
Compile-time Inter-query Dependence Analysis�
Srinivasan Parthasarathy, Wei Li, Michał Cierniak, Mohammed JaveedZaki

Department of Computer Science, University of Rochester, Rochester, NY 14627-0226fsrini,wei,cierniak,zakig@cs.rochester.edu
Abstract

Most parallel databases exploit two types of parallelism:
intra-queryparallelism andinter-transactionconcurrency.
Between these two cases lies another type of parallelism:
inter-queryparallelism within a transaction or application.
Exploiting inter-query parallelism requires either compiler
support to automatically parallelize the existingembedded
query programs, or programming support to write explicitly
parallel query programs. In this paper, we present compiler
analysis to automatically detect parallelism in theembed-
ded query programs. We present compiler algorithms for
detecting dependences in such programs. We show that the
properties of some aggregate functions such as MIN and
MAX can help reduce statically computed dependences.
Keywords: Inter-Query Parallelism, Embedded SQL, Depen-
dence Analysis.

1 Introduction

Traditional mainframe databases are being replaced by
highly parallel database systems. Most parallel databases
exploit two types of parallelism:intra-query parallelism
and inter-transactionparallelism. Intra-query paralleliza-
tion improves the execution time of complex queries by exe-
cuting the sub-queryoperations in parallel. Inter-transaction
parallelization improves the throughput of the database sys-
tem by executing queries from multiple transactions in paral-
lel. Between these two cases lies another type of parallelism:
inter-queryparallelism, within a single transaction or appli-
cation. Exploiting inter-query parallelism correctly requires
either compiler support to automatically parallelize the ex-
isting embeddedquery programs, or programming support
to write or rewrite explicitly parallel query programs.

Parallel databases have been an active research area. De-
Witt and Gray [8] give an excellent overview of the state of
research on parallel database systems. They consider “Ap-�This work was supported in part by an NSF Research InitiationAward
(CCR-9409120) and ARPA contract F19628-94-C-0057.

plication Program Parallelism” as one of the future research
problems. They state that, “The parallel database systems
offer parallelism within the database system. Missing are the
tools to structure application programs to take advantage of
parallelism inherent in these parallel systems.” While there
has been much research on (intra-)query optimizations for
parallel processors [9, 17] and concurrency between trans-
actions [3], little work has been done on inter-query paral-
lelization within a transaction or application. Karabeg and
Vianu [12] presented algorithms for maximizing the degree
of parallelism ofstraight-line codewithin parallel transac-
tions. As far as we know, no work onembedded query
programshas been done.

In the area of parallelizing compilers, dependence anal-
ysis of sequential programs has been widely studied in the
high performance computing research community. How-
ever, the data dependence analysis tests are usually designed
for array-based programs [2, 15, 19] or pointer-based pro-
grams [10, 11]. In this paper, we show that a compiler
canautomatically detect parallelism in the embedded query
programs.

Our main contributions are summarized below. We for-
mulate the dependence problem, and categorize the depen-
dences intointernalandexternaldependences. We present
two compiler dependence tests for detecting internal and
external dependences. We show that the use of aggregate
functions such as MIN and MAX can help reduce statically
computed dependences.

This paper is organized as follows. First, we give the
problem formulation for dependence analysis of queries in
Section 2. In Section 3, we propose a model of representing
SQL queries in terms of Read/Write sets. In the next sec-
tions, we present two dependence tests. The test forinternal
dependencesis described in Section 4, and the test forexter-
nal dependencesis in Section 5. In Section 6, we show that
the properties of aggregate functions can be used to improve
the dependence analysis. In Section 7 we demonstrate how
our analysis can be used on a TPCC benchmark program to
detect inter-query parallelism. Finally in Section 8 we state
our conclusions and outline areas of future work.

1

2 Problem Formulation

Reads and writes to the same object and uses of the same
value may result independencesbetween queries. The ob-
jects may be either records in the database or variables in
the host language. If there is a dependence between two
queries, the compiler must preserve the original order. If,
on the other hand, the compiler can prove that two queries
are independent, we are guaranteed the correct result no
matter in which order those two queries are executed. Prov-
ing that two queries are independent enables many powerful
inter-query optimizations. These include standard compiler
optimizations that have been used in general purpose pro-
gramming languages. Our techniques can enable these op-
timizations for embedded query languages as well.

