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1 Introduction

This chapter focuses on sequence data in which each example is represented as a
sequence of “events”, where each event might be described by a set of predicates,
i.e., we are dealing with categorical sequential domains. Examples of sequence
data include text, DNA sequences, web usage data, multi-player games, plan
execution traces, and so on.

The sequence mining task is to discover a set of attributes, shared across time
among a large number of objects in a given database. For example, consider the
sales database of a bookstore, where the objects represent customers and the
attributes represent authors or books. Let’s say that the database records the
books bought by each customer over a period of time. The discovered patterns
are the sequences of books most frequently bought by the customers. An example
could be that, “70% of the people who buy Jane Austen’s Pride and Prejudice
also buy Emma within a month.” Stores can use these patterns for promotions,
shelf placement, etc. Consider another example of a web access database at a
popular site, where an object is a web user and an attribute is a web page.
The discovered patterns are the sequences of most frequently accessed pages at
that site. This kind of information can be used to restructure the web-site, or
to dynamically insert relevant links in web pages based on user access patterns.
Other domains where sequence mining has been applied include identifying plan
failures (Zaki et al., 1998), selecting good features of classification (Lesh et al.,
2000), finding network alarm patterns (Hatonen et al., 1996), and so on.

The task of discovering all frequent sequences in large databases is quite
challenging. The search space is extremely large. For example, with m attributes
there are O(mk) potentially frequent sequences of length k. With millions of
objects in the database the problem of I/O minimization becomes paramount.
However, most current algorithms are iterative in nature, requiring as many full
database scans as the longest frequent sequence; clearly a very expensive process.

In this chapter we present SPADE (Sequential PAttern Discovery using
Equivalence classes), a new algorithm for discovering the set of all frequent
sequences. The key features of our approach are as follows: 1) We use a vertical
id-list database format, where we associate with each sequence a list of objects in
which it occurs, along with the time-stamps. We show that all frequent sequences
can be enumerated via simple temporal joins (or intersections) on id-lists. 2) We



use a lattice-theoretic approach to decompose the original search space (lattice)
into smaller pieces (sub-lattices) which can be processed independently in main-
memory. Our approach requires a few (usually three) database scans, or only a
single scan with some pre-processed information, thus minimizing the I/O costs.
3) We decouple the problem decomposition from the pattern search. We propose
two different search strategies for enumerating the frequent sequences within
each sub-lattice: breadth-first and depth-first search.

SPADE not only minimizes I/O costs by reducing database scans, but also
minimizes computational costs by using efficient search schemes. The vertical
id-list based approach is also insensitive to data-skew. An extensive set of exper-
iments shows that SPADE outperforms previous approaches by a factor of two,
and by an order of magnitude if we have some additional off-line information.
Furthermore, SPADE scales linearly in the database size, and a number of other
database parameters.

We also discuss how sequence mining can be applied in practice. We show that
in complicated real-world applications, like predicting plan failures, sequence
mining can produce an overwhelming number of frequent patterns. We discuss
how one can identify the most interesting patterns using pruning strategies in
a post-processing step. Our experiments show that our approach improves the
plan success rate from 82% to 98%, while less sophisticated methods for choosing
which part of the plan to repair were only able to achieve a maximum of 85%
success rate. We also showed that the mined patterns can be used to build
execution monitors which predict failures in a plan before they occur. We were
able to produce monitors with 100% precision, that signal 90% of all the failures
that occur.

As another application, we describe how to use sequence mining for feature
selection. The input is a set of labeled training sequences, and the output is
a function which maps from a new sequence to a label. In other words we are
interested in selecting (or constructing) features for sequence classification. In
order to generate this function, our algorithm first uses sequence mining on a
portion of the training data for discovering frequent and distinctive sequences
and then uses these sequences as features to feed into a classification algorithm
(Winnow or Naive Bayes) to generate a classifier from the remainder of the data.
Experiments show that the new features improve classification accuracy by more
then 20% on our test datasets.

The rest of the chapter is organized as follows: In Section 2 we describe the
sequence discovery problem and look at related work in Section 3. In Section 4
we develop our lattice-based approach for problem decomposition, and for pat-
tern search. Section 5 describes our new algorithm. An experimental study is
presented in Section 6. Section 7 discusses how the sequence mining can be used
in a real planning domain, while Section 8 describes its use in feature selection.
Finally, we conclude in Section 9.



2 Problem Statement

The problem of mining sequential patterns can be stated as follows: Let I =
{i1, i2, · · · , im} be a set of m distinct items comprising the alphabet. An event is
a non-empty unordered collection of items (without loss of generality, we assume
that items of an event are sorted in lexicographic order). A sequence is an ordered
list of events. An event is denoted as (i1i2 · · · ik), where ij is an item. A sequence
α is denoted as (α1 → α2 → · · · → αq), where αi is an event. A sequence with
k items (k =

∑

j |αj |) is called a k-sequence. For example, (B → AC) is a
3-sequence.

For a sequence α, if the event αi occurs before αj , we denote it as αi < αj .
We say α is a subsequence of another sequence β, denoted as α � β, if there
exists a one-to-one order-preserving function f that maps events in α to events
in β, that is, 1) αi ⊆ f(αi), and 2) if αi < αj then f(αi) < f(αj). For example
the sequence (B → AC) is a subsequence of (AB → E → ACD), since B ⊆ AB
and AC ⊆ ACD, and the order of events is preserved. On the other hand the
sequence (AB → E) is not a subsequence of (ABE), and vice versa.

The database D for sequence mining consists of a collection of input-sequences.
Each input-sequence in the database has an unique identifier called sid, and each
event in a given input-sequence also has a unique identifier called eid. We assume
that no sequence has more than one event with the same time-stamp, so that
we can use the time-stamp as the event identifier.

