
Graph Data Mining with Arabesque

Eslam Hussein4, Abdurrahman Ghanem4, Vinicius Vitor dos Santos Dias♣,
Carlos H. C. Teixeira♣, Ghadeer AbuOda♦,

Marco Serafini4, Georgos Siganos4, Gianmarco De Francisci Morales4,
Ashraf Aboulnaga4, Mohammed Zaki♠

4Qatar Computing Research Institute - HBKU, ♣Universidade Federal de Minas Gerais,
♦College of Science and Engineering - HBKU, ♠Rensselaer Polytechnic Institute

ABSTRACT
Graph data mining is defined as searching in an input graph for
all subgraphs that satisfy some property that makes them inter-
esting to the user. Examples of graph data mining problems in-
clude frequent subgraph mining, counting motifs, and enumerat-
ing cliques. These problems differ from other graph processing
problems such as PageRank or shortest path in that graph data
mining requires searching through an exponential number of sub-
graphs. Most current parallel graph analytics systems do not pro-
vide good support for graph data mining. One notable exception
is Arabesque, a system that was built specifically to support graph
data mining. Arabesque provides a simple programming model
to express graph data mining computations, and a highly scalable
and efficient implementation of this model, scaling to billions of
subgraphs on hundreds of cores. This demonstration will show-
case the Arabesque system, focusing on the end-user experience
and showing how Arabesque can be used to simply and efficiently
solve practical graph data mining problems that would be difficult
with other systems.

1. INTRODUCTION
Graph data is playing an increasingly important role in many

fields such as biology, e-commerce, and social network analysis.
Graph data appears in on-line operations, such as representing new
“friend” relationships in a social network, and in analytics, such as
predicting users who can become friends. The increase in the size
of graph data and the complexity of workloads on this data have led
to the development of parallel and distributed systems that support
high throughput graph updates and retrieval, such as TAO [2], as
well as systems that support large scale graph analytics, such as
Pregel [10], GraphLab [9], and EmptyHeaded [1].

Most parallel graph analytics systems support computations that
produce succinct properties of the graph or of individual vertices,
or produce a small number of result subgraphs. Examples of
these computations include PageRank, shortest path, and count-
ing cliques. These systems do not provide good support for graph
data mining, which we define as searching through the exponen-
tial number of subgraphs of an input graph to find subgraphs that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058742

Jupyter Notebook

Programming Model (TLE)
User Defined Functions:

filter, process, aggregation, output

Java

Execution Library
Graph exploration, Aggregation,

Intermediate State (ODAGs), Load Balancing

GraphX

SparkGiraph

User Interface

Arabesque Library

Parallel Execution

Figure 1: Overview of Arabesque.

satisfy some property that makes them interesting to the user. Ex-
amples of graph data mining problems include frequent subgraph
mining and enumerating cliques or quasi-cliques (as opposed to
only counting them). Some recent systems, such as Arabesque [15]
and NScale [14], adopt a model where subgraphs (as opposed to
vertices) are first class citizens in the computation, which enables
better support for graph data mining.

This demonstration will showcase the Arabesque system, which
was built with the specific goal of supporting efficient and scal-
able graph data mining. The technical details of Arabesque
are presented elsewhere [15], and the code is available as open
source1. This demonstration will focus on the end-user experi-
ence of Arabesque, and how it can be used to solve interesting
and important graph data mining problems that would be difficult
with other graph analytics systems. Participants in the demonstra-
tion will see how Arabesque fits within a typical data analytics
toolchain, and will get a sense of the usability, programmability,
and efficiency of Arabesque. The demonstration will be centered
around three practical applications: finding frequent subgraphs in
protein databases, analyzing cliques to detect communities of com-
mon interest among buyers on Amazon, and analyzing motifs to
measure the reaction to various events on Twitter. The three ap-
plications are based on three different types of graph data min-
ing problems supported by Arabesque: frequent subgraph mining,
enumerating cliques, and counting motifs. In the next section, we
present a brief overview of Arabesque, and in Section 3 we present
the details of these applications.

