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Abstract

Discovery of association rules is an important database mining
problem. Mining for association rules involves extracting pat-
terns from large databases and inferring useful rules from them.
Several parallel and sequential algorithms have been proposed
in the literature to solve this problem. Almost all of these algo-
rithms make repeated passes over the database to determine the
commonly occurring patterns or itemsets (set of items), thus in-
curring high I/O overhead. In the parallel case, these algorithms
do a reduction at the end of each pass to construct the global
patterns, thus incurring high synchronization cost.

In this paper we describe a new parallel association min-
ing algorithm. Our algorithm is a result of detailed study of
the available parallelism and the properties of associations. The
algorithm uses a schemeto cluster related frequent itemsets to-
gether, and to partition them among the processors. At the same
timeit also usesadifferent databaselayout which clustersrelated
transactions together, and selectively replicates the database so
that the portion of the database needed for the computation of
associationsis local to each processor. After the initial set-up
phase, the algorithm eliminates the need for further communi-
cation or synchronization. The algorithm further scansthe local
database partition only three times, thus minimizing 1/O over-
heads. Unlike previous approaches, the algorithms uses simple
intersection operationsto compute frequent itemsets and doesn’t
have to maintain or search complex hash structures.

Our experimental testbed is a32-processor DEC Alphaclus-
ter inter-connected by the Memory Channel network. We present
resultson the performance of our algorithm on various databases,
and compare it against awell known parallel algorithm. Our al-
gorithm outperforms it by an more than an order of magnitude.

1 Introduction

Business organizations are increasingly turning to the automatic
extraction of information from large volumes of routinely col-
lected business data. Such high-level inference process may
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provide ahost of useful information on customer groups, buying
patterns, stock trends, etc. This process of automatic informa-
tion inferencing is commonly known as Knowledge Discovery
and Data mining (KDD). We look at one aspect of this process
— mining for associations. Discovery of association rulesis an
important problem in database mining. The prototypical appli-
cation is the analysis of sales or basket data [2]. Basket data
consists of items bought by a customer along with the transac-
tion identifier. Association rules have been shown to beuseful in
domainsthat range from decision support to telecommunications
alarm diagnosis, and prediction.

1.1 Problem Statement

The problem of mining associations over basket data was in-
troduced in [1]. It can be formally stated as: Let 7 =
{i1,12,---,1m} be a set of m distinct attributes, also called
items. Each transaction 7" in the database P of transactions, has
a unique identifier, and contains a set of items, called itemset,
such that T C Z, i.e. each transaction is of the form <TID,
11,12, ..., 15>, An itemset with &k items is called a k-itemset.
A subset of length & is called a k-subset. An itemset is said
to have a support s if s% of the transactions in D contain the
itemset. An association rule is an expression A = B, where
itemsets A, B C Z,and AN B = (. The confidenceof the asso-
ciation rule, given as support(A U B)/support(A), is simply
the conditional probability that a transaction contains B, given
that it contains A. Thedatamining task for associationrules can
be broken into two steps. The first step consists of finding all
frequent itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support. The
second step consistsof forming implication rules among the fre-
guent itemsets[4]. The second step isrelatively straightforward.
Oncethe support of frequent itemsetsis known, rules of theform
X —Y = Y (whereY C X), are generated for al frequent
itemsets X, provided the rules meet the desired confidence. On
the other hand the problem of identifying all frequent itemsetsis
hard. Given m items, there are potentially 2™ frequent itemsets.
However, only asmall fraction of the whole space of itemsets is
frequent. Discovering thefrequent itemsetsrequiresalot of com-
putation power, memory and /O, which can only be provided
by parallel computers. Efficient parallel methods are needed to
discover the relevant itemsets, and this is the focus of our paper.

1.2 Redated Work

Sequential Algorithms Several agorithms for mining asso-
ciations have been proposed in the literature [1, 10, 4, 8, 11,



9, 14, 2, 15]. The Apriori agorithm [10, 4, 2] was shown to
have superior performanceto earlier approaches[1, 11, 8, 9] and
forms the core of almost all of the current algorithms. The key
observation used is that all subsets of a frequent itemset must
themselvesbe frequent. During theinitial pass over the database
the support for al single items (1-itemsets) is counted. The
frequent 1-itemsets are used to generate candidate 2-itemsets.
The database is scanned again to obtain their support, and the
frequent 2-itemsets are selected for the next pass. Thisiterative
process is repeated for £k = 3,4,---, until there are no more
frequent k-itemsets to be found. However, if the databaseis too
large to fit in memory, these algorithms incur high 1/0 overhead
for scanning it in each iteration. The Partition algorithm [14]
minimizes I/O by scanning the database only twice. It partitions
the databaseinto small chunkswhich can be handledin memory.
In the first pass it generates the set of all potentially frequent
itemsets (any itemset locally frequent in a partition), and in the
second pass their global support is obtained. Another way to
minimize the 1/0O overhead is to work with only a small ran-
dom sample of the database. An analysis of the effectiveness of
sampling for association mining was presented in [17], and [15]
presents an exact algorithm that finds all rules using sampling.
The question whether one can efficiently extract all the rulesin
asingle database pass has been addressedin [18]. They propose
new algorithmswhich scan the database only once, generating all
frequent itemsets. The performance gains are obtained by using
efficient itemset clustering and candidate searching techniques.