An input-sequence C is said to contain another sequence α, if α � C, i.e.,
if α is a subsequence of the input-sequence C. The support or frequency of a
sequence, denoted σ(α,D), is the the total number of input-sequences in the
database D that contain α. Given a user-specified threshold called the minimum
support (denoted min sup), we say that a sequence is frequent if occurs more
than min sup times. The set of frequent k-sequences is denoted as Fk. A frequent
sequence is maximal if it is not a subsequence of any other frequent sequence.

Given a database D of input-sequences and min sup, the problem of mining
sequential patterns is to find all frequent sequences in the database. For example,
consider the input database shown in Figure 1. The database has eight items (A
to H), four input-sequences, and ten events in all. The figure also shows all the
frequent sequences with a minimum support of 50% (i.e., a sequence must occur
in at least 2 input-sequences). In this example we have a two maximal frequent
sequences, ABF and D → BF → A.

Some comments are in order to see the generality of our problem formulation:
1) We discover sequences of subsets of items, and not just single item sequences.
For example, the set BF in (D → BF → A). 2) We discover sequences with
arbitrary gaps among events, and not just the consecutive subsequences. For ex-
ample, the sequence (D → BF → A) is a subsequence of input-sequence 1, even
though there is an intervening event between D and BF . The sequence symbol
→ simply denotes a happens-after relationship. 3) Our formulation is general
enough to encompass almost any categorical sequential domain. For example,
if the input-sequences are DNA strings, then an event consists of a single item
(one of A,C,G, T ). If input-sequences represent text documents, then each word
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Fig. 1. Original Input-Sequence Database

(along with any other attributes of that word, e.g., noun, position, etc.) would
comprise an event. Even continuous domains can be represented after a suitable
discretization step.

Once the frequent sequences are known, they can be used to obtain rules
that describe the relationship between different sequence items. Let α and β
be two sequences. The confidence of a sequence rule α ⇒ β is the conditional
probability that sequence β occurs, given that α occurs in an input-sequence,
given as

Conf(α ⇒ β,D) =
σ(α → β,D)

σ(α,D)
.

Given a user-specified threshold called the minimum confidence (denoted
min conf), we say that a sequence rule is confident if Conf(α,D) ≥ min conf .
For example, the rule (D → BF ) ⇒ (D → BF → A) has 100% confidence.

3 Related Work

The problem of mining sequential patterns was introduced in (Agrawal and
Srikant, 1995). They also presented three algorithms for solving this problem.
The AprioriAll algorithm was shown to perform better than the other two ap-
proaches. In subsequent work (Srikant and Agrawal, 1996), the same authors
proposed the GSP algorithm that outperformed AprioriAll by up to 20 times.
They also introduced maximum gap, minimum gap, and sliding window con-
straints on the discovered sequences.

We use GSP as a base against which we compare SPADE, as it is one of
the best previous algorithms. GSP makes multiple passes over the database.
In the first pass, all single items (1-sequences) are counted. From the frequent



items a set of candidate 2-sequences are formed. Another pass is made to gather
their support. The frequent 2-sequences are used to generate the candidate 3-
sequences. A pruning phase eliminates any sequence at least one of whose subse-
quences is not frequent. For fast counting, the candidate sequences are stored in
a hash-tree. This iterative process is repeated until no more frequent sequences
are found. For more details on the specific mechanisms for constructing and
searching hash-trees, please refer to (Srikant and Agrawal, 1996).

Independently, (Mannila et al., 1995) proposed mining for frequent episodes,
which are essentially frequent sequences in a single long input-sequence (typi-
cally, with single items events, though they can handle set events). However our
formulation is geared towards finding frequent sequences across many different
input-sequences. They further extended their framework in (Mannila and Toivo-
nen, 1996) to discover generalized episodes, which allows one to express arbitrary
unary conditions on individual sequence events, or binary conditions on event
pairs. The MEDD and MSDD algorithms (Oates et al., 1997) discover patterns
in multiple event sequences; they explore the rule space directly instead of the
sequence space.

Sequence discovery bears similarity with association discovery (Agrawal et al.,
1996; Zaki et al., 1997; Zaki, 1999); it can be thought of as association min-
ing over a temporal database. While association rules discover only intra-event
patterns (called itemsets), we now also have to discover inter-event patterns
(sequences). Further, the sequence search space is much more complex and chal-
lenging than the itemset space; the set of all frequent sequences is a superset of
the set of frequent itemsets.

4 Sequence Enumeration: Lattice-based Approach

Theorem 1. Given a set I of items, the ordered set S of all possible sequences
on the items, induced by the subsequence relation �, defines a hyper-lattice with
the following two operations: the join, denoted

∨

, of a set of sequences Ai ∈ S
is the set of minimal common supersequences, and the meet, denoted

∧

, of a set
of sequences is the set of maximal common subsequences. More formally,

Join:
∨

{Ai} = {α | Ai � α and Ai � β with β � α ⇒ β = α}

Meet:
∧

{Ai} = {α | α � Ai and β � Ai with α � β ⇒ β = α}

Note that in a regular lattice the join and meet refers to the unique minimum
upper bound and maximum lower bound. In a hyper-lattice the join and meet
need not produce a unique element; instead the result can be a set of minimal
upper bounds and maximal lower bounds. In the rest of this chapter we will
usually refer to the sequence hyper-lattice as a lattice, since the sequence context
is understood.

Figure 2 shows the sequence lattice induced by the maximal frequent se-
quences ABF and D → BF → A, for our example database. The bottom or
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Fig. 2. Lattice Induced by Maximal Frequent Sequences ABF and D → BF → A

least element, denoted ⊥, of the lattice is ⊥ = {}, and the set of atoms (ele-
ments directly connected to the bottom element), denoted A, is given by the
frequent items A = {A,B,D, F}. To see why the set of all sequences forms a
hyper-lattice, consider the join of A and B; A ∨ B = {(AB), (B → A)}. As
we can see the join produces two minimal upper bounds (i.e., minimal common
super-sequences). Similarly, the meet of two (or more) sequences can produce a
set of maximal lower bounds. For example, (AB)∧ (B → A) = {(A), (B)}, both
of which are the maximal common sub-sequences.

