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Abstract

Discovery of association rules is an important database mining
problem. Mining for association rules involves extracting pat-
terns from large databases and inferring useful rules from them.
Several parallel and sequential algorithms have been proposed
in the literature to solve this problem. Almost all of these algo-
rithms make repeated passes over the database to determine the
commonly occurring patterns or itemsets (set of items), thus in-
curring high I/O overhead. In the parallel case, these algorithms
do a reduction at the end of each pass to construct the global
patterns, thus incurring high synchronization cost.

In this paper we describe a new parallel association min-
ing algorithm. Our algorithm is a result of detailed study of
the available parallelism and the properties of associations. The
algorithm uses a scheme to cluster related frequent itemsets to-
gether, and to partition them among the processors. At the same
time it also uses a different database layout which clusters related
transactions together, and selectively replicates the database so
that the portion of the database needed for the computation of
associations is local to each processor. After the initial set-up
phase, the algorithm eliminates the need for further communi-
cation or synchronization. The algorithm further scans the local
database partition only three times, thus minimizing I/O over-
heads. Unlike previous approaches, the algorithms uses simple
intersection operations to compute frequent itemsets and doesn’t
have to maintain or search complex hash structures.

Our experimental testbed is a 32-processor DEC Alpha clus-
ter inter-connected by the Memory Channelnetwork. We present
results on the performance of our algorithm on various databases,
and compare it against a well known parallel algorithm. Our al-
gorithm outperforms it by an more than an order of magnitude.

1 Introduction

Business organizations are increasingly turning to the automatic
extraction of information from large volumes of routinely col-
lected business data. Such high-level inference process may�This work was supported in part by an NSF Research Initiation
Award (CCR-9409120) and ARPA contract F19628-94-C-0057.

provide a host of useful information on customer groups, buying
patterns, stock trends, etc. This process of automatic informa-
tion inferencing is commonly known as Knowledge Discovery
and Data mining (KDD). We look at one aspect of this process
— mining for associations. Discovery of association rules is an
important problem in database mining. The prototypical appli-
cation is the analysis of sales or basket data [2]. Basket data
consists of items bought by a customer along with the transac-
tion identifier. Association rules have been shown to be useful in
domains that range from decision support to telecommunications
alarm diagnosis, and prediction.

1.1 Problem Statement

The problem of mining associations over basket data was in-
troduced in [1]. It can be formally stated as: Let I =fi1; i2; � � � ; img be a set of m distinct attributes, also called
items. Each transaction T in the databaseD of transactions, has
a unique identifier, and contains a set of items, called itemset,
such that T � I , i.e. each transaction is of the form <TID,i1; i2; :::; ik>. An itemset with k items is called a k-itemset.
A subset of length k is called a k-subset. An itemset is said
to have a support s if s% of the transactions in D contain the
itemset. An association rule is an expression A ) B, where
itemsetsA;B � I , andA\B = ;. The confidenceof the asso-
ciation rule, given as support(A [ B)=support(A), is simply
the conditional probability that a transaction contains B, given
that it containsA. The data mining task for association rules can
be broken into two steps. The first step consists of finding all
frequent itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support. The
second step consists of forming implication rules among the fre-
quent itemsets [4]. The second step is relatively straightforward.
Once the support of frequent itemsets is known, rules of the formX � Y ) Y (where Y � X), are generated for all frequent
itemsets X , provided the rules meet the desired confidence. On
the other hand the problem of identifying all frequent itemsets is
hard. Given m items, there are potentially 2m frequent itemsets.
However, only a small fraction of the whole space of itemsets is
frequent. Discovering the frequent itemsets requires a lot of com-
putation power, memory and I/O, which can only be provided
by parallel computers. Efficient parallel methods are needed to
discover the relevant itemsets, and this is the focus of our paper.

1.2 Related Work

Sequential Algorithms Several algorithms for mining asso-
ciations have been proposed in the literature [1, 10, 4, 8, 11,



9, 14, 2, 15]. The Apriori algorithm [10, 4, 2] was shown to
have superior performance to earlier approaches [1, 11, 8, 9] and
forms the core of almost all of the current algorithms. The key
observation used is that all subsets of a frequent itemset must
themselves be frequent. During the initial pass over the database
the support for all single items (1-itemsets) is counted. The
frequent 1-itemsets are used to generate candidate 2-itemsets.
The database is scanned again to obtain their support, and the
frequent 2-itemsets are selected for the next pass. This iterative
process is repeated for k = 3; 4; � � � ; until there are no more
frequent k-itemsets to be found. However, if the database is too
large to fit in memory, these algorithms incur high I/O overhead
for scanning it in each iteration. The Partition algorithm [14]
minimizes I/O by scanning the database only twice. It partitions
the database into small chunks which can be handled in memory.
In the first pass it generates the set of all potentially frequent
itemsets (any itemset locally frequent in a partition), and in the
second pass their global support is obtained. Another way to
minimize the I/O overhead is to work with only a small ran-
dom sample of the database. An analysis of the effectiveness of
sampling for association mining was presented in [17], and [15]
presents an exact algorithm that finds all rules using sampling.
The question whether one can efficiently extract all the rules in
a single database pass has been addressed in [18]. They propose
new algorithms which scan the database only once, generating all
frequent itemsets. The performance gains are obtained by using
efficient itemset clustering and candidate searching techniques.

