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ABSTRACT
Transformers use the dense self-attention mechanism which gives
a lot of flexibility for long-range connectivity. Over multiple layers
of a deep transformer, the number of possible connectivity patterns
increases exponentially. However, very few of these contribute to
the performance of the network, and even fewer are essential. We
hypothesize that there are sparsely connected sub-networks within
a transformer, called information pathways which can be trained
independently. However, the dynamic (i.e., input-dependent) nature
of these pathways makes it difficult to prune dense self-attention
during training. But the overall distribution of these pathways
is often predictable. We take advantage of this fact to propose
Stochastically Subsampled self-Attention (SSA) – a general-purpose
training strategy for transformers that can reduce both the memory
and computational cost of self-attention by 4 to 8 times during
training while also serving as a regularization method – improving
generalization over dense training. We show that an ensemble of
sub-models can be formed from the subsampled pathways within a
network, which can achieve better performance than its densely
attended counterpart. We perform experiments on a variety of NLP,
computer vision and graph learning tasks in both generative and
discriminative settings to provide empirical evidence for our claims
and show the effectiveness of the proposed method.
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Figure 1: A communication channel from element 𝑗 to element 𝑖
that spans multiple layers. 𝑒𝑖 is the embedding of element 𝑖.

1 INTRODUCTION
Transformer neural networks [58] have become ubiquitous in all
fields of machine learning including natural language processing
(NLP) [14, 50], computer vision [15, 39], and graph learning [26, 64].
The transformer architecture is based on the attention mechanism
[4], which allows the model to learn to focus on the most relevant
parts of the input. The global self-attention mechanism allows the
transformer to update the representation of each element (e.g., to-
ken, pixel, node) of the input based on that of all other elements.
The relevancy of each element is dictated by the attention weights
formed by the network during the update and can be expressed
as the self-attention matrix. These weights are dynamically com-
puted by the network for each particular input. This form of flexible
weighted aggregation is the key to the success of the transformer.
However, the all-to-all nature of the self-attention process incurs
a compute and memory cost that increases quadratically with the
number of input elements 𝑁 . Consequently, the self-attention pro-
cess is the main efficiency bottleneck when the transformer is ap-
plied to long inputs. During the self-attention process, if element 𝑖
applies a significant weight to element 𝑗 , information can flow from
𝑗 to 𝑖 allowing them to communicate. This way, the self-attention
process allows inter-element connections to form arbitrarily within
a layer. However, as shown in Fig. 1, in a deep network, this com-
munication may occur indirectly over multiple layers, for example,
element 𝑘 may get updated from element 𝑗 and then element 𝑖 may
get updated from element 𝑘 in the next layer, forming a communica-
tion channel that spans multiple layers. Over 𝑙 layers, thus there are
at least 𝑁 𝑙−1 possible ways for the two elements to communicate.
The question that arises is whether all of these exponential numbers
of connections contribute to the performance of the network and
if not whether some of them can be pruned to save memory and
computation costs during training.

Previous works like [38] have shown that the attention matrices
of a fully trained transformer are sparse, and a large portion of
its elements can be pruned without hurting inference time perfor-
mance. Despite this sparsity, over multiple layers, connectivities
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can reach most elements of the input, similar to expander graphs.
This inspired some works to pre-define a fixed sparsity pattern
to the self-attention matrix [10, 65]. However, this comes at the
cost of expressivity since the model is forced to learn the attention
weights within the specified fixed sparsity pattern. While the un-
derlying connectivity in the self-attention process is sparse, this
pattern is also dynamic, i.e., input-dependent and should not be
pre-imposed. Also, these connectivities do not work in isolation
within a layer but expand over multiple layers to form directed sub-
graphs of connectivity patterns. We call these dynamically formed
sparsely connected subnetworks within the fully connected trans-
former information pathways. We hypothesize that not only do
these pathways use a small portion of the self-attention matrix at
each layer to make connections, but there are many such pathways
within the network which can work independently. An ensemble
of sub-models formed from a subset of pathways can often get per-
formance close to that of the full model. Thus, we hypothesize that
the transformer can be viewed as an ensemble of these sub-models,
which are internally aggregated by the attention process. We use
the term self-ensemble to point out that all of these sub-models use
the same set of transformer weights, and vary only in inter-element
connectivity. These connectivities are input dependent, and the
transformer uses the pathways to perform dynamic inference on
each element of the input based on the other elements. We call
the information pathways that contribute to the generalization
performance of the transformer important pathways, while other
pathways can be deemed redundant or may even overfit the train-
ing data. To train a transformer, it is enough to ensure that these
important pathways get enough training.

Previously, there has been a wealth of research on pruning the
learnable weights of a neural network [19, 21, 35, 37] which re-
duces the cost of inference. The lottery ticket hypothesis by Frankle
and Carbin [17] states that such pruning is possible because of
the existence of winning tickets – very sparse subnetworks that
exist within the dense network, as early as the initialization. When
trained in isolation, these winning tickets can match or even exceed
the performance of the dense network. Our information pathways
hypothesis makes similar statements about the interconnectivity
of the input elements and the dynamic weights of the attention
matrix. Similar to the learnable weights, at inference time, the self-
attention matrix can be dynamically pruned to reduce the inference
cost both in terms of memory and compute [9, 49]. However, this
is much trickier during training since the weights of the network
are updated in each training step and the pruning pattern is harder
to predict. In other words, unlike the winning tickets in the lottery
ticket hypothesis, the important information pathways are dynamic,
changing from one training sample to another. However, the con-
nectivity patterns of the information pathways can often follow a
predictable distribution. We can thus perform biased subsampling
to increase the probability of covering important pathways during
training while reducing the cost of training.

Our contributions are as follows – we propose a novel method
for training transformers called SSA (Stochastically Subsampled
self-Attention) that reduces both the memory and computational
requirements of training while also improving generalization. SSA
works by randomly subsampling the self-attention process at each
training step, which allows the model to learn different connectivity

patterns. We can utilize the locality of connectivity (the local induc-
tive bias) to perform a more intelligent subsampling than random
subsampling. We show that SSA can also be performed at infer-
ence time to build a self-ensemble of sub-models, each containing
a subset of pathways, which can further improve generalization.
We propose the information pathways hypothesis as an implica-
tion of our empirical results, which states the existence of a small
number of sparsely connected and dynamic subnetworks within
the transformer, the information pathways, that can be trained
independently.

2 RELATEDWORK
Randomly dropping part of the network such as activations [57],
weights [59] or layers [25] have been seen to improve generaliza-
tion. For transformers, similarly, dropping attention weights [66]
and attention heads [67] have led to better generalization. Among
thesemethods, only a few such as [25] lead to a reduction in training
costs. Although dropout was originally formulated for the learnable
weights of a network, they were directly adopted for the attention
weights [66], which empirically improves generalization. We be-
lieve that attention dropout also trains an ensemble of pathways
through the network. However, unlike attention dropout, we per-
form subsampling in a structured manner so that we may save
training costs. We also apply local inductive bias while doing so.

After training, pruning parts of the transformer can lead to a
reduction in the number of parameters and save memory [8, 46],
and can potentially improve generalization [42] and/or efficiency
[16] during inference. Our method is focused on stochastically
dropping parts of the attention mechanism during training to re-
duce training costs, and can be used alongside the aforementioned
methods. Additionally, we show the regularization effect of SSA
and better generalization through ensembles of sparsely connected
sub-models during inference.