In the abstract the sequence lattice can be potentially infinite, since we can
have arbitrarily long sequences. Fortunately, in all practical cases not only is
the lattice bounded (the longest sequence can have C · T items, where C is the
maximum number of events per input-sequence and T is the maximum event
size), but the set of frequent sequences is also very sparse (depending on the
min sup value). For our example, we have C = 4 and T = 4, thus the longest
sequence can have at most 16 items.

The set of all frequent sequences is closed under the meet operation, i.e.,
if X and Y are frequent sequences, then the meet X ∧ Y (maximal common
subsequence) is also frequent. However, it is not closed under joins since X and
Y being frequent, doesn’t imply that X ∨ Y (minimal common supersequence)
is frequent. The closure under meet leads to the well known observation on
sequence frequency:

Lemma 1. All subsequences of a frequent sequence are frequent.

What the lemma says is that we need to focus only on those sequences whose
subsequences are frequent. This leads to a very powerful pruning strategy, where
we eliminate all sequences, at least one of whose subsequences is infrequent. This
property has been leveraged in many sequence mining algorithms (Srikant and
Agrawal, 1996; Mannila et al., 1995; Oates et al., 1997).



4.1 Support Counting

Let’s associate with each atom X in the sequence lattice its id-list, denoted
L(X), which is a list of all input-sequence (sid) and event identifier (eid) pairs
containing the atom. Figure 3 shows the id-lists for the atoms in our example
database. For example consider the atom D. In our original database in Figure 1,
we see that D occurs in the following input-sequence and event identifier pairs
{(1, 10), (1, 25), (4, 10)}. This forms the id-list for item D.
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Lemma 2. For any X ∈ S, let J = {Y ∈ A(S)|Y � X}. Then X =
∨

Y ∈J Y ,
and σ(X) = |

⋂

Y ∈J L(Y )|, where
⋂

denotes a temporal join of the id-lists, and
|L(Z)|, called the cardinality of L(Z), denotes the number of distinct sid values
in the id-list for a sequence Z.

The above lemma states that any sequence in S can be obtained as a temporal
join of some atoms of the lattice, and the support of the sequence can be obtained
by joining the id-list of the atoms. Let’s say we wish to compute the support
of sequence (D → BF → A). Here the set J = {D,B,F,A}. We can perform
temporal joins one atom at a time to obtain the final id-list, as shown in Figure 4.



We start with the id-list for atom D and join it with that of B. Since the symbol
→ represents a temporal relationship, we find all occurrences of B after a D in
an input-sequence, and store the corresponding time-stamps or eids, to obtain
L(D → B). We next join the id-list of (D → B) with that of atom F , but
this time the relationship between B and F is a non-temporal one, which we
call an equality join, since they must occur at the same time. We thus find all
occurrences of B and F with the same eid and store them in the id-list for
(D → BF ). Finally, a temporal join with L(A) completes the process.

Space-Efficient Joins If we naively produce the id-lists (as shown in Figure 4)
by storing the eids (or time-stamps) for all items in a sequence, we waste too
much space. Using the lemma below, which states that we can always generate
a sequence by joining its lexicographically first two k−1 length subsequences, it
is possible to reduce the space requirements, by storing only (sid,eid) pairs (i.e.,
only two columns) for any sequence, no matter how many items it has.

Lemma 3. For any sequence X ∈ S, let X1 and X2 denote the lexicographically
first two (k − 1)-subsequences of X. Then X = X1 ∨ X2 and σ(X) = |L(X1) ∩
L(X2)|.

The reason why this lemma allows space reduction is because the first two
k− 1 length sequences, X1 and X2, of a sequence X, share a k− 2 length prefix.
Since they share the same prefix, it follows that the eids for the items in the
prefix must be the same, and the only difference between X1 and X2 is in the
eids of their last items. Thus it suffices to discard all eids for the prefix, and to
keep track of only the eids for the last item of a sequence.

Figure 5 illustrates how the idlist for (D → BF → A) can be obtained using
the space-efficient idlist joins. Let X = (D → BF → A), then we must perform
a temporal join on its first two subsequences X1 = (D → BF ) (obtained by
dropping the last item from X), and X2 = D → B → A (obtained by dropping
the second to last item from X). Then, recursively, to obtain the id-list for
(D → BF ) we must perform a equality join on the id-list of (D → B) and
(D → F ). For (D → B → A) we must perform a temporal join on L(D → B)
and L(D → A). Finally, the 2-sequences are obtained by joining the atoms
directly. Figure 5 shows the complete process, starting with the initial vertical
database of the id-list for each atom. As we can see, at each point only (sid,eid)
pairs are stored in the id-lists (i.e., only the eid for the last item of a sequence
are stored). The exact details of the temporal joins are provided in Section 5.3,
when we discuss the implementation of SPADE.

Lemma 4. Let X and Y be two sequences , with X � Y . Then |L(X)| ≥ |L(Y )|.

This lemma says that if the sequence X is a subsequence of Y , then the car-
dinality of the id-list of Y (i.e., its support) must be equal to or less than the
cardinality of the id-list of X. A practical and important consequence of this
lemma is that the cardinalities of intermediate id-lists shrink as we move up the
lattice. This results in very fast joins and support counting.
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4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory, we could enumerate all the frequent sequences
by traversing the lattice, and performing temporal joins to obtain sequence sup-
ports. In practice, however, we only have a limited amount of main-memory, and
all the intermediate id-lists will not fit in memory. This brings up a natural ques-
tion: can we decompose the original lattice into smaller pieces such that each
piece can be solved independently in main-memory. We address this question
below.

Define a function p : (S, N) → S where S is the set of sequences, N is the set
of non-negative integers, and p(X, k) = X[1 : k]. In other words, p(X, k) returns
the k length prefix of X. Define an equivalence relation θk on the lattice S as
follows: ∀X,Y ∈ S, we say that X is related to Y under θk, denoted as X ≡θk

Y
if and only if p(X, k) = p(Y, k). That is, two sequences are in the same class if
they share a common k length prefix.