1http://arabesque.io

http://dx.doi.org/10.1145/3035918.3058742

2. OVERVIEW OF ARABESQUE
As mentioned earlier, graph data mining is characterized by enu-

merating the exponential number of subgraphs of an input graph
and searching for patterns in these subgraphs. The Arabesque sys-
tem [15] (Figure 1) is designed to support parallel graph data min-
ing on hundreds of CPU cores in multiple servers (also referred to
as worker nodes). A fundamental assumption made by Arabesque
is that the input graph fits in the main memory of a single worker
node, and can be replicated on all worker nodes. Today, the main
memory of servers is typically in the 256GB to 2TB range, so this
assumption covers a large fraction of graph data sets. Arabesque
still needs to address the challenge of managing the exponentially
sized intermediate state, which does not fit in the memory of a sin-
gle worker node. Another challenge faced by Arabesque is dis-
tributing the computation to the CPU cores in a scalable, efficient,
and load balanced way.

To address these challenges, Arabesque uses a programming
model that can express graph data mining problems in a simple
and succinct way, and is amenable to easy distribution on multi-
ple cores. Arabesque also provides a scalable and efficient imple-
mentation of this programming model that works on top of parallel
dataflow platforms such as Giraph2 and Spark [16]. We present the
Arabesque programming model and implementation next.

2.1 Programming Model
The Arabesque programming model is designed to support the

automatic graph exploration required for graph data mining. It is
based on a paradigm that we call think like an embedding, or TLE.
An embedding is a subgraph representing an instance of a pattern
of interest in the graph data mining problem, and a key character-
istic of graph data mining is that we are interested in producing all
output embeddings. For example, consider frequent subgraph min-
ing, in which we want to find all instances of frequently occurring
subgraph patterns. If subgraphs with, say, a vertex labeled A con-
nected to a vertex labeled B connected to a vertex labeled C occur
frequently in the input graph, we are interested not only in finding
that A − B − C is frequent but also in producing all instances of
A−B−C, say, a1−b1−c1, a2−b2−c2, . . . , an−bn−cn. In this
example, A−B −C is the pattern, and the instances ai − bi − ci
are the embeddings of this pattern, where lowercase letters indicate
vertex ids in the input graph. A similar distinction between patterns
and embeddings can be found in other graph data mining problems.

In the TLE programming model of Arabesque, the user provides
two functions that accept one embedding as an argument: the fil-
ter function and the process function. The filter function is used
to prune this search space: it takes an embedding as input and re-
turns a boolean value indicating whether the embedding should be
processed or not. The process function is used to analyze an em-
bedding and generate the output required by the graph mining algo-
rithm: it takes an embedding as input, processes the embedding as
required by the graph data mining algorithm, and typically outputs
a set of user-defined values to HDFS.

Arabesque explores the input graph in a series of bulk syn-
chronous parallel (BSP) steps, and maintains a set of candidate
embeddings at each step. In the first step, the individual vertices
of the input graph are the candidate embeddings, and in each sub-
sequent step, each candidate embedding is expanded by adding its
neighbors to it one by one to create larger candidate embeddings.
In each step, Arabesque calls the filter function on all candidate em-
beddings, and discards the embeddings for which filter returns false
from the candidate set. Arabesque then calls the process functions

2http://giraph.apache.org

on embeddings remaining in the candidate set, and further expands
these embeddings in subsequent BSP steps.

In addition to the filter and process functions, Arabesque allows
the user to specify other functions such as an aggregation filter
function and an aggregation process function, which filter and pro-
cess embeddings at the beginning of a BSP step based on aggregate
information about all the embeddings found in the previous step.

2.2 Implementation
A key characteristic of the TLE model is that there are no depen-

dencies among embeddings. Each embedding can be filtered, pro-
cessed, and expanded independently of other embeddings within a
BSP step. Embeddings may be aggregated by pattern at the end of
a BSP step, which introduces dependencies, but there are no depen-
dencies within a step. The lack of dependencies enables Arabesque
to utilize a coordination free strategy to avoid redundant work while
exploring the graph based on the concept of embedding canonical-
ity. Each worker thread is assigned a set of embeddings to expand
in each step, without coordinating with other worker threads. It is
possible that two worker threads generate the same embedding in-
dependently. Without additional controls, both workers would call
the filter and process functions on the same embedding. To avoid
this situation, Arabesque defines a notion of canonicality for em-
beddings, and worker threads discard embeddings that they gener-
ate that are not canonical. To ensure coordination free exploration,
canonicality in Arabesque is defined in a careful way that allows
each thread to independently test the canonicality of embeddings
that it generates.