Parallel Algorithms There has been relatively less work in
parallel mining of associations. Three different parallelizations
of Apriori on a distributed-memory machine (IBM SP2) were
presented in [3]. The Count Distribution algorithm is a straight-
forward parallelization of Apriori. Each processor generates the
partial support of all candidate itemsets from its local database
partition. At the end of each iteration the global supports are
generated by exchanging the partial supports among all the pro-
cessors. The Data Distribution algorithm partitions the candi-
dates into disjoint sets,which are assigned to different processors.
However to generate the global support each processormust scan
the entire database (its local partition, and all the remote parti-
tions) in all iterations. It thus suffers from huge communication
overhead. The Candidate Distribution algorithm also partitions
the candidates, but it selectively replicates the database, so that
each processor proceeds independently. The local portion is
scanned once during each iteration.

The PDM algorithm [12] presents a parallelization of the
DHP algorithm [11] on the IBM SP2. However, both PDM
and DHP perform worse than Count Distribution [3] and Apri-
ori. Distributed algorithms (DMA, FDM) are presented in [6, 5]
which generate fewer candidates than Count Distribution, and
use effective pruning techniques to minimize the messages for
the support exchange step. In recent work we presented the
CCPD parallel algorithm (based on Apriori) for shared mem-
ory machines [16]. It is similar in spirit to Count Distribution.
The candidate itemsets are generated in parallel and are stored
in a hash structure which is shared among all the processors.
Each processor then scans its logical partition of the database
and atomically updates the counts of candidates in the shared
hash tree. There is no need to perform a sum-reduction to ob-

tain global counts, but there is a barrier synchronization at the
end of each iteration to ensure that all processors have updated
the counts. The algorithm uses additional optimization such as
computation balancing, hash-tree balancing and short-circuited
subset counting to speed up performance [16].

1.3 Contribution

The main limitation of all the current parallel algorithms is that
they make repeated passes over the disk-resident database par-
tition, incurring high I/O overheads. Furthermore, the schemes
involve exchanging either the counts of candidates or the remote
database partitions during each iteration. This results in high
communication and synchronization overhead. The previous
algorithms also use complicated hash structures which entails
additional overhead in maintaining and searching them, and typ-
ically also have poor cache locality [13].

The work in the current paper contrasts to these approaches
in several ways. We present a new parallel algorithm – Eclat
(Equivalence CLass Transformation), which clusters related fre-
quent itemsets and transactions. It then distributes the work
among the processors in such a way that each processor can
compute the frequent itemsets independently, using simple in-
tersection operations. The techniques help eliminate the need
for synchronization after the initial set-up phase. The trans-
action clustering scheme which uses a vertical data layout en-
ables us to scan the database only one more time after the initial
phase, requiring only three database scans in all. This drasti-
cally cuts down the I/O overhead. Our experimental testbed is
a 32-processor (8 nodes, 4 processors each) DEC Alpha clus-
ter inter-connected by the Memory Channel [7] network. The
Memory Channel allows a user-level application to write to the
memory of remote nodes, thus allowing for very fast user-level
messages and low synchronization costs. We experimentally
compare our algorithm with previous approaches and show that
it outperforms a well known parallel algorithm, Count Distribu-
tion by more than an order of magnitude.

The rest of the paper is organized as follows. We begin by
providing more details on the sequential Apriori algorithm since
all current parallel algorithms are based on it. Section 3 describes
some of the previous parallel algorithms, namely the Count Dis-
tribution and Candidate Distribution algorithms. We present
our itemset and transaction clustering techniques in section 4.
Section 5 details the new Eclat algorithm. The implementation
details for communication over the Memory Channel are pro-
vided in section 6. We then recapitulate the salient features of
the new algorithm in section 7, before presenting the experimen-
tal results in section 8. Finally we present our conclusions in
section 9.

2 Sequential Association Mining

In this section we will briefly describe the Apriori algorithm [2],
since it forms the core of all parallel algorithms [3, 6, 5, 12, 16].
Apriori follows the basic iterative structure discussed earlier.
Making use of the fact that any subset of a frequent itemset
must also be frequent, during each iteration of the algorithm
only candidates found to be frequent in the previous iteration are



used to generate a new candidate set. A pruning step eliminates
any candidate at least one of whose subsets is not frequent. The
complete algorithm is shown in figure 1. It has three main steps.
The candidates for the k-th pass are generated by joining Lk�1

with itself, which can be expressed asCk = fX = A[1]A[2]:::A[k� 1]B[k � 1]g
where A;B 2 Lk�1, A[1 : k � 2] = B[1 : k � 2], A[k � 1] <B[k� 1], andX[i] denotes the i-th item, while X[i : j] denotes
items at index i through j in itemset X . For example, let L2 =fAB, AC, AD, AE, BC, BD, BE, DEg. ThenC3 = fABC, ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDEg.L1 = ffrequent 1-itemsets g;

for (k = 2;Lk�1 6= ;; k ++)Ck = Set of New Candidates;
for all transactions t 2 D

for all k-subsets s of t
if (s 2 Ck) s:count+ +;Lk = fc 2 Ckjc:count � minimum supportg;

Set of all frequent itemsets =
Sk Lk ;

Figure 1: The Apriori algorithm

Before inserting an itemset into Ck , Apriori tests whether all
its (k�1)-subsetsare frequent. This pruningstep can eliminate a
lot of unnecessary candidates. The candidates,Ck , are stored in
a hash tree to facilitate fast support counting. An internal node of
the hash tree at depth d contains a hash table whose cells point to
nodes at depthd+1. All the itemsets are stored in the leaves. The
insertion procedure starts at the root, and hashing on successive
items, inserts the candidate in a leaf. For counting Ck , for each
transaction in the database, all k-subsets of the transaction are
generated in lexicographical order. Each subset is searched in
the hash tree, and the count of the candidate incremented if it
matches the subset. This is the most compute intensive step of the
algorithm. The last step forms Lk by selecting itemsets meeting
the minimum support criterion. For details on the performance
characteristics of Apriori we refer the reader to [4].