Our method can also facilitate training on longer inputs, due to
the reduction in both thememory and compute cost of self-attention.
Previously, many works sought to remedy the computational bot-
tleneck of dense self-attention via architectural modifications. This
includes the use of sparse or localized self-attention [5, 10, 39, 65],
or low-rank/linear/factorized attention [11, 30, 55, 60] or recurrence
[12, 51] and other methods [33, 63]. These often make trade-offs in
terms of expressivity, performance or generality to gain efficiency.
Recently, many specialized architectures have evolved [31, 52, 54].
Despite these innovations, simple dense and local window based
attention mechanisms remain relevant and competitive in many
applications [62]. Unlike these approaches, we make innovations
in training transformers while allowing fall-back to vanilla dense
or locally dense attention at inference time.

Many innovations have also been made to reduce the training
cost of transformers on long sequences. Shortformer [47] uses a
staged training scheme where training is done first on short inputs
followed by longer input sequences, which reduces the cost of train-
ing. Curriculum learning has also been used to stabilize training
and optimize for large batches [36]. However, these approaches
have only been effective in causal generative language modeling or
non-causal masked language modeling tasks. Our SSA is applicable
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to any causal/non-causal generative or discriminative tasks, on any
form of data including text, images, and graphs.

Our self-ensembling method is related to the ensemble methods
of neural networks [20, 24, 27]. However, unlike these methods, we
do not train multiple models and average their predictions/weights.
Instead, we train a single model with SSA and form an ensemble of
sub-models at inference time using different subsampled attention
patterns. This approach resembles Monte Carlo dropout [18], which
performs dropout at inference time to make multiple predictions
for uncertainty estimation. However, while MC dropout randomly
drops activations, we subsample the attention mechanism from a
specific distribution. Our main focus is improving generalization
through self-ensembling, while its potential use for uncertainty
estimation is left for future work.

3 METHOD
3.1 Background
The transformer architecture [58] consists of an encoder and a
decoder. An encoder-only architecture can be used for tasks like
classification [15] and masked language modeling [14], whereas a
decoder-only architecture can be used for generative tasks [7, 50].
Both of these only require self-attention. For tasks like machine
translation, an encoder-decoder architecture is used which addi-
tionally uses cross-attention in the decoder. We only focus on the
self-attention mechanism of the transformer in this work. The key
innovation of the transformer is the multihead attention mecha-
nism, which can be expressed as:

Attn(Q,K,V) = softmax

(
QK𝑇√︁
𝑑𝑘

)
V = AV (1)

where Q,K,V are matrices containing rows of keys, queries and
values. In the case of self-attention, all of them are formed by learn-
able projections of the embeddings. 𝑑𝑘 is the dimensionality of the
queries and the keys. A is known as the attention matrix. Element
(𝑖, 𝑗) of this matrix is formed from the scaled dot product of query
𝑞𝑖 and the key 𝑘 𝑗 followed by a softmax over all 𝑗 . The normalized
weights at row 𝑖 are used to aggregate the values 𝑣 𝑗 in updating
the representation of position 𝑖 , thus allowing information to flow
from 𝑗 to 𝑖 . This process is done for multiple sets of queries, keys
and values, where each is called an attention head.

Several other terms may be added to the scaled dot product of
queries and keys. A masking value 𝑚𝑖 𝑗 = −∞ may be added to
prevent the model from attending to future positions (i.e., 𝑗 > 𝑖) for
generative modeling or to padding tokens; the softmax function
drives the attention matrix to zero at these positions. Another term
may be added to encode relative positions. Although this may take
different forms [12, 44, 48, 53, 56, 61], wewill discussmethodswhere
a relative positional bias 𝑟𝑖− 𝑗 is added to the scaled dot-product,
e.g., [39, 48, 53]. Our method should apply to other forms of relative
positional encodings as well. With the inclusion of masking and
relative positional encodings, the attention matrix becomes:

A = softmax

(
QK𝑇√︁
𝑑𝑘

+M + R
)
= softmax

(
QK𝑇√︁
𝑑𝑘

+ B
)

(2)

Where, M is the masking matrix and R is the relative positional
bias matrix. We merge both of these into a single bias matrix B.

Figure 2: A conceptual demonstration of the information pathways
hypothesis. Embeddings are 𝑒𝑖 , information pathways are 𝑃𝑖 , and
communication channels are 𝑐𝑖 . (a) is the full model, (b) and (c) are
sub-models with only a subset of pathways.

3.2 The Information Pathways Hypothesis
The information pathways hypothesis is conceptually demonstrated
in Fig. 2. We define a communication channel 𝑐𝑖 as a series of self-
attention based connections over multiple layers that let one ele-
ment of the input gather information from another element. Each
element may use many such channels to gather information from
the context, i.e., other elements. A set of such connections (which
may overlap) that can form a proper representation 𝑒𝑖 of a given
element is called an information pathway 𝑃𝑖 . Multiple pathways
may work together to form an embedding, but they can work in-
dependently as well, and can also be trained independently. The
attention mechanism ensures that multiple sampled pathways are
properly aggregated. If a pathway is sampled partially, it may intro-
duce some noise in the aggregation. However, if the signals from
the fully sampled pathways are strong enough, the network can
ignore this noise (similar to a few weak models in an ensemble
of mostly strong models). We define a sub-model as one that uses
only a subset of the pathways 𝑃𝑖 as in Fig. 2 (b) and (c). A ran-
domly sampled sub-model can be trained instead of the full model,
which trains the sampled subset of the pathways. Even if a pathway
is not sampled at a given step, it is trained indirectly because it
shares weights with the sampled pathways. If a pathway positively
contributes to the generalization performance of a transformer we
call it an important information pathway. With a proper sampling
scheme, over multiple training steps, we can sample sub-models
that cover most of the important information pathways. This is the
key idea behind the proposed SSA method, which can efficiently
sample the important pathways during training. Then, at inference
time, we can use the full model to get the best performance, or we
can use a set of sub-models to form an ensemble, which we call an
attention self-ensemble. This ensemble often produces more robust
predictions than the full model, because of the regularization effect
of the sampling process.

3.3 Stochastically Subsampled Self-Attention
In the self-attention process, all of the 𝑁 input elements form keys
and values, and again all of the 𝑁 input elements form queries,
which is responsible for the 𝑁 × 𝑁 shape of the self-attention ma-
trix, and corresponding quadratic computational cost. To efficiently
subsample the self-attention matrix we decouple the elements form-
ing keys and values, which we call source elements, and the ones
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Figure 3: (a) Unbiased SSA uses unbiased source shuffling with
truncation, (b) locally biased SSA uses locally biased source shuffling
and windowed attention. Different attention patterns result from
shuffling source indices (red and blue).