In our model we consider SQL queries embedded within
a host language. This provides mechanisms not available in
SQL (e.g., control flow). Because of the presence of both the
host language and the query language, we define two types
of dependences:internal dependenceandexternal depen-
dence. An internal dependence is a dependence between
two queries in the same transaction, that access a shared
subset of records in the database, where one of the shared
records is written. An external dependence is a dependence
between two queries that share the same host-language vari-
able, where one of the queries writes to the variable. These
dependences combine to form the dependence graph.

The dependences between queries are represented with a
dependence graph. The dependence graph contains a vertex
for every query in the program and a directed edge between
verticesa andb if there is a dependence between queriesa
andb. If b depends ona then there is a directed edge froma
to b. We initialize the graph so that there is an edge between
any two queries that operate on the same table. There are no
edges between queries operating on different tables. Then
we use internal dependence analysis to eliminate as many
edges as possible between queries on the same table, and
we use the external dependence analysis to add all external
dependences between queries operating on different tables.
These dependences have to be preserved to maintain the
semantics of the original program.

The algorithms for building precise dependence graphs
between queries are the focus of our paper. The following
sections show how we deal with each of the dependences.
Section 4 describes how to detect internal dependences, and
Section 5 shows how to find external dependences.

3 Query Model

In this section, we present the model that we use to rep-
resent standard SQL queries. This model allows us to easily
extract read and write information from SQL queries, like
table attributes or program variables. We only model the
four common SQL queries – Select, Update, Delete, and

Insert. We also allow queries to contain aggregate functions
like COUNT, SUM, AVG, MAX and MIN. This is further
discussed in Section 6. In the subsequent sections, we refer
to aconditional termas an expression of the formh(A1; � � � ; An)� f(v1; � � � ; vm; c1; � � � ; cr) (1)

where� can be any relational operator in the set< = f=; 6=<;�; >;�g, Ai belongs to the set of attributes (columns)
of a table,vk belongs to the set of host language vari-
ables,cr belongs to the set of constants, andh; f are func-
tions. We define acondition as one or more conditional
terms connected by any of the logical operators in the set= = f^;_;:g, which correspond toand, or, andnot re-
spectively. Notice that the: can always be “pushed-in”
inside a conditional term, for example,:(A1 < 5) is equiv-
alent to((A > 5)_(A = 5)), henceforth,we do not consider
the logical operatornot. Since� and� can be written in
terms of=, <, and>, we assume that< = f=; 6=; <;>g.
We say that a condition issatisfiableif there is a record in
the table for which the condition holds true.

Model for Select: The fundamental retrieval operation in
SQL is the mapping, represented syntactically as aSelect-
Into-From-Where block. We model the Select operation by
grouping the variables in the operation according to whether
they are defined or used. We further separate them into two
groups according to whether they are program variables (ex-
ternal), or part of the database (internal), that is, accessible
only by queries. The Select is modeled as shown in Fig-
ure 1. The Read-Write representation can be explained as

Selectattrh
Into itemi
From Tablej
WhereC (condition)
(a) General Form

Read E = fitemkg
Write E = fitemig
Read I = C
Write I = ;
(b) Representation

Figure 1. Select and its Representation

follows:
Read E = fitemkg, refers to all the program variablesitemk, external to the query, that are used in the condi-
tion C. These are the program variables read by the query.
Write E = fitemig, refers to all the program variablesitemi, external to the query, that are defined by the query.
Read I = C. For notational efficiency we also use theC to
denote the set of all records inTablej satisfying the condi-
tion C. At this time, we restrict our attention to the whole
record in a table. We plan to relax this to consider individual
attributes separately, as part of future work.
Write I = ; refers to the fact that no database table entry is
written to. We do not elaborate the representation of each
set in the other cases as they are similar to the above.