Parallel Algorithms There has been relatively less work in
parallel mining of associations. Three different parallelizations
of Apriori on a distributed-memory machine (IBM SP2) were
presentedin [3]. The Count Distribution algorithm is a straight-
forward parallelization of Apriori. Each processor generatesthe
partial support of all candidate itemsets from its local database
partition. At the end of each iteration the global supports are
generated by exchanging the partial supports among all the pro-
cessors. The Data Distribution algorithm partitions the candi-
datesinto disjoint sets, which are assignedto different processors.
However to generatethe global support each processor must scan
the entire database (its local partition, and all the remote parti-
tions) in all iterations. It thus suffers from huge communication
overhead. The Candidate Distribution algorithm also partitions
the candidates, but it selectively replicates the database, so that
each processor proceeds independently. The local portion is
scanned once during each iteration.

The PDM algorithm [12] presents a parallelization of the
DHP algorithm [11] on the IBM SP2. However, both PDM
and DHP perform worse than Count Distribution [3] and Apri-
ori. Distributed algorithms (DMA, FDM) are presentedin [6, 5]
which generate fewer candidates than Count Distribution, and
use effective pruning techniques to minimize the messages for
the support exchange step. In recent work we presented the
CCPD parallel algorithm (based on Apriori) for shared mem-
ory machines [16]. It is similar in spirit to Count Distribution.
The candidate itemsets are generated in parallel and are stored
in a hash structure which is shared among all the processors.
Each processor then scans its logical partition of the database
and atomically updates the counts of candidates in the shared
hash tree. There is no need to perform a sum-reduction to ob-

tain global counts, but there is a barrier synchronization at the
end of each iteration to ensure that all processors have updated
the counts. The algorithm uses additional optimization such as
computation balancing, hash-tree balancing and short-circuited
subset counting to speed up performance [16].

1.3 Contribution

The main limitation of all the current parallel algorithms is that
they make repeated passes over the disk-resident database par-
tition, incurring high 1/0 overheads. Furthermore, the schemes
involve exchanging either the counts of candidatesor the remote
database partitions during each iteration. This results in high
communication and synchronization overhead. The previous
algorithms also use complicated hash structures which entails
additional overhead in maintaining and searching them, and typ-
ically also have poor cachelocality [13].

The work in the current paper contrasts to these approaches
in several ways. We present a new parallel algorithm — Eclat
(Equivalence CLass Transformation), which clustersrelated fre-
guent itemsets and transactions. It then distributes the work
among the processors in such a way that each processor can
compute the frequent itemsets independently, using simple in-
tersection operations. The techniques help eliminate the need
for synchronization after the initial set-up phase. The trans-
action clustering scheme which uses a vertical data layout en-
ables usto scan the database only one more time after the initial
phase, requiring only three database scans in all. This drasti-
cally cuts down the 1/0 overhead. Our experimental testbed is
a 32-processor (8 nodes, 4 processors each) DEC Alpha clus-
ter inter-connected by the Memory Channel [7] network. The
Memory Channel allows a user-level application to write to the
memory of remote nodes, thus allowing for very fast user-level
messages and low synchronization costs. We experimentally
compare our algorithm with previous approaches and show that
it outperforms awell known parallel algorithm, Count Distribu-
tion by more than an order of magnitude.

The rest of the paper is organized as follows. We begin by
providing more details on the sequential Apriori algorithm since
all current parallel algorithmsarebased onit. Section 3 describes
some of the previous parallel algorithms, namely the Count Dis-
tribution and Candidate Distribution algorithms. We present
our itemset and transaction clustering techniques in section 4.
Section 5 details the new Eclat algorithm. The implementation
details for communication over the Memory Channel are pro-
vided in section 6. We then recapitulate the salient features of
the new algorithm in section 7, before presenting the experimen-
tal results in section 8. Finally we present our conclusions in
section 9.

2 Sequential Association Mining

In this section we will briefly describe the Apriori algorithm [2],
sinceit forms the core of all parallel algorithms[3, 6, 5, 12, 16].
Apriori follows the basic iterative structure discussed earlier.
Making use of the fact that any subset of a frequent itemset
must also be frequent, during each iteration of the algorithm
only candidatesfound to befrequent in the previousiteration are



used to generate a new candidate set. A pruning step eliminates
any candidate at least one of whose subsetsis not frequent. The
complete algorithm is shown in figure 1. It hasthree main steps.
The candidates for the k-th pass are generated by joining Ly _1
with itself, which can be expressed as

Cr = {X = A[1)A[2]...A[k — 1] B[k — 1]}

where A,B € Lp_1, A[1: k—2]=B[1:k—2], Ak —1] <
B[k — 1], and X[:] denotesthe i-th item, while X[: : 5] denotes
items at index ¢ through 5 in itemset X. For example, let L, =
{AB, AC,AD, AE, BC, BD, BE, DE}. ThenC3 = {ABC, ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDE}.

L1 = {frequent 1-itemsets };
for(k =2, L1 20k ++)
(', = Set of New Candidates;
for all transactions¢ € D
for all k-subsets s of ¢
if (s € Cx) s.count + +;
Ly = {c € Ck|c.count > minimum support};
Set of all frequent itemsets = Uk Ly;

Figure 1: The Apriori algorithm

Beforeinserting anitemset into Cy, Apriori tests whether all
its (k—1)-subsetsarefrequent. Thispruningstep caneliminatea
lot of unnecessary candidates. The candidates, Cx, are stored in
ahashtreetofacilitate fast support counting. Aninternal node of
the hashtree at depth d contains a hash table whose cells point to
nodesat depthd+ 1. All theitemsetsare storedintheleaves. The
insertion procedure starts at the root, and hashing on successive
items, inserts the candidatein aleaf. For counting Cy, for each
transaction in the database, all k£-subsets of the transaction are
generated in lexicographical order. Each subset is searched in
the hash tree, and the count of the candidate incremented if it
matchesthe subset. Thisisthemost computeintensive step of the
algorithm. Thelast step forms L, by selecting itemsets meeting
the minimum support criterion. For details on the performance
characteristics of Apriori we refer the reader to [4].

