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Abstract

We identify two properties that for P-selective sets are effectively computable.
Namely we show that, for any P-selective set, finding a string that is in a given
length’s top Toda equivalence class (very informally put, a string from Σn that the set’s
P-selector function declares to be most likely to belong to the set) is FPΣp

2 computable,
and we show that each P-selective set contains a weakly-PΣp

2 -rankable subset.

1 Overview

P-selectivity is a generalization of P. A set A is in P if there is a polynomial-time algorithm
which, given any string x, determines whether x belongs to A. In contrast, a set A is P-
selective [Sel79,Sel82b] if there is a polynomial-time algorithm (called a P-selector function)
that, given any two strings x and y, outputs one of those strings, and such that the algorithm
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EIA-0205061, and NIH grant P30-AG18254. A preliminary version of this paper appeared in the LATIN
2004 conference.
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has the property that if at least one of x or y is in A, then the one the algorithm outputs
belongs to A. Informally, it always places a bet on one of them being in the set, and it wins
whenever winning such a bet is possible.

The book [HT03] provides a recent overview of the state of research regarding P-
selectivity theory (see also the somewhat older article [DHHT94]). Nickelsen’s thesis [Nic01]
and the recent survey article by Nickelsen and Tantau [NT03] are also very good starting
points regarding the study of partial information classes such as the P-selective sets.

A key notion used in P-selectivity theory is the notion of a Toda equivalence class which,
very loosely put, is a strongly connected component of the graph induced by a given P-
selector function on the strings of a given length. This paper studies the complexity of
finding a string from a given P-selector function’s top Toda equivalence class—that is, a
string from the unique strongly connected component that can be reached from no other
strongly connected component.

2 Introduction and Background

P-selectivity theory has many features making it an interesting complexity-related research
area. P-selectivity represents a natural generalization of feasible decidability. P-selectivity
has a well-studied analog in computability theory, namely, the semi-recursive sets [Joc68].
The exploration of P-selectivity had a strong, unexpected impact on the study of NP func-
tions, solutions, and ambiguity, namely, the nondeterministic version of selectivity is the
central tool used to show that SAT has unique solutions only if the polynomial hierarchy
collapses [HNOS96b]; and, relatedly, selectivity has proven central in understanding more
generally whether one can reduce the number of solutions of NP functions [HNOS96b,Ogi96,
NRRS98,HOW02]. Selectivity has also given insight into the separation of reducibility no-
tions within NP [Sel82a,Sel79].

Informally, P-selectivity captures the notion of sets for which there is a polynomial-time
algorithm f telling which of any two given elements is “logically no less likely to be in the
set” (see Definition 3.1). Such sets are called P-selective. P-selective sets can be arbitrarily
complex: For every tally set A, there is a P-selective set that is Turing-equivalent to A [Sel79,
Sel82a]. In particular, some P-selective sets are uncomputable. Despite this, in the present
paper we identify natural tasks that are computable for all P-selective sets. Indeed, these
natural tasks are even computable within relatively low levels of the polynomial hierarchy.

The first such task is to produce, for an arbitrary P-selective set A (which, w.l.o.g., has
at least one commutative P-selector function), at each length n, a string that is “most
likely” to be in A. Let us explain a bit more what we mean by this. Each commutative
polynomial-time P-selector function f for A will implicitly specify a structure of equivalence
classes of strings (at a given length) that are equally likely (according to f) to be in A, and
these classes can be ordered with respect to the order that one might informally call no-less-
likely-to-be-in-A (we will explain how to define such equivalence classes, which themselves
depend on only the P-selector function and not on A, in rigorous detail in Section 3 after
introducing the tournament-graph model that is useful in their definition; in brief, two
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strings of the same length are said to be equivalent exactly if there are chains of applications
of the P-selector function leading from each to the other). We will call those classes Toda
equivalence classes, in light of Toda [Tod91], and the related order will be called a Toda
order.1 Informally put, a Toda equivalence class ζ, with respect to commutative P-selector
function f , of length n strings has the property that for every set A for which f is a P-
selector, either all the strings in ζ are in A or none of the strings in ζ are in A. And
(restricting ourselves as we will globally do to just looking at strings all of the same length)
each Toda equivalence class is a maximal set of strings for which this can be said.