Model for Update: The main modification operation in
SQL is the Update operation. This is represented syntacti-

cally as anUpdate-Set-Whereblock. The Update operation
is modeled as shown in Figure 2. The key difference in

UpdateTablej
Setattrh
= f(itemi; attrh)
Where C
(a) General Form

Read E = fitemk; itemig
Write E = ;
Read I = C
Write IPre = C
Write IPost = C0= Cjattrh=f(itemi;attrh)

(b) Representation

Figure 2. Update and its Representation

the representation of the Update operation is the presence
of two write sets, WriteIPre and WriteIPost. The first set
describes the set of records that are to be updated, and the
second set describes the set of records obtained after ap-
plying the update operation. The rationale for having two
sets is that an update may modify an attribute that is part of
the Where condition, potentially changing the set of records
satisfying the condition. Note that the WriteIPost set is
a conservative estimate, as the records that have the same
values prior to the update are also included in the set.

Model for Insert: The Insert operation is used to add an
entry to the database. This operation is represented syntac-
tically as anInsert-Into-Values block. The Insert operation
is modeled as shown in Figure 3.

Insert
Into Tablej
Values(val1 : � � � : valn)
(a) General Form

Read E = fitemig
Write E = ;
Read I = ;
Write I = (attr1 = val1) ^ � � �^(attrn = valn)

(b) Representation

Figure 3. Insert and its Representation

Model for Delete: The Delete operation is used to delete
a record from the database. This operation is represented
syntactically as aDelete-WhereorDeleteblock. The Delete
operation is modeled as shown in Figure 4.

DeleteTablej
WhereC
(a) General Form

Read E = fitemkg
Write E = ;
Read I = C
Write I = C

(b) Representation

Figure 4. Delete and its Representation

4 Test for Internal Dependences

In this section we present an algorithm to test for internal
database dependence between two queries. The internal de-
pendence test starts by constructing the ReadI and Write I

sets for each query, as defined in Section 3. Recall that we
use the condition interchangeablywith the set of records sat-
isfying the condition, letCRi refer to the ReadI condition,
andCWi to the WriteI condition, for queryi. We say that a
pair of conditionsCi andCj is incompatibleif the conjunc-
tion of the pair, denoted by� = (Ci ^ Cj), is unsatisfiable,
otherwise we say that the pair iscompatible. We say that
there is aninternal dependencebetween a pair of queries iff,
1. (CW1^CR2) is compatible,or 2. (CR1^CW2) is com-
patible,or 3.(CW1^CW2) is compatible, where query 1 is
executed before query 2 in the original program. Otherwise,
we assume that the two queries areinternally independent.
For Update queries, we useCWpost if the Update is query
1, and we useCWpre if it is query 2, instead of simply usingCW .

We start with a complete graph of dependences between
two queries that operate on the same table. We test each
possible pair of queries in turn, and try to eliminate the de-
pendence edge from the graph if we can establish that the two
queries are internally independent. Before we test for com-
patibility between the read and write conditions of different
queries, we convert�, the conjunction of the two condi-
tions, intodisjunctive normal form(DNF). Recall that� is
in disjunctive normal formif � = Wni=1�i, where

Wni=1�i
stands for(�1 _ �2 _ � � � _ �n). Each�i = Vmij=1 tj , wheretj is a conditional term. To determine the incompatibility
of the pair of conditions forming�, we have to make sure
that each of the�i is unsatisfiable, or conversely if any�i
is satisfiable, then we conclude that the two conditions are
compatible.

We now formulate a method of solving or establishing
the incompatibility of a pair of conditions. We first consider
the simple case where only conditional terms of the from(a1A1 + a2A2 + : : : + anAn) � a0, where� 2 <, Ai are
attributes, andai are constants, i.e. whereh is a linear
function of the attributes of the table. Note that in the
cases where arithmetic operations do not make sense, for
example in the case of strings, we only consider terms of
the formAi = a0 orAi 6= a0. Later in the section, we will
discuss how to extend the solution for the more general case
involving variables. We do, however, restrict our attention
to linear functions of attributes, variables or constants.

