Table 5: Ablation study on the PCQM4Mv2 dataset for
EGTSmall (from Table 2).

Gated Attention Virtual Centrality Positional Validate
Aggregation Dropout Nodes Scalers Encodings MAE ↓

– – – – – 0.0965

– – – – 0.0943
– – – 0.0926

– – 0.0919
– 0.0900

0.0899

of computation and memory, it still scales quadratically with the
number of nodes. ii) EGT-Constrained limits the self-attention
process to the 1-hop neighborhood of each node, which allows us to
compare global self-attention to convolutional local self-attention
based aggregation. Also, it only keeps track of the edge embeddings
𝑒𝑖 𝑗 in the edge channels if there is an edge from node 𝑖 to node 𝑗

or 𝑖 = 𝑗 (self-loop). Architecturally, this variant is similar to GT
[14] and can take advantage of the sparsity of the graph to reduce
computational and memory costs. More details about these variants
can be found in the appendix.

The results for the ablated variants are presented in Table 4.
We see that, EGT-Simple can come close to EGT, but is especially
subpar when the targeted task is related to edges (e.g., edge clas-
sification on the TSP dataset) or when the distance objective can-
not be applied (ZINC, CIFAR10) due to the lack of dedicated edge
channels. Both EGT-Simple and EGT enjoy an advantage over EGT-
Constrained on the large PCQM4Mv2 dataset due to their global
aggregation mechanism. This indicates that given enough data,
global self-attention based aggregation can outperform local self-
attention based aggregation. Additionally to demonstrate the effect
of the SVD based positional encodings we include results without
positional encodings. Note that the positional encodings lead to a
significant improvement for the ZINC and the CLUSTER datasets,
but slight/no improvement in other cases. This is consistent with
our statement that the positional encodings are optional for our
model on some tasks, but their inclusion can often lead to a perfor-
mance improvement.

To further examine the contribution of different features of our
model we carried out a series of experiments on the PCQM4Mv2
dataset for the smallest EGT network. The results are presented in
Table 5. We see that the use of gates during aggregation leads to a
significant improvement. Another important contributing factor is
dropout on the attention matrix which encourages the network to



KDD ’22, August 14–18, 2022, Washington, DC, USA. Hussain, Zaki and Subramanian

Figure 3: Analysis of aggregation patterns on three datasets – (a) ZINC, (b) PCQM4Mv2, (c) TSP. Left to right – adjacency (i) and
distance matrices (ii), an example attention head (iii), average of attention heads in a middle layer (iv) and in a deeper layer (v)
– for a particular input graph in the validation set (matrices have been cropped for the TSP dataset). On the right – weights
assigned for different hops in different layers, averaged over all heads and all nodes in all the graphs in the validation set.

take advantage of long-distance interactions. The dynamic central-
ity scalers also help bymaking the networkmore expressive. Virtual
nodes and positional encodings lead to a more modest performance
improvement.

4.5 Analysis of Aggregation Patterns
To understand how global self-attention based aggregation trans-
lates to performance gains we examined the attention matrices
dynamically formed by the network. These matrices dictate the
weighted aggregation of the nodes and thus show how each node is
looking at other nodes. This is demonstrated in Fig. 3. We show the
adjacency matrix and the distance matrix to demonstrate how far
each node is looking. First, we look at an example attention matrix
formed by an attention head. Next, for the sake of visualization,
we merge the attention matrices for different heads together by
averaging and normalizing them to values between [0 1]. We do
this for two different layers at different depths of the model. Note
that these patterns are specific to a particular input graph – since
the aggregation process is dynamic they would be different for dif-
ferent inputs. To make a complete analysis of each layer’s attention
we also plot the weights assigned at different distances averaged
over all the attention heads for all the nodes and all the graphs
in a dataset. Note that a convolutional aggregation of immediate
neighbors would correspond to non-zero weights being assigned
to only 0/1 hop.