3 Parallel Association Mining

In this section we will briefly look at some previous paral-
lel algorithms. We will compare our new algorithm against
CCPD — Common Candidate Partitioned Database algorithm
[16]. Though originally designed for shared-memory machines,
we ported the CCPD algorithm to run on the DEC cluster. It is
essentially the same as Count Distribution, but uses some opti-
mization techniques to balance the candidate hash tree, and to
short-circuit the candidate searchfor fast support counting. More
details on the optimizations can be found in [16]. Henceforth,
we assume that CCPD and Count Distribution refer to the same
algorithm. All the parallel algorithms assume that the database
is partitioned among all the processors in equal-sized blocks,
which reside on the local disk of each processor.

3.1 The Count Distribution Algorithm

The Count Distribution algorithm [3] is a simple parallelization
of Apriori. All processorsgeneratethe entire candidate hash tree
from Lj_1. Each processor can thus independently get partial
supports of the candidatesfrom its local database partition. This
isfollowed by a sum-reduction to obtain the global counts. Note
that only the partial counts need to be communicated, rather
than merging different hash trees, since each processor has a
copy of the entire tree. Oncethe global 7, has been determined
each processor builds C41 in parallel, and repeats the process
until all frequent itemsets are found. This simple algorithm
minimizes communication since only the counts are exchanged
among the processors. However, since the entire hash tree is
replicated on each processor, it doesn’t utilize the aggregate
memory efficiently. The Data Distribution algorithm [3] was
designed to utilizethetotal system memory by generating digoint
candidate setson each processor. However to generatethe global
support each processor must scan the entire database (its local
partition, and all the remote partitions) in al iterations. It thus
suffers from high communication overhead, and performs very
poorly when compared to Count Distribution [3].

3.2 The Candidate Distribution Algorithm

The Candidate Distribution algorithm [3] usesa property of fre-
guent itemsets [3, 16] to partition the candidatesduring iteration
{, so that each processor can generate digjoint candidates in-
dependent of other processors. At the same time the database
is selectively replicated so that a processor can generate global
counts independently. The choice of the redistribution passin-
volves a trade-off between decoupling processor dependence as
soon as possible and waiting until sufficient load balance can be
achieved. In their experimentsthe repartitioning wasdonein the
fourth pass. After this the only dependence a processor has on
other processorsis for pruning the candidates. Each processor
asynchronoudly broadcasts the local frequent set to other pro-
cessors during each iteration. This pruning information is used
if it arrives in time, otherwise it is used in the next iteration.
Note that each processor must still scan its local data once per
iteration. Even though it uses problem-specific information, it
performs worse than Count Distribution [3]. Candidate Distri-
bution pays the cost of redistributing the database, and it then
scans the local database partition repeatedly. The redistributed
database will usually be larger than D/ P, where D denotesthe
number of transactions and P the number of processors. The
communication gainsin later iterations are thus not sufficient to
offset the redistribution cost. In the next section we show how
problem-specificinformation can be used to develop an efficient
algorithm that out-performs Count Distribution by more than an
order of magnitude.

4 |temset and Transaction Clustering

In this section we present away to cluster related frequent item-
sets together using the equivalence class partitioning scheme.
Each equivalence class generates an independent set of candi-
dates. We also present atechniqueto cluster related transactions
together by using the vertical databaselayout. Thisfacilitatesfast



support counting using simple intersections, rather than main-
taining and searching complex data structures.

4.1 Equivalence Class Partitioning

Let’'s reconsider the candidate generation step of Apriori. Let L,
={AB,AC,AD, AE,BC,BD, BE,DE}. ThenC3={ABC,ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDE}. Assuming that
Ly_1 is lexicographically sorted, we can partition the itemsets
in L _1 into equivalenceclasses based on their common & — 2
length prefixes, i.e., the equivalenceclassa € Lj_», isgiven as:

Se=[al={b€Li_1| a[l:k—2=b[1:k—2]}

Candidate k-itemsets can simply be generated from itemsets
within a class by joining al (1) pairs. For our example L,
above, we obtain the equivalence classes: Sa = [A] = {AB,
AC, AD, AE}, S =[B] = {BC, BD, BE}, and Sp =[D] =
{DE}. We observe that itemsets produced by the equivalence
class [A], namely those in the set {ABC, ABD, ABE, ACD,
ACE, ADE}, are independent of those produced by the class[B]
(the set {BCD, BCE, BDE}. Any class with only 1 member
can be eliminated since no candidates can be generated from it.
Thuswe can discard the class[D]. Thisideaof partitioning Lx_1
into equivalence classes was independently proposed in [3, 16].
The equivalence partitioning was used in [16] to parallelize the
candidategeneration stepin CCPD. It wasalso usedin Candidate
Distribution [3] to partition the candidatesinto disjoint sets.

4.2 DatabaseL ayout

Horizontal Data Layout Thehorizontal databaselayout, with
each TID followed by the itemsin it, imposes some computation
overhead during the support counting step. In particular for each
transaction of average length [, during iteration &, we have to
test whether all (}) k-subsetsof the transaction are contained in
Cy. To perform fast subset checking the candidates are stored
in acomplex hash-tree data structure. Searching for the relevant
candidates thus adds additional computation overhead. Further-
more, the horizontal layout forces us to scan the entire database
or the local partition once in each iteration. Both Count and
Candidate Distribution must pay the extra overhead entailed by
using the horizontal layout.