4.1 Grouping inter-related terms

We say that the termti is inter-relatedto termtj , iff 9
an attributeA, such thatA occurs in bothti andtj , and we
define the notion ofgroupingwithin each�i as the process
of forming the set of inter-related terms. After grouping
within each�i, we have�i = Vuij=1 �ij , where eachgroup�ij = Vmijk=1 tk, is a conjunction of inter-related terms,tk.
We observe that only terms that are inter-related, i.e., those
that make up a group, need to be checked for contradictions.

For example, let�i = [(NAME = SAM) ^ (SAL >
20K) ^ (NAME 6= SAM)]. After grouping inter-related
terms, we have,�i1 = [(NAME = SAM) ^ (NAME 6=SAM)], and�i2 = (SAL > 20K). The attributeSAL
cannot have any influence on the satisfiability of group�i1.
We consider each group,�ij , separately, and if any group is
unsatisfiable,�i is unsatisfiable. Conversely, if all groups
are satisfiable, then�i is satisfiable.

4.2 Simple test

From our example above (section 4.1), in the absence of
knowledge of the state of the database, we must assume that
the conditional term(SAL > 20K) is satisfiable. In gen-
eral, we can eliminate any group that has only one term in it,
by conservatively assuming that it is true. Moreover, in cases
where the domain of values for an attribute is non-numeric,
we can simply check for compatibility by comparing the
constant values for the attributes in the conditional term. In
the example above, by comparing the values ofNAME,
we can quickly establish a contradiction.

Once the groups have been formed, our simple tests com-
prise of eliminating all groups having only one term, and
groups which have attributes with non-numeric domains are
tested for unsatisfiability by simple comparisons among the
terms comprising the group. We now concern ourselves
with groups having terms with affine expressions.

4.3 Linear test

The fact that we can replace(x= y)with [(x � y)^(x �y)], and(x 6= y) with [(x > y) _ (x < y)], combined with
the conjunctive form of�ij , allows us to consider each
group not eliminated by the simple tests as a system of
linear inequalities that can be solved for solutions by using
the Fourier-Motzkin Elimination method [5]. Consider the
following system ofm linear inequalities inn unknowns,
formed from the terms within a group, where the attributes,Aj , are unknowns, andaij are constants:nXj=1

aijAj � a0j ; i = (1; � � � ;m)
This method proceeds by eliminating one unknown at a
time by first rewriting each lower and upper bound for that
unknown. It then compares each lower bound against each
upper bound, and obtains a new system of inequalities not
involving that unknown. For example, the above system of
linear inequalities can be partitioned into the three sets:An � Ui(A1; A2; � � � ; A(n�1)); i = (1; � � � ; r);An � Lj(A1; A2; � � � ; A(n�1)); j = (1; � � � ; s); and

0� Ok(A1; A2; � � � ; A(n�1)); k = (1; � � � ; t):Ui denotes all the upper-bounds,Lj denotes all the lower-
bounds forAn, andOk denotes inequalities not involvingAn. After eliminatingAn, we get the new set of inequalities,Lj(A1; A2; � � � ; A(n�1)) � Ui(A1; A2; � � � ; A(n�1))

0� Ok(A1; A2; � � � ; A(n�1)):
We repeat this process until a contradiction is reached, or we
eliminate all unknown variables, in which case the system
must have a real solution.

Handling symbolic terms Our formulation above can
easily be extended to solve for the general conditional terms
of the form shown in equation 1. Previously in this sec-
tion, we considered the unknowns to be only the attributes
of tables, we now relax this condition and allow variables
to be unknowns, obtaining the following system of linear
inequalities nXj=1

aijDj � a0j ; i = (1; � � � ;m)
whereDj can be an attribute or a variable. This new system
can now be solved by our algorithm to test for compatibility
between the two conditions. The complete algorithm is
summarized in Figure 5.

Input : queriesQ1; Q2

Output : Is there an internal dependence betweenQ1 andQ2?
1) for each(C1; C2) 2 f(CW1; CR2); (CR1; CW2); (CW1; CW2)g
2) let� = DNF (C1 ^ C2) = Wmi=1�i
3) for each�i, form groups of inter-related terms,�i = Vuij=1 �ij
4) for each group,�ij , determine satisfiability by
4a) eliminating it if it has only one term, i.e., it is satisfiable
4b) if it has non-numeric attributes, use simple comparison
4c) else apply Fourier-Motzkin Elimination method

/* end for each group,�ij .. */
5) if any group unsatisfiable,�i is unsatisfiable.