Algorithm 1 Unbiased SSA

Input: Subsampled length 𝑘 ∈ N; embeddings X ∈ R𝑁 ×𝑑 ; query projec-
tion matrix Wq ∈ R𝑑×𝑑𝑘 ; key projection matrix Wk ∈ R𝑑×𝑑𝑘 ;
value projection matrix Wv ∈ R𝑑×𝑑𝑣 ; bias matrix B ∈ R𝑁 ×𝑁

Output: Attention head H ∈ R𝑁 ×𝑑𝑣

1: P ← randperm(𝑁 ) ⊲ Random permutation of indices: 𝑁
2: P̃ ← P[0 : 𝑘 ] ⊲ Truncation: 𝑘
3: Xtarget ← X ⊲ Target elements: 𝑁 × 𝑑
4: Xsource ← X[ P̃, :] ⊲ Unbiased source sampling: 𝑘 × 𝑑
5: Q← XtargetWq ⊲ Query projection: 𝑁 × 𝑑𝑘
6: K← XsourceWk ⊲ Key projection: 𝑘 × 𝑑𝑘
7: V← XsourceWv ⊲ Value projection: 𝑘 × 𝑑𝑣
8: B̃← B[:, P̃ ] ⊲ Subsample bias matrix: 𝑁 × 𝑘

9: H← softmax
(
QK𝑇√
𝑑𝑘
+ B̃

)
V ⊲ Self-attention: 𝑁 × 𝑑𝑣

return H

forming queries, which we call target elements. In our subsampling
scheme, all of the elements in the input serve as targets, but each tar-
get only attends to a random subset of sources. That is, the queries
𝑞𝑖 are formed for all 𝑖 but each of them attends to key-value pairs
(𝑘 𝑗 , 𝑣 𝑗 ) for a random subset of 𝑗 ’s. During sampling, the inclusion
of a particular source multiple times for a given target is redun-
dant. To avoid this, we ensure the sources are sampled without
replacement for each target element. We propose two forms of SSA:
i) Unbiased SSA, and ii) Locally biased SSA.

Unbiased SSA: In the first implementation of SSA shown in Al-
gorithm 1, we simply shuffle the sources in a random (unbiased)
order (in line 1: randperm(𝑁 )), and truncate to keep only the first 𝑘
elements, as shown in Fig. 3(a). By subsampling 𝑘 sources for each
target, unbiased SSA reduces the complexity of the self-attention
process from 𝑂 (𝑁 2) to 𝑂 (𝑁𝑘).
Locally Biased SSA:Here, we form local windows for both sources
and targets, as shown in Algorithm 2. If both the source and target
windows contain local patches of elements, then attention is con-
fined within that window. However, if we rearrange the sources in
a locally biased random order (in line 1: localrandperm(𝑁,𝑤, 𝜎)),
then the targets can attend to elements beyond their own window,
possibly from the entire input with a non-zero probability (Fig. 3(b)).
By subsampling𝑤 local windows, locally biased subsampling pairs

Algorithm 2 Locally Biased SSA
Input: Number of local windows 𝑤 ∈ N; Standard deviation of local bias

𝜎 ∈ R; embeddings X ∈ R𝑁 ×𝑑 ; query projection matrix Wq ∈
R𝑑×𝑑𝑘 ; key projection matrix Wk ∈ R𝑑×𝑑𝑘 ; value projection
matrix Wv ∈ R𝑑×𝑑𝑣 ; bias matrix B ∈ R𝑁 ×𝑁

Output: Attention head H ∈ R𝑁 ×𝑑𝑣

1: P ← localrandperm(𝑁, 𝑤, 𝜎 ) ⊲ Locally biased random
⊲ permutation of indices: 𝑁

2: Xtarget ← X ⊲ Target elements: 𝑁 × 𝑑
3: Xsource ← X[P, :] ⊲ Reindex source elements: 𝑁 × 𝑑
4: Q← XtargetWq ⊲ Query projection: 𝑁 × 𝑑𝑘
5: K← XsourceWk ⊲ Key projection: 𝑁 × 𝑑𝑘
6: V← XsourceWv ⊲ Value projection: 𝑁 × 𝑑𝑣
7: B̃← B[:, P] ⊲ Reindex bias matrix: 𝑁 × 𝑁

8: Qw ← window (Q, 𝑤 ) ⊲ Window query: 𝑤 × 𝑁/𝑤 × 𝑑𝑘
9: Kw ← window (K, 𝑤 ) ⊲ Window key: 𝑤 × 𝑁/𝑤 × 𝑑𝑘
10: Vw ← window (V, 𝑤 ) ⊲ Window value: 𝑤 × 𝑁/𝑤 × 𝑑𝑣
11: B̃w ← windowdiag

(
B̃, 𝑤

)
⊲ Window bias along diagonal

⊲ blocks: 𝑤 × 𝑁/𝑤 × 𝑁/𝑤

12: Hw ← softmax
(
QwKTw√

𝑑𝑘
+ B̃w

)
Vw ⊲ Self-attention: 𝑤 × 𝑁/𝑤 × 𝑑𝑣

13: H← flattenwindow(Hw ) ⊲ Flatten windowed attention
⊲ head: 𝑁 × 𝑑𝑣

return H

each target with only 𝑁 /𝑤 sources, reducing the complexity from
𝑂 (𝑁 2) to 𝑂 (𝑁 2/𝑤).

Unbiased SSA is very easy to implement, but in our experiments,
we found that locally biased SSA works better both in terms of
model performance and efficiency. We pair the same set of sources
with all targets for unbiased SSA, or within each window for locally
biased SSA. This ensured that we can use highly optimized dense
tensor multiplications for attention. Also, we use the same set of
sources for all attention heads within a layer. This allows us to
perform SSA by simply reindexing the embeddings and the bias
matrix, followed by an unaltered/windowed multihead attention.
We also use the same reindexing within each mini-batch, although,
in a distributed data-parallel setting, eachworkermay have different
indices. Both SSA algorithms can be implemented in any modern
deep-learning framework in a few lines of code, without use of
sparse tensor operations or custom GPU kernels.

We implement locally biased shuffling (localrandperm (𝑁,𝑤, 𝜎))
by generating permutation indices whereby each index can shift
around its original position with a gaussian probability distribution.
We do this by adding gaussian noise to the indices:

P = argsort ({1 + 𝑛1, 2 + 𝑛2, 3 + 𝑛3, . . . , 𝑁 + 𝑛𝑁 }) (3)

where 𝑛𝑖 ∼ N(0, 𝜎2), and the standard deviation 𝜎 controls the
amount of local bias. A lower value of 𝜎 results in more local bias,
whereas 𝜎 → ∞ would lead to no local bias. The resultant sub-
sampling distribution is shown in Fig. 4 (a), where we can see that
the sampling probabilities are concentrated towards the diagonal
of the self-attention matrix. For generative tasks, we use a causal
version of locally biased SSA, where the permutation indices are
resampled for each window, and are constrained to be from 0 to the
end of the window. The resulting sampling distribution is shown
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Figure 4: Sampling probability of the self-attentionmatrix for differ-
ent types of locally biased sampling: (a) gaussian, (b) causal gaussian,
and (c) causal gaussian for 2D grids with vertical windows.

Figure 5:Windowed attention with (a) no source shuffling vs. (b) lo-
cally biased source shuffling – some sources move to other windows
forming long-range connections, some of which are shown in red.

in Fig. 4 (b). For 2D grids, such as images we perform shuffling
both horizontally and vertically. For image generation, we partition
the grid vertically into𝑤 windows. The resultant distribution after
locally biased shuffling and windowing is shown in Fig. 4 (c). Here
we have flattened the grid row-by-row.