Figure 6 shows the partition induced by the equivalence relation θ1 on S,
where we collapse all sequences with a common item prefix into an equivalence
class. The resulting set of equivalence classes is {[A], [B], [D], [F ]}. We call these
first level classes as the parent classes.

Lemma 5. Each equivalence class [X]θk
induced by the equivalence relation θk

is a sub-(hyper)lattice of S.
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Each [X]θ1
is thus a hyper-lattice with its own set of atoms. For example,

the atoms of [D]θ1
are {D → A,D → B,D → F}, and the bottom element is

⊥ = D. By the application of Corollary 3, we can generate the supports of all
the sequences in each class (sub-lattice) using temporal joins. If there is enough
main-memory to hold temporary id-lists for each class, then we can solve each
[X]θ1

independently.

In practice we have found that the one level decomposition induced by θ1

is sufficient. However, in some cases, a class may still be too large to be solved
in main-memory. In this scenario, we apply recursive class decomposition. Let’s
assume that [D] is too large to fit in main-memory. Since [D] is itself a lattice,
it can be decomposed using the relation θ2. Figure 6 shows the classes induced
by applying θ2 on [D] (after applying θ1 on S). Each of the resulting six parent
classes, [A], [B], [D → A], [D → B], [D → F ], and [F ], can be processed
independently to generate frequent sequences from each class. Thus depending on
the amount of main-memory available, we can recursively partition large classes
into smaller ones, until each class is small enough to be solved independently in
main-memory.

5 SPADE: Implementation Issues

In this section we describe the implementation of SPADE. Figure 7 shows the
high level structure of the algorithm. The main steps include the computation of
the frequent 1-sequences and 2-sequences, the decomposition into prefix-based
parent equivalence classes, and the enumeration of all other frequent sequences
via BFS or DFS search within each class. We will now describe each step in some
more detail.



SPADE (min sup,D):
F1 = { frequent items or 1-sequences };
F2 = { frequent 2-sequences };
E = { equivalence classes [X]θ1

};
for all [X] ∈ E do Enumerate-Frequent-Seq([X]);

Fig. 7. The SPADE Algorithm

5.1 Computing Frequent 1-Sequences and 2-Sequences

Most of the current sequence mining algorithms (Agrawal and Srikant, 1995;
Srikant and Agrawal, 1996) assume a horizontal database layout such as the one
shown in Figure 1. In the horizontal format the database consists of a set of
input-sequences. Each input-sequence has a set of events, along with the items
contained in the event. In contrast our algorithm uses a vertical database format,
where we maintain a disk-based id-list for each item, as shown in Figure 3. Each
entry of the id-list is a (sid, eid) pair where the item occurs. This enables us to
check support via simple id-list joins.

Computing F1: Given the vertical id-list database, all frequent 1-sequences can
be computed in a single database scan. For each database item, we read its id-list
from the disk into memory. We then scan the id-list, incrementing the support
for each new sid encountered.

sid (item, eid) pairs

1 (A 15) (A 20) (A 25) (B 15) (B 20) (C 10) (C 15) (C 25)
(D 10) (D 25) (F 20) (F 25)

2 (A 15) (B 15) (E 20) (F 15)

3 (A 10) (B 10) (F 10)

4 (A 25) (B 20) (D 10) (F 20) (G 10) (G 25) (H 10) (H 25)

Fig. 8. Vertical-to-Horizontal Database Recovery

Computing F2: Let N = |F1| be the number of frequent items, and A the av-
erage id-list size in bytes. A naive implementation for computing the frequent
2-sequences requires

(

N
2

)

id-list joins for all pairs of items. The amount of data
read is A · N · (N − 1)/2, which corresponds to around N/2 data scans. This is
clearly inefficient. Instead of the naive method we propose two alternate solu-
tions:

1. Use a preprocessing step to gather the counts of all 2-sequences above a
user specified lower bound. Since this information is invariant, it has to be
computed once, and the cost can be amortized over the number of times the
data is mined.

2. Perform a vertical-to-horizontal transformation on-the-fly. This can be done
quite easily, with very little overhead. For each item i, we scan its id-list



into memory. For each (sid, eid) pair, say (s, e) in L(i), we insert (i, e) in the
list for input-sequence s. For example, consider the id-list for item A, shown
in Figure 3. We scan the first pair (1, 15), and then insert (A, 15) in the
list for input-sequence 1. Figure 8 shows the complete horizontal database
recovered from the vertical item id-lists. Computing F2 from the recovered
horizontal database is straight-forward. We form a list of all 2-sequences in
the list for each sid, and update counts in a 2-dimensional array indexed by
the frequent items.

5.2 Enumerating Frequent Sequences of a Class

Figure 9 shows the pseudo-code for the breadth-first and depth-first search. The
input to the procedure is a set of atoms of a sub-lattice S, along with their
id-lists. Frequent sequences are generated by joining the id-lists of all pairs of
atoms (including a self-join) and checking the cardinality of the resulting id-list
against min sup.

Enumerate-Frequent-Seq(S):
for all atoms Ai ∈ S do

Ti = ∅;
for all atoms Aj ∈ S, with j ≥ i do

R = Ai ∨ Aj ;
L(R) = L(Ai) ∩ L(Aj);
if σ(R) ≥ min sup then

Ti = Ti ∪ {R}; F|R| = F|R| ∪ {R};
end
if (Depth-First-Search) then Enumerate-Frequent-Seq(Ti);

end
if (Breadth-First-Search) then

for all Ti 6= ∅ do Enumerate-Frequent-Seq(Ti);

Fig. 9. Pseudo-code for Breadth-First and Depth-First Search

SPADE supports both breadth-first (BFS) and depth-first (DFS) search. In
BFS we process all the child classes at a level before moving on to the next level,
while in DFS, we completely solve all child equivalence classes along one path
before moving on to the next path. DFS also requires less main-memory than
BFS. DFS needs only to keep the intermediate id-lists for two consecutive classes
along a single path, while BFS must keep track of id-lists for all the classes in
two consecutive levels. Consequently, when the number of frequent sequences is
very large, for example in dense domains or in cases where the min sup value
is very low, DFS may be the only feasible approach, since BFS can run out of
virtual memory.