/* end for each�i.. */
6a) if any(C1; C2) compatible, i.e., all groups satisfiable in some�i,

return “DEPENDENT”
6b)if all (C1; C2) incompatible, return “INDEPENDENT”

/* end for each(C1; C2).. */

Figure 5. Algorithm for testing Internal Depen-
dences

5 Test for External Dependences

Information is shared between embedded queries via
variables of the host language. Therefore we must know
the flow of data in the host language to determine depen-
dences between queries.

5.1 Dataflow Dependence

In addition to dependences between queries caused
by conflicting accesses in the database, there are
new types of dependences in embedded SQL. The
variables of the host language may carry infor-
mation between two queries thus making the two
queries dependent. Consider the following example:

SELECT a INTO :a FROM table1 WHERE b = :b;
e = a + 1;
SELECT c INTO :c FROM table2 WHERE d = :e;

In this case the two queries access disjoint portions of the
database, yet there is a dependence between them, because
the value retrieved in the first query is used (indirectly) in
the second query.

5.2 Application of Induction Variables

If we can prove that induction variables are differ-
ent in different iterations of a loop, we can prove in-
dependence of queries that use that induction variable
to select records. Consider the following example.

for i = 1 to n do
j = j + 3;
UPDATE table1 SET a = :a WHERE b = :j;
...

end for

Without the information that the value ofj is different in
every iteration, we have to assume conservatively that all in-
stances of the query are dependent on each other. However,
using dataflow analysis (e.g., FUD chains, cf. Section 5.3)
we can prove that all instances are independent and they
can be reordered or issued in parallel (assuming no other
dependences in the loop).

5.3 Factored Use-Def Chains

For dataflow analysis and for induction variable detection
we use factored use-def chains (FUD chains) [19].

For every use of a variable we have a pointer to a unique
reaching definition. This is possible because of the intro-
duction of Φ-terms [4], that merge conflicting definitions
created by control flow. FUD chains not only have desirable
properties, but they can also be constructed efficiently with
known algorithms.

We use the following notation for FUD chains. Each
occurrence of a variable is marked with a unique label. A
definition is denoted with that label in the subscript. Each
use is marked with its label and another label of the definition
that reaches this use. For instanceK3 = K2;1 + 2 is a
definition of variableK which is labeledK3. The use ofK

on the right-hand side is labeledK2. The definitionK1 is
the reaching definition forK2.

To guarantee that there is always at most one definition
reaching any use of a variable, we insertΦ-terms at control
flow convergence points. AΦ-term creates a new definition
for a variable with multiple definitions reaching that point.
Consider the following code fragment.K1 = 0

if : : : thenK3 = K2;1 + 2
end if
Φ(K)4;3;1M1 = K5;4

Two definitions reach the merge point of control flow
after theif statement. A new definitionK4 is inserted to
merge definitionK1 andK3 into one. This causes just one
definition ofKto reach the useK5. Reaching definition in-
formation enables straightforward detection of information
sharing between two queries.
Induction Variables There is another use of FUD chains
that is important to our analysis: detecting induction vari-
ables in a loop. After detecting an induction variable, we
try to prove that the variable has a different value in every
iteration of the loop. If such a proof is possible, we can often
show that instances of queries in different loop iterations are
independent.
Read and Write Sets In addition to modifications to vari-
ables as handled in standard dataflow analysis, we have to
consider theRead E andWrite E sets defined in Section 3.
Every occurrence of a variable in aRead E set is treated as
a use of that variable. An occurrence in aWrite E set is
equivalent to a definition. An example using these sets to
find dependences is given in Section 7.

6 Aggregate Functions

In this section we look at ways in which we can identify
distinctly valuedvariables in a loop. We definedistinctly
valuedvariables as those variables that can never have the
same value across iterations of a loop. These variables are
different from induction variables in the sense that, we do
not know the exact function by which we can represent
them. In the case of distinctly valued variables we do not
know what value they have in a given iteration but we do
know that the possible set of values of a distinctly valued
variable in iterationi cannot intersect with the possible set
of values for the same variable in iterationj. For example
a monotonically increasing/decreasing induction variable is
distinctly valued.

