Compile-time Inter-query Dependence Analysis

Srinivasan Parthasarathy, Wei Li, Michat Cierniak, Mohammed Ja¥ea&d

Department of Computer Science, University of Rochester, Rochester, NY 14627-0226
{srini,wei,cierniak, zaki }@s.rochester. edu

Abstract plication Program Parallelism” as one of the future research
problems. They state that, “The parallel database systems
Most parallel databases exploit two types of parallelism: offer parallelism within the database system. Missing are the
intra-queryparallelism andinter-transactiorconcurrency. tools to structure application programs to take advantage of
Between these two cases lies another type of parallelism:parallelism inherent in these parallel systems.” While there
inter-queryparallelism within a transaction or application. has been much research on (intra-)query optimizations for
Exploiting inter-query parallelism requires either compiler parallel processors [9, 17] and concurrency between trans-
support to automatically parallelize the existiegnbedded actions [3], little work has been done on inter-query paral-
guery programs, or programming support to write explicitly lelization within a transaction or application. Karabeg and
parallel query programs. In this paper, we present compiler Vianu [12] presented algorithms for maximizing the degree
analysis to automatically detect parallelism in tambed- of parallelism ofstraight-line codewithin parallel transac-
ded query programsWe present compiler algorithms for tions. As far as we know, no work oembedded query
detecting dependences in such programs. We show that th@rogramshas been done.

properties of some aggregate functions such as MIN and In the area of parallelizing compilers, dependence anal-

MAX can help reduce statically computed dependences. ysis of sequential programs has been widely studied in the

Keywords: Inter-Query Parallelism, Embedded SQL, Depen- high performance computing research community. How-

dence Analysis. ever, the data dependence analysis tests are usually designed
for array-based programs [2, 15, 19] or pointer-based pro-
grams [10, 11]. In this paper, we show that a compiler

1 Introduction canautomatically detect parallelism in the embedded query
programs.

Traditional mainframe databases are being replaced by ~ our main contributions are summarized below. We for-
highly parallel database systems. Most parallel databasesnylate the dependence problem, and categorize the depen-
exploit two types of parallelismintra-query parallelism gences intdnternal andexternaldependences. We present
andinter-transactionparallelism. Intra-query paralleliza- two compiler dependence tests for detecting internal and
tionimproves the execution time of complex queries by exe- external dependences. We show that the use of aggregate

cuting the sub-query operations in parallel. Inter-transactionfynctions such as MIN and MAX can help reduce statically
parallelization improves the throughput of the database sys-computed dependences.

tem by executing queries from multiple transactions in paral-

lol. B h i h : llelism: This paper is organized as follows. First, we give the
lel. Between these two cases lies another type of parallelismy, .oy 1em formulation for dependence analysis of queries in
inter-queryparallelism, within a single transaction or appli-

i loiting i el | ! Section 2. In Section 3, we propose a model of representing
cation. Exploiting inter-query parallelism correctly requires SQL queries in terms of Read/Write sets. In the next sec-

_elt_her compiler support to automatically parall_ellze the ex- tions, we present two dependence tests. The testtmal
isting embeddedjuery programs, or programming Support e endences described in Section 4, and the testdater-

to write or rewrite explicitly parallel query programs. nal dependencds in Section 5. In Section 6, we show that

_Parallel databas.es have been an actlv_e research area. Dse properties of aggregate functions can be used to improve
Witt and Gray [8] give an excellent overview of the state of dependence analysis. In Section 7 we demonstrate how

research on parallel database systems. They consider "Apg) analysis can be used on a TPCC benchmark program to
*This work was supported in part by an NSF Research Initiatioard detect 'nter'.query parallgllsm. Finally in Section 8 we state
(CCR-9409120) and ARPA contract F19628-94-C-0057. our conclusions and outline areas of future work.