The sequences found to be frequent at the current level form the atoms of
classes for the next level. This recursive process is repeated until all frequent
sequences have been enumerated. In terms of memory management it is easy to



see that we need memory to store intermediate id-lists for at most two consec-
utive levels. The depth-first search requires memory for two classes on the two
levels. The breadth-first search requires memory of all the classes on the two
levels. Once all the frequent sequences for the next level have been generated,
the sequences at the current level can be deleted.

5.3 Temporal Id-List Join

We now describe how we perform the id-list joins for two sequences. Consider
an equivalence class [B → A] with the atom set {B → AB,B → AD,B → A →
A,B → A → D,B → A → F}. If we let P stand for the prefix B → A, then we
can rewrite the class to get [P ] = {PB,PD,P → A,P → D,P → F}. One can
observe the class has two kinds of atoms: the event atoms {PB,PD}, and the
sequence atoms {P → A,P → D,P → F}. We assume without loss of generality
that the event atoms of a class always precede the sequence atoms. To extend the
class it is sufficient to join the id-lists of all pairs of atoms. However, depending on
the atom pairs being joined, there can be upto three possible resulting frequent
sequences (these are the three possible minimal common super-sequences):

1. Event Atom with Event Atom: If we are joining PB with PD, then the
only possible outcome is new event atom PBD.

2. Event Atom with Sequence Atom: If we are joining PB with P → A,
then the only possible outcome is new sequence atom PB → A.

3. Sequence Atom with Sequence Atom: If we are joining P → A with
P → F , then there are three possible outcomes: a new event atom P → AF ,
and two new sequence atoms P → A → F and P → F → A. A special
case arises when we join P → A with itself, which can produce only the new
sequence atom P → A → A.

We now describe how the actual id-list join is performed. Consider Figure 10,
which shows the hypothetical id-lists for the sequence atoms P → A and P → F .
To compute the new id-list for the resulting event atom P → AF , we simply need
to check for equality of (sid,eid) pairs. In our example, the only matching pairs
are {(8, 30), (8, 50), (8, 80)}. This forms the id-list for P → AF . To compute the
id-list for the new sequence atom P → A → F , we need to check for a temporal
relationship, i.e., for a given pair (s, t1) in L(P → A), we check whether there
exists a pair (s, t2) in L(P → F ) with the same sid s, but with t2 > t1. If this is
true, it means that the item F follows the item A for input-sequence s. In other
words, the input-sequence s contains the pattern P → A → F , and the pair
(s, t2) is added to the pattern’s id-list. Finally, the id-list for P → F → A can be
obtained in a similar manner by reversing the roles of P → A and P → F . The
final id-lists for the three new sequences are shown in Figure 10. Since we join
only sequences within a class, which have the same prefix (whose items have the
same eid or time-stamp), we need only to keep track of the last item’s eid for
determining the equality and temporal relationships. As a further optimization,
we generate the id-lists of all the three possible new sequences in just one join.
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6 Experimental Results

In this section we study the performance of SPADE by varying different database
parameters and by comparing it with the GSP algorithm. GSP was implemented
as described in (Srikant and Agrawal, 1996). For SPADE results are shown only
for the BFS search. Experiments were performed on a 100MHz MIPS processor
with 256MB main memory running IRIX 6.2. The data was stored on a non-local
2GB disk.

Dataset C T S I D Size (MB)

C10-T2.5-S4-I1.25-D(100K-1000K) 10 2.5 4 1.25 100,000 18.4-184.0
C10-T5-S4-I2.5-D200K 10 5 4 2.5 200,000 54.3
C20-T2.5-S4-I2.5-D200K 20 2.5 4 2.5 200,000 66.5
C20-T2.5-S8-I1.25-D200K 20 2.5 8 1.25 200,000 76.4

Fig. 11. Synthetic Datasets

Synthetic Datasets The synthetic datasets are the same as those used in (Srikant
and Agrawal, 1996), albeit with twice as many input-sequences. We used the
publicly available dataset generation code from the IBM Quest data mining
project (IBM, ). These datasets mimic real-world transactions, where people buy
a sequence of sets of items. Some customers may buy only some items from the
sequences, or they may buy items from multiple sequences. The input-sequence
size and event size are clustered around a mean and a few of them may have



many elements. The datasets are generated using the following process. First
NI maximal events of average size I are generated by choosing from N items.
Then NS maximal sequences of average size S are created by assigning events
from NI to each sequence. Next a customer (or input-sequence) of average C
transactions (or events) is created, and sequences in NS are assigned to different
customer elements, respecting the average transaction size of T . The generation
stops when D input-sequences have been generated. Like (Srikant and Agrawal,
1996) we set NS = 5000, NI = 25000 and N = 10000. Figure 11 shows the
datasets with their parameter settings. We refer the reader to (Agrawal and
Srikant, 1995) for additional details on the dataset generation.
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Plan Dataset This real dataset was obtained from a planning domain. The input
consists of a database of plans for evacuating people from one city to another.
Each plan has a unique identifier, and a sequence of actions or events. Each event
is composed of several different attributes including the event time, the unique
event identifier, the action name, the outcome of the event, and a set of additional
parameters specifying the weather condition, vehicle type, origin and destination
city, cargo type, etc. Some example plans are shown in Figure 12. Each plan
represents an input-sequence (with sid = PlanId). Each distinct attribute and
value pair is an item. For example, Action=Move, Action=Load, etc., are all
distinct items. A set of items forms an event (with eid = Time). For example,
the second row of the first plan corresponds to the event (84, Load, Success,
Exodus, People7, Heli1).