In the example shown in Figure 6, Var1 is a distinctly
valued variable, because the value it is being assigned in

FOR loop
SELECT MIN(key3) INTO Var1
FROM Table1, WHERE pkey1 = value1and p key2 = value2
DELETE Table1
WHERE pkey1 = value1and p key2 = value2

and key3 = Var1
/* segment of loop where Var1 is not defined and Table 1

is not modified*/
END FOR loop

Figure 6. Example of Distinctly Valued Vari-
ables

the Select statement, is being used to determine the list of
records to be deleted. Therefore future iterations can never
assign the same value to Var1. The identification of such
variables is important for eliminating possible loop carried
dependences.

SQL predefines five functions that can be called from
within a Select query. These functions are COUNT (returns
the number of values), SUM (returns the sum of the values),
AVG (returns the average of the values), MAX (returns the
maximum value), and MIN (returns the minimum value).
Each of these functions operates on the collection of values
in one column of some table, and produces a scalar result.
Furthermore, the argument of the function may be preceded
by the keyword UNIQUE that means that the argument is a
set and duplicate values in the column are not considered.
The importance of these functions lies in the fact that a scalar
value is returned, and this scalar depends on the elements
that satisfy the where condition of the SQL statement.

In the following discussion we assume that the conditions
for the query statements – Select, Delete and Update – are
never False, i.e., there is at least one record satisfying the
condition. We assume that none of the Insert operations
returns an error.

Below we list examples involving these functions where
we may detect possible distinctly valued variables.� If the Select employs COUNT(Y) INTO X, where the

selection criteria (condition) does not depend on the
iteration count, and there is a Delete on at least one
record, that satisfies thecondition then the variable
defined by the COUNT function is possibly distinctly
valued. Similarly if a Select is followed by an Up-
date or Insert that adds a new record that satisfies the
condition then X could be distinctly valued.� If the Select employs SUM(Y) INTO X, and we have
no information about the domain of Y, then conser-
vatively we have to assume that deleting several el-
ements may result in the same original sum (if we
delete�2, 3, and�1, the sum remains unchanged).

However if we know that the domain of Y is eitherR+ or R� then we can make the same check as for
COUNT.� If the Select employs AVG(Y) INTO X, then delet-
ing records does not help, as the average value could
feasibly repeat.� If the Select employs MIN(Y) (INTO X), where the
selection criterion (condition) does not depend on the
iteration variable, and there is a Delete on all records
that satisfies thecondition ^ MIN(Y), then X could
possibly be distinctly valued.� If the Select employs MAX(Y) (INTO X), where the
selection criterion (condition) does not depend on
the iteration variable, and there is a Delete on all
records that satisfiescondition ^ MAX(Y), then X
could possibly be distinctly valued.

The algorithm for implementing these checks involves
the comparison of pairs of queries on the same table in the
database, combined with dataflow analysis.

7 Complete Algorithm and Example

In this section we describe an example from TPCC, and
show how the tests presented in the previous sections are
used to construct the query dependence graph. The TPC
benchmark C (TPCC) is an OLTP workload [18]. It is a
mixture of read-only and update intensive transactions that
simulate the activities found in complex OLTP application
environments. Our base algorithm to output the dependence
graph is described in Figure 7.

Step 1: Form the Read/Write representations.
Step 2: Test for External Dependences

Construct Factored Use-Def chains.
Induction Variable Analysis
Dataflow Analysis

Step 3: Distinctly Valued Variable Analysis
Step 4: Test for Internal Dependences

Figure 7. Complete Algorithm

We first form the Read-Write representations. These
representations are useful for constructing the Factored Use-
Def chains. The Factored Use-Def chains can be used for
Induction Variable Analysis, Dataflow Analysis and Dis-
tinctly Valued Variable Analysis. We distinguish between
two kinds of dependences in our approach. Loop indepen-
dent dependences (LID) are dependences within the same it-
eration of the loop whereas loop carried dependences (LCD)
are dependences across iterations [19]. Finally the test for
Internal Dependences uses all the information from the pre-
ceding steps to determine loop carried and loop independent

dependences. We now look at the main loop from theDe-
livery transaction in TPCC to illustrate the basic idea behind
each transformation in the algorithm.