Vertical Data Layout The vertical (or inverted) layout (also
called the decomposed storage structure[8]) consistsof alist of
items, with each item followed by its tid-list — the list of all the
transaction identifiers containing the item. The vertical layout
doesn’t suffer from any of the overheads described for the hor-
izontal layout above due to the following three reasons. First,
if the tid-list is sorted in increasing order, then the support of
a candidate k-itemset can be computed by simply intersecting
the tid-lists of any two (k — 1)-subsets. No complicated data
structures need to be maintained. We don’'t have to generate all
the k-subsets of a transaction or perform the search operations
on the hash tree. Second, the tid-lists contain all relevant in-
formation about an itemset, and enable us to avoid scanning the
whole databaseto compute the support count of anitemset. This
layout can therefore take advantage of the principle of locality.

All information for an equivalence class is clustered together,
so all large itemsets can be generated for it before moving on
to the next class. Third, the larger the itemset, the shorter the
tid-lists, which is practically awaystrue. This resultsin faster
intersections. For example, let the tid-list of AB, denoted as
T(AB) ={1,5,7,10,50}, andlet T(AC) = {1,4,7,10,11}.
Then the tid-list of ABC issimply, T (AC) = {1,7,10}. We
can immediately determine the support by counting the num-
ber of elements in the tid-list. If it meets the minimum support
criterion, weinsert ABC' in L.

Theinverted layout, however, has a drawback. Examination
of small itemsets tends to be costlier than when the horizontal
layout is employed. Thisis because tid-lists of small itemsets
provide little information about the association among items.
In particular, no such information is present in the tid-lists for
1-itemsets. For example, adatabasewith 1,000,000 (1M) trans-
actions, 1,000 frequent items, and an average of 10 items per
transaction has tid-lists of average size 10,000. To find frequent
2-itemsetswe have to intersect each pair of items, which requires
(*3) - (2-10,000) ~ 10° operations. Onthe other hand, in the
horizontal format we simply need to form all pairs of the items
appearing in a transaction and increment their count, requiring
only (7) - 1,000,000 = 4.5 10’ operations. The Eclat algo-
rithm thus uses the horizontal layout for generating Z, and uses
the vertical layout thereafter.

5 TheEclat Algorithm

The Eclat algorithm was designed to overcome the shortcomings
of the Count and Candidate Distribution algorithms. It utilizes
the aggregate memory of the system by partitioning the candi-
dates into disjoint sets using the equivalence class partitioning.
It decouples the dependence among the processors right in the
beginning so that the redistribution cost can be amortized by the
later iterations. Sinceeach processor can proceed independently,
there is no costly synchronization at the end of each iteration.
Furthermore Eclat usesthe vertical databaselayout which clus-
ters all relevant information in an itemset’s tid-list. Each pro-
cessor computes all the frequent itemsets from one equivalence
class before proceeding to the next. Thus the local database
partition is scanned only once. In contrast Candidate Distribu-
tion must scan it once in each iteration. Eclat doesn’'t pay the
extra computation overhead of building or searching complex
data structures, nor does it have to generate all the subsets of
each transaction. As the intersection is performed an itemset
can immediately be inserted in L. Notice that the tid-lists also
automatically prune irrelevant transactions. As the itemset size
increases, the size of the tid-list decreases, resulting in very fast
intersections. The Eclat algorithm has four distinct phases. The
initialization phase, the transformation phase, the asynchronous
phase and the final reduction phase. We will describe each step
in detail below. Figures 2 and 3 present the pseudo-codefor the
Eclat algorithm.

5.1

The initialization step involves computing all the frequent 2-
itemsetsfrom the database. We don’t count the support of single

Initialization Phase



Begin Eclat
/* Initialization Phase*/
Scan local database partition
Compute local countsfor all 2-itemsets
Construct global 7., counts

[* Transformation Phase*/

Partition L, into equivalence classes

Schedule L, over the set of processors P
Transform local databaseinto vertical form
Transmit relevant tid-lists to other processors
Local L, = receive tid-lists from other processors

/* AsynchronousPhase*/
for each equivalenceclass E, in Local L,
Compute_Frequent(F)

/* Final Reduction Phase*/
Aggregate Results and Output Associations
End Eclat

Figure 2: The Eclat Algorithm

itemsets, since with a very small space overhead the counts of
2-itemsets can be directly obtained in one pass, as opposed to
paying the cost of scanning the databasetwice . For computing
2-itemsets we use an upper triangular array, local to each pro-
cessor, indexed by the items in the databasein both dimensions.
Each processor computes local support of each 2-itemset from
its local database partition. Thisis followed by a sum-reduction
among all the processorsto construct global counts. At the end
of theinitial phase, all processors have the global counts of the
frequent 2-itemsets, L, in the database.

5.2 Transformation Phase

The transformation step consists of two sub-steps. First, L, is
partitioned using the equivalence class partitioning. The parti-
tions are then assigned to the processorsso that asuitable level of
load-balancingis achieved. Second, the databaseis transformed
fromthehorizontal to the vertical layout, and repartitioned so that
each processor hason its local disk the tid-lists of all 2-itemsets
in any equivalence class assigned to it.