The data mining goal is to identify the causes of plan failures. Each plan is
tagged Failure or Success depending on whether or not it achieved its goal. We
mine only the dataset of bad plans, which has 77 items, 202071 plans (input-
sequences), and 829236 events in all. The average plan length is 4.1, and the
average event length is 7.6.



6.1 Comparison of SPADE with GSP

Figure 13 compares SPADE with GSP, on different synthetic and the plan
datasets. Each graph shows the results as the minimum support is changed from
1% to 0.25%. Two sets of experiments are reported for each value of support.
The bar labeled SPADE corresponds to the case where we computed F2 via
the vertical-to-horizontal transformation method described in Section 5.1. The
times for GSP and SPADE include the cost of computing F2. The bars labeled
SPADE-F2 and GSP-F2 correspond to the case where F2 was computed in a
pre-processing step, and the times shown don’t include the pre-processing cost.
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Fig. 13. Performance Comparison: Synthetic and Plan Datasets

The figures clearly indicate that the performance gap between the two algo-
rithms increases with decreasing minimum support. SPADE is about twice as
fast as GSP at lower values of support. In addition we see that SPADE-F2 out-
performs GSP-F2 by an order of magnitude in most cases. Another conclusion
that can be drawn from the SPADE-F2 and GSP-F2 comparison is that nearly
all the benefit of SPADE comes from the improvement in the running time after



the F2 pass since both algorithms spend roughly the same time in computing
F2. Between F3 and Fk, SPADE outperforms GSP anywhere from a factor of
three to an order of magnitude.
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6.2 Scaleup

We study how SPADE performs with increasing number of input-sequences.
Figure 14 shows how SPADE scales up as the number of input-sequences is
increased ten-fold, from 0.1 million to 1 million (the number of events is increased
from 1 million to 10 million, respectively). All the experiments were performed on
the C10-T2.5-S4-I1.25 dataset with different minimum support levels ranging
from 0.5% to 0.1%. The execution times are normalized with respect to the
time for the 0.1 million input-sequence dataset. It can be observed that SPADE
scales almost linearly. SPADE also scales linearly in the number of events per
input-sequence, event size and the size of potential maximal frequent events and
sequences (Zaki, 1998).

7 Application I: Predicting Plan Failures

We saw in the last section that SPADE is an efficient and scalable method
for mining frequent sequences. However, the mining process rarely ends at this
stage. The more important aspect is how to take the results of mining and use
them effectively within the target domain. In this section we briefly describe our
experiences in applying sequence mining in a planning domain to predict failures
before they happen, and to improve the plans.

Using SPADE to find the frequent sequences we developed a system called
PlanMine (Zaki et al., 1998), which has been integrated into two applications
in planning: the IMPROVE algorithm for improving large, probabilistic plans
(Lesh et al., 1998), and plan monitoring.



IMPROVE automatically modifies a given plan so that it has a higher prob-
ability of achieving its goal. IMPROVE runs PlanMine on the execution traces
of the given plan to pinpoint defects in the plan that most often lead to plan
failure. It then applies qualitative reasoning and plan adaptation algorithms to
modify the plan to correct the defects detected by PlanMine.

We applied SPADE to the planning dataset to detect sequences leading to
plan failures. We found that since this domain has a complicated structure with
redundancy in the data, SPADE generates an enormous number of highly fre-
quent, but unpredictive rules (Zaki et al., 1998). Figure 15 shows the number
of mined frequent sequences of different lengths for various levels of minimum
support when we ran SPADE on the bad plans. At 60% support level we found
an overwhelming number of patterns (around 6.5 million). Even at 75% support,
we have too many patterns (38386), most of which are quite useless for predict-
ing failures when we compute their confidence relative to the entire database of
plans. Clearly, all potentially useful patterns are present in the sequences mined
from the bad plans; we must somehow extract the interesting ones from this set.

We developed a three-step pruning strategy for selecting only the most pre-
dictive sequences from the mined set:

1. Pruning Normative Patterns: We eliminate all normative rules that are con-
sistent with background knowledge that corresponds to the normal operation
of a (good) plan, i.e., we eliminate those patterns that not only occur in bad
plans, but also occur in the good plans quite often, since these patterns are
not likely to be predictive of bad events.

2. Pruning Redundant Patterns: We eliminate all redundant patterns that have
the same frequency as at least one of their proper subsequences, i.e., we elim-
inate those patterns q that are obtained by augmenting an existing pattern
p, while q has the same frequency as p. The intuition is that p is as predictive
as q.

3. Pruning Dominated Patterns: We eliminate all dominated sequences that are
less predictive than any of their proper subsequences, i.e., we eliminate those
patterns q that are obtained by augmenting an existing pattern p, where p
is shorter or more general than q, and has a higher confidence of predicting
failure than q.

Figure 15 shows the reduction in the number of frequent sequences after
applying each kind of pruning. After normative pruning (by removing patterns
with more than 25% support in good plans), we get more than a factor of 2
reduction (from 38386 to 17492 sequences). Applying redundant pruning in ad-
dition to normative pruning reduces the pattern set from 17492 down to 113.
Finally, dominant pruning, when applied along with normative and redundant
pruning, reduces the rule set from 113 down to only 5 highly predictive patterns.
The combined effect of the three pruning techniques is to retain only the pat-
terns that have the highest confidence of predicting a failure, where confidence
is given as:

Conf(α) =
σ(α,Db)

σ(α,Db + Dg)
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Fig. 15. a) Number of Frequent Sequences; b) Effect of Different Pruning Techniques

where Db is the dataset of bad plans and Dg the dataset of good plans.
These three steps are carried out automatically by mining the good and bad

plans separately and comparing the discovered rules from the unsuccessful plans
against those from the successful plans. There are two main goals: 1) to improve
an existing plan, and 2) to generate a plan monitor for raising alarms. In the
first case the planner generates a plan and simulates it multiple times. It then
produces a database of good and bad plans in simulation. This information is
fed into the mining engine, which discovers high frequency patterns in the bad
plans. We next apply our pruning techniques to generate a final set of rules
that are highly predictive of plan failure. This mined information is used for
fixing the plan to prevent failures, and the loop is executed multiple times till no
further improvement is obtained. The planner then generates the final plan. For
the second goal, the planner generates multiple plans, and creates a database of
good and bad plans (there is no simulation step). The high confidence patterns
are mined as before, and the information is used to generate a plan monitor that
raises alarms prior to failures in new plans.