2 Problem Formulation Insert. We also allow queries to contain aggregate functions
like COUNT, SUM, AVG, MAX and MIN. This is further

Reads and writes to the same object and uses of the sam@iscussed in Section 6. In the subsequent sections, we refer
value may result inlependencesetween queries. The ob- to aconditional termas an expression of the form
jects may be either records in the database or variables in h(A1, -+, Ap) @ flot, o om, e, 6) (1)

the host language. If there is a dependence between two . .
gueries, the compiler must preserve the original order. If, whereg can be any relational operatorin the Siet- {=, #

on the other hand, the compiler can prove that two queries<’ <, >, 2}, 4; belongs to the set of attributes (columns)

are independent, we are guaranteed the correct result n8f a table, v, belongs to the set of host language vari-

matter in which order those two queries are executed. Prov-ailglness’cweelggf?:goafgr? d?ﬁéﬁ;gogﬁéagis;ni?g ggﬁ;:iig%al
ing that two queries are independent enables many powerfu ' i .
: N : . terms connected by any of the logical operators in the set
inter-query optimizations. These include standard compiler X

SV . S = {A,V,—}, which correspond tand, or, andnot re-
optimizations that have been used in general purpose pro-

gramming languages. Our techniques can enable these o spectively. Notice that the: can always be “pushed-in

timizations for embedded query languages as well. Inside a conditional term, for example({A; < 5)is equi_/-
In our model we consider SQL queries embedded within alentto((4 > 5)v(4 =5)), henceforth, we do not consider

. : . . . the logical operatonot. Since< and> can be written in
a host language. This provides mechanisms not available M erms of= < and>. we assume thak — (=, 4 <,>)
SQL (e.g., controlflow). Because ofthe presence of both theWe say th:";tt z; condiiion isatisfiableif there isya ;ecbrd in

host language a_nd the query language, we define two type%qe table for which the condition holds true.
of dependencesinternal dependencandexternal depen-
dence An internal dependence is a dependence betweerModel for Select: The fundamental retrieval operation in
two queries in the same transaction, that access a sharegQL is the mapping, represented syntactically Sekect-
subset of records in the database, where one of the sharephto-From-Where block. We model the Select operation by
records is written. An external dependence is a dependencgrouping the variables in the operation according to whether
between two queries that share the same host-language varihey are defined or used. We further separate them into two
able, where one of the queries writes to the variable. Thesegroups according to whether they are program variables (ex-
dependences combine to form the dependence graph. ternal), or part of the database (internal), that is, accessible
The dependences between queries are represented with@nly by queries. The Select is modeled as shown in Fig-
dependence grapiThe dependence graph contains avertex ure 1. The Read-Write representation can be explained as
for every query in the program and a directed edge between

verticesa andb if there is a dependence between queties Selectattrs ReadE = {item}
andb. If b depends o then there is a directed edge fram Into stem; Write _E = {item}
From Table; Readl = C

tob. We initialize the graph so that there is an edge between
any two queries that operate on the same table. There are no
edges between queries operating on different tables. Then
we use internal dependence analysis to eliminate as many
edges as possible between queries on the same table, and
we use the external dependence analysis to add all externdpllows:
dependences between queries operating on different tablefR€ad.E = {item,}, refers to all the program variables
These dependences have to be preserved to maintain théem, external to the query, that are used in the condi-
semantics of the original program. tion C. These are the program variables read by the query.
The algorithms for building precise dependence graphs\Write _E = {item;}, refers to all the program variables
between queries are the focus of our paper. The following itemn;, external to the query, that are defined by the query.
sections show how we deal with each of the dependencesRead.| = C. For notational efficiency we also use tfieto
Section 4 describes how to detect internal dependences, anélenote the set of all records Ifuble; satisfying the condi-

Where C (condition) Write | = ()
(a) General Form (b) Representation

Figure 1. Select and its Representation

Section 5 shows how to find external dependences. tion C. At this time, we restrict our attention to the whole
record in atable. We plan to relax this to consider individual
3 Query Model attributes separately, as part of future work.