3 Parallel Association Mining

In this section we will briefly look at some previous paral-
lel algorithms. We will compare our new algorithm against
CCPD – Common Candidate Partitioned Database algorithm
[16]. Though originally designed for shared-memory machines,
we ported the CCPD algorithm to run on the DEC cluster. It is
essentially the same as Count Distribution, but uses some opti-
mization techniques to balance the candidate hash tree, and to
short-circuit the candidate searchfor fast support counting. More
details on the optimizations can be found in [16]. Henceforth,
we assume that CCPD and Count Distribution refer to the same
algorithm. All the parallel algorithms assume that the database
is partitioned among all the processors in equal-sized blocks,
which reside on the local disk of each processor.

3.1 The Count Distribution Algorithm
The Count Distribution algorithm [3] is a simple parallelization
of Apriori. All processors generate the entire candidate hash tree
from Lk�1. Each processor can thus independently get partial
supports of the candidates from its local database partition. This
is followed by a sum-reduction to obtain the global counts. Note
that only the partial counts need to be communicated, rather
than merging different hash trees, since each processor has a
copy of the entire tree. Once the globalLk has been determined
each processor builds Ck+1 in parallel, and repeats the process
until all frequent itemsets are found. This simple algorithm
minimizes communication since only the counts are exchanged
among the processors. However, since the entire hash tree is
replicated on each processor, it doesn’t utilize the aggregate
memory efficiently. The Data Distribution algorithm [3] was
designed to utilize the total system memory by generating disjoint
candidate sets on each processor. However to generate the global
support each processor must scan the entire database (its local
partition, and all the remote partitions) in all iterations. It thus
suffers from high communication overhead, and performs very
poorly when compared to Count Distribution [3].

3.2 The Candidate Distribution Algorithm
The Candidate Distribution algorithm [3] uses a property of fre-
quent itemsets [3, 16] to partition the candidates during iterationl, so that each processor can generate disjoint candidates in-
dependent of other processors. At the same time the database
is selectively replicated so that a processor can generate global
counts independently. The choice of the redistribution pass in-
volves a trade-off between decoupling processor dependence as
soon as possible and waiting until sufficient load balance can be
achieved. In their experiments the repartitioning was done in the
fourth pass. After this the only dependence a processor has on
other processors is for pruning the candidates. Each processor
asynchronously broadcasts the local frequent set to other pro-
cessors during each iteration. This pruning information is used
if it arrives in time, otherwise it is used in the next iteration.
Note that each processor must still scan its local data once per
iteration. Even though it uses problem-specific information, it
performs worse than Count Distribution [3]. Candidate Distri-
bution pays the cost of redistributing the database, and it then
scans the local database partition repeatedly. The redistributed
database will usually be larger than D=P , where D denotes the
number of transactions and P the number of processors. The
communication gains in later iterations are thus not sufficient to
offset the redistribution cost. In the next section we show how
problem-specific information can be used to develop an efficient
algorithm that out-performs Count Distribution by more than an
order of magnitude.

4 Itemset and Transaction Clustering
In this section we present a way to cluster related frequent item-
sets together using the equivalence class partitioning scheme.
Each equivalence class generates an independent set of candi-
dates. We also present a technique to cluster related transactions
together by using the vertical database layout. This facilitates fast



support counting using simple intersections, rather than main-
taining and searching complex data structures.

4.1 Equivalence Class Partitioning
Let’s reconsider the candidate generation step of Apriori. LetL2

= fAB, AC, AD, AE, BC, BD, BE, DEg. ThenC3 = fABC, ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDEg. Assuming thatLk�1 is lexicographically sorted, we can partition the itemsets
in Lk�1 into equivalence classes based on their common k � 2
length prefixes, i.e., the equivalence class a 2 Lk�2, is given as:Sa = [a] = fb 2 Lk�1 j a[1 : k � 2] = b[1 : k � 2]g
Candidate k-itemsets can simply be generated from itemsets
within a class by joining all

�jSi j
2

�
pairs. For our example L2

above, we obtain the equivalence classes: SA = [A] = fAB,
AC, AD, AEg, SB = [B] = fBC, BD, BEg, and SD = [D] =fDEg. We observe that itemsets produced by the equivalence
class [A], namely those in the set fABC, ABD, ABE, ACD,
ACE, ADEg, are independent of those produced by the class [B]
(the set fBCD, BCE, BDEg. Any class with only 1 member
can be eliminated since no candidates can be generated from it.
Thus we can discard the class [D]. This idea of partitioning Lk�1

into equivalence classes was independently proposed in [3, 16].
The equivalence partitioning was used in [16] to parallelize the
candidategeneration step in CCPD. It was also used in Candidate
Distribution [3] to partition the candidates into disjoint sets.

4.2 Database Layout

Horizontal Data Layout The horizontal database layout, with
each TID followed by the items in it, imposes some computation
overhead during the support counting step. In particular for each
transaction of average length l, during iteration k, we have to
test whether all

� lk� k-subsets of the transaction are contained inCk . To perform fast subset checking the candidates are stored
in a complex hash-tree data structure. Searching for the relevant
candidates thus adds additional computation overhead. Further-
more, the horizontal layout forces us to scan the entire database
or the local partition once in each iteration. Both Count and
Candidate Distribution must pay the extra overhead entailed by
using the horizontal layout.