We see that the attention matrices for individual attention heads
are quite sparse. So, the nodes are selective about where to look.
For the ZINC dataset, from Fig. 3 (a), at layer ℓ = 1 we see that EGT
approximately follows a convolutional pattern. But as we go deeper,

the nodes start to take advantage of global self-attention to look
further. Finally, at ℓ = 10 we see highly non-local behavior. This
shows why EGT has an advantage over local aggregation based
convolutional networks because of its ability to aggregate global
features. For PCQM4Mv2, in Fig. 3 (b), we notice such non-local
aggregation patterns starting from the lowest layers. This shows
why a global aggregation based model such as EGT has a clear
advantage over convolutional networks (as seen in Table 2), because
it would take a large number of consecutive convolutions to mimic
such patterns. This non-local behavior is more subtle in TSP, where,
except for the last layer, attention is mostly constrained to 1-3
hops, as seen from Fig. 3(c). This also shows why EGT-Constrained
achieves good results on this dataset (Table 4). However, even the
slight advantage of global aggregation gives pure EGT an edge
over EGT-constrained. To conclude, the aggregation performed by
our model is sparse and selective, like convolution, yet capable of
being non-local and dynamic, which leads to a clear advantage over
convolutional networks.

5 CONCLUSION AND FUTUREWORK
We proposed a simple extension – edge channels – to the trans-
former framework. We preserve the key idea, namely, global atten-
tion, while making it powerful enough to take structural informa-
tion of the graph as input and also to process it and output new
structural information such as new links and edge labels. One of our
key findings is that the incorporation of the convolutional aggrega-
tion pattern is not an essential inductive bias for GNNs and instead
the model can directly learn to make the best use of structural
information. We established this claim by presenting experimental



Global Self-Attention as a Replacement for Graph Convolution KDD ’22, August 14–18, 2022, Washington, DC, USA.

results on both medium-scale, large-scale and transfer learning
settings where our model achieves superior performance, beating
convolutional GNNs. We also achieve a new state-of-the-art result
on the large-scale PCQM4Mv2 molecular dataset. We demonstrated
that the performance improvement is directly linked to the non-
local nature of aggregation of the model. In future work, we aim to
evaluate the performance of EGT in transductive, semi-supervised
and unsupervised settings. Also, we plan to explore the prospect
of reducing the computation and memory cost of our model to a
sub-quadratic scale by incorporating linear attention [9, 23, 35] and
sparse edge channels.

ACKNOWLEDGMENTS
This work was supported by the Rensselaer-IBM AI Research Col-
laboration, part of the IBM AI Horizons Network.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Dominique Beani, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele

Corso, and Pietro Liò. 2021. Directional graph networks. In International Confer-
ence on Machine Learning. PMLR, 748–758.

[3] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering.. In Nips, Vol. 14. 585–591.

[4] Xavier Bresson and Thomas Laurent. 2017. Residual gated graph convnets. arXiv
preprint arXiv:1711.07553 (2017).

[5] Rémy Brossard, Oriel Frigo, and David Dehaene. 2020. Graph convolutions that
can finally model local structure. arXiv preprint arXiv:2011.15069 (2020).

[6] Deng Cai and Wai Lam. 2020. Graph transformer for graph-to-sequence learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7464–7471.

[7] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. 2020. Generative pretraining from pixels. In International
Conference on Machine Learning. PMLR, 1691–1703.

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[9] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, and Others. 2020. Rethinking attention with performers. arXiv
preprint arXiv:2009.14794 (2020).

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[11] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. 2019. On the
relationship between self-attention and convolutional layers. arXiv preprint
arXiv:1911.03584 (2019).

[12] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.
2020. Principal neighbourhood aggregation for graph nets. arXiv preprint
arXiv:2004.05718 (2020).

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[14] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

[15] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982 (2020).

[16] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[17] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE, 729–734.

[18] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[20] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine learning on graphs.
arXiv preprint arXiv:2103.09430 (2021).

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[22] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of The Web Conference 2020. 2704–2710.

[23] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
2020. Transformers are rnns: Fast autoregressive transformers with linear atten-
tion. In International Conference on Machine Learning. PMLR, 5156–5165.

[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[25] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem,
Gavin Taylor, and Tom Goldstein. 2020. Flag: Adversarial data augmentation for
graph neural networks. arXiv preprint arXiv:2010.09891 (2020).

[26] Tuan Le, Marco Bertolini, Frank Noé, and Djork-Arné Clevert. 2021. Parameter-
ized hypercomplex graph neural networks for graph classification. In Interna-
tional Conference on Artificial Neural Networks. Springer, 204–216.

[27] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).

[28] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. 2019. Neural
speech synthesis with transformer network. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 6706–6713.

[29] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro.
2019. Relational pooling for graph representations. In International Conference
on Machine Learning. PMLR, 4663–4673.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[31] Omri Puny, Heli Ben-Hamu, and Yaron Lipman. 2020. Global Attention Improves
Graph Networks Generalization. arXiv preprint arXiv:2006.07846 (2020).