The ability to expand embeddings independently enables
Arabesque to balance load very well among the worker threads.
Contrast this, for example, to the traditional think like a vertex
(TLV) paradigm used by graph analytics systems such as Pregel.
In TLV, computation and state are expressed at the level of a ver-
tex in the input graph. One could use TLV for graph exploration
by storing at each vertex all embeddings that this vertex is part of.
The vertex function can expand an embedding by adding neighbors
of the vertex that are not already in the embedding. New embed-
dings would have to be sent to all vertices that these embeddings
contain. This further multiplies the number of embeddings gener-
ated by the system, exacerbating the main bottleneck of graph min-
ing algorithms. In addition, highly connected vertices generate a
disproportionately large number of embeddings during expansion,
leading to load imbalance. In our experiments, we have observed
TLV to be up to two orders of magnitude slower than TLE.

As Arabesque explores the graph, it generates an exponential
number of embeddings. To reduce the memory required for stor-
ing these embeddings, Arabesque uses a compact data structure
called Overapproximating Directed Acyclic Graph (ODAG) that
compresses the canonical embeddings generated in a BSP step. It
also uses a two-level aggregation technique to speed up aggregation
by pattern.

The full technical details of Arabesque are presented in [15]. In
that paper, we show that Arabesque scales to billions of subgraphs
on hundreds of cores on multiple worker nodes. From a software
engineering perspective, Arabesque is implemented as a library that
can easily be ported to any parallel dataflow execution engine.

We currently have versions of Arabesque that runs on top of Gi-
raph3 and Spark4. Note that the Giraph version does not use the
TLV programming model that Giraph implements. Arabesque uses
Giraph only to deploy a set of workers across multiple machines,
3https://github.com/Qatar-Computing-Research-
Institute/Arabesque
4https://github.com/viniciusvdias/Arabesque

Figure 2: Mining protein structures with Arabesque.

and to have worker communicate to each other in an all-to-all fash-
ion through message exchanges at the boundaries of the BSP steps.
It also relies on Giraph for fault tolerance.

The Spark version of Arabesque, which we use in this demo,
also implements graph exploration in BSP steps, taking advantage
of Spark’s ability to keep results in memory between iterations
through the use of resilient distributed datasets (RDDs). It is a na-
tive implementation on top of Spark, not GraphX [4], although it
interfaces with GraphX for tasks that combine graph mining and
vertex-centric graph processing. Specifically, GraphX can be used
to pre-process the Arabesque input graphs or post-process the out-
put graphs. For additional usability, Arabesque on Spark has a
Jupyter notebook interface5 in addition to the Java interface. Next,
we describe the applications that we use to showcase Arabesque.

3. APPLICATIONS DEMONSTRATED
In this demonstration we will present three applications that use

Arabesque: finding frequent structures in a protein database, find-
ing communities of common interest among buyers from Amazon,
and modeling how users propagate information on Twitter in re-
action to events. The graph data mining algorithms used by the
applications are, respectively, frequent subgraph mining, enumer-
ating cliques, and counting motifs.

3.1 Finding Frequent Structures in Proteins
The aim of this application is to identify and visualize frequently

occurring patterns in the 3D structure of proteins. The input data
for this application is data from the Protein Data Bank (PDB)6,
which is an online repository containing the 3D structure of over
120K proteins.

The structure of a protein can be converted to a graph as fol-
lows. Each protein structure comprises a set of, say n, 3D co-
ordinates, namely (xi, yi, zi), for i = 1, . . . n. Each position or
element i, also called an amino acid i, has a label. Let us denote
ai = (xi, yi, zi), and let li be its amino acid label. We can con-
struct a graph for each protein, with a vertex for each amino acid,
labeled with li. An edge exists between any two amino acids, ai
and aj , if the Euclidean distance between them is below a given
threshold, that is, ||ai−aj ||2 ≤ θ, where θ is the contact threshold
(usually set to 7 angstroms, i.e., 7× 10−10 meters). The graphs for
a set of proteins can be considered as disconnected components in
an input graph to Arabesque.