Vertical Data Layout The vertical (or inverted) layout (also
called the decomposed storage structure [8]) consists of a list of
items, with each item followed by its tid-list – the list of all the
transaction identifiers containing the item. The vertical layout
doesn’t suffer from any of the overheads described for the hor-
izontal layout above due to the following three reasons: First,
if the tid-list is sorted in increasing order, then the support of
a candidate k-itemset can be computed by simply intersecting
the tid-lists of any two (k � 1)-subsets. No complicated data
structures need to be maintained. We don’t have to generate all
the k-subsets of a transaction or perform the search operations
on the hash tree. Second, the tid-lists contain all relevant in-
formation about an itemset, and enable us to avoid scanning the
whole database to compute the support count of an itemset. This
layout can therefore take advantage of the principle of locality.

All information for an equivalence class is clustered together,
so all large itemsets can be generated for it before moving on
to the next class. Third, the larger the itemset, the shorter the
tid-lists, which is practically always true. This results in faster
intersections. For example, let the tid-list of AB, denoted asT (AB) = f1; 5; 7; 10;50g, and let T (AC) = f1; 4; 7; 10;11g.
Then the tid-list of ABC is simply, T (AC) = f1; 7; 10g. We
can immediately determine the support by counting the num-
ber of elements in the tid-list. If it meets the minimum support
criterion, we insert ABC in L3.

The inverted layout, however, has a drawback. Examination
of small itemsets tends to be costlier than when the horizontal
layout is employed. This is because tid-lists of small itemsets
provide little information about the association among items.
In particular, no such information is present in the tid-lists for
1-itemsets. For example, a database with 1,000,000 (1M) trans-
actions, 1,000 frequent items, and an average of 10 items per
transaction has tid-lists of average size 10,000. To find frequent
2-itemsets we have to intersect each pair of items, which requires�

1;000
2

� � (2 � 10;000) � 109 operations. On the other hand, in the
horizontal format we simply need to form all pairs of the items
appearing in a transaction and increment their count, requiring
only

�
10
2

� � 1; 000;000 = 4:5 � 107 operations. The Eclat algo-
rithm thus uses the horizontal layout for generating L2 and uses
the vertical layout thereafter.

5 The Eclat Algorithm

The Eclat algorithm was designed to overcome the shortcomings
of the Count and Candidate Distribution algorithms. It utilizes
the aggregate memory of the system by partitioning the candi-
dates into disjoint sets using the equivalence class partitioning.
It decouples the dependence among the processors right in the
beginning so that the redistribution cost can be amortized by the
later iterations. Since each processor can proceed independently,
there is no costly synchronization at the end of each iteration.
Furthermore Eclat uses the vertical database layout which clus-
ters all relevant information in an itemset’s tid-list. Each pro-
cessor computes all the frequent itemsets from one equivalence
class before proceeding to the next. Thus the local database
partition is scanned only once. In contrast Candidate Distribu-
tion must scan it once in each iteration. Eclat doesn’t pay the
extra computation overhead of building or searching complex
data structures, nor does it have to generate all the subsets of
each transaction. As the intersection is performed an itemset
can immediately be inserted in Lk . Notice that the tid-lists also
automatically prune irrelevant transactions. As the itemset size
increases, the size of the tid-list decreases, resulting in very fast
intersections. The Eclat algorithm has four distinct phases. The
initialization phase, the transformation phase, the asynchronous
phase and the final reduction phase. We will describe each step
in detail below. Figures 2 and 3 present the pseudo-code for the
Eclat algorithm.

5.1 Initialization Phase

The initialization step involves computing all the frequent 2-
itemsets from the database. We don’t count the support of single



Begin Eclat
/* Initialization Phase*/
Scan local database partition
Compute local counts for all 2-itemsets
Construct global L2 counts

/* Transformation Phase */
Partition L2 into equivalence classes
ScheduleL2 over the set of processorsP
Transform local database into vertical form
Transmit relevant tid-lists to other processors
Local L2 = receive tid-lists from other processors

/* Asynchronous Phase */
for each equivalence class E2 in Local L2

Compute Frequent(E2)

/* Final Reduction Phase*/
Aggregate Results and Output Associations

End Eclat

Figure 2: The Eclat Algorithm

itemsets, since with a very small space overhead the counts of
2-itemsets can be directly obtained in one pass, as opposed to
paying the cost of scanning the database twice 1. For computing
2-itemsets we use an upper triangular array, local to each pro-
cessor, indexed by the items in the database in both dimensions.
Each processor computes local support of each 2-itemset from
its local database partition. This is followed by a sum-reduction
among all the processors to construct global counts. At the end
of the initial phase, all processors have the global counts of the
frequent 2-itemsets, L2, in the database.

5.2 Transformation Phase
The transformation step consists of two sub-steps. First, L2 is
partitioned using the equivalence class partitioning. The parti-
tions are then assigned to the processors so that a suitable level of
load-balancing is achieved. Second, the database is transformed
from the horizontal to the vertical layout, and repartitioned so that
each processor has on its local disk the tid-lists of all 2-itemsets
in any equivalence class assigned to it.