[32] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Lev-
skaya, and Jonathon Shlens. 2019. Stand-alone self-attention in vision models.
arXiv preprint arXiv:1906.05909 (2019).

[33] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. arXiv preprint arXiv:2007.02835 (2020).

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[35] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. 2021. Linear transformers
are secretly fast weight memory systems. arXiv preprint arXiv:2102.11174 (2021).

[36] Balasubramaniam Srinivasan and Bruno Ribeiro. 2019. On the equivalence
between positional node embeddings and structural graph representations. arXiv
preprint arXiv:1910.00452 (2019).

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[40] ChenWang and Chengyuan Deng. 2021. On the Global Self-attention Mechanism
for Graph Convolutional Networks. In 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, 8531–8538.

[41] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In International Conference on
Machine Learning. PMLR, 10524–10533.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[43] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Bad for
Graph Representation? arXiv preprint arXiv:2106.05234 (2021).

[44] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in Neural Information Processing
Systems 32 (2019), 11983–11993.

[45] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv preprint
arXiv:2001.05140 (2020).

[46] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2020. Revisiting
graph neural networks for link prediction. arXiv preprint arXiv:2010.16103 (2020).



KDD ’22, August 14–18, 2022, Washington, DC, USA. Hussain, Zaki and Subramanian

A DATA AND CODE AVALABILITY
Data: All datasets used in this work are publicly available. The
medium-scale GNN benchmarking datasets by Dwivedi et al. [15]
are available at https://github.com/graphdeeplearning/benchmarking-
gnns. The OGB-LSC [21] PCQM4M and PCQM4Mv2 large-scale
datasets, and the OGB datasets [20] MolPCBA and MolHIV are
available at https://ogb.stanford.edu.
Code: The code to reproduce the results presented in this work is
available at https://github.com/shamim-hussain/egt.

B TRAINING METHOD AND
HYPERPARAMETERS

B.1 Medium-scale Experiments
Formedium-scale experiments on the PATTERN, CLUSTER,MNIST,
CIFAR10, TSP, and ZINC datasets we follow the benchmarking
setting suggested by Dwivedi et al. [15] and maintain a specified
parameter budget of either 100K or 500K. The number of layers,
the width of the node and the edge channels (𝐿, 𝑑ℎ and 𝑑𝑒 , corre-
spondingly) were varied to get the best results on the validation
set. We used the Adam optimizer and reduce the learning rate by a
factor of 0.5 if the validation loss does not improve for a given num-
ber of epochs (Reduce LR when validation loss plateaus). We keep
track of the validation loss at the end of each epoch and pick the
set of weights that produces the least validation loss. No dropout
or weight decay is used for a fair comparison with other GNNs.
Each experiment (training and evaluation) was run 4 times with 4
different random seeds and the results were used to calculate the
mean and standard deviations of the metric. The common hyperpa-
rameters and methods for all datasets are given in Table 6, whereas
the hyperparameters which are specific for each dataset are given
in Table 7.

B.2 Large-scale Experiments
While training large models on the PCQM4M and PCQM4Mv2
datasets, we found it essential to use learning rate warmup. Fol-
lowing the warmup, we applied cosine decay to the learning rate.

Table 6: Common hyperparameters used in medium-scale experi-
ments on all datasets.

Hyperparameter Value

Number of attention heads, 𝐻 8
Node channels FFN multiplier 2
Edge channels FFN multiplier 2
Final (two) MLP layers dimension 𝑑ℎ/2, 𝑑ℎ/4
Virtual nodes Not used
SVD encoding rank, 𝑟 8
Random attention masking rate 0.1
Dynamic Centrality Scalers Not used
Dropout Not used
Adam: initial LR 5 × 10−4
Adam: 𝛽1 0.9
Adam: 𝛽2 0.999
Adam: 𝜖 10−7
Reduce LR by factor 0.5
Minimum LR 5 × 10−6
LR warmup Not used
Cosine decay Not used

We used virtual nodes which is a more scalable method than global
average pooling because the use of multiple virtual nodes allows the
model to collect more graph-level information. Instead of random
masking of the attention matrices, we applied dropout to the at-
tention matrices, which showed better regularization performance.
Attention dropout is the only regularization method used for all
models. We trained all models for a fixed number (1 million) of
gradient update steps. The hyperparameters are shown in Table 8.