7.1 Experiments

Plan Improvement We first discuss the role of PlanMine in IMPROVE, a
fully automatic algorithm which modifies a given plan to increase its probability
of goal satisfaction (Lesh et al., 1998). Table 1 shows the performance of the
IMPROVE algorithm on a large evacuation domain that contains 35 cities, 45
roads, and 100 people. We use a domain-specific greedy scheduling algorithm to
generate initial plans for this domain. The initial plans contain over 250 steps.

We compared Improve with two less sophisticated alternatives. The RAN-
DOM approach modifies the plan randomly five times in each iteration, and
chooses the modification that works best in simulation. The HIGH approach
replaces the PlanMine component of IMPROVE with a technique that simply
tries to prevent the malfunctions that occur most often. As shown in Table 1,
PlanMine improves the plan success rate from 82% to 98%, while less sophis-



initial final initial final num.
plan plan success success plans

length length rate rate tested

IMPROVE 272.3 278.9 0.82 0.98 11.7
RANDOM 272.3 287.4 0.82 0.85 23.4
HIGH 272.6 287.0 0.82 0.83 23.0

Table 1. Performance of Improve (averaged over 70 trials).

ticated methods for choosing which part of the plan to repair were only able to
achieve a maximum of 85% success rate.

Plan Monitoring Figure 16a shows the evaluation of the monitors produced with
PlanMine on a test set of 500 (novel) plans. The results are the averages over
105 trials, and thus each number reflects an average of approximately 50,000
separate tests. Note that precision is the ratio of correct failure signals to the
total number of failure signals, while recall is the percentage of failures identi-
fied. The figure clearly shows that our mining and pruning techniques produce
excellent monitors, which have 100% precision with recall greater than 90%. We
can produce monitors with significantly higher recall, but only by reducing pre-
cision to around 50%. The desired tradeoff depends on the application. If plan
failures are very costly then it might be worth sacrificing precision for recall. For
comparison we also built monitors that signaled failure as soon as a fixed num-
ber of malfunctions of any kind occurred. Figure 16b shows that this approach
produces poor monitors, since there was no correlation between the number of
malfunctions and the chance of failure (precision).
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Fig. 16. a) Using PlanMine for Prediction; b) Using Failure Count for Prediction

8 Application II: Feature Selection

Our next application of sequence mining is for feature selection. Many real world
datasets contain irrelevant or redundant attributes. This may be because the



data was collected without data mining in mind, or because the attribute de-
pendences were not known a priori during data collection. It is well known that
many data mining methods like classification, clustering, etc., degrade prediction
accuracy when trained on datasets containing redundant or irrelevant attributes
or features. Selecting the right feature set can not only improve accuracy, but
can also reduce the running time of the predictive algorithms, and can lead to
simpler, more understandable models. Good feature selection is thus one of the
fundamental data preprocessing steps in data mining.

Most research on feature selection to-date has focused on non-sequential do-
mains. Here the problem may be defined as that of selecting an optimal feature
subset of size l from the full m-dimensional feature space, where ideally l ≪ m.
The selected subset should maximize some optimization criterion such as classi-
fication accuracy or it should faithfully capture the original data distribution.

Selecting the right features in sequential domains is even more challenging
than in non-sequence data. The original feature set is itself undefined; there are
potentially an infinite number of sequences of arbitrary length over d categor-
ical attributes or dimensions. Even if we restrict ourselves to some maximum
sequence length k, we have potentially O(mk) subsequences over m dimensions.
The goal of feature selection in sequential domains is to select the best subset of
sequential features out of the mk possible sequential features (i.e., subsequences).

We now briefly describe FeatureMine (Lesh et al., 2000), a scalable algo-
rithm based on SPADE, that mines features to be used for sequence classification.
The input database consists of a set of input-sequences with a class label. Let β
be a sequence and c be a class label. The confidence of the rule β ⇒ c is given as
σ(β,Dc)/σ(β,D) where Dc is the subset of input-sequences in D with class label
c. Our goal is to find all frequent sequences with high confidence. Figure 17a
shows a database of customers with labels. There are 7 input-sequences, 4 be-
longing to class c1, and 3 belonging to class c2. In general there can be more
than two classes. We are looking for different min sup in each class. For example,
while C is frequent for class c2, it’s not frequent for class c1. The rule C ⇒ c2

has confidence 3/4 = 0.75, while the rule C ⇒ c1 has confidence 1/4 = 0.25.

We now describe how frequent sequences β1, ..., βn can be used as features
for classification. Recall that the input to most standard classifiers is an example
represented as vector of feature-value pairs. We represent a example sequence
α as a vector of feature-value pairs by treating each sequence βi as a boolean
feature that is true iff βi � α. For example, suppose the features are f1 = A → D,
f2 = A → BC, and f3 = CD. The input sequence AB → BD → BC would be
represented as 〈f1, 0〉, 〈f2, 1〉, 〈f3, 0〉. Figure 17b shows the new dataset created
from the frequent sequences of our example database of Figure 1a.

FeatureMine uses the following heuristics to determine the “good” fea-
tures: 1) features should be frequent, 2) they should be distinctive of at least one
class, and 3) feature sets should not contain redundant features. FeatureMine

employs pruning functions, similar to the three outlined in the last section, to
achieve these objectives. Further all pruning constraints are directly integrated
into the mining algorithm itself, instead of applying pruning as a post-processing
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step. This allows FeatureMine to search very large spaces efficiently, which
would have been infeasible otherwise.