5.2.1 Equivalence Class Scheduling

We first partition the L2 into equivalence classes using the com-
mon prefix as described above. We next generate a schedule of
the equivalence classes on the different processors in a manner
minimizing the load imbalance. For this propose, each equiva-
lence class is assigned a weighting factor based on the number
of elements in the class. Since we have to consider all pairs for
the next iteration, we assign the weight

�s
2

�
to a class with s

1However, if the number of items is very large, it would be better to
make two database scans.

elements. Once the weights are assigned we generate a schedule
using a greedy heuristic. We sort the classes on the weights,
and assign each class in turn to the least loaded processor, i.e.,
one having the least total weight at that point. Ties are broken
by selecting the processor with the smaller identifier. These two
steps are done concurrently on all the processors since all of them
have access to the global L2. Although the size of a class gives
a good indication of the amount of work, better heuristics for
generating the weights are possible. For example, if we could
better estimate the number of frequent itemsets that could be
derived from an equivalence class we could use this estimation
as our weight. We could also make use of the average support
of the itemsets within a class to get better weight factors (see
[3] for one such heuristic). We believe that decoupling processor
performance right in the beginning holds promise, even though it
may cause some load imbalance, since the repartitioning cost can
be amortized over later iterations. Deriving better heuristics for
scheduling equivalence classes ofL2 is part of ongoing research.

5.2.2 Vertical Database Transformation

Once a balanced partitioning of the equivalence classes among
the processors is generated, we transform the local database
from the horizontal format to the vertical tid-list format. This
can be achieved in two steps. First, each processor scans its
local database and constructs partial tid-lists for all the frequent
2-itemsets. Second, each processor needs to construct the global
tid-lists for itemsets in its equivalence classes. Each processor
thus needs to send tid-lists for those itemsets belonging to other
processors, while receiving tid-lists for the itemsets it is respon-
sible for. The transformation phase is the most expensive step in
our algorithm, since each processor has to exchange information
with every other processor to read the non-local tid-lists over the
Memory Channel network. More detail on the implementation
of this step will be presented below in section 6.

5.3 Asynchronous Phase

Begin Compute Frequent(Ek�1)
for all itemsets I1 and I2 in Ek�1

if ((I1.tidlist \ I2.tidlist) � minsup)
add (I1 [ I2) to Lk

Partition Lk into equivalence classes.
for each equivalence class Ek in Lk

Compute Frequent(Ek)
End Compute Frequent

Figure 3: Procedure Compute Frequent

At the end of the transformation phase the database has been
redistributed, so that the tid-lists of all 2-itemsets in its local
equivalence classes reside on the local disk. Each processor can
independently compute all the frequent itemsets, eliminating the
need for synchronization with other processors. We read the tid-
lists for 2-itemsets within each equivalence class directly from
the disk. We then generate all possible frequent itemsets from



that class before moving on to the next class. This step involves
scanning the inverted local database partition only once. We thus
benefit from huge I/O savings and from the locality perspective
as well.

Within each equivalence class we look at all pairs of 2-
itemsets, and intersect their corresponding tid-lists. If the cardi-
nality of the resulting tid-list exceeds the minimum support, the
new itemset is inserted in L3. Then we split the resulting fre-
quent 3-itemsets, L3 into equivalence classes based on common
prefixes of length 2. All pairs of 3-itemsets within an equivalence
are intersected to determine L4. This process is repeated until
there are no more frequent k-itemsets to be found. This recur-
sive procedure is shown in figure 3. Note that once Lk has been
determined, we can delete Lk�1. We thus need main memory
space only for the itemsets in Lk�1 within one equivalence class.
The Eclat algorithm is therefore extremely main memory space
efficient.
Short-Circuited Intersections The intersections between pairs
of itemset tid-lists can be performed faster by utilizing the mini-
mum support value. For example let’s assume that the minimum
support is 100, and we are intersecting two itemsets – AB with
support 119 and AC with support 200. We can stop the intersec-
tion the moment we have 20 mismatches in AB, since the support
of ABC is bounded above by 119. Eclat uses this short-circuit
mechanism to optimize the tid-list intersections.
Pruning Candidates Recall that both Count and Candidate Dis-
tribution use a pruning step to eliminate unnecessary candidates.
This step is essential in those algorithms to reduce the size of
the hash tree. Smaller trees lead to faster support counting, since
each subset of a transaction is tested against the tree. However,
with the vertical database layout we found the pruning step to
be of little or no help. This can be attributed to several fac-
tors. First, there is additional space and computation overhead
in constructing and searching hash tables. This is also likely to
degrade locality. Second, there is extra overhead in generating
all the subsets of a candidate. Third, there is extra communi-
cation overhead in communicating the frequent itemsets in each
iteration, even though it may happen asynchronously. Fourth,
because the average size of tid-lists decreases as the itemsets
size increases, intersections can be performed very quickly with
the short-circuit mechanism.

5.4 Final Reduction Phase

At the end of the asynchronous phase we accumulate all the
results from each processor and print them out.

6 Implementation Details

In this section we describe some implementation specific op-
timizations. We begin by a description of the DEC Memory
Channel network, and then present the implementation details of
the various communication steps of our algorithm.

6.1 The DEC Memory Channel

Digital’s Memory Channel (MC) network [7] provides applica-
tions with a global address space using memory mapped regions.

Memory Channel
Address Space
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Figure 4: Memory Channel space. The lined region is mapped
for both transmit and receive on node 1 and for receive on node 2.
The gray region is mapped for receive on node 1 and for transmit
on node 2.