B.3 Transfer Learning Experiments
We took the EGTLargermodel pre-trained on the PCQM4Mv2 dataset
(Table 8) and fine-tuned it on the OGB datasets MolPCBA and Mol-
HIV. We used the same learning rate and warmup and cosine decay
method mentioned above, although for a smaller number of total
gradient update steps. Hyperparameters specific to the fine-tuning
stage are shown in Table 9. Other hyper hyperparameters were the
same as in Table 8. Each experiment (training and evaluation) was
run 4 times with 4 different random seeds and the results were used
to calculate the mean and standard deviations of the metric.

C DETAILS OF ABLATED VARIANTS
For the ablation study presented in section 4.4 of the paper, we
discuss here different ablation methods in more detail.
EGT-Simple: EGT-simple uses global self-attention, but does not
have dedicated residual channels for updating pairwise information
(edges). The input edge embeddings (formed from graph structural
matrix and edge features) directly participate in the aggregation
process as follows:

Ã𝑘,ℓ = softmax(Ĥ𝑘,ℓ ) ⊙ 𝜎 (G𝑘,ℓ
0 ) (12)

Where, Ĥ𝑘,ℓ = clip ©«
Q𝑘,ℓ

ℎ
(K𝑘,ℓ

ℎ
)𝑇√︁

𝑑𝑘

ª®¬ + E𝑘,ℓ0 (13)

E𝑘,ℓ0 ,G𝑘,ℓ
0 ∈ R𝑁×𝑁 are directly formed by concatenations of the

learned linear transformed input edge embeddings, i.e., E𝑘,ℓ𝑒0
𝑖 𝑗
,

G𝑘,ℓ𝑒0
𝑖 𝑗
respectively. Also, dynamic centrality scalers are derived

from 𝑒0
𝑖 𝑗
. The absence of edge channels means that the edge em-

beddings 𝑒𝑖 𝑗 are not updated from layer to layer. So, edge classi-
fication is performed from pairwise node embeddings and input
edge features. We denote this variant as EGT-Simple since it is
architecturally simpler than EGT.

We use the same hyperparameters for this variant as the ones
used for original EGT (Table 7, Table 8; 𝑑𝑒 denotes only the dimen-
sionality of the input edge embeddings) except, 𝑑ℎ = 64, 𝑑𝑒 = 8
for CIFAR10, and 𝑑ℎ = 80, 𝑑𝑒 = 8 for ZINC are used to make the
number of parameters comparable.
EGT-Constrained: EGT-Constrained is a convolutional variant of
EGT which limits the self-attention process to the 1-hop neighbor-
hood of each node. It only keeps track of the edge embeddings 𝑒𝑖 𝑗
in the edge channels if there is an edge from node 𝑖 to node 𝑗 or
𝑖 = 𝑗 (self-loop). So, pairwise information corresponding to only the
existing edges is updated by the edge channels. This architecture
can be derived by taking the softmax over 𝑗 ∈ N (𝑖) ∪ {𝑖} while
calculating the attention weights Ã𝑘,ℓ

𝑖 𝑗
and limiting the aggregation

https://github.com/graphdeeplearning/benchmarking-gnns
https://github.com/graphdeeplearning/benchmarking-gnns
https://ogb.stanford.edu
https://github.com/shamim-hussain/egt


Global Self-Attention as a Replacement for Graph Convolution KDD ’22, August 14–18, 2022, Washington, DC, USA.

Table 7: Specific hyperparameters used for each dataset in medium-scale experiments. D(16) is the distance matrix clipped to 16 hops. A is the
adjacency matrix with self-loops. Distance prediction objective is only used for MNIST, CIFAR10 and ZINC datasets.

PATTERN CLUSTER MNIST CIFAR10 TSP ZINC

#Param #Param #Param #Param #Param #Param #Param #Param #Param
Hyperparameter ≈100K ≈500K ≈500K ≈100K ≈100K ≈100K ≈500K ≈100K ≈500K

Input structural matrix D(16) D(16) D(16) A A D(16) D(16) A A
Batch size 128 128 128 128 128 8 8 128 128
Maximum no. of epochs 200 200 200 200 200 200 200 600 600
Reduce LR patience (epochs) 10 10 10 10 10 5 5 20 20
Distance prediction objective: a (when used) 3 hops 3 hops 3 hops 3 hops
Distance prediction objective: ^ (when used) 5 × 10−4 5 × 10−4 5 × 10−2 5 × 10−2
Number of layers, 𝐿 4 16 16 4 4 4 16 4 10
Node channels width, 𝑑ℎ 64 64 64 64 48 64 64 48 64
Edge channels width, 𝑑𝑒 8 8 8 8 48 8 8 48 64

Table 8: Hyperparameters used in large-scale experiments.