Write _I = () refers to the fact that no database table entry is

In tth'? sedctl(()jnéWﬁ pres_ent t_?ﬁ.mOdzl tlha:;[we uset to relFJI'Written to. We do not elaborate the representation of each
resent standard SQL queries. This model allows us to easi Yset in the other cases as they are similar to the above.

extract read and write information from SQL queries, like
table attributes or program variables. We only model the Model for Update: The main modification operation in
four common SQL queries — Select, Update, Delete, andSQL is the Update operation. This is represented syntacti-

cally as arlJpdate-Set-Whereblock. The Update operation sets for each query, as defined in Section 3. Recall that we
is modeled as shown in Figure 2. The key difference in use the condition interchangeably with the set of records sat-
isfying the condition, leC R; refer to the Read condition,
Update T'able; ReadE = {itemy, item; } andCV; to the Writel condition, for queryi. We say that a

Se}?,’;t” i) \évégz_IE :C@ pair of conditions’; andC; is incompatiblef the conjunc-
= item;, attry, = . . _)) . T
Where ¢ Write IPre = O tion of the pair, denoted by = (C; A C}), is unsatisfiable,

otherwise we say that the pair é@mpatible We say that

Write _IPost= C’ L . L
there is annternal dependendsetween a pair of queries iff,

= C|a,ttrh =f(item;,attry)

(a) General Form (b) Representation 1. (CW1ACRy) is compatibleor 2. (CR1ACW?) is com-
patible,or 3.(CW1 A CW>) is compatible, where query 1 is
Figure 2. Update and its Representation executed before query 2 in the original program. Otherwise,

we assume that the two queries arernally independent
For Update queries, we usélV,,; if the Update is query
1, and we us€'W,,. ifitis query 2, instead of simply using

the representation of the Update operation is the presenc
of two write sets, WritdPre and WritelPost. The first set
describes the set of records that are to be updated, and th
second set describes the set of records obtained after ap-
plying the update operation. The rationale for having two
sets is that an update may modify an attribute that is part of
the Where condition, potentially changing the set of records
satisfying the condition. Note that the WritBost set is

a conservative estimate, as the records that have the sa
values prior to the update are also included in the set.

We start with a complete graph of dependences between
two queries that operate on the same table. We test each
possible pair of queries in turn, and try to eliminate the de-
pendence edge fromthe graph if we can establish that the two
ueries are internally independent. Before we test for com-
rn%atibility between the read and write conditions of different
gueries, we converp, the conjunction of the two condi-
Model for Insert: The Insert operation is used to add an tions, intodisjunctive normal forn{DNF). Recall tha® is
entry to the database. This operation is represented syntadh disjunctive normal fornif ¢ = \/'_; ¢;, where\/!_; ¢;
tically as arinsert-Into-Values block. The Insert operation ~ stands fof(¢1 V ¢, V -+ -V ¢,). Eachg; = A7", t;, where

is modeled as shown in Figure 3. t; is a conditional term. To determine the incompatibility
of the pair of conditions forming, we have to make sure
Insert ReadE = {item;} that each of the; is unsatisfiable, or conversely if ay
Into T'able; Write E = 0 is satisfiable, then we conclude that the two conditions are
Values Refad_l =0 compatible.
(valy -2 valn) Write | = (attrs = val) A - We now formulate a method of solving or establishing
A attr, = valy)

the incompatibility of a pair of conditions. We first consider
the simple case where only conditional terms of the from
(alAl 4+ axAr + ... + anAn) @ ag, Whered € R, A; are
attributes, andi; are constants, i.e. whereis a linear
function of the attributes of the table. Note that in the
gases where arithmetic operations do not make sense, for
example in the case of strings, we only consider terms of
the formA; = ag or A; # ap. Later in the section, we will
discuss how to extend the solution for the more general case

(a) General Form (b) Representation
Figure 3. Insert and its Representation

Model for Delete: The Delete operation is used to delete
a record from the database. This operation is represente
syntactically as ®elete-Whereor Deleteblock. The Delete
operation is modeled as shown in Figure 4.

DeleteT'able; ReadE = {item;} involving variables. We do, however, restrict our attention
Where C Write _[E= 0 to linear functions of attributes, variables or constants.
Readl = C
Write .| = C

, 4.1 Grouping inter-related terms
(a) General Form (b) Representation

We say that the terrty is inter-relatedto termt;, iff 3
an attributed, such thatd occurs in both; andt;, and we
define the notion ofiroupingwithin eachg; as the process

Figure 4. Delete and its Representation

4 Test for Internal Dependences of forming the set of inter-related terms. After grouping
within eache;, we havep; = A\, ¢, where eaclgroup
In this section we present an algorithm to test for internal ¢;; = A,- tx, is a conjunction of inter-related terms,.

database dependence between two queries. The internal dé/e observe that only terms that are inter-related, i.e., those
pendence test starts by constructing the Rleand Write.| that make up a group, need to be checked for contradictions.