A region can be mapped into a process’ address space for trans-
mit, receive, or both. Virtual addresses for transmit regions map
into physical addresses located in I/O space on the MC’s PCI
adapter. Virtual addresses for receive regions map into physical
RAM. Writes into transmit regions are collected by the source
MC adapter, forwarded to destination MC adapters through a
hub, and transferred via DMA to receive regions with the same
global identifier (see figure 4). Regions within a node can be
shared across different processors on that node. Writes originat-
ing on a given node will be sent to receive regions on that same
node only if loop-back has been enabled for the region. We do
not use the loop-back feature. We use write-doubling instead,
where each processor writes to its receive region and then to its
transmit region, so that processes on a host can see modification
made by other processes on the same host. Though we pay the
cost of double writing, we reduce the amount of messages to the
hub.

In our system unicast and multicast process-to-processwrites
have a latency of 5.2 �s, with per-link transfer bandwidths of 30
MB/s. MC peak aggregate bandwidth is also about 32 MB/s.
Memory Channel guarantees write ordering and local cache co-
herence. Two writes issued to the same transmit region (even on
different nodes) will appear in the same order in every receive
region. When a write appears in a receive region it invalidates
any locally cached copies of its line.

6.2 Initialization Phase

This is a straightforward implementation of the pseudo-code
presented in figure 2. Once the local counts for all 2-itemsets
are obtained, we need to perform a sum-reduction to obtain the
global counts. We allocate an array of size

�m
2

�
, (m is the

number of items) on the shared Memory Channel region. Each
processor then accesses this shared array in a mutually exclusive
manner, and increments the current count by its partial counts. It
then waits at a barrier for the last processor to update the shared
array 2. After all processors have updated the shared array,
each processor sees the global counts for all 2-itemsets. Each
processor also broadcasts the local partial counts of the frequent

2On P processors, the sum-reduction can be performed more effi-
ciently in O(log(P )) steps. Since it is performed only once in Eclat,
we opted for the simpleO(P ) process described above.



Equivalence Class Partitioning of L2
P0 - (12, 13, 15)
P1 - (23, 25)
P2 - (34, 35)
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Figure 5: Vertical Database Transformation

2-itemsets to all the other processors. The partial counts are used
to construct the inverted global tid-lists efficiently.

6.3 Transformation Phase
Each processor scans it local database partition a second time
and constructs the vertical tid-lists for the frequent 2-itemsets,L2. Since the original database is initially partitioned in a block
fashion, each processor’s inverted database consists of disjoint
ranges of tids. We make use of this information, along with
the knowledge of the partial counts, to place the incoming tid-
list from a given processor at an appropriate offset, so that the
global tid-list appears lexicographically sorted. This saves us the
cost of sorting each tid-list if the transactions were distributed in
a random manner. The transformation is accomplished in two
steps:
Local Tid-list Transformation To perform the inversion, we
break L2 into two groups. Those itemsets belonging to local
equivalence classes assigned to the processor, denoted as G,
and those itemsets belonging to other processors, denoted asR. Each processor, Pi, memory maps an anonymous memory
region of size

Pg global count(g) +Pr partial count(r; Pi),
where itemsets g 2 G, r 2 R, Pi denotes the processor, and
partial count(r; Pi) is the partial count of itemset r on processorPi. Each processor then performs the transformation, writing its
tid-list for the members of G at the appropriate offset. Members
of R are written starting at offset zero. Figure 5 depicts the
database transformation step on three processors.
Tid-list Communication Once the transformation of the local

database is done,we need to receive the partial tid-lists from other
processors for all 2-itemsets in G, and we need to communicate
the tid-lists of R to other processors. The incoming tid-lists
are again copied at the appropriate offsets. Since the ranges of
transaction are distinct and monotonically increasing, the final
tid-lists for each 2-itemset appear lexicographically sorted by
using the above approach. The tid-lists of itemsets in G are
then written out to disk, while those in R are discarded. To
communicate the partial tid-lists across the Memory Channel, we
take advantage of the fast user-level messages. Each processor
allocates a 2MB buffer 3 for a transmit region and a receive region,
sharing the same identifier. The communication proceeds in a
lock-step manner with alternating write and read phases. In the
write phase each processor writes the tid-lists of itemsets in P
into its transmit region, until we reach the buffer limit. At this
point it enters the read phase, where it scans each processor’s
receive region in turn, and places the tid-lists belonging to G at
the appropriate offsets. Once the read region has been scanned
it enters the write phase. This process is repeated until all partial
tid-lists are received. At the end of this phase the database
is in the vertical tid-list format. Figure 5 shows this process
pictorially. Each processor then enters the asynchronous phase,
and computes the frequent itemsets, as described in section 5.3.
The final reduction is implemented in the same manner as the
reduction in the initialization phase.

7 Salient Features of Eclat

In this section we will recapitulate the salient features of Eclat,
contrasting it against Count and Candidate Distribution. Eclat
differs from these algorithms in the following respect:� Unlike Count Distribution, Eclat utilizes the aggregate mem-
ory of the parallel system by partitioning the candidate itemsets
among the processors using equivalence class partitioning. It
shares this feature with Candidate Distribution.� Elcat decouples the processors right in the beginning by repar-
titioning the database, so that each processor can compute the
frequent itemsets independently. It thus eliminates the need for
communicating the frequent itemsets at the end of each iteration.� Elcat uses a different database layout which clusters the trans-
actions containing an itemset into tid-lists. Using this layout
enables our algorithm to scan the local database partition only
three times on each processor. The first scan for building L2, the
second for transforming the database, and the third for obtaining
the frequent itemsets. In contrast, both Count and Candidate
Distribution scan the database multiple times – once during each
iteration.� To compute frequent itemsets, Eclat performs simple intersec-
tions on two tid-lists. There is no extra overhead associated with
building and searching complex hash tree data structures. Such
complicated hash structures also suffer from poor cache locality
[13]. In contrast, all the available memory in Eclat is utilized
to keep tid-lists in memory which results in good locality. As
larger itemsets are generated the size of tid-lists decreases, re-
sulting in very fast intersections. Short-circuiting the join based