In Fig. 5 we show the implications of locally biased SSA on
the subsampled connectivity patterns in a deep network. Simply
performing windowed attention in each layer would isolate each
window as in Fig. 5 (a). This is why local self-attention methods
use either overlapping [5, 10] or shifted windows [39] to ensure
connectivity across windows. Instead, we rely on the stochasticity
of the sampling process for inter-window connectivity. We can see
in Fig. 5 (b) that with locally biased SSA, after a few layers, we
have long-distance connections across window boundaries with a
non-zero probability while maintaining the same level of sparsity.
Note that methods like BigBird [65] achieve this by a combination
of local and random attention, which is kept fixed during training
and inference. In contrast, the sparsity patterns in SSA are resam-
pled at every training step, and we can fall back to dense attention
during inference. Also, slowly reducing local bias (increasing 𝜎) in
the deeper layers leads to better generalization. We hypothesize
that within the important information pathways, local connections
are formed predominantly in the shallower layers while long-range
connections are formed in deeper layers. For a given sparsity bud-
get, locally biased SSA can sample these pathways with a higher
probability than unbiased SSA. This is why locally biased SSA can
achieve better performance at a lower training cost.

3.4 Fine-tuning and Inference
After training with SSA, we fall back to dense attention at infer-
ence time, which ensures that the network leverages all information

pathways to produce the best output. This is analogous to the rescal-
ing/renormalization in dropout [57] at inference time. In our case,
the attention process ensures that the contributions of the path-
ways are properly aggregated via its weighted averaging process, so
that no manual rescaling is required. We call this attention-based
renormalization. Often, no extra training is required to ensure
proper renormalization and good performance at inference time.
However, especially when we apply a high sparsity during training,
the network may need some extra adjustment to ensure proper
renormalization. A small amount of fine-tuning with dense atten-
tion at the end of training is sufficient to ensure good performance
at inference time. This is done in the last few epochs (≤ 10% of
the total epochs). This method falls within the category of curricu-
lum learning [6] strategies such as [36, 47]. Although training can
be significantly slower without SSA, since this is done only for a
few epochs, the overall training time is not significantly affected.
This fine-tuning step is not required when we use only moderately
sparse attention (≤ 50% sparsity) during training, because the net-
work does not face a drastic distribution shift from the training to
the inference time in this case.

3.5 SSA-based Attention Self-Ensembling
Generation of an ensemble of sub-models using SSA is as simple as
performing SSA at inference time on the trained model, drawing
multiple sample outputs for the same input and taking an aggrega-
tion of the predictions. Although this method leverages the same
model weights for each sample prediction, SSA draws a random
subsampling pattern each time, producing a set of sub-models that
only vary in their attention patterns. We use an average of the
predicted probabilities of the sub-models for generative or clas-
sification tasks, or a mean of the predicted values for regression
tasks. Surprisingly, we found that the average predictions of these
sub-models can be more robust and generalizable than that of the
full model if SSA is performed meticulously (i.e., if the SSA hyperpa-
rameters are chosen carefully). This shows that the full model may
suffer from over-capacity, and thus overfit the training data. Even at
inference time, SSA can uncover lower capacity models which may
have more generalizable traits such as prioritizing long-distance
dependencies over short-distance ones. Although SSA-based self-
ensembling works best when the model is trained with SSA, we
found that it can work with a model trained with vanilla dense
attention as well, often matching or even outperforming the dense
model. Also, the fact that an ensemble of sub-models can be as
performant as the full model shows that the transformer can be
thought of as an ensemble of these sub-models with the attention
mechanism aggregating/merging them into a single model. This
also gives evidence in favor of the information pathways hypothesis,
by showing that sub-models can be formed from a subset of the
connectivities, indicating the existence of alternative information
pathways in the transformer which can operate independently.

SSA-based attention self-ensembling works best with SSA train-
ing, and can often serve as an alternative to fine-tuning or dense-
attention fallback. In this case SSA is performed both during train-
ing and inference. As a result, we have the same distribution of
subsampled attention, so the network does not need to readjust to a
different distribution at inference time. Also, the SSA inference for
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each sub-model can be much less costly and less memory intensive
than the full model which uses dense attention. Although we need
to draw multiple samples, this process is embarrassingly parallel
and can be easily done on separate workers (CPUs/GPUs/nodes)
followed by an aggregation step. All sub-models in a self-ensemble
share the same set of parameters, so the total number of parameters
is the same as that of the full model. There is no added training
cost since we train a single model with SSA. This makes it easier
to train and deploy the ensemble. As such, attention self-ensemble
is a more general concept and can potentially be used with other
forms of stochastic subsampling methods (e.g., attention dropout),
and also for uncertainty estimation, similar to [18].

4 EXPERIMENTS
We explore the effectiveness of SSA for various tasks involving
transformers. We experiment with different types of data and both
generative and discriminative tasks, such as generative modeling of
text, image generation, image classification and graph regression.
Our experiments cover different granularities of input data as well,
e.g., for text, we consider both word-level and character-level inputs,
for images we consider both pixel-level and patch-level inputs and
for graphs we process individual node-level inputs. Also, we explore
different scales such as relatively smaller-scale CIFAR-10 [34] image
dataset, medium-scale Enwik8 [40] and WikiText-103 [41] text
datasets and large scale ImageNet-1K [13] and PCQM4Mv2 [23]
molecular graph datasets. We used the PyTorch [45] library for our
experiments. The training was done in a distributed manner with
mixed-precision computation on up to 4 nodes, each with 8 NVIDIA
Tesla V100 GPUs (32GB RAM/GPU), and two 20-core 2.5GHz Intel
Xeon CPUs (768GB RAM). More details about the hyperparameters
and the training procedure are provided in the Appendix. Our code
is available at https://github.com/shamim-hussain/ssa.

4.1 Generative Language Modeling
Our language modeling experiments showcase the application of
SSA to generative modeling of text data, and its ability to han-
dle long-range dependencies. We experiment on the WikiText-103
and the Enwik8 datasets. The WikiText-103 [41] dataset contains
a diverse collection of English Wikipedia articles with a total of
103 million word-level tokens. This dataset has been extensively
used as a long-range language modeling benchmark. The Enwik8
[40] dataset contains the first 100 million bytes of unprocessed
Wikipedia text. This dataset has been used as a benchmark for byte-
level text compression. For both these datasets, we used the 16-layer
transformer decoder of Press et al. [48] which uses ALiBi relative
positional encodings. We used an input length of 3072 tokens for
WikiText-103. We made minor changes to the architecture and
training procedure (refer to the Appendix), which allow us to train
the model much faster on 32 V100 GPUs, within 9 hours, compared
to the 48 hours required by Press et al. [48], while still yielding
comparable perplexity. We achieve validation and test perplexities
of 17.14 and 17.98, with a sliding window inference (overlap length
2048), compared to 16.96 and 17.68 of Press et al. [48] with vanilla
dense attention training. We call this S0 (since SSA was used in 0
layers) and use this as a baseline for SSA results. On Enwik8, we
get validation and test BPB (bits per byte) of 1.052 and 1.028 with a

Table 1: Results on language modeling tasks on WikiText-103 and
Enwik8. Red: best model, Violet: good model; C/M/S: normalized
Compute/Memory/Speedup; Ppl.: perplexity; BPB: bits per byte; ar-
row indicates if higher or lower is better.