For example, lety; = [(NAME = SAM) A (SAL > 0< Ok(A1, A2, A=), k = (1,---,).
20K) AN (NAME # SAM)]. After grouping inter-related
terms, we havep;; = ([NAME = SAM)A (NAME #
SAM)], and¢;z = (SAL > 20K). The attributeSAL
cannot have any influence on the satisfiability of grgup
We consider each group;;, separately, and if any group is Lj(Ax, Az, -+ Anmy)) SUi(A1, Az, -+, Aneyy)

U; denotes all the upper-bounds; denotes all the lower-
bounds for4,,, andOy, denotes inequalities not involving
A,,. After eliminatingA4,,, we getthe new set of inequalities,

unsatisfiableg; is unsatisfiable. Conversely, if all groups 0 < Op(A1, Az, -+, Apn—y))-

are satisfiable, thep; is satisfiable. We repeat this process until a contradiction is reached, or we
_ eliminate all unknown variables, in which case the system

4.2 Simple test must have a real solution.

From our example above (section 4.1), in the absence ofHandling symbolic terms Our formulation above can
knowledge of the state of the database, we must assume thatasily be extended to solve for the general conditional terms
the conditional tern{SAL > 20K) is satisfiable. In gen- of the form shown in equation 1. Previously in this sec-
eral, we can eliminate any group that has only one terminit, tion, we considered the unknowns to be only the attributes

by conservatively assuming thatitis true. Moreover, in casesof tables, we now relax this condition and allow variables
where the domain of values for an attribute is non-numeric, to pe unknowns, obtaining the following system of linear

we can simply check for compatibility by comparing the jnequalities

constant values for the attributes in the conditional term. In n
the example above, by comparing the valuesNGod M E, Zaiij < agj,i=(L,---,m)
we can quickly establish a contradiction. j=1

‘Once the groups have been formed, our simple tests COMyhereD; can be an attribute or a variable. This new system
prise of eliminating all groups having only one term, and ¢an now be solved by our algorithm to test for compatibility

groups which have attributes with non-numeric domains arepetween the two conditions. The complete algorithm is
tested for unsatisfiability by simple comparisons among the g,;mmarized in Figure 5.

terms comprising the group. We now concern ourselves
with groups having terms with affine expressions.

Input: queriesQ1, Q2
Output: Is there an internal dependence betwéarand(@,?

1) for each(Cl, Cz) S {(CW;L, CRz), (CR;L, CWz), (CW;L, CWz)}
2)let¢p = DNF(C1 A C2) = /]2, i

4.3 Linear test

The fact thatW(‘_:‘ canrepla¢e = y) with [(z > 1/)/\(93 < 3) for eachy;, form groups of inter-related terms; = ** |
y)], and(z # y) with [(z > y) V (z < y)], combined with 4) for each groupg;;, determine satisfiability by
the conjunctive form ofp;;, allows us to consider each 4a) eliminating it if it has only one term, i.e., it is satidfia

group not eliminated by the simple tests as a system of 4b) if it has non-numeric attributes, use simple comparison
linear inequalities that can be solved for solutions by using 4c) else apply Fourier-Motzkin Elimination method

the Fourier-Motzkin Elimination method [5]. Consider the ~ /*end for each groupp;;.. */

following system ofm linear inequalities im unknowns, 5) if any group unsatisfiable; is unsatisfiable.

formed from the terms within a group, where the attributes, ga(;ri]fcgr?;fgdgi.).c*émpatible .. all groups satisfiable in soe
. .. . 1, L2 , 1LE.,
A;, are unknowns, ang;; are constants: return “DEPENDENT”

- A — 6b)if all (C1, C2) incompatible, return “INDEPENDENT”
> aijAj aoji=(1,-0-,m) /* end for each(C1, C5).. */
j=1