The Toda-class approach’s ordering implications play a central role in a wide range of
results, ranging for example from the study of whether P-selective sets can be hard for stan-
dard complexity classes [Tod91] to the study of associative P-selector functions [HHN04]. In
this paper, we seek to better understand the Toda classes’ own complexity. We prove that
finding an element in the top Toda class of a length (very informally and intuitively—and
not quite correctly—put, a string that among the strings of that length is “most likely” to
be in A) can be done with an FPΣp

2 computation.
The second task we study is that of weak-P-rankability. A function f weakly ranks a set

A if, for any string x that is in A, f(x) returns the rank of x in A; in other words, it says
how many strings lexicographically less than or equal to x are in A. A set A is weakly-P-
rankable if it has a function f that is computable in polynomial time and that weakly ranks

1One must be a bit careful (regarding what we mean by a Toda Order and to avoid confusion with a
different way some people speak of Toda Order(ings)—please see the end of this footnote; also, detailed
definitions are provided in Section 3). These Toda equivalence classes indeed induce (within each length)
an order. And for a fixed, commutative P-selector function f one can take all 2n strings of length n and
compute their relationships with respect to this order, namely, via making their tournament graph (a notion
that will be defined in detail in Section 3) with respect to f and then collapsing all the cycle-linked nodes
(i.e., each strongly connected component) into points (each representing one of our equivalence classes).
Note that since our graph (related to all strings in Σn) is a tournament, after doing such collapsing it will
always hold that what is left is simply a linearly ordered list of our equivalence classes. Thus, one can in
polynomial time (in the number, 2n, of strings we are speaking of) arrange the strings in a list in such a
way that one knows that, for each set A for which f is a P-selector, the intersection between A and the list
is guaranteed to be a (potentially empty) suffix of the list.

One can take a similar approach on other tournament graphs. In particular, for a fixed, commutative
P-selector function f one can, given as input any collection of (in our setting, same-length, but this also
holds without that constraint) strings, in time polynomial in the maximum of the number of strings and
the maximum size of any of the strings, compute and collapse each cycle-connected group of nodes (in the
tournament graph constructed on the strings in the collection), and from this one can easily order the nodes
into a list with the property that, for each set A for which f is a P-selector, the intersection between A
and the list is guaranteed to be a (potentially empty) suffix of the list. This is often known as the Toda
Ordering Lemma. As we just mentioned, one can see and prove it via invoking the flavor of the Toda
Order except on a set of strings other than Σn. The Toda Ordering Lemma is an extremely powerful tool
that, for example, allows one to—given access to an oracle for the P-selective set—when given m strings
(in our setting same-length strings, though one can use the Toda Ordering Lemma without that restriction)
determine, with only about log m queries to the P-selective set oracle, exactly which of the input strings
belong to the P-selective set. For completeness and to avoid confusion, we mention that the term Toda
Order(ing Lemma) is also sometimes used in the literature for any polynomial-time procedure that given
any collection of strings reorders them in such a way that their intersection with each P-selective set for
which f is a P-selector is guaranteed to be a (potentially empty) suffix of the list.
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A. The relation between P-selectivity and weak-P-rankability has been studied extensively
by Hemaspaandra, Zaki, and Zimand in a paper [HZZ96] that focused on polynomial-time
semi-rankable sets, i.e., sets that are simultaneously P-selective and weakly-P-rankable. It
is shown there that there are P-selective sets that are not weakly-P-rankable. In partial
contrast, in the present paper we show that any infinite P-selective set has an infinite
subset that is weakly rankable by an FPΣp

2 function. We also obtain a result about the
relationship between P-selectivity and weak-P-rankability. All the P-selective sets that have
been considered in the literature are either standard left cuts or are structurally similar to
a standard left cut (more precisely ≤p

m-reducible to a standard left cut). We prove that if a
standard left cut is weakly-P-rankable, then it is in P. Regarding this section (Section 4),
we particularly commend to the reader’s attention the proof of Lemma 4.3, which we feel
to be a novel technique. Lemma 4.3 is given prompt application in yielding the theorems
that are stated immediately after it.