WikiText-103 (Gen.) Enwik8 (Gen.)
(#Layers=16, #Params=247M) (#Layers=16, #Params=202M)

Model* dev/test Ppl.↓ C↓ / M↓ / S↑ dev/test BPB↓ C↓ / M↓ / S↑
S0(Dense) 17.14 / 17.98 1.00 / 1.00 / 1.00 1.052 / 1.028 1.00 / 1.00 / 1.00

S16-L2 17.12 / 17.84 0.83 / 0.74 / 1.15 1.052 / 1.028 0.80 / 0.67 / 1.34
+FT 16.95 / 17.68 0.85 / 0.77 / 1.13 1.050 / 1.026 0.82 / 0.71 / 1.30

S16-L4 17.39 / 18.13 0.75 / 0.62 / 1.31 1.081 / 1.058 0.70 / 0.51 / 1.64
+FT 16.91 / 17.60 0.78 / 0.65 / 1.27 1.052 / 1.029 0.73 / 0.56 / 1.55

S12-L4 17.29 / 17.95 0.81 / 0.71 / 1.22 1.047 / 1.024 0.78 / 0.64 / 1.48
+FT 17.09 / 17.86 0.83 / 0.74 / 1.20 1.044 / 1.024 0.80 / 0.67 / 1.41

S16-L6 17.49 / 18.30 0.72 / 0.57 / 1.39 *S<ℓ>-L<𝑤>: Locally biased SSA
+FT 17.09 / 17.86 0.75 / 0.62 / 1.34 on the last ℓ layers with 𝑤 windows

S16-L8 17.94 / 18.69 0.71 / 0.55 / 1.42 +FT: Finetuned without SSA for the
+FT 17.20 / 17.92 0.74 / 0.60 / 1.36 last 10% epochs

sliding window inference (overlap length 3072), which we use as the
baseline (i.e., S0). We could not find a comparable dense attention
implementation; Al-Rfou et al. [1] achieve a test BPB of 1.06 with a
very deep 64-layer transformer. A local transformer achieves a test
BPB of 1.10, whereas specialized architectures such as [12, 54] use a
longer input length to achieve a test BPB of 0.99, which is compara-
ble to ours. We could train only up to an input length of 4096 with
dense attention without gradient accumulation/checkpointing, so
we experiment with this input length.

Our experiments are designed to show the effectiveness of SSA
in reducing training costs and also as a regularization method. We
measure training cost in terms of Compute (FLOPs), Memory (GB)
and Speed (steps/sec). We normalize these with respect to S0, to
better represent comparative gains achieved with SSA (refer to the
Appendix for unnormalized values). We primarily show results for
locally biased SSA since it produces the best results, and leave the
results for unbiased SSA as an ablation study (refer to the Appendix).
We use the causal gaussian sampling scheme described in section
3.3. We tune the SSA parameters 𝜎 (in Eq. 3) in different layers
for the best validation set results. We applied different numbers
of windows with locally biased SSA to achieve different levels of
sparsity and regularization, both of which increase with the number
of windows. For example, with 4 windows we reduce the attention
cost 4 times by only sampling 25% of the self-attention matrix. This
is denoted with a suffix ‘-L4’ (Locally biased with 4 windows). We
mainly apply SSA to all 16 transformer layers (S16), but we found
that sometimes better results can be achieved by leaving the first
few layers unsampled, at the cost of some efficiency. For example,
we use S12 to denote that SSA has been applied only to the last 12
layers. Also, we produced results for the Fine-Tuning (+FT) scheme
where we turn off SSA in the last 10% of the training epochs and fine-
tune the model for dense attention, which leads to better results.
For additional fine-tuning, we report the total compute, but average
speedup and memory consumption over the training epochs.

The results are presented in Table 1. OnWikiText-103 we achieve
the best result with S16-L4 after fine-tuning. Here, SSA is used
in all layers with 4 windows, which corresponds to only 25% of

https://github.com/shamim-hussain/ssa
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Figure 6: Validation loss vs training (a) epochs, (b) time and (c)
compute for the WikiText-103 experiment, with (red) and without
(blue) SSA and with fine-tuning (green) which begins at epoch 100.

attention being sampled during the majority of the training. We
achieve a significant improvement over the baseline (S0) due to the
regularization effect of SSA, while also achieving a 1.27x speedup in
training, 22% reduction in compute and 35% reduction in memory
cost. This method also achieves competitive results on Enwik8, but
the best result is achieved by S12-L4, where we leave the first 4
layers unsampled. We think this is due to the higher granularity of
character-level data, which makes the locally biased SSA algorithm
less effective in predicting the attention patterns in the shallower
layers. S12-L4 achieves the best result even without fine-tuning and
also has 1.48x speedup in training, 22% reduction in compute and
36% reduction inmemory cost. Both S16-L2 and S12-L4 achieve good
results even without fine-tuning, which shows that the requirement
for fine-tuning arises mainly due to highly sparse sampling. We can
reduce the training cost further by using sparser subsampling, for
example, with S16-L6 or S16-L8 but this comes at the cost of slightly
worse results, even after fine-tuning. We believe this is because, at
very high sparsity levels, some of the important pathways remain
undertrained, which is corrected only slightly by fine-tuning. Also,
at this point, other parts of the network become the bottleneck
rather than self-attention, which leads to diminishing returns in
terms of training cost reduction.

In Fig. 6 we see how training with SSA progresses compared to
dense attention training. From Fig. 6(a) we see that the validation
loss of S16-L4 closely follows that of S0 for most of the training in
terms of the number of steps. This verifies our claim that the infor-
mation pathways can be trained independently by showing that
even when we are sampling a small subset (25%) of the pathways,
training progresses naturally. However, in terms of both wall time
and compute, the validation loss of S16-L4 drops much faster than
S0. The validation loss plateaus at a slightly higher value than that
of S0, but with a slight fine-tuning in the end, it falls even below
that of S0. Also, even with fine-tuning, training finishes signifi-
cantly earlier than S0. Thus, compared to dense attention (S0), SSA
delivers significant improvements in performance and efficiency.

4.2 Image Generation and Classification
While some previous works only focus on reducing the cost of train-
ing only for generative language modeling [36, 47], we show the
generality of our method by also applying it to image generation
and classification tasks. We target the unconditional sub-pixel level
image generation task on CIFAR-10 [34], which contains 60,000
tiny 32x32x3 images from 10 classes. Each image is flattened into a

Table 2: Image generation results on CIFAR-10 and image classifi-
cation results on ImageNet-1K. BPD: bits per dimension; Acc.: top-1
accuracy. Red: best model, Violet: good model.

CIFAR-10 (Gen.) ImageNet-1K (Class.)
(#Layers=16, #Params=203M) (Swin-T, #Layers=12, #Params=28M)

Model BPD↓ C↓ / M↓ / S↑ Model* Acc.↑ C↓ /M↓ / S↑
S0(Dense) 2.789 1.00 / 1.00 / 1.00 W7-S0(Dense) 81.19% 0.90 / 0.70 / 1.14

S16-L4 2.796 0.75 / 0.53 / 1.25 W14-S10-L4 80.56% 0.90 / 0.73 / 1.13
+FT 2.774 0.77 / 0.58 / 1.22 +FT 81.15% 0.91 / 0.76 / 1.13

W14-S6-L4 81.23% 0.97 / 0.91 / 1.05
+FT 81.60% 0.97 / 0.92 / 1.05

*W<𝜔>-. . . : Window-size of Swin-T = 𝜔 W14-S0(Dense) 81.89% 1.00 / 1.00 / 1.00

sequence of length 3072 and fed to a transformer decoder, which
serves as an autoregressive model. We get a validation BPD (bits per
dimension) of 2.789 with dense attention training which we denote
as the baseline S0. We could not find a comparable dense atten-
tion result in the literature, but some specialized architectures such
as [10, 54] have reported comparable results. Our results are pre-
sented in Table 2 (left). We see that with fine-tuning, SSA achieves
a slightly better result than dense training (S0) while achieving
1.22x speedup, saving 23% compute and 42% memory. Without fine-
tuning, it achieves a slightly worse result but almost halves the
memory required for training, which is particularly beneficial for
high-resolution image generation.