This method proceeds by eliminating one unknown at a Figure 5. Algorithm for testing Internal Depen-
time by first rewriting each lower and upper bound for that dences

unknown. It then compares each lower bound against each

upper bound, and obtains a new system of inequalities not

involving that unknown. For example, the above system of

linear inequalities can be partitioned into the three sets: 5 Test for External Dependences

Ap SUi(A1, Az, Anyy), i = (1,0, 1), Information is shared between embedded queries via

' Ca variables of the host language. Therefore we must know

An 2 Lj(Az, Ao, An)j = (L, 5), and the flow of data in the host language to determine depen-
dences between queries.

5.1 Dataflow Dependence on the right-hand side is labeldd,. The definitionK is

. . he reaching definition fok>.
In addition to dependences between queries cause : _—
" . To guarantee that there is always at most one definition
by conflicting accesses in the database, there are

new types of dependences in embedded SQL. Thereachlng any use ofgvanable, we insbrterms at co_nt_rpl
) : flow convergence points. ®-term creates a new definition
variables of the host language may carry infor-

mation between two queries thus making the two forayanablewnh multlple definitions reaching that point.
) : . . Consider the following code fragment.
gueries dependent. Consider the following example:

SELECT aINTO :a FROM tablel WHERE b = :b; ?1 :tr?en
ecat Koz Kos+2
SELECT ¢ INTO :c FROM table2 WHERE d = :e; end ff— -1

In this case the two queries access disjoint portions of the D(K)31
database, yet there is a dependence between them, because p7; = K,
the value retrieved in the first query is used (indirectly) in

the second query. Two definitions reach the merge point of control flow
after theif statement. A new definitio, is inserted to
5.2 Application of Induction Variables merge definitionk’; and K3 into one. This causes just one

definition of K'to reach the us&’s. Reaching definition in-
If we can prove that induction variables are differ- formation enables straightforward detection of information
ent in different iterations of a loop, we can prove in- sharing between two queries.
dependence of queries that use that induction variablelnduction Variables There is another use of FUD chains
to select records. Consider the following example. that is important to our analysis: detecting induction vari-
ables in a loop. After detecting an induction variable, we

fori=1tondo try to prove that the variable has a different value in every
j=j+3; iteration of the loop. If such a proofis possible, we can often
UPDATE tablel SET a =:a WHERE b = 3j; show that instances of queries in different loop iterations are
. independent.

end for Read and Write Sets In addition to modifications to vari-

Without the information that the value pis different in ables as handled in standard dataflow analysis, we have to
every iteration, we have to assume conservatively that all in-consider th&kead E andWrite _E sets defined in Section 3.

stances of the query are dependent on each other. HoweveFVery occurrence of a variable irRead E set is treated as
using dataflow analysis (e.g., FUD chains, cf. Section 5.3)@ Use of that variable. An occurrence in\ite E set is
we can prove that all instances are independent and theyfduivalent to a definition. An example using these sets to
can be reordered or issued in parallel (assuming no othefind dependences is given in Section 7.
dependences in the loop).
6 Aggregate Functions
5.3 Factored Use-Def Chains
In this section we look at ways in which we can identify

For dataflow analysis and for induction variable detection distinctly valuedvariables in a loop. We defindistinctly
we use factored use-def chains (FUD chains) [19]. valuedvariables as those variables that can never have the

For every use of a variable we have a pointer to a uniquesame value across iterations of a loop. These variables are
reaching definition. This is possible because of the intro- different from induction variables in the sense that, we do
duction of ®-terms [4], that merge conflicting definitions not know the exact function by which we can represent
created by control flow. FUD chains not only have desirable them. In the case of distinctly valued variables we do not
properties, but they can also be constructed efficiently with know what value they have in a given iteration but we do
known algorithms. know that the possible set of values of a distinctly valued

We use the following notation for FUD chains. Each variable in iteration’ cannot intersect with the possible set
occurrence of a variable is marked with a unique label. A of values for the same variable in iteratipn For example
definition is denoted with that label in the subscript. Each a monotonically increasing/decreasing induction variable is
use is marked with its label and another label of the definition distinctly valued.
that reaches this use. For instan€ge = Ko.,1 + 2 is a In the example shown in Figure 6, Varl is a distinctly
definition of variablel which is labeled<s. The use of’ valued variable, because the value it is being assigned in