5.2.1 EquivalenceClass Scheduling

We first partition the L, into equivalence classes using the com-
mon prefix as described above. We next generate a schedule of
the equivalence classes on the different processorsin a manner
minimizing the load imbalance. For this propose, each equiva-
lence class is assigned a weighting factor based on the number
of elementsin the class. Since we haveto consider all pairs for
the next iteration, we assign the weight (;) to a class with s

IHowever, if the number of itemsiis very large, it would be better to
make two database scans.

elements. Once the weights are assigned we generatea schedule
using a greedy heuristic. We sort the classes on the weights,
and assign each class in turn to the least loaded processor, i.e.,
one having the least total weight at that point. Ties are broken
by selecting the processor with the smaller identifier. Thesetwo
stepsare doneconcurrently on all the processorssinceall of them
have accessto the global ;. Although the size of a class gives
a good indication of the amount of work, better heuristics for
generating the weights are possible. For example, if we could
better estimate the number of frequent itemsets that could be
derived from an equivalence class we could use this estimation
as our weight. We could also make use of the average support
of the itemsets within a class to get better weight factors (see
[3] for one such heuristic). We believe that decoupling processor
performanceright in the beginning holds promise, eventhoughit
may cause someload imbalance, sincethe repartitioning cost can
be amortized over later iterations. Deriving better heuristics for
scheduling equivalence classesof 1., ispart of ongoing research.

5.2.2 Vertical Database Transfor mation

Once a balanced partitioning of the equivalence classes among
the processors is generated, we transform the local database
from the horizontal format to the vertical tid-list format. This
can be achieved in two steps. First, each processor scans its
local database and constructs partial tid-lists for all the frequent
2-itemsets. Second, each processor needsto construct the global
tid-lists for itemsets in its equivalence classes. Each processor
thus needs to send tid-lists for those itemsets belonging to other
processors, while receiving tid-lists for the itemsetsit is respon-
siblefor. The transformation phaseis the most expensive stepin
our algorithm, since each processor hasto exchangeinformation
with every other processor to read the non-local tid-lists over the
Memory Channel network. More detail on the implementation
of this step will be presented below in section 6.

5.3 AsynchronousPhase

Begin Compute_Frequent(Fx_1)
for al itemsets 7y and 1> in Fx_1
if (Ip.tidlist N p.tidlist) > minsup)
add (]1 W] ]2) to L
Partition L, into equivalence classes.
for each equivalenceclass Ey, in Ly,
Compute_Freguent(£')
End Compute_Frequent

Figure 3: Procedure Compute_Frequent

At the end of the transformation phase the database has been
redistributed, so that the tid-lists of all 2-itemsets in its local
equivalence classesreside on the local disk. Each processor can
independently compute all the frequent itemsets, eliminating the
need for synchronization with other processors. We read the tid-
lists for 2-itemsets within each equivalence class directly from
the disk. We then generate all possible frequent itemsets from



that class before moving on to the next class. This step involves
scanningtheinverted local databasepartition only once. Wethus
benefit from huge I/O savings and from the locality perspective
aswell.

Within each equivalence class we look at al pairs of 2-
itemsets, and intersect their corresponding tid-lists. If the cardi-
nality of the resulting tid-list exceeds the minimum support, the
new itemset is inserted in Lz. Then we split the resulting fre-
guent 3-itemsets, 1.3 into equivalence classes based on common
prefixesof length 2. All pairsof 3-itemsetswithin an equivalence
are intersected to determine L4. This process is repeated until
there are no more frequent &-itemsets to be found. This recur-
sive procedure is shown in figure 3. Note that once . hasbeen
determined, we can delete L,_1. We thus need main memory
spaceonly for theitemsetsin L;_1 within oneequivalenceclass.
The Eclat algorithm is therefore extremely main memory space
efficient.

Short-Circuited I nter sections The intersections between pairs
of itemset tid-lists can be performed faster by utilizing the mini-
mum support value. For examplelet's assume that the minimum
support is 100, and we are intersecting two itemsets — AB with
support 119 and AC with support 200. We can stop the intersec-
tion the moment we have 20 mismatchesin AB, sincethe support
of ABC is bounded above by 119. Eclat uses this short-circuit
mechanism to optimize the tid-list intersections.

Pruning Candidates Recall that both Count and CandidateDis-
tribution use a pruning step to eliminate unnecessary candidates.
This step is essential in those algorithms to reduce the size of
the hashtree. Smaller treeslead to faster support counting, since
each subset of a transaction is tested against the tree. However,
with the vertical database layout we found the pruning step to
be of little or no help. This can be attributed to several fac-
tors. First, there is additional space and computation overhead
in constructing and searching hash tables. Thisis also likely to
degrade locality. Second, there is extra overhead in generating
all the subsets of a candidate. Third, there is extra communi-
cation overhead in communicating the frequent itemsetsin each
iteration, even though it may happen asynchronously. Fourth,
because the average size of tid-lists decreases as the itemsets
sizeincreases, intersections can be performed very quickly with
the short-circuit mechanism.

5.4 Final Reduction Phase

At the end of the asynchronous phase we accumulate all the
results from each processor and print them out.

6 Implementation Details

In this section we describe some implementation specific op-
timizations. We begin by a description of the DEC Memory
Channel network, and then present the implementation details of
the various communication steps of our algorithm.

6.1 TheDEC Memory Channe

Digital’s Memory Channel (MC) network [7] provides applica-
tionswith aglobal address space using memory mappedregions.

Memory Channel

Node 1 Address Space Node 2
~
e |
~—_ | T it
Receive e rensm

Figure 4: Memory Channel space. The lined region is mapped
for both transmit and receive on node 1 and for receive on node 2.
Thegray region is mapped for receive on node 1 and for transmit
on node 2.