Beyond generative tasks, we also explore the usefulness of SSA
for discriminative tasks such as the large-scale image classification
task on the ImageNet-1K dataset [13] which contains 1.28 million
images from 1000 classes. It is customary to train transformers on
image patches for classification. Instead of the vanilla Vision Trans-
former [15], we use the Swin Transformer [39] because it achieves
state-of-the-art results on ImageNet-1K when trained from scratch.
Additionally, we aim to investigate SSA’s applicability to locally
dense attention based architectures such as the Swin Transformer,
which uses a shifted window based local attention mechanism en-
abling efficient handling of smaller patches (e.g., 4x4). We use the
Swin-Tiny model with 12 layers and 28 million parameters and
an input resolution of 224x224 in our experiments, and report the
top-1 accuracy on the validation set. To demonstrate the usefulness
of SSA, we use window sizes of 7x7 and 14x14, denoted by W7
and W14 respectively. A larger window uses more attention and
achieves better results, but also requires more compute and mem-
ory. The results are presented in Table 2 (right). To apply SSA we
subdivide each window into 4 sub-windows (L4). With SSA applied
to 10 layers (the last two layers have a resolution of 7x7, where
further sub-division is not possible), we can train a W14 model
with almost the same training cost as a W7 model. However, even
with fine-tuning, we cannot achieve better results than W7. Only
by excluding the first 4 layers from SSA and fine-tuning, we attain
better accuracy than W7. This accuracy is, however, slightly less
than that of W14-S0, but we achieve this at a lower training cost.
We believe that this is because the shifted window based attention
mechanism is inherently more local than global attention, limiting
the regularization effect of locally biased SSA. Moreover, attention
is no longer the primary bottleneck. Hence, the savings due to SSA
are only incremental. However, SSA can still be utilized to trade off
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Table 3: Graph regression results on PCQM4Mv2 dataset. MAE:
mean absolute error.

PCQM4Mv2 (Regr.)
(EGT, #Layers=6, #Params=11M)

w/o FT + FT
Model* dev MAE↓ Compute↓ dev MAE↓ Compute↓
S0(Dense) 0.0905 1.00

S6-U10 0.0907 0.96 0.0895 0.97 *S<ℓ>-U<𝑥>:
S6-U20 0.0895 0.93 0.0876 0.94 Unbiased SSA
S6-U30 0.0904 0.89 0.0876 0.90 on the last ℓ
S6-U40 0.0930 0.86 0.0879 0.87 layers with
S6-U50 0.0964 0.82 0.0908 0.84 𝑥% drop

accuracy for training cost, as evidenced by the 3% compute and 8%
memory savings, as well as the 5% speedup over the locally dense
model.

4.3 Molecular Graph Regression
We further show the generality of our method by applying SSA
to molecular graph data on the PCQM4Mv2 quantum chemical
dataset [23]. Also, we wanted to demonstrate its applicability to
newly proposed Graph Transformers [26, 44, 64], which use global
self-attention. The PCQM4Mv2 dataset contains 3.8 million molec-
ular graphs, and the target task is to predict a continuous valued
property, the HOMO-LUMO gap, for each molecule. For this task,
we use the Edge-augmented Graph Transformer (EGT) [26]. We
experiment with an ablated variant of EGT called EGT-Simple since
it approximately achieves the same performance on PCQM4Mv2
while also being simpler to apply SSA to, but for brevity, we will
call this model EGT. We experiment on the EGTsmall model with
11 million parameters and 6 layers, and report the mean absolute
error (MAE) on the validation set. We achieve a baseline MAE of
0.0905, as reported in [26] without SSA, which we call S0.

Graphs are fundamentally different from images and text due to
their arbitrary topology and do not have a single simplistic notion
of locality. To apply locally biased SSA we must partition the graph
into equally sized local windows. There are different possible ways
of doing it which may also involve the edge features. Further, we
need to do locally biased source shuffling on graph nodes. Since
this would require substantial further research, we instead show
results for unbiased SSA on graphs, which is straightforward to
implement as it does not rely on the notion of locality. We apply
SSA to all layers (S6) and drop 10%-50% of source nodes randomly
during training. For example, we use the suffix ‘-U20’ to denote that
20% of the source nodes are randomly dropped and we sample the
remaining 80%. We also report the result after fine-tuning without
SSA for the last 10% of the training epochs (+FT). The results are
shown in Table 3. We see that the best results (MAE of 0.0876) are
achieved for S6-U20 and S6-U30 with fine-tuning which is not only
significantly better than the baseline (S0) but also requires around
10% less compute (FLOPs). For this training, we could not tabulate
the memory savings and speedup because in our implementation
the data-loading of graphs becomes the bottleneck. We believe
that the better results achieved by SSA on graphs are due to its
regularization effect, which encourages the network to consider

Table 4: Self-ensembling results by locally biased SSA with 4 win-
dows on WikiText-103 and Enwik8, produced with 50 samples for
each input segment. Renormalized results are from Table 1.

Wikitext-103 Enwik8
dev/test Ppl. ↓ dev/test BPB ↓

Model Renorm. Ensemble Renorm. Ensemble

S0(Dense) 17.14 / 17.98 16.86 / 17.46 1.052 / 1.028 1.066 / 1.042

S16-L4 17.39 / 18.13 16.75 / 17.42 1.081 / 1.058 1.086 / 1.062
+FT 16.91 / 17.60 16.54 / 17.18 1.052 / 1.029 1.058 / 1.035

S12-L4 17.29 / 17.95 16.89 / 17.60 1.047 / 1.024 1.050 / 1.029
+FT 17.09 / 17.86 16.80 / 17.51 1.044 / 1.024 1.055 / 1.033

long-range interactions. However, unlike locally biased SSA, unbi-
ased SSA cannot employ highly sparse attention without incurring
a performance penalty, as evident from the results of S6-U50. At
50% sparsity, the important pathways are rarely sampled and re-
main undertrained. We leave it as a future research direction to
explore the use of locally biased SSA on graphs, which we believe
will further improve the performance and efficiency of training.

4.4 Self-ensembling Results
Once a transformer has been trained we can apply SSA at inference
time, draw multiple sample predictions from the same input and
aggregate them. This way the prediction is made by an ensemble of
sub-models, sampled by SSA, which we call self-ensembling. The
results of an average of 50 prediction samples drawn by locally
biased SSA with 4 windows, which samples 25% attention at each
prediction instance for language modeling tasks, are shown in
Table 4, and they are compared against their full-model counterpart,
which we call renormalized results (since the network merges and
normalizes the sub-models into a single model). For WikiText-103,
we see that the self-ensembling results are significantly better than
their renormalized counterparts. This is true even for S0, which was
not trained with SSA but with vanilla dense attention. This shows
that SSA-based self-ensembling can improve the performance of
the model even when it is not trained with SSA. This also shows the
existence of sub-models within a dense transformer, trained with
dense attention, which is an implication of the information pathway
hypothesis. Results are better when the model is trained with SSA
and fine-tuning further improves the results. We think the better
results are due to the higher generalizability of the constituent sub-
models which take advantage of the local inductive bias and higher
sparsity regularization. For Enwik8, however, the results are close
to but not better than the renormalized counterparts. We think
this is because it is more difficult to predict important pathways
in character-level prediction tasks than in word-level tasks due to
the higher granularity of the data. Future work may uncover the
important pathways with a higher success rate and thus form better
ensembles.