FOR loop

SELECT MIN(key3) INTO Varl

FROM Tablel, WHERE gkey1 = valueland p_key2 = value2

DELETE Tablel

WHERE pkeyl = valueland p_key?2 = value2
and key3 = Varl

[* segment of loop where Varl is not defined and Table 1
is not modified*/

However if we know that the domain of Y is either
R* or R~ then we can make the same check as for
COUNT.

If the Select employs AVG(Y) INTO X, then delet-
ing records does not help, as the average value could
feasibly repeat.

If the Select employs MIN(Y) (INTO X), where the
selection criteriongondition) does not depend on the

END FOR loop iteration variable, and there is a Delete on all records
that satisfies theondition A MIN(Y), then X could
possibly be distinctly valued.

Figure 6. Example of Distinctly Valued Vari- o If the Select employs MAX(Y) (INTO X), where the
ables selection criterion ondition) does not depend on

the iteration variable, and there is a Delete on all
records that satisfiesondition A MAX(Y), then X

the Select statement, is being used to determine the list of could possibly be distinctly valued.

records to be deleted. Therefore future iterations can never The algorithm for implementing these checks involves

assign the same value to Varl. The identification of Such ¢ omparison of pairs of queries on the same table in the
variables is important for eliminating possible loop carried j5iabase combined with dataflow analysis.
dependences. ’

SQL predefines five functions that can be called from
within a Select query. These functions are COUNT (returns
the number of values), SUM (returns the sum of the values),
AVG (returns the average of the values), MAX (returns the [N this section we describe an example from TPCC, and
maximum value), and MIN (returns the minimum value). show how the tests presented in the previous sections are
Each of these functions operates on the collection of valuesised to construct the query dependence graph. The TPC
in one column of some table, and produces a scalar resultPeénchmark C (TPCC) is an OLTP workload [18]. Itis a
Furthermore, the argument of the function may be precedeomiXture of read-only and update intensive transactions that
by the keyword UNIQUE that means that the argument is a Simulate the activities found in complex OLTP application
set and duplicate values in the column are not considered€nvironments. Our base algorithm to output the dependence
The importance of these functions lies in the fact that a scalardraph is described in Figure 7.
value is returned, and this scalar depends on the elements
that satisfy the where condition of the SQL statement.

Inthe following discussion we assume that the conditions
for the query statements — Select, Delete and Update — are
never False, i.e., there is at least one record satisfying the
condition. We assume that none of the Insert operations
returns an error.

Below we list examples involving these functions where
we may detect possible distinctly valued variables.

e Ifthe Select employs COUNT(Y) INTO X, where the
selection criteriadondition) does not depend on the
iteration count, and there is a Delete on at least one We first form the Read-Write representations. These
record, that satisfies theondition then the variable representations are useful for constructing the Factored Use-
defined by the COUNT function is possibly distinctly Def chains. The Factored Use-Def chains can be used for
valued. Similarly if a Select is followed by an Up- Induction Variable Analysis, Dataflow Analysis and Dis-
date or Insert that adds a new record that satisfies thetinctly Valued Variable Analysis. We distinguish between
condition then X could be distinctly valued. two kinds of dependences in our approach. Loop indepen-

o Ifthe Select employs SUM(Y) INTO X, and we have dentdependences (LID) are dependences within the same it-
no information about the domain of Y, then conser- eration of the loop whereas loop carried dependences (LCD)
vatively we have to assume that deleting several el- are dependences across iterations [19]. Finally the test for
ements may result in the same original sum (if we Internal Dependences uses all the information from the pre-
delete—2, 3, and—1, the sum remains unchanged). ceding steps to determine loop carried and loop independent

7 Complete Algorithm and Example

Step 1 Form the Read/Write representations.