A region can be mapped into a process’ address space for trans-
mit, receive, or both. Virtual addressesfor transmit regions map
into physical addresses located in 1/0O space on the MC's PCI
adapter. Virtual addressesfor receive regions map into physical
RAM. Writes into transmit regions are collected by the source
MC adapter, forwarded to destination MC adapters through a
hub, and transferred via DMA to receive regions with the same
global identifier (see figure 4). Regions within a node can be
shared across different processors on that node. Writes originat-
ing on agiven node will be sent to receive regions on that same
node only if loop-back has been enabled for the region. We do
not use the loop-back feature. We use write-doubling instead,
where each processor writes to its receive region and then to its
transmit region, so that processeson a host can see modification
made by other processes on the same host. Though we pay the
cost of doublewriting, we reduce the amount of messagesto the
hub.

In our systemunicast and multicast process-to-processwrites
have alatency of 5.2 us, with per-link transfer bandwidths of 30
MB/s. MC peak aggregate bandwidth is also about 32 MB/s.
Memory Channel guaranteeswrite ordering and local cache co-
herence. Two writes issued to the same transmit region (even on
different nodes) will appear in the same order in every receive
region. When a write appearsin a receive region it invalidates
any locally cached copiesof itsline.

6.2

This is a straightforward implementation of the pseudo-code
presented in figure 2. Once the local countsfor all 2-itemsets
are obtained, we need to perform a sum-reduction to obtain the
global counts. We allocate an array of size (), (m is the
number of items) on the shared Memory Channel region. Each
processor then accessesthis shared array in amutually exclusive
manner, and incrementsthe current count by its partial counts. It
then waits at a barrier for the last processor to update the shared
array 2. After all processors have updated the shared array,
each processor sees the global counts for all 2-itemsets. Each
processor also broadcaststhelocal partial counts of the frequent

Initialization Phase

20n P processors, the sum-reduction can be performed more effi-
ciently in O(log(P)) steps. Sinceit is performed only once in Eclat,
we opted for the simple O( P) processdescribed above.
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Figure 5: Vertical Database Transformation

2-itemsetsto all the other processors. The partial countsare used
to construct the inverted global tid-lists efficiently.

6.3 Transformation Phase

Each processor scans it local database partition a second time
and constructs the vertical tid-lists for the frequent 2-itemsets,
L,. Sincethe original databaseis initially partitioned in a block
fashion, each processor’s inverted database consists of disjoint
ranges of tids. We make use of this information, along with
the knowledge of the partial counts, to place the incoming tid-
list from a given processor at an appropriate offset, so that the
global tid-list appearslexicographically sorted. Thissavesusthe
cost of sorting each tid-list if the transactionswere distributed in
a random manner. The transformation is accomplished in two
steps:

Local Tid-list Transformation To perform the inversion, we
break I, into two groups. Those itemsets belonging to local
equivalence classes assigned to the processor, denoted as G,
and those itemsets belonging to other processors, denoted as
R. Each processor, P;, memory maps an anonymous memory
region of size ) | global_count(g) + ), partial_count(r, /%),
whereitemsets g € G, r € R, P; denotes the processor, and
partial_count(r, P;) isthe partial count of itemset » on processor
P;. Each processor then performs the transformation, writing its
tid-list for the members of G at the appropriate offset. Members
of R are written starting at offset zero. Figure 5 depicts the
database transformation step on three processors.

Tid-list Communication Once the transformation of the local

databaseisdone, weneed to receive the partial tid-listsfrom other
processorsfor al 2-itemsetsin G, and we need to communicate
the tid-lists of R to other processors. The incoming tid-lists
are again copied at the appropriate offsets. Since the ranges of
transaction are distinct and monotonically increasing, the final
tid-lists for each 2-itemset appear lexicographically sorted by
using the above approach. The tid-lists of itemsets in G are
then written out to disk, while those in R are discarded. To
communicatethe partial tid-lists acrossthe Memory Channel, we
take advantage of the fast user-level messages. Each processor
allocatesa2MB buffer *for atransmit region and areceiveregion,
sharing the same identifier. The communication proceedsin a
lock-step manner with alternating write and read phases. In the
write phase each processor writes the tid-lists of itemsets in P
into its transmit region, until we reach the buffer limit. At this
point it enters the read phase, where it scans each processor’'s
receive region in turn, and places the tid-lists belonging to G at
the appropriate offsets. Once the read region has been scanned
it entersthe write phase. This processis repeated until all partial
tid-lists are received. At the end of this phase the database
is in the vertical tid-list format. Figure 5 shows this process
pictorially. Each processor then enters the asynchronous phase,
and computes the frequent itemsets, as described in section 5.3.
The final reduction is implemented in the same manner as the
reduction in the initialization phase.

7 Salient Features of Eclat

In this section we will recapitulate the salient features of Eclat,
contrasting it against Count and Candidate Distribution. Eclat
differs from these algorithms in the following respect:

¢ Unlike Count Distribution, Eclat utilizes the aggregate mem-
ory of the parallel system by partitioning the candidate itemsets
among the processors using equivalence class partitioning. It
sharesthis feature with Candidate Distribution.

o Elcat decouplesthe processorsright in the beginning by repar-
titioning the database, so that each processor can compute the
frequent itemsets independently. It thus eliminates the need for
communicating the frequent itemsets at the end of eachiteration.
o Elcat usesadifferent database layout which clusters the trans-
actions containing an itemset into tid-lists. Using this layout
enables our algorithm to scan the local database partition only
three times on each processor. The first scan for building L, the
second for transforming the database, and the third for obtaining
the frequent itemsets. In contrast, both Count and Candidate
Distribution scan the database multiple times— once during each
iteration.

o To compute frequent itemsets, Eclat performs simple intersec-
tionsontwo tid-lists. Thereis no extra overhead associated with
building and searching complex hash tree data structures. Such
complicated hash structures also suffer from poor cachelocality
[13]. In contrast, all the available memory in Eclat is utilized
to keep tid-lists in memory which results in good locality. As
larger itemsets are generated the size of tid-lists decreases, re-
sulting in very fast intersections. Short-circuiting the join based

3A smaller buffer size canbe usedif thereis aconstraint onthe shared
MC space. Since we had approximately 90-100M B of shared M C space
with 32 processors, we chose the 2M B buffer size.



on minimum support is also used to speed this step.