3A smaller buffer size can be used if there is a constraint on the shared
MC space. Since we had approximately 90-100MB of shared MC space
with 32 processors, we chose the 2MB buffer size.



on minimum support is also used to speed this step.�Our algorithm avoids the overhead of generating all the subsets
of a transaction and checking them against the candidate hash
tree during support counting.� Eclat recursively uses the equivalence class partitioning during
each iteration to cluster related itemsets. At any given point onlyLk�1 within one equivalence class needs to be kept in memory.
The algorithm thus uses higher levels of the memory hierarchy
efficiently.� The one disadvantage of our algorithm is the virtual memory it
requires to perform the transformation. Our current implementa-
tion uses memory mapped regions to accomplish this, however,
we are currently implementing an external memory transforma-
tion, keeping only small buffers in main memory. Our algorithm
may need roughly twice the disk space of the other algorithms,
since we use the horizontal layout for the initial phase, and the
vertical layout thereafter (once we have the new format we can
delete the former). As we shall see, the performance gains shown
in the next section more than offset this disadvantage.

8 Experimental Evaluation

Database T I D Total Size
T10.I6.D800K 10 6 800,000 35 MB
T10.I6.D1600K 10 6 1,600,000 68 MB
T10.I6.D3200K 10 6 3,200,000 138 MB
T10.I6.D6400K 10 6 6,400,000 274 MB

Table 1: Database properties

All the experiments were performed on a 32-processor (8
hosts, 4 processors each) DEC Alpha cluster inter-connected via
the Memory Channel. Each Alpha processor runs at 233MHz.
There’s a total of 256MB of main memory per host (shared among
the 4 processors on that host). Each host also has a 2GB local
disk attached to it, out of which less than 500MB was available
to us. All the partitioned databases reside on the local disks of
each processor.
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We used different synthetic databases with size ranging form
35MB to 274MB, which were generated using the procedure de-

scribed in [4]. These have been used as benchmark databases
for many association rules algorithms [4, 8, 11, 14, 2], and they
mimic the transactions in a retailing environment. Each transac-
tion has a unique ID followed by a list of items bought in that
transaction. The data-mining provides information about the set
of items generally bought together. Table 1 shows the databases
used and their properties. The number of transactions is denoted
as jDj, average transaction size as jT j, and the average maximal
potentially frequent itemset size as jIj. The number of maxi-
mal potentially frequent itemsets jLj = 2000, and the number of
itemsN = 1000. We refer the reader to [4] for more detail on the
database generation. All the experiments were performed with
a minimum support value of 0.1%. The support was kept small
so that there were enough frequent itemsets generated. Figure
6 shows the total number of frequent itemsets of different sizes
found for the different databases at the above support value.

8.1 Eclat: Parallel Performance

Configuration Database CD Eclat(E) CD/E
T H P Total Total Setup Ratio
1 1 1 D800K 1746.0s 98.8s 54.2s 17.7

D1600K 842.9s 161.4s 113.3s 5.2
D3200K 3483.0s 540.7s 344.0s 6.4

2 2 1 D800K 1470.0s 53.3s 28.9s 27.6
D1600K 757.8s 84.1s 54.8s 9.0
D3200K 2455.9s 215.9s 122.9s 11.4

4 2 2 D800K 1552.7s 34.4s 16.2s 45.1
D1600K 669.5s 53.8s 38.1s 12.4
D3200K 2305.1s 144.1s 74.8s 16.0

4 4 1 D800K 1326.5s 32.4s 14.1s 40.9
D1600K 399.5s 45.7s 29.4s 8.7
D3200K 1670.2s 113.1s 62.0s 14.8

8 4 2 D800K 1466.5s 23.1s 10.0s 63.5
D1600K 544.2s 29.7s 16.9s 18.3
D3200K 1627.8s 77.7s 45.8s 20.9

8 8 1 D800K 1267.3s 24.5s 10.6s 51.7
D1600K 314.5s 28.3s 15.9s 11.11
D3200K 1497.2s 67.5s 38.5s 22.2

16 8 2 D800K 1414.1s 27.7s 7.7s 51.1
D1600K 312.3s 24.9s 14.3s 12.5
D3200K 1620.5 49.7s 26.9s 32.6

24 8 3 D800K 2112.9s 29.3s 8.7s 72.1
D1600K 542.5 30.7s 13.3s 17.7
D3200K 2048.6 51.8s 20.5s 39.5

Table 2: Total Execution Time: Eclat (E) vs. Count Distribu-
tion (CD) (P: #processors/host; H: #Hosts; T: Total #processors)