3 Instantiating the Top Toda Class

Let N = {0, 1, 2, . . .} and let N+ = {1, 2, 3, . . .}. Our alphabet will be Σ = {0, 1}. For any
set A, ||A|| denotes the cardinality of A. For any string x ∈ Σ∗, |x| denotes the length of x.
For any set A and any nonnegative integer n, A=n denotes {x | x ∈ A ∧ |x| = n}. For any
set A and any string x, A≤x denotes {y | y ∈ A ∧ y ≤lex x}, where ≤lex denotes the standard
lexicographical ordering. For the definitions of standard complexity classes such as P, NP,
Σp

k, etc., we refer the reader to, for example, the complexity handbook by Hemaspaandra
and Ogihara [HO02]. As is standard, FP denotes the class of all (total, single-valued)
polynomial-time computable functions, Σp

2 = NPNP, Σp
3 = NPNPNP

, E =
⋃

k≥0 DTIME[2kn],
and NE =

⋃
k≥0 NTIME[2kn]. Given classes C and D, as is standard, we say that C is D-

immune (equivalently, C is immune to D) if there is an infinite set A ∈ C such that no
infinite subset of A is a member of D. And, as is standard, we say that C is D-bi-immune
(equivalently, C is bi-immune to D) if there is a set A ∈ C such that no infinite subset of A
is a member of D and no infinite subset of A is a member of D (see [BS85]).

Definition 3.1 [Sel79,Sel82b] A set A is P-selective if there is a (total, single-valued)
polynomial-time computable function f such that, for every x and y, it holds that

1. f(x, y) = x or f(x, y) = y, and

2. {x, y}
⋂

A 6= ∅ ⇒ [(x ∈ A and f(x, y) = x) or (y ∈ A and f(x, y) = y)].

We use P-sel to denote the class of all sets that are P-selective.
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The function f appearing in Definition 3.1 is called a P-selector or a P-selector function.2

A P-selector (function) f is commutative if it has the property that for all x and y in Σ∗,
f(x, y) = f(y, x). Each P-selective set A has a commutative P-selector function, because we
can replace an arbitrary P-selector f for A with f ′(x, y) = f(min(x, y),max(x, y)). It is easy
to see that f ′ is a commutative P-selector for A. Since all P-selective sets have commutative
P-selector functions, it is very common in the literature to focus on commutative P-selector
functions. However, so that the proofs remain self-contained, we note explicitly each time
we require a function to be commutative.

A tournament graph G = (VG, EG) is a complete oriented graph, i.e., a directed graph
having the property that, for every two (possibly equal) nodes a and b, ||{(a, b), (b, a)} ∩
EG|| = 1. A commutative P-selector induces a tournament graph Gf on Σ∗. The nodes are
the strings in Σ∗ and there is an edge (x, y) (also denoted x ≥f y) exactly if f(x, y) = x.
When speaking in plain text, we will use synonymously with this the terms x beats y, x
wins at y, and y loses to x. (Note that each x both wins at itself and loses to itself, and
our tournament graphs have self-loops at each node.) We say x >f y if x ≥f y and x 6= y.

Let Gf,n be the subgraph of Gf induced by the nodes in Σn. Two nodes x, y ∈ Σn are
Toda-equivalent, notated x ≡Toda y, if Gf,n contains a path from x to y and a path from y
to x. The relation ≡Toda is an equivalence relation. We will denote the equivalence class of
x ∈ Σn by [x]f . For strings x and y of the same length, we order their equivalence classes
as follows: [x]f ≥ [y]f holds exactly if x ≥f y. For strings x and y of the same length, we
say that [x]f > [y]f exactly if [x]f ≥ [y]f and [x]f 6= [y]f .

(It is easy to see that these relations are consistent when applied only among strings all
of the same length. Note that we neither define nor ever use [w]f > [z]f or [w]f ≥ [z]f for
the case where |w| 6= |z|. Our focus will always be on collections of same-length strings.
However, if one wanted to compare different-length strings, for the purposes of this paper let
us say that equivalence classes of different lengths are always, by definition, incomparable,
and so viewed as being over all of Σ∗ our classes form a partial rather than a total order.
Since our focus is within a length and there our order is never undefined, we will for
simplicity simply use the term “order.”3)

Of course, [y]f < [x]f means the same as [x]f > [y]f , and [y]f ≤ [x]f means the same as
[x]f ≥ [y]f .

The following fact holds.

2To be formally correct, the term should be FP-selector, since the function f is taken from the class FP,
the single-valued, total, polynomial-time computable functions. Nonetheless, the term P-selective is by long
tradition the one used for this notion. However, when later we wish to indicate other class of functions with
a broader class of possible functions, we for clarity will notate it in a way that is rigorously correct, that is,
with the “F” included, e.g., FPNP∩coNP-selector.