The example here is the Delivery transaction in TPCC.
The basic code is shown in Figure 8.

for (i=1; i <= DISTRICTSPERWAREHOUSE; i++)f
no d id = i;
SELECT MIN (no o id) INTO :no o id FROM neworder
WHERE now id = :w id AND no d id = :no d id;
DELETE FROM neworder WHERE now id = :w id
AND no d id = :no d id AND no o id = :no o id;
UPDATE orders SET ocarrier id = :o carrier id
WHERE o id = :no o id AND o w id = :w id

AND o d id = :no d id;
SELECT o c id INTO :o c id FROM orders
WHERE oID = :no o id AND o w id = :w id

AND o d id = :no d id;
SELECT SUM(ol amount) INTO :oltotalamount
FROM orderline WHERE olw id = :w id
AND ol d id = :no d id AND ol o id = :no o id;
UPDATE order line SET oldelivery d = :curr tmstmp
WHERE ol w id = :w id AND ol d id = :no d id
AND ol o id = :no o id;
total amount = (double)oltotalamount / (double)100.0;
UPDATE customer SET cbalance =: cbalance
+ total amount, cdelivery cnt =: c delivery cnt + 1
WHERE c id = :o c id AND c w id = :w id
AND c d id = :no d id;g /* end for loop */

Figure 8. Main For Loop in Delivery Transac-
tion (TPCC)

Read/Write representations: The first step is to trans-
form the queries into their respective Read/Write represen-
tations. Figure 9 shows the Read/Write sets for the first
Select query in Figure 8. ReadE identifies the program
variablesw id; no d id used in the conditionC. Write E
identifies the program variableno o id that is defined by
the select operation. ReadI identifies all records within the
Tablenew order that satisfy the conditionC. Write I is the
empty set. The Read/Write sets for the other queries can be
constructed similarly.

Test for External Dependences: The first part of the algo-
rithm for this section identifies the scalars present in the loop,
and construct the use-def chain of these scalars. The scalars
in the for loop are:i, no d id, no o id, w id, o carrier id,
oltotal amount, oc id, curr tmstmp, andtotal amount. The
variables that aredefinedwithin the loop arei, no d id, to-
tal amount, oltotalamount, andno o id . The next step is to
identify induction variables. This can be done by examining

Read E = fw id, no d id g
Write E= fno o idg
Read I = C where C=no w id=: w id ^ no d id =: no d id
Write I = ;

Figure 9. Read-Write Representation of Select

the use-def chain [19]. The induction variables for this loop
arei, andno d id.

By the method outlined in Section 6 we can see that
there are no Distinctly Valued Variables in the code that
are not induction variables. A possible candidate,no o id,
is not a distinctly valued variable as the condition of the
select operation changes with the iteration count. The only
distinctly valued variables arei andno d id, monotonically
increasing induction variables.

New_ord

Delete
New_ord

Select

New_ord

Delete
New_ord

Select

select
orders

Update
orders

select
orders

Update
orders

Update
order_l

Select

order_l

Update
order_l

Select

order_l

Customer

Customer

LID

LIDLID

LID

LID

LID

LID

(B) Final Query Dependence Graph

LID

Update

Update

(A) Internal Dependence Graph

Figure 10. Phase 1

Test for Internal Dependences: Next we test the internal
dependences on each of the digraphs for NewOrder, Or-
ders, OrderLine and Customer separately using information
obtained from the external dependence test and Distinctly
Valued variable analysis. For example, when testing for de-

pendence between the first Select and Delete operations (in
Figure 8) within the same iteration, we see that the ReadI
Set of the Select operation and WriteI Set of the Delete
operation are compatible. So there is a loop independent
dependence (LID) from the Select operation to the Delete
operation. If we look across iterations, i.e, if we look at
the Delete operation in iterationi0 and the Select operation
in iterationi wherei > i0 then the set of common records
accessed is empty, as nod id is a basic induction variable
and nod id is different for the two iterations. Therefore,
there is no loop carried dependence (LCD) between them.