8.1 Experiments

To evaluate the effectiveness of FeatureMine, we used the feature set it pro-
duces as input to two standard classification algorithms: Winnow (Littlestone,
1988) and Naive Bayes (Duda and Hart, 1973). We ran experiments on three
datasets described below. In each case, we experimented with various settings for
min sup, maxw (maximum event size), and maxl (maximum number of events)
to generate reasonable results.

Random Parity We first describe a non-sequential problem on which standard
classification algorithms perform very poorly. Each input example consists of N
parity problems of size M with L distracting, or irrelevant, features. Thus are
a total of N × M + L boolean-valued features. Each instance is assigned one
of two class labels (ON or OFF) as follows. Out of the N parity problems (per
instance), if the weighted sum of those with even parity exceeds a threshold,
then the instance is assigned class label ON, otherwise it is assigned OFF. Note
that if M > 1, then no feature by itself is at all indicative of the class label ON
or OFF, which is why parity problems are so hard for most classifiers. The job
of FeatureMine is essentially to figure out which features should be grouped
together. We used a min sup of .02 to .05, maxl = 1 and maxw = M .

FireWorld We obtained this dataset from simple forest-fire domain (Lesh et al.,
2000). We use a grid representation of the terrain. Each grid cell can contain
vegetation, water, or a base. We label each instance with SUCCESS if none of the
locations with bases have been burned in the final state, or FAILURE otherwise.
Thus, our job is to predict if the bulldozers will prevent the bases from burning,



Experiment Winnow WinnowFM Bayes BayesFM

parity, N = 5, M = 3, L = 5 .51 (.02) .97 (.03) .50 (.01) .97 (.04)

parity, N = 3, M = 4, L = 8 .49 (.01) .99 (.04) .50 (.01) 1.0 (0)

parity, N = 10, M = 4, L = 10 .50 (.01) .89 (.03) .50 (.01) .85 (.06)

fire, time = 5 .60 (.11) .79 (.02) .69 (.02) .81 (.02)

fire, time = 10 .60 (.14) .85 (.02) .68 (.01) .75 (.02)

fire, time = 15 .55 (.16) .89 (.04) .68 (.01) .72 (.02)

spelling, their vs. there .70 .94 .75 .78

spelling, I vs. me .86 .94 .66 .90

spelling, than vs. then .83 .92 .79 .81

spelling, you’re vs. your .77 .86 .77 .86

Table 2. Classification Results (FM denotes features produced by FeatureMine)

given a partial execution trace of the plan. For this data, there were 38 items
to describe each input-sequence. In the experiments reported below, we used
min sup = 20%, maxw = 3, and maxl = 3, to make the problem tractable.

Spelling To create this dataset, we chose two commonly confused words, such as
“there” and “their”, “I” and “me”, “than” and “then”, and “your” and “you’re”,
and searched for sentences in the 1-million-word Brown corpus containing either
word (Lesh et al., 2000). We removed the target word and then represented
each word by the word itself, the part-of-speech tag in the Brown corpus, and
the position relative to the target word. For “there” vs. “their” dataset there
were 2917 training examples, 755 test examples, and 5663 feature/value pairs
or items. Other datasets had similar parameters. In the experiments reported
below, we used a min sup = 5%, maxw = 3, and maxl = 2.

For each test in the parity and fire domains, we generated 7,000 random
training examples. We mined features from 1,000 examples, pruned features that
did not pass a chi-squared significance test (for correlation to a class the feature
was frequent in) in 2,000 examples, and trained the classifier on the remaining
5,000 examples. We then tested on 1,000 additional examples. The results in
Table 2 are averages from 25-50 such tests. For the spelling correction, we used
all the examples in the Brown corpus, roughly 1000-4000 examples per word set,
split 80-20 (by sentence) into training and test sets. We mined features from 500
sentences and trained the classifier on the entire training set.

Table 2, which shows the average classification accuracy using different fea-
ture sets, confirms that the features produced by FeatureMine improved clas-
sification performance. We compared using the feature set produced by Fea-

tureMine with using only the primitive features themselves, i.e. features of
length 1. The standard deviations are shown, in parentheses following each av-
erage, except for the spelling problems for which only one test and training set
were used. Both Winnow and Naive Bayes performed much better with the fea-
tures produced by FeatureMine. In the parity experiments, the mined features
dramatically improved the performance of the classifiers and in the other experi-



ments the mined features improved the accuracy of the classifiers by a significant
amount, often more than 20%.

9 Conclusions

In this chapter we presented SPADE, a new algorithm for fast mining of se-
quential patterns in large databases. Unlike previous approaches which make
multiple database scans and use complex hash-tree structures that tend to have
sub-optimal locality, SPADE decomposes the original problem into smaller sub-
problems using equivalence classes on frequent sequences. Not only can each
equivalence class be solved independently, but it is also very likely that it can
be processed in main-memory. Thus SPADE usually makes only three database
scans – one for frequent 1-sequences, another for frequent 2-sequences, and one
more for generating all other frequent sequences. If the supports of 2-sequences
is available then only one scan is required. SPADE uses only simple temporal
join operations, and is thus ideally suited for direct integration with a DBMS.

An extensive set of experiments was conducted to show that SPADE outper-
forms the best previous algorithm, GSP, by a factor of two, and by an order of
magnitude with precomputed support of 2-sequences. Further, it scales linearly
in the number of input-sequences and other dataset parameters.

We discussed how the mined sequences can be used in a planning applica-
tion. A simple mining of frequent sequences produces a large number of patterns,
many of them trivial or useless. We proposed novel pruning strategies applied
in a post-processing step to weed out the irrelevant patterns and to locate the
most interesting sequences. We used these predictive sequences to improve prob-
abilistic plans and for raising alarms before failures happen.

Finally, we showed how sequence mining can help select good features for
sequence classification. These domains are challenging because of the exponential
number of potential subsequence features that can be formed from the primitives
for describing each item in the sequence data. The number of features, containing
many irrelevant and redundant features, is too large to be practically handled by
today’s classification algorithms. Our experiments using several datasets show
that the features produced by mining predictive sequences significantly improves
classification accuracy.
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