Step 2 Test for External Dependences
Construct Factored Use-Def chains.
Induction Variable Analysis
Dataflow Analysis

Step 3 Distinctly Valued Variable Analysis

Step 4 Test for Internal Dependences

Figure 7. Complete Algorithm

dependences. We now look at the main loop fromDiee
livery transaction in TPCC to illustrate the basic idea behind
each transformation in the algorithm.

The example here is the Delivery transaction in TPCC.
The basic code is shown in Figure 8.

for (i=1; i <=DISTRICTSPERWAREHOUSE; i++){
no.d.id =1i;
SELECT MIN (no_o.id) INTO :no.o.id FROM neworder
WHERE naw_id = :w_id AND no_d.id = :no_d.id;
DELETE FROM neworder WHERE now_id = :w._id
AND no_d.id = :na.d_id AND no_o.id = :no.o.id;
UPDATE orders SET ccarrierid = :o_carrierid
WHERE aid =:na.o_id AND o_w_id = :w_id

AND o_d.id = :no._d.id;
SELECT o.c.id INTO :o.c.id FROM orders
WHERE alD =:no_o.id AND o_w_id = :w_id
AND o_d.id = :no.d.id;

SELECT SUM(ol_-amount) INTO :oltotalamount
FROM orderline WHERE olw_id = :w_id
AND ol_d.id = :no_d_id AND ol_o.id = :na.o.id;
UPDATE ordetline SET oldelivery.d = :curctmstmp
WHERE olw_id = :w_id AND ol_d.id = :na.d_id
AND ol_o.id = :no_o.id;
total_amount = (double)oltotabmount / (double)100.0;
UPDATE customer SET tbalance =: dhalance
+ totaLamount, cdelivery.cnt =: cdelivery.cnt + 1
WHERE cid =:0.c_id AND c_w_id = :w_id
AND c_d.id = :no.d.id;

} I* end for loop */

Figure 8. Main For Loop in Delivery Transac-
tion (TPCC)

Read/Write representations: The first step is to trans-
form the queries into their respective Read/Write represen-
tations. Figure 9 shows the Read/Write sets for the first
Select query in Figure 8. Redtl identifies the program
variablesw_id, no_d_id used in the conditiod. Write.E
identifies the program variableo_o_id that is defined by
the select operation. Redddentifies all records within the
Tablenew_order that satisfy the conditio®'. Write_l is the

empty set. The Read/Write sets for the other queries can be

constructed similarly.

Test for External Dependences: Thefirst part of the algo-
rithm for this section identifies the scalars presentin the loop,

Read.E = {w.id, no_d.id }
Write _.E= {no_o.id}
Read.| = C where Cro_w_id
=: w_id A no_d_id = no_d_id
Write .l =0

Figure 9. Read-Write Representation of Select

the use-def chain [19]. The induction variables for this loop
arei, andno_d.id.

By the method outlined in Section 6 we can see that
there are no Distinctly Valued Variables in the code that
are not induction variables. A possible candidatpo_id,
is not a distinctly valued variable as the condition of the
select operation changes with the iteration count. The only
distinctly valued variables aieandno_d_id, monotonically
increasing induction variables.

(B) Final Query Dependence Graph

Figure 10. Phase 1

and construct the use-def chain of these scalars. The scalars

in the for loop are:i, no_d.id, no.o.id, w.id, o_carrier_id,
oltotal_amount, ac_id, curr_tmstmp andtotal_ amount The
variables that ardefinedwithin the loop are, no_d.id, to-
tal_amount, oltotalamountandno_o_id . The nextstepisto

Test for Internal Dependences: Next we test the internal
dependences on each of the digraphs for Nander, Or-
ders, Ordeline and Customer separately using information
obtained from the external dependence test and Distinctly

identify induction variables. This can be done by examining Valued variable analysis. For example, when testing for de-

pendence between the first Select and Delete operations (in
Figure 8) within the same iteration, we see that the Read [2]
Set of the Select operation and Writ&et of the Delete
operation are compatible. So there is a loop independent{3]
dependence (LID) from the Select operation to the Delete
operation. If we look across iterations, i.e, if we look at
the Delete operation in iteratiahand the Select operation [4]
in iterationi wherei > i’ then the set of common records
accessed is empty, as xad is a basic induction variable

and nad.id is different for the two iterations. Therefore, g
there is no loop carried dependence (LCD) between them.