The result is shown in Figure 10A, and is labeled as
Internal Dependence Graph. We note that there are no
dependencies between the two queries to Orders and the
two queries to Orderline in Figure 10. This is due to the
fact that the access set of the respective pairs do not intersect
at the attribute level. It is not difficult to extend our model
to handle such cases as well.

Finally, we combine information across the different
digraphs with the external dataflow dependences, to ob-
tain the complete query dependence graph for the loop in
Figure 10B. This is labeled asFinal Query Dependence
Graph.

8 Conclusions and Future Work

In this paper, we present compiler techniques to automat-
ically detect parallelism in theembedded query programs.
We formulate the dependence problem, and categorize the
dependences intointernal andexternaldependences. We
describe compiler dependence test algorithms for detect-
ing both internal and external dependences. We show that
the properties of some aggregate functions can help reduce
dependences. We demonstrate by way of a real benchmark
example how our algorithm can be used to detect inter-query
parallelism.

As part of ongoing research we have developed a sim-
ple simulator to experimentally evaluate the performance of
inter-query parallelism on sample benchmark programs and
have shown it to be beneficial [14]. We are investigating
how our analysis can further enable loop parallelization by
adopting techniques such as software pipelining [13, 16],
and loop distribution [19]. We plan to investigate how our
analysis can be applied to other internal representations (of
queries), that have undergone syntactic and semantic query
optimizations.

Acknowledgments: We would like to thank Vivek
Sarkar of IBM for the fruitful discussions.

References

[1] S. Abiteboul and V. Vianu. Equivalence and Opti-
mization of Relational Transactions.JACM, 35(1),

Jan 1988.
[2] U. Banerjee.Dependence Analysis for Supercomput-

ing. Kluwer Academic Publishers, 1988.
[3] P. Bernstein and N. Goodman. Concurrency Con-

trol in Distributed Database Systems. InCOMPSUR,
1981.

[4] R. Cytron et al. Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependence
Graph.TOPLAS, 13(4):451–490, October 1991.

[5] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin
Elimination and Its Dual. J. Combinatorial The-
ory(A), 14, 1973.

[6] C. J. Date. An Introduction to Database Systems.
Addison-Wesley Publishing Company, 1982.

[7] D. J. DeWitt et al. The Gamma Database Machine
Project. InIEEE TKDE, 1990.

[8] D. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Systems.
CACM, 35(6):85–98, June 1992.

[9] D. J. DeWitt et al. Practical Skew Handling in Parallel
Joins. InVLDB, 1992.

[10] L. J. Hendren and A. Nicolau. Parallelizing Pro-
grams with Recursive Data Structures.IEEE TPDS,
1(1):35–47, January 1990.

[11] N. D. Jones and S. S. Muchnick. Flow Analysis and
Optimization of LISP-like Structures. In S. S. Much-
nick et al, editors,Program Flow Analysis: Theory
and Applications. Prentice Hall, 1979.

[12] D. Karabeg and V. Vianu. Parallel Update Transac-
tions. InTheoretical Computer Science, 1990.

[13] M. Lam. Software Pipelining: An Effective Schedul-
ing Technique for VLIW Machines. InPLDI 1988.

[14] S. Parthasarathy et al. Compile-time Inter-query De-
pendence Analysis. Technical Report URCS TR598,
CS Dept. Univ of Roch., Nov 1995.

[15] W. Pugh. A Practical Algorithm for Exact Array
Dependence Analysis.CACM, 35(8), August 1992.

[16] B. R. Rau and C. D. Glaeser. Some Scheduling Tech-
niques and an Easily Schedulable Horizontal Archi-
tecture for High Performance Scientific Computing.
In 14th Microprogramming Workshop, Oct 1981.

[17] E. J. Shekita, et al. Multi-Join Optimization for Sym-
metric Multiprocessors. InVLDB, 1993.

[18] Transaction Processing Performance Council. TPC
Benchmark C: Rev. 3.0. Feb 1995.

[19] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley 1996.