¢ Our algorithm avoidsthe overhead of generating all the subsets
of atransaction and checking them against the candidate hash
tree during support counting.

o Eclat recursively usesthe equivalence class partitioning during
eachiteration to cluster related itemsets. At any given point only
L1 within one equivalence class needs to be kept in memory.
The algorithm thus uses higher levels of the memory hierarchy
efficiently.

¢ The one disadvantageof our algorithm isthe virtual memory it
reguiresto perform the transformation. Our current implementa-
tion uses memory mapped regions to accomplish this, however,
we are currently implementing an external memory transforma-
tion, keeping only small buffersin main memory. Our algorithm
may need roughly twice the disk space of the other algorithms,
since we use the horizontal layout for the initial phase, and the
vertical layout thereafter (once we have the new format we can
deletetheformer). Asweshall see, the performancegainsshown
in the next section more than offset this disadvantage.

8 Experimental Evaluation

Database T | D Total Size
T10.16.D800K 10 | 6 800,000 35MB
T10.16.D1600K | 10 | 6 | 1,600,000 68 MB
T10.16.D3200K | 10 | 6 | 3,200,000 138 MB
T10.16.D6400K | 10 | 6 | 6,400,000 | 274MB

Table 1: Database properties

All the experiments were performed on a 32-processor (8
hosts, 4 processorseach) DEC Alphacluster inter-connected via
the Memory Channel. Each Alpha processor runs at 233MHz.
There'satotal of 256M B of main memory per host (shared among
the 4 processors on that host). Each host also has a 2GB local
disk attached to it, out of which less than 500MB was available
to us. All the partitioned databases reside on the local disks of
each processor.
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Figure 6: Number of Frequent k-Itemsets

We used different synthetic databaseswith size ranging form
35MB to 274MB, which were generated using the procedure de-

scribed in [4]. These have been used as benchmark databases
for many association rules algorithms [4, 8, 11, 14, 2], and they
mimic the transactionsin aretailing environment. Each transac-
tion has a unique ID followed by alist of items bought in that
transaction. The data-mining provides information about the set
of items generally bought together. Table 1 showsthe databases
used and their properties. The number of transactionsis denoted
as|D|, average transaction size as | T|, and the average maximal
potentially frequent itemset size as |7|. The number of maxi-
mal potentially frequent itemsets| .| = 2000, and the number of
items N = 1000. Werefer thereader to [4] for more detail onthe
database generation. All the experiments were performed with
a minimum support value of 0.1%. The support was kept small
so that there were enough frequent itemsets generated. Figure
6 shows the total number of frequent itemsets of different sizes
found for the different databases at the above support value.

8.1 Eclat: Parallel Performance

Configuration | Database | CD Eclat(E) CD/E
T|H]| P Total Total Setup Ratio
1| 1| 1 | D80OK 1746.0s | 98.8s | 54.2s 17.7
D1600K | 842.9s 1614s | 1133s | 5.2
D3200K | 3483.0s | 540.7s | 344.0s | 6.4
2 | 2| 1 | D8OOK 14700s | 533s | 28.9s | 27.6
D1600K | 7578s | 84.1s | 548s | 9.0
D3200K | 24559s | 2159s | 1229s | 114
4 | 2 | 2 | D80OK 1552.7s | 34.4s 16.2s | 45.1
D1600K | 669.5s | 53.8s | 38.1s 124
D3200K | 2305.1s | 144.1s | 74.8s 16.0
4 | 4| 1 | D80OK 1326.5s | 32.4s 14.1s | 40.9
D1600K | 399.5s | 45.7s | 294s | 87
D3200K | 1670.2s | 113.1s | 62.0s 14.8
8 | 4 | 2 | D80OK 1466.5s | 23.1s 100s | 635
D1600K | 544.2s | 29.7s 16.9s 18.3
D3200K | 1627.8s | 77.7s | 458s | 209
8 | 8 | 1 | D80OK 1267.3s | 24.5s 106s | 517
D1600K | 314.5s | 28.3s 15.9s 1111
D3200K | 1497.2s | 6755 | 385s | 222
16 | 8 | 2 | D8OOK 1414.1s | 27.7s | 7.7s 51.1
D1600K | 312.3s | 24.9s 14.3s 125
D3200K | 16205 | 49.7s | 269s | 326
24 | 8 | 3 | D80OK 21129s | 29.3s | 8.7s 721
D1600K | 542.5 30.7s 13.3s 17.7
D3200K | 20486 | 51.8s | 20.5s | 395

Table 2: Total Execution Time: Eclat (E) vs. Count Distribu-
tion (CD) (P: #processors/host; H: #Hosts; T: Total #processors)