The result is shown in Figure 10A, and is labeled as
Internal Dependence Graph We note that there are no 6]
dependencies between the two queries to Orders and the
two queries to Ordeline in Figure 10. This is due to the 7]
fact that the access set of the respective pairs do not interseét
at the attribute level. It is not difficult to extend our model (]
to handle such cases as well.

Finally, we combine information across the different
digraphs with the external dataflow dependences, to ob-
tain the complete query dependence graph for the loop in
Figure 10B. This is labeled dsinal Query Dependence
Graph.

[9]

[10]

8 Conclusions and Future Work [11]

In this paper, we present compiler techniques to automat-
ically detect parallelism in thembedded query programs
We formulate the dependence problem, and categorize thg12]
dependences intmternal and externaldependences. We
describe compiler dependence test algorithms for detect{13]
ing both internal and external dependences. We show that
the properties of some aggregate functions can help reduc 14]
dependences. We demonstrate by way of a real benchmar
example how our algorithm can be used to detectinter-query
parallelism. 15

As part of ongoing research we have developed a sim-
ple simulator to experimentally evaluate the performance of [16]
inter-query parallelism on sample benchmark programs and
have shown it to be beneficial [14]. We are investigating
how our analysis can further enable loop parallelization by
adopting techniques such as software pipelining [13, 16], [17]
and loop distribution [19]. We plan to investigate how our
analysis can be applied to other internal representations (Oi/18]
gueries), that have undergone syntactic and semantic quer
optimizations.

Acknowledgments: We would like to thank Vivek
Sarkar of IBM for the fruitful discussions.

[19]

References

[1] S. Abiteboul and V. Vianu. Equivalence and Opti-
mization of Relational Transactions]ACM, 35(1),

Jan 1988.

U. Banerjee Dependence Analysis for Supercomput-
ing. Kluwer Academic Publishers, 1988.

P. Bernstein and N. Goodman. Concurrency Con-
trol in Distributed Database Systems.COMPSUR
1981.

R. Cytron et al. Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependence
Graph. TOPLAS 13(4):451-490, October 1991.

G. B. Dantzig and B. C. Eaves. Fourier-Motzkin
Elimination and Its Dual. J. Combinatorial The-
ory(A), 14, 1973.

C. J. Date. An Introduction to Database Systems
Addison-Wesley Publishing Company, 1982.

D. J. DeWitt et al. The Gamma Database Machine
Project. INIEEE TKDE 1990.

D. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Systems.
CACM, 35(6):85-98, June 1992.

D. J. DeWitt et al. Practical Skew Handling in Parallel
Joins. InVLDB, 1992.

L. J. Hendren and A. Nicolau. Parallelizing Pro-
grams with Recursive Data StructurédEEE TPDS
1(1):35-47, January 1990.

N. D. Jones and S. S. Muchnick. Flow Analysis and
Optimization of LISP-like Structures. In S. S. Much-
nick et al, editorsProgram Flow Analysis: Theory
and Applications Prentice Hall, 1979.

D. Karabeg and V. Vianu. Parallel Update Transac-
tions. InTheoretical Computer SciencE990.

M. Lam. Software Pipelining: An Effective Schedul-
ing Technique for VLIW Machines. IRLDI 1988.

S. Parthasarathy et al. Compile-time Inter-query De-
pendence Analysis. Technical Report URCS TR598,
CS Dept. Univ of Roch., Nov 1995.

W. Pugh. A Practical Algorithm for Exact Array
Dependence Analysi€ACM, 35(8), August 1992.

B. R. Rau and C. D. Glaeser. Some Scheduling Tech-
niques and an Easily Schedulable Horizontal Archi-
tecture for High Performance Scientific Computing.
In 14th Microprogramming Worksho@ct 1981.

E. J. Shekita, et al. Multi-Join Optimization for Sym-
metric Multiprocessors. INLDB, 1993.

Transaction Processing Performance Council. TPC
Benchmark C: Rev. 3.0. Feb 1995.

M. Wolfe. High Performance Compilers for Parallel
Computing Addison-Wesley 1996.