Self-ensembling can be done for unbiased SSA and regression
tasks as well. The results of self-ensembling on the PCQM4Mv2
dataset are presented in Table 5. We take an average of 50 sam-
ple predictions for each input graph while following the same
SSA scheme during inference as during training. We see that the
self-ensembling results are better than the renormalized results
for all models that have not been fine-tuned. The self-ensembled
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Table 5: Self-ensembling results by unbiased SSA on the PCQM4Mv2
dataset, produced with 50 samples for each input graph. Renormal-
ized results are from Table 3.

dev MAE↓
w/o FT + FT

Model Renorm. Ensemble Renorm. Ensemble

S6-U10 0.0907 0.0880 0.0895 0.0884
S6-U20 0.0895 0.0865 0.0876 0.0877
S6-U30 0.0904 0.0872 0.0876 0.0892
S6-U40 0.0930 0.0893 0.0879 0.0923
S6-U50 0.0964 0.0945 0.0908 0.1005

1 2 4 6 10 20 30 50
Number of Samples (log scale)

0.09

0.095

0.1

Va
lid

at
io

n 
M

A
E

S6-U10 Renorm.
S6-U20 Renorm.
S6-U30 Renorm.
S6-U40 Renorm.
S6-U10 Ensemb.
S6-U20 Ensemb.
S6-U30 Ensemb.
S6-U40 Ensemb.

1 2 4 6 10 20 30 50 70

17

18

19

20

21

22

Va
lid

at
io

n 
Pe

rp
le

xi
ty

S0 Renorm.
S16-L4 Renorm.
S16-L4+FT Renorm.
S0 Ensemble
S16-L4 Ensemble
S16-L4+FT Ensemble

Number of Samples (log scale)

Figure 7: Self-ensemble performance for language modeling on (a)
WikiText-103 and graph regression on (b) PCQM4Mv2 as a function
of the number of samples drawn. Dashed lines show the performance
of the renormalized model.

results are even better than that of renormalized fine-tuned re-
sults. This shows that self-ensembling can serve as an alternative
to fine-tuning. We believe that the better results are due to the
regularization effect of SSA, sampling sub-models that consider
sparse and long-range dependencies. These results degrade with
fine-tuning because the pathways within these models become less
predictable by unbiased SSA after fine-tuning.

Fig. 7 shows how the self-ensembling performance improves
with the number of samples drawn, for the language modeling task
on WikiText-103, and the graph regression task on PCQM4Mv2,
and how they compare against the renormalized results. We see
that the self-ensembling performance improves with the number
of samples drawn for both tasks. From Fig. 7 (a) we see that for S0,
which was not trained with SSA, we need to draw upwards of 20
samples to improve the results beyond that of renormalization. But
for S16-L4 and their fine-tuned counterparts, which were trained
with SSA, we need to draw only 2-5 samples to improve the results
beyond that of renormalization. Since we are using SSA at inference
time, these samples are faster to produce for the sub-models than
the full model. This shows that self-ensembling is a practical option
for improving the results of a model that was trained with SSA. We
believe the important information pathways are more predictably
sampled within a model that was trained with SSA, which leads
to the result plateauing with fewer samples. However, this rate of
improvement also depends on the amount of sparsity applied by
SSA. From Fig. 7 (b) we see that for the graph regression task, we
also need to draw only 3-5 samples to improve the results beyond
that of renormalization, but S6-U10 which applies only 10% atten-
tion drop plateaus much faster than S6-U50 which applies 50% drop.

This is because variance increases with the amount of sparsity, but
this also produces a more diverse set of sub-models, which often
leads to better results.

In Fig. 7, we observe that even when we draw only a single
random sample, the results are not significantly worse than the
renormalized results. It is important to note that if the informa-
tion pathways were not independent, randomly selecting a set of
pathways to form a sub-model would lead to a drastic drop in per-
formance. This shows that the information pathways are indeed
independent, e.g., the presence/absence of a particular pathway
does not negatively affect the performance of another pathway. We
hypothesize that for a single random sample, the reduction in per-
formance is only due to the reduced strength of the ensemble due
to the missing pathways, which is quickly recovered as we draw
more samples by covering most of the important pathways. Also,
the fact that a few sub-models drawn from a predefined distribution
can be as performant as the full model shows that the distribution
of the information pathways is predictable.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented the information pathways hypothe-
sis which states the existence of sparsely connected sub-networks
within the transformer called information pathways. A sub-model
formed from a random subset of these pathways can be trained
at each training step to reduce the cost of training. We introduce
an algorithm called SSA which can take advantage of this fact by
stochastically sampling only a subset of attention sources and train-
ing the important information pathways with a high probability,
which not only reduces training cost but also improves generaliza-
tion. SSA can be applied to any model that uses dense self-attention,
and for both generative and discriminative tasks. We showed the
effectiveness of SSA for language modeling, image classification,
and graph regression tasks. We also showed that SSA can be ap-
plied at inference time to form an ensemble of sub-models from the
transformer which can further improve the results beyond that of
the full model, by making more robust predictions. We used local
bias to improve the performance of SSA by sampling the important
pathways with a higher probability.

Our SSA algorithm is simple and easy to implement, but its
performance can be further improved by using more sophisticated
sampling strategies. The information pathways hypothesis calls for
more research into the search for sparsely connected sub-networks
within the transformer, and how to better sample them, which
could further alleviate the training cost of the transformers while
helping them to generalize better using strategies such as attention
self-ensembling. We also want to explore the prospect of extending
SSA to cross-attention, for tasks such as machine translation.
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A DATA AND CODE AVALABILITY
Data: All datasets used in this work are publicly available. The
dataset sources are listed in Table 6.
Code: The code is available at https://github.com/shamim-hussain/
ssa.

Table 6: Dataset sources.

Dataset Source

WikiText-103 https://huggingface.co/datasets/wikitext
Enwik8 http://mattmahoney.net/dc/textdata.html
CIFAR-10 https://www.cs.toronto.edu/~kriz/cifar.html
ImageNet-1k https://image-net.org/
PCQM4Mv2 https://ogb.stanford.edu

B HYPERPARAMETERS AND TRAINING
DETAILS

B.1 Generative Language Modeling
For language modeling on both WikiText-103 and Enwik8 datasets,
we used the 16-layer transformer decoder of Press et al. [48] which
uses ALiBi relative positional encodings. We used the fairseq toolkit
[43] to perform these experiments. We used an input length of
3072 tokens for WikiText-103. Adaptive input embeddings [3] and
adaptive softmax [28] output were used to handle a large vocabulary
of size around 260K. For Enwik8, we used a simple vector embedding
and a vanilla softmax output layer. We used the same architecture
and hyperparameters as Press et al. [48], except that we changed
the activation function from ReLU to GELU [22]. For Enwik8, we
also add a final Layer Normalization [2] layer before the softmax

layer. On WikiText-103 we trained for 64,000 steps (16,000 linear
learning rate warmup steps, followed by 48,000 steps of cosine
decay) with the Adam [32] optimizer, a maximum learning rate of
0.001 and an increased batch size of 64. For Enwik8, we trained for
10,000 steps (4,000 warmup steps followed by linear decay) with a
maximum learning rate of 0.001 and a minimum learning rate of
0.0005. Again we used a batch size of 64 and the Adam optimizer.