In this section we will compare the performance of our algo-
rithm with Count Distribution, which was shown to be superior
to both Data and Candidate Distribution [3]. In table 2 we give
the running times of both algorithms under different processor
configurations and on different databases. In all the figures H
denotes the number of hosts, P the number of processors per
host, and T = H � P , the total number of processors used in
the experiments. The times shown are the total execution time
in seconds. For Eclat we also show the break-up for the time
spent in the initialization and transformation phase. The last
column of the table gives the improvement ratio or speed-up fac-
tor obtained by using Eclat. Table 2 shows that our algorithm



clearly outperforms Count Distribution by more than an order
of magnitude for most configurations and databases with the im-
provement ranging between 5 and 18 for the sequential case and
between 9 and 70 for the parallel case. This improvement can
be attributed to several factors which have been enumerated in
section 7. First, Count Distribution performs a sum-reduction,
and communicates the local counts in each iteration, while Eclat
eliminates this step entirely. For example T10.I6.D800K has 12
iterations and the synchronization times accumulate over all the
iterations. Second, there is no provision for load balancing in
Count Distribution. The databases are partitioned in equal-sized
blocks, while the amount of work may be different for each par-
tition, especially if the transaction sizes are skewed. There is no
straightforward way to (re)distribute the work in this algorithm
without adding huge communication overhead. While Eclat may
also suffer from load imbalance, it tries to minimize this in the
equivalence class scheduling step (section 5.2.1). Third, Eclat
utilizes the aggregate memory better and dispenses with main-
taining complex hash structures which may suffer from poor
cache locality [13]. All available memory is used for the tid-
lists and simple intersection operations are performed on these
lists, which have good locality. Fourth, Count Distribution suf-
fers from high I/O overheads because of multiple scans of the
database (12 iterations imply 12 scans).

From table 2 we can also observe that the transformation
phase dominates (roughly 55-60%) the total execution of Eclat,
while the simple intersections of tid-lists facilitate fast frequent
itemset determination. In Count Distribution the support count
phase dominates, where subsets of a transaction are generated
and a search is performed on the candidate hash tree. This
produces an interesting result. Consider the T10.I6.D800K and
T10.I6.D1600K databases. Even though T10.I6.D800K is half
the size of T10.I6.D1600K, figure 6 shows that it has more
than twice as many frequent itemsets. In Count Distribution,
T10.I6.D800K generates a much larger hash tree, making it more
expensive than T10.I6.D1600K. On the other hand in Eclat the
larger database, T10.I6.D1600K, takes longer to transform, and
hence takes longer time. This fact also explains why we see the
best improvement ratio for the T10.I6.D800K database. Since it
is small, the transformation is very cheap, and at the same time
it generates a lot of frequent itemsets, increasing the time for
Count Distribution.

Figure 7 shows the speedup obtained for Eclat on the dif-
ferent databases on various configuration. The speedup numbers
are with respect to a sequential run of the algorithm on the given
database. However, the T10.I6.D6400K speedups are with re-
spect to the P = 1;H = 4; T = 4 configuration (214.6 sec).
Since our current implementation uses memory mapped regions
to perform the transformation, we did not have enough space to
perform the transformation on a single processor 4.

The figures indicate that with increase in the number of pro-
cessors per host, there is an improvement only if there is sufficient
work. The current implementation of Eclat doesn’t distinguish
between hosts (H) and processors per host (P ). It simply parti-
tions the database into T (the total number of processor) chunks.
Since all the processors will be accessing the local disk simulta-

4If we used uniprocessor time we would get a super-linear speedup
with more hosts, since the local database partition size would decrease,
and would fit in the memory mapped region.
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neously,we will suffer from a lot of disk contention. This is borne
by the results on 8 hosts for T10.I6.D800K. While the relative
computation time decreases with increasing number of hosts, the
disk contention causes performance degradation with increasing
number of processors on each host. The same effect can be ob-
served for Count Distribution since it too doesn’t use the system
configuration information. It also takes an additional hit since
the entire hash tree is replicated P times on each host. To solve
the local disk contention problem, we plan to modify the current
implementations to make use of configuration-specific informa-
tion. We plan to implement a hybrid parallelization where the
database is partitioned only among the hosts. Within each host
the processors could share the candidate hash tree in Count Dis-
tribution, while the Compute Frequent procedure (section 5.3)
could be carried out in parallel in Eclat.

To further support this fact, for the same number of total pro-
cessors, Eclat does better on configurations that have fewer pro-
cessors per host. For example, consider the T = 8 case. Out of
the three configurations — (H = 2; P = 4); (H = 4; P = 2);
and (H = 8;P = 1), the last always performs the best (see
figure 7). This can also be attributed to the relative cost of com-
putation and disk contention. Speedups with increasing number
of hosts for a fixed P are typically very good. The speedups for
the larger databases (T10.I6.D3200K and T10.I6.D6400K) are
close to linear as we go from H = 2 to H = 8 for P = 1.
However, with increasing database sizes, we see performance
improvements even with multiple processors on the same host.
This is becauseof the increased computation versus disk I/O cost
ratio.

9 Conclusions

In this paper we described Eclat — a localized parallel algo-
rithm for association mining. It uses techniques to cluster related
groups of itemsets using equivalence class partitioning, and to
cluster transactions using the vertical database layout. It then
schedules the equivalence classes among the processors, min-
imizing load imbalance, and repartitions the vertical database
so that each processor can compute the frequent itemsets inde-
pendently. This eliminates the need to communicate in each
iteration. Eclat scans the local database partitions only three
times gaining significantly from the I/O overhead savings. Fur-
thermore, it uses simple intersection operations to determine the
frequent itemsets. This feature enables the algorithm to have
good cache locality. It also dispenses with keeping complex
hash structures in memory, which suffer from poor locality. We
implemented Eclat on a 32 processorDEC cluster interconnected
with the DEC Memory Channel network,and compared it against
a well known parallel algorithm Count Distribution [3]. Exper-
imental results indicate a substantial improvement of more than
an order of magnitude over the previous algorithm.
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