Hyperparameter Value

Input structural matrix Distance matrix
(clipped up to 16 hops)

Number of attention heads, 𝐻 32
Edge channels width, 𝑑𝑒 64
Node channels FFN multiplier 1
Edge channels FFN multiplier 1
Final (two) MLP layers dimension 𝑑ℎ, 𝑑ℎ
Virtual nodes 4
Dynamic Centrality Scalers Used
SVD encoding rank, 𝑟 8
Distance prediction objective Not used
Random attention masking Not used
Attention matrix dropout rate 0.3
Adam: 𝛽1 0.9
Adam: 𝛽2 0.999
Adam: 𝜖 10−7
Reduce LR on loss plateau Not used
Minimum LR 1 × 10−6
Batch size 512
LR warmup 200,000 steps
Cosine decay 800,000 steps

Specific to EGTSmall
Maximum LR 2 × 10−4
Number of layers, 𝐿 6
Node channels width, 𝑑ℎ 512

Specific to EGTMedium
Maximum LR 1 × 10−4
Number of layers, 𝐿 18
Node channels width, 𝑑ℎ 640

Specific to EGTLarge
Maximum LR 1 × 10−4
Number of layers, 𝐿 24
Node channels width, 𝑑ℎ 768

Specific to EGTLarger
Maximum LR 8 × 10−5
Number of layers, 𝐿 30
Node channels width, 𝑑ℎ 768

process to neighbors as:
ˆ̂
ℎℓ𝑖 = ℎℓ−1𝑖 + Oℓ

ℎ

𝐻
𝑘=1

∑︁
𝑗 ∈N(𝑖)∪{𝑖 }

Ã𝑘,ℓ
𝑖 𝑗

(V𝑘,ℓℎ̂ℓ𝑖 ) (14)

Since this architecture is constrained to the existing edgeswe denote
this as EGT-Constrained. It has the advantage that depending on
the sparsity of the graph, it can have sub-quadratic computational

Table 9: Hyperparameters used in transfer learning experiments.

Hyperparameter MolPCBA MolHIV

Maximum LR 1 × 10−4 1 × 10−4
Minimum LR 1 × 10−6 1 × 10−6
Batch size 16 12
LR warmup 20,000 steps 1,000 steps
Cosine decay 180,000 steps 2,000 steps

and memory costs. However, it can be difficult to perform sparse
aggregation in parallel on the GPU. Instead of sparse operations,
we used masked attention to implement this architecture for faster
training on datasets containing smaller graphs because we can take
advantage of highly parallel tensor operations.

For this variant, 𝑑ℎ, 𝑑𝑒 bear their usual meanings in the hyperpa-
rameters tables (Table 7, Table 8). We use the same hyperparameters
for this variant as the ones used for original EGT.
Ungated Variant: In EGT, the edge channels participate in the
aggregation process in two ways - by an attention bias and also
by gating the values before they are aggregated by the attention
mechanism. To verify the utility of the gating mechanism used
in EGT, an ungated variant can be formulated by simplifying the
aggregation process as follows:

Ã𝑘,ℓ = softmax(Ĥ𝑘,ℓ ) (15)

Where, Ĥ𝑘,ℓ = clip ©«
Q𝑘,ℓ

ℎ
(K𝑘,ℓ

ℎ
)𝑇√︁

𝑑𝑘

ª®¬ + E𝑘,ℓ𝑒 (16)

E𝑘,ℓ𝑒 ∈ R𝑁×𝑁 is a concatenation of the learned linear transformed
edge embeddings, i.e., E𝑘,ℓ𝑒ℓ

𝑖 𝑗
. Note that we omitted the sigmoid

gates. The edge channels influence the aggregation process only
via an attention bias.


	Abstract
	1 Introduction
	2 Related Work
	3 Network Architecture
	3.1 Preliminaries
	3.2 Edge-augmented Graph Transformer (EGT)
	3.3 Dynamic Centrality Scalers
	3.4 SVD-based Positional Encodings
	3.5 Embedding and Prediction

	4 Experiments and Results
	4.1 Medium-scale Performance
	4.2 Large-scale Performance
	4.3 Transfer Learning Performance
	4.4 Ablation Study
	4.5 Analysis of Aggregation Patterns

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Data and Code Avalability
	B Training Method and Hyperparameters
	B.1 Medium-scale Experiments
	B.2 Large-scale Experiments
	B.3 Transfer Learning Experiments

	C Details of Ablated Variants