Frequent subgraphs in these protein graphs represent frequently

5http://jupyter.org
6http://www.rcsb.org/pdb

occurring patterns among the different protein structures. Identify-
ing such frequently occurring patterns is important for many bioin-
formatics applications (e.g., [5, 6, 7, 11]). As a matter of fact, one
of the ways to classify proteins in the PDB database is to group pro-
teins by structure in a hierarchical organization, as in the structural
classification of proteins (SCOP) project7 [3], which uses manu-
ally identified, human-curated structural groupings. A scalable fre-
quent subgraph mining implementation would be extremely help-
ful for bioinformatics applications on the PDB database, and in the
demonstration we show how Arabesque can play this role.

This application, like the other application in this demonstration,
runs in the Jupyter notebook interface of Arabesque (Figure 2). The
steps of the application are (1) extracting a relevant subset of the
PDB database and constructing the input graph, (2) running fre-
quent subgraph mining on the input graph, and (3) visualizing the
frequent subgraphs found by Arabesque.

The goal of the application is to identify frequently occurring
structures in a coherent subset of the PDB database. We use the
SCOP classification to identify such a coherent subset. Thus, the
first step of the application is for the user to choose one node of
the SCOP hierarchy (referred to as a “SCOP key”), and to specify
the threshold θ for adding an edge between two amino acids. The
application uses these user inputs to extract the relevant PDB data
and construct the input graph.

Next, the application runs frequent subgraph mining on
Arabesque. The user controls this step by specifying the required
support and the maximum subgraph size explored. The output of
this step is a set of subgraphs representing frequently occurring
structures in the input protein data.

During the demo, attendees will follow the steps above and vi-
sualize the frequently occurring structures identified by Arabesque.
We use an external tool called UCSF Chimera8 [13] for visualiza-
tion. UCSF Chimera is a popular and powerful visualization tool
that is widely used in the bioinformatics community, and users are
able to take advantage of its full power for visualization.

3.2 Finding Communities on Amazon
This application uses Arabesque to find communities in a co-

purchase graph of the Amazon online shopping site. In particular,
we use the k-clique percolation method [12], which is an estab-
lished algorithm to find communities in a network. The method
starts by identifying all maximal cliques. It then considers two
cliques to be adjacent if they have k−1 common nodes. All cliques
that are adjacent to each other, either directly or transitively, are
considered to be part of the same community.

For this application, we use the Amazon co-purchase graph
of [8]. In this graph, vertices correspond to items on sale, and each
vertex is labeled with one or more categories that the item belongs
to. An edge connects two items that are bought together in the
same order. Therefore, communities represent items that are often
bought together, and it is interesting to examine the categories of
these items.

The application (Figure 3) consists of the following steps:
(1) building the Arabesque input graph, (2) using Arabesque to find
maximal cliques, (3) identifying adjacent cliques, (4) finding con-
nected components/communities, and (5) visualizing some of the
overlapping communities. Participants in the demonstration will be
able to select a set of categories and only include vertices of these
categories and their neighbors in the input graph. Participants will

7https://scop.berkeley.edu
8http://www.rbvi.ucsf.edu/chimera

Figure 3: Finding communities on Amazon.

also be able to change the size k of the cliques used in the clique
percolation method (e.g., Figure 3 uses k = 10).

The visualizations produced in this application show pairs of
communities and the overlap between them. The user can choose
the pairs of communities to show and the categories in these com-
munities. We have observed that communities with a large overlap
usually contain categories that are subjectively similar (e.g., per-
sonal wellness, spirituality, and home care). On the other hand,
communities with a small overlap are more diverse (e.g., biology
and parenting). Demo attendees will be able to explore how the
degree of overlap between communities affects their coherence.

3.3 Reaction to Events on Twitter
This application shows how to use subgraph counting to under-

stand the reaction of social networks to exogenous events. In partic-
ular, we look at Twitter, and analyze the retweet network structure
before and after the occurrence of an event. We demonstrate how
k-profiles, i.e., the counts of all the subgraphs of size k, can detect
the occurrence of an event. The procedure is as follows.

Given a dataset consisting of tweets that span several weeks,
for each week in the dataset where there are more than, say, 500
retweets. Construct a retweet network Gi(V,E) such that the set
of vertices V corresponds to the set of active users in the dataset,
and there is an edge (u, v) ∈ E iff user u retweets user v (for the
purposes of this demo, we ignore the direction of the edge).
K-profiles are a useful generalization of triangle counting. For

k = 3, there are 4 different possible subgraphs, as shown in Fig-
ure 4. For k = 4, there are 11 different ones. By counting the
number of occurrences of each of these subgraph in the retweet net-
work, we can extract a multi-dimensional vector that represents a
fingerprint of the network. For simplicity, we only count connected
subgraphs (e.g., only the last two graphs in Figure 4).