In this section wewill compare the performance of our algo-
rithm with Count Distribution, which was shown to be superior
to both Data and Candidate Distribution [3]. In table 2 we give
the running times of both algorithms under different processor
configurations and on different databases. In all the figures H
denotes the number of hosts, P the number of processors per
host, and 7' = H - P, the total humber of processors used in
the experiments. The times shown are the total execution time
in seconds. For Eclat we also show the break-up for the time
spent in the initialization and transformation phase. The last
column of thetable givesthe improvement ratio or speed-upfac-
tor obtained by using Eclat. Table 2 shows that our algorithm



clearly outperforms Count Distribution by more than an order
of magnitude for most configurations and databaseswith theim-
provement ranging between 5 and 18 for the sequential case and
between 9 and 70 for the parallel case. This improvement can
be attributed to several factors which have been enumerated in
section 7. First, Count Distribution performs a sum-reduction,
and communicatesthe local countsin each iteration, while Eclat
eliminates this step entirely. For example T10.16.D800K has 12
iterations and the synchronization times accumulate over all the
iterations. Second, there is no provision for load balancing in
Count Distribution. The databasesare partitioned in equal-sized
blocks, while the amount of work may be different for each par-
tition, especially if the transaction sizes are skewed. Thereis no
straightforward way to (re)distribute the work in this algorithm
without adding huge communication overhead. While Eclat may
also suffer from load imbalance, it tries to minimize this in the
equivalence class scheduling step (section 5.2.1). Third, Eclat
utilizes the aggregate memory better and dispenses with main-
taining complex hash structures which may suffer from poor
cache locality [13]. All available memory is used for the tid-
lists and simple intersection operations are performed on these
lists, which have good locality. Fourth, Count Distribution suf-
fers from high 1/O overheads because of multiple scans of the
database (12 iterations imply 12 scans).

From table 2 we can also observe that the transformation
phase dominates (roughly 55-60%) the total execution of Eclat,
while the simple intersections of tid-lists facilitate fast frequent
itemset determination. In Count Distribution the support count
phase dominates, where subsets of a transaction are generated
and a search is performed on the candidate hash tree. This
produces an interesting result. Consider the T10.16.D800K and
T10.16.D1600K databases. Even though T10.16.D800K is half
the size of T10.16.D1600K, figure 6 shows that it has more
than twice as many frequent itemsets. In Count Distribution,
T10.16.D800K generatesamuch larger hash tree, making it more
expensive than T10.16.D1600K. On the other hand in Eclat the
larger database, T10.16.D1600K, takes longer to transform, and
hence takes longer time. This fact also explains why we see the
best improvement ratio for the T10.16.D800K database. Sinceit
is small, the transformation is very cheap, and at the sametime
it generates a lot of frequent itemsets, increasing the time for
Count Distribution.

Figure 7 shows the speedup obtained for Eclat on the dif-
ferent databaseson various configuration. The speedup numbers
are with respect to a sequential run of the algorithm on the given
database. However, the T10.16.D6400K speedups are with re-
specttothe P = 1, H = 4,7 = 4 configuration (214.6 sec).
Since our current implementation uses memory mapped regions
to perform the transformation, we did not have enough space to
perform the transformation on a single processor .

Thefiguresindicate that with increase in the number of pro-
cessorsper host, thereisanimprovement only if thereis sufficient
work. The current implementation of Eclat doesn’t distinguish
between hosts (/) and processors per host (P). It simply parti-
tions the databaseinto 7" (the total number of processor) chunks.
Since all the processorswill be accessingthe local disk simulta-

41f we used uniprocessor time we would get a super-linear speedup
with more hosts, since the local database partition size would decrease,
and would fit in the memory mapped region.
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Figure 7: ECLAT: Parallel Performance on Different Databases



neously, wewill suffer fromalot of disk contention. Thisisborne
by the results on 8 hosts for T10.16.D800K. While the relative
computation time decreaseswith increasing number of hosts, the
disk contention causes performance degradation with increasing
number of processors on each host. The same effect can be ob-
served for Count Distribution since it too doesn’t usethe system
configuration information. It also takes an additional hit since
the entire hash tree is replicated P times on each host. To solve
thelocal disk contention problem, we plan to modify the current
implementations to make use of configuration-specific informa-
tion. We plan to implement a hybrid parallelization where the
database is partitioned only among the hosts. Within each host
the processors could share the candidate hash tree in Count Dis-
tribution, while the Compute_Freguent procedure (section 5.3)
could be carried out in parallel in Eclat.

To further support this fact, for the same number of total pro-
cessors, Eclat does better on configurationsthat have fewer pro-
cessors per host. For example, consider the 7' = 8 case. Out of
the three configurations— (H = 2, P = 4); (H = 4, P = 2);
and (H = 8,P = 1), the last always performs the best (see
figure 7). This can also be attributed to the relative cost of com-
putation and disk contention. Speedupswith increasing number
of hostsfor afixed P aretypically very good. The speedupsfor
the larger databases (T10.16.D3200K and T10.16.D6400K) are
closeto linear aswe go from H = 2to H = 8 for P = 1.
However, with increasing database sizes, we see performance
improvements even with multiple processors on the same host.
Thisisbecauseof theincreased computation versusdisk 1/0 cost
ratio.

9 Conclusions

In this paper we described Eclat — a localized parallel algo-
rithm for association mining. It usestechniquesto cluster related
groups of itemsets using equivalence class partitioning, and to
cluster transactions using the vertical database layout. It then
schedules the eguivalence classes among the processors, min-
imizing load imbalance, and repartitions the vertical database
so that each processor can compute the frequent itemsets inde-
pendently. This eliminates the need to communicate in each
iteration. Eclat scans the local database partitions only three
times gaining significantly from the 1/0O overhead savings. Fur-
thermore, it uses simple intersection operationsto determine the
frequent itemsets. This feature enables the algorithm to have
good cache locality. It also dispenses with keeping complex
hash structures in memory, which suffer from poor locality. We
implemented Eclat on a32 processor DEC cluster interconnected
withthe DEC Memory Channel network, and compared it against
awell known parallel algorithm Count Distribution [3]. Exper-
imental results indicate a substantial improvement of more than
an order of magnitude over the previous algorithm.
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