We tune the SSA parameter 𝜎 (in Eq. 3) in different layers for
the best validation set results. We express its value as a fraction
of the input length so that it is independent of the input length.
For WikiText-103 we use a value of 𝜎 = 0.2 in the first layer and
linearly increase it to 𝜎 = 0.35 in the deepest layer. For Enwik8
we start with 𝜎 = 0.1 and linearly increase it to 𝜎 = 0.225 in the
deepest layer.

B.2 Image Generation and Classification
For image generation on CIFAR-10, we use a 16-layer transformer
with similar architectural and hyperparameter settings as in the pre-
vious section, but we use the 2D relative position bias for positional
encoding, similar to [39]. Instead of using dropout regularization,
we use the augmentation techniques described in [29] to achieve
better generalization. We use the Adam optimizer with a maximum
learning rate of 0.002 and a batch size of 128. We train for 100,000
steps in total, with an initial learning rate warmup of over 4,000
steps, followed by cosine decay. To perform locally biased SSA
on this 2D data we divide the image vertically into 4 windows of
8 rows. Locally biased source shuffling is performed in both the
horizontal and vertical directions while preserving causality at the
window level. We set the SSA parameter 𝜎 to 0.25 times dimensions
(length/width), in both the horizontal and vertical directions, and
all layers.

For ImageNet-1K classification, we use the Swin-Tiny model
with 12 layers and 28 million parameters and an input resolution of
224x224. We use the same architecture, hyperparameters, augmen-
tation, and training scheme as in [39]. To apply locally biased SSA
within the 14x14 windows, we further subdivided the windows into
4, 7x7 sub-windows. Locally biased source shuffling was performed
in both horizontal and vertical directions, with the value of 𝜎 as 0.75
times the window size (i.e., 14), but we further ensured that sources
were constrained within their own 14x14 (shifted) windows after
shuffling (yet they can move beyond the smaller 7x7 sub-windows).

B.3 Molecular Graph Regression
For graph regression on the PCQM4Mv2 dataset, we use the Edge-
augmented Graph Transformer (EGT) described in [26]. EGT uses
additional channels to represent and update edge embeddings,
which makes it slightly different from the standard transformer.
However, we experiment with an ablated variant of EGT called
EGT-Simple which reduces the edge representations to relative po-
sitional encodings. However, for brevity, we call this model EGT.We
experiment on the EGTsmall model with 11 million parameters and
6 layers. We use the same hyperparameters and training scheme
as in [26], except, we do not use attention dropout in these models
because SSA works as a regularization method.

https://github.com/shamim-hussain/ssa
https://github.com/shamim-hussain/ssa
https://huggingface.co/datasets/wikitext
http://mattmahoney.net/dc/textdata.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://image-net.org/
https://ogb.stanford.edu
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Table 7: Baseline (S0) training cost for different datasets.

Compute Memory/GPU Time/step
Dataset Model (Exa FLOP) (GB) (ms)

WikiText-103 Transfo. Decoder 7.6 21.3 492
Enwik8 Transfo. Decoder 1.7 30.5 628
CIFAR-10 Transfo. Decoder 23.8 29.1 1059
ImageNet-1k Swin-Tiny 3.2 4.0 146
PCQM4Mv2 EGTsmall 0.5 – –

C BASELINE TRAINING COST
In our experiments, we normalized the training costs with respect to
the baseline model S0, the dense attention model without SSA. How-
ever, we also report the baseline training costs in terms of absolute
values in Table 7 for completeness. Note that for the PCQM4Mv2
dataset, we could not faithfully compute the memory consumption
and the training time due to the data loading bottleneck. How-
ever, we can still compare the cost of the baseline models with SSA
models in terms of compute.

D LOCALLY BIASED VS UNBIASED SSA
In the results presented in our experiments, we claimed that local
bias was an important ingredient in improving the performance of
SSA. Here, we directly compare the results for locally biased SSA
and unbiased SSA for the same level of sparsity and when they are
applied to the same subset of layers.

Table 8: Locally biased vs unbiased SSA results for language model-
ing tasks on WikiText-103 and Enwik8. Locally biased SSA results
are from Table 1.

Wikitext-103 Enwik8
% Attention dev/test Ppl. ↓ dev/test BPB ↓
Sampled Locally Biased Unbiased Locally biased Unbiased

50% attention 17.12 / 17.84 17.45 / 18.18 1.052 / 1.028 1.114 / 1.087
+FT 16.95 / 17.68 16.96 / 17.69 1.050 / 1.026 1.063 / 1.042

25% attention 17.39 / 18.13 19.33 / 20.15 1.081 / 1.058 1.329 / 1.287
+FT 16.91 / 17.60 17.89 / 18.69 1.052 / 1.029 1.100 / 1.075

The results for language modeling are presented in Table 8 where
the same level of sparsity is applied to all layers for both types
of SSA (using 2 or 4 window attention for 50% or 25% sampling,
respectively). We see that unbiased SSA performs slightly worse
than locally biased SSA for 50% sampling of attention. This gap can
be reduced with fine-tuning. However, when we only sample 25%
of attention, training is significantly hampered for unbiased SSA,
and the results cannot be made comparable to locally biased SSA,
even with fine-tuning. This is because unbiased SSA cannot sample

the important pathways with a high enough probability for the
training to progress gracefully. This shows the necessity of local
bias for sampling at high sparsity levels.

The results for image classification are presented in Table 9
where the same level of sparsity (25% sampled, 75% dropped) is
applied to 10 layers (using 4 sub-windows) or the first 4 layers are
excluded. In all cases, we see that locally biased SSA performs better
than unbiased SSA, but we do get good results with unbiased SSA
when we exclude the first 4 layers. This shows that local bias is
important for SSA to work well, but it is less important in deeper
layers than in the shallower layers. In deeper layers, the model tends
to form long-distance dependencies, which are more predictable
by unbiased SSA. This is why we see that unbiased SSA performs
better when we exclude the first 4 layers.

Table 9: Locally biased vs unbiased SSA results on the ImageNet-1K
image classification task. Locally biased SSA results are presented
from Table 2.

# Layers dev Acc. ↑
Sampled Locally Biased Unbiased

10 layers 80.56% 80.21%
+FT 81.15% 80.80%

6 layers 81.23% 81.21%
+FT 81.60% 81.36%

Table 10: Additional self-ensembling results for language modeling
tasks onWikiText-103, produced with 50 samples per input segment.
Renormalized results are from Table 1.

dev/test Ppl. ↓
Model Renorm. Ensemble

S16-L6 17.49 / 18.30 17.01 / 17.80
+FT 17.09 / 17.86 16.83 / 17.53

S12-L8 17.94 / 18.69 17.41 / 18.10
+FT 17.20 / 17.92 17.04 / 17.69

E ADDITIONAL SELF-ENSEMBLING RESULTS
We present additional self-ensembling results for language model-
ing on WikiText-103 in Table 10, for higher levels of sparsity – with
6 and 8 windows we sample as little as 16.7% and 12.5% attention,
respectively. We see similar results as presented in the main section
with self-ensembling significantly improving over their renormal-
ization counterparts. This shows that self-ensembling can improve
performance even with a high level of sparsity.
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