To detect the occurrence of an event, extract the 3- or 4-profile of
each retweet network, corresponding to each week in the dataset,
and then compute the Euclidean distance between consecutive vec-
tors. A spike in the Euclidean distance indicates a significant
change in retweet patterns, which is likely due to a real-world event.
An example of such event would be the spreading of some impor-
tant or controversial news in the media.

In the demo we will use a dataset consisting of several months of
tweets related to an event in April 2016, when the Egyptian govern-
ment announced that control of two islands in the Red Sea will be
ceded to Saudi Arabia. This generated significant change in the net-
work activity on Twitter, which is detected by our application as a
clear peak in the inter-week Euclidean distance between 4-profiles
(Figure 5).

H0 H1 H2 H3

(a)

F0 F1 F2 F3 F4 F5

F6 F7 F8 F9 F10

(b)

Figure 1: (a) The 4 possible non-isomorphic graphs
on 3 vertices used to calculate the 3-profile of a graph
G. The 3-profile counts how many times each Hi

appears in G. (b) The 11 non-isomorphic graphs on
4 vertices used to calculate the 4-profile of a graph.

1.1 Our Contributions
Surprisingly, we show that very limited global informa-

tion is su�cient to calculate all local 4-profiles and that it
can be re-used to calculate all the local 4-profiles in par-
allel. Specifically, we introduce a distributed algorithm to
estimate all the local 4-profiles and the global profile of a
big graph. This restrictive setting does not allow commu-
nication between nonadjacent vertices, a key component of
previous centralized, shared-memory approaches. Our algo-
rithm relies on two novel theoretical results:
Two-hop histograms are su�cient: Our algorithm op-
erates by having each vertex first perform local message-
passing to its neighbors and then solve a novel system of
equations for the local 4-profile. Focusing on a vertex v0,
the first easy step is to calculate its local 3-profile. It can be
shown that the local 3-profile combined with the full two-hop
connectivity information is su�cient to estimate the local 4-
profile for each vertex v0. This is not immediately obvious,
since naively counting the 3-path (an automorphism of F4)
would require 3-hop connectivity information.

However, we show that less information needs to be com-
municated. Specifically, we prove that the triangle list com-
bined with what we call the two-hop histogram is su�cient:
for each vertex vi that is 2-hops from v0, we only need the
number of distinct paths connecting it to v0, not the full two
hop neighborhood. If the two-hop neighborhood is a tree,
this amounts to no compression. However, for real graphs
the two-hop histogram saves a factor of 3x to 5x in com-
munication in our experiments. This enables (Section 4) an
even more significant running time speedup of 5 � 10 times
on several distributed experiments using 12 � 20 compute
nodes.
Profile Sparsification: One idea that originated from tri-
angle counting [27, 28] is to first perform random subsam-
pling of edges to create a sparse graph called a triangle spar-
sifier. Then count the number of triangles in the sparse
graph and rescale appropriately to estimate the number in
the original graph. The main challenge is proving that the
randomly sparsified graph has a number of triangles su�-

v1

v0 v2 v4

v3

Figure 2: An example for local profiles. The
global 3-profile is [0, 3, 6, 1]. The global 4-profile is
[0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0]. The local 4-profile of v0 is
[0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0]. The first 1 in the profile cor-
responds to the subgraph F4. Notice that v0 partic-
ipates in only one F4, jointly with vertices v2, v3, v4.

ciently concentrated around its expectation. Recently this
idea was generalized to 3-profile sparsifiers in [7], with con-
centration results for estimating the full 3-profile. These pa-
pers rely on Kim-Vu polynomial concentration techniques [16]
that scale well in theory, but typically the estimated errors
are orders of magnitude larger than the measured quantities
for reasonable graph sizes. In this paper, we introduce novel
concentration bounds for global k-profile sparsifiers that use
a novel information theoretic technique called read-k func-
tions [11]. Our read-k bounds allow usable concentration
inequalities for sparsification factors of approximately 0.4 or
higher (Section 4.1). Note that removing half the edges of
the graph does not accelerate the running time by a factor
of 2, but rather by a factor of nearly 8, as shown in our
experiments.
System implementation and evaluation: We imple-
mented our algorithm using GraphLab PowerGraph [12] and
tested it in multicore and distributed systems scaling up to
640 cores. The benefits of two-hop histogram compression
and sparsification allowed us to compute the global and lo-
cal 4-profiles of very large graphs. For example, for a graph
with 5 million vertices and 40 million edges we estimated
the global 4-profile in less than 10 seconds. For computing
all local 4-profiles on this graph, the previous state of the
art [13] required 1200 seconds while our distributed algo-
rithm required less than 100 seconds.

1.2 Related Work
The problem of counting triangles in a graph has been

addressed in distributed [24] and streaming [4] settings, and
this is a standard analytics task for graph engines [23]. The
Doulion algorithm [27] estimates a graph’s triangle count via
simple edge subsampling. Other recent work analyzes more
complex sampling schemes [25, 6] and extends to approx-
imately counting certain 4-subgraphs [1, 15]. Mapreduce
algorithms for clique counting were introduced by Finocchi
et al. [10]. Our approach is similar to that of [7], which
calculates all 3-subgraphs and a subset of 4-subgraphs dis-
tributedly using edge pivots. In this work we introduce the
2-hop histogram to compute all 4-subgraphs.

Concentration inequalities for the number of triangles in a
random graph have been studied extensively. The standard
method of martingale bounded di↵erences (McDiarmid’s in-
equality) is known to yield weak concentrations around the
mean for this problem. The breakthrough work of Kim
and Vu [16] provides superior asymptotic bounds by ana-
lyzing the concentration of multivariate polynomials. This

484

Figure 4: The 4 possible graphs on 3 vertices.

Figure 5: Detecting events on Twitter with Arabesque.

4. CONCLUSION
Arabesque is a scalable and efficient parallel system for graph

data mining. It enables users to solve problems not easily solvable
by other systems. This demonstration will present the user/pro-
grammer experience with Arabesque, focusing on complete appli-
cations that showcase different capabilities of the system.

References
[1] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. EmptyHeaded: A relational

engine for graph processing. In SIGMOD, 2016.
[2] N. Bronson et al. TAO: Facebook’s distributed data store for the social graph. In

USENIX Annual Technical Conference (ATC), 2013.
[3] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. SCOPe: Structural Classification

of Proteins – extended, integrating SCOP and ASTRAL data and classification
of new structures. Nucleic Acids Research, 42(D1), 2014.

[4] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
GraphX: Graph processing in a distributed dataflow framework. In OSDI, 2014.

[5] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki. Mining protein contact
maps. In BIOKDD, 2002.

[6] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha.
Mining protein family specific residue packing patterns from protein structure
graphs. In Proc. Int. Conf. on Resaerch in Computational Molecular Biology,
2004.

[7] M. Jambon, A. Imberty, G. Deléage, and C. Geourjon. A new bioinformatic
approach to detect common 3D sites in protein structures. Proteins: Structure,
Function, and Bioinformatics, 52(2), 2003.

[8] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral market-
ing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A framework for machine learning in the cloud. PVLDB,
5(8), 2012.

[10] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD,
2010.

[11] P. Meysman, C. Zhou, B. Cule, B. Goethals, and K. Laukens. Mining the entire
protein databank for frequent spatially cohesive amino acid patterns. BioData
Mining, 8, 2015.

[12] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping com-
munity structure of complex networks in nature and society. Nature, 435(7043),
2005.

[13] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C.
Meng, and T. E. Ferrin. UCSF Chimera – A visualization system for exploratory
research and analysis. J. Comp. Chemistry, 25(13), 2004.

[14] A. Quamar, A. Deshpande, and J. J. Lin. NScale: Neighborhood-centric large-
scale graph analytics in the cloud. VLDB J., 25(2), 2016.

[15] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga. Arabesque: A system for distributed graph mining. In SOSP,
2015.

[16] M. Zaharia et al. Apache Spark: A unified engine for big data processing. Comm.
ACM, 59(11), 2016.

	Introduction
	Overview of Arabesque
	Programming Model
	Implementation

	Applications Demonstrated
	Finding Frequent Structures in Proteins
	Finding Communities on Amazon
	Reaction to Events on Twitter

	Conclusion