3It is also true that one can apply the notion of collapsing cycles to all of Σ∗ in one fell swoop, thus in
fact allowing equivalence classes to potentially span multiple lengths and to potentially be infinite in size.
Doing so crisply creates a total order. However, the study of P-selective sets centrally focuses on strings of
one length at a time, and builds tournaments based on those. So, throughout this paper, we will have a
“best-at-length” focus, and will use equivalence classes that focus on a single length.
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Fact 3.2 1. If A is a P-selective set having commutative function f as a P-selector then
for all x ∈ Σn

A ∩ [x]f = [x]f or A ∩ [x]f = ∅.

2. Let A be a P-selective set having commutative function f as a P-selector. If A∩ [x]f =
[x]f then for all y such that |y| = |x| and [y]f ≥ [x]f , it holds that A∩ [y]f = [y]f . (In
fact, it even holds that if A ∩ [x]f = [x]f then for all y (regardless of |y|) such that
f(x, y) = y it holds that A ∩ [y]f = [y]f .)

These equivalence classes (related to strings of length n) form a partition of Σn.
In particular, there are strings xn

1 , xn
2 , . . . , xn

k ∈ Σn such that the equivalence classes
[xn

1 ]f , . . . , [xn
k ]f form a partition of Σn and

[xn
1 ]f > [xn

2 ]f > . . . > [xn
k ]f .

The set [xn
1 ]f is called the top Toda class (at length n with respect to f).

Definition 3.3 Let f be a commutative P-selector function. A function g is a BestAtLength
function (for f) if, for each n, g(1n) ∈ [xn

1 ]f , i.e., it outputs an element of the top Toda
class at length n with respect to f .

Each string that belongs to the top Toda class (at length n with respect to f) will be called
a top Toda element (at length n with respect to f).

Note that Definition 3.3 does not mention what set f is a P-selector for, since each
BestAtLength function will work equally well for each of the potentially uncountably many
sets for which f is a P-selector.

Theorem 3.4 Every commutative P-selector f has a BestAtLength function computable in
FPΣp

2 .

Proof. On input 1n we must produce a string x in Σn such that for any string y ∈ Σn there
is a path from x to y. If n = 0, the BestAtLength function outputs ε (the empty string).
So let us consider for the rest of the proof only the case n ∈ N+. From the work of Ko
([Ko83], see also [HT03]), it is known that for each n ∈ N+ (the claim actually fails at n = 0
but that case is already handled for us above) there is a set Hn ⊆ Σn, ||Hn|| ≤ n, such
that for every x ∈ Σn there is a string h ∈ Hn with f(x, h) = h. We will call such a set a
dominating set. To simplify the discussion, we will assume without loss of generality that
||Hn|| = n. This is a legal “without loss of generality,” since we have restricted ourselves
to the case n ∈ N+ and for all such n and for all Hn having cardinality less than n we
can extend the dominating set by adding n− ||Hn|| new, appropriate-length elements. Let
Hn = {y1, . . . , yn}, with yi ∈ Σn, and y1 < y2 < ... < yn (< here being with respect to
lexicographical order). Then Hn will be encoded by the concatenation of the strings yi, i.e.,
by y1y2 . . . yn. We will denote this string by enc(Hn). Note that |enc(Hn)| = n2. Also, if
a string y is the encoding of some set B ⊆ Σn with cardinality n, then we define dec(y) to
be B (otherwise, dec(y) is not defined). Observe that deciding whether an arbitrary string
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z is the prefix of some enc(Hn), with Hn being a dominating set, is a Σp
2 predicate (where

the input of the predicate is 〈1n, z〉). Indeed, z has this property if and only if

(∃w ∈ Σ(n2−|z|))(∀y ∈ Σn)[dec(zw) is defined and y loses to at least one string in dec(zw)].

Thus, in FPΣp
2 , we can construct, bit by bit, a dominating set using prefix search. Let us

denote this set by Hn. Observe that Hn must contain at least one string x in the top Toda
class at length n. Thus, all we need to do is to find a string x ∈ Hn such that for every
other string y ∈ Hn there is a path from x to y in the subgraph of Gn,f induced by Hn.
Since ||Hn|| = n, we can do this in polynomial time. For example x can be taken to be any
node of maximum outdegree in the subgraph of Gn,f induced by Hn (since it is known—see,
e.g., [Wes96]—that all the other nodes are reachable from such a node by paths of length
at most 2, and so such a node has the desired property).

It is natural to ask if there is a more efficient BestAtLength function. The next result
shows that it is unlikely that the BestAtLength function of every commutative P-selector
is in FP because this would imply E = NE. Since the proof is relativizable, it follows that
there is an oracle relative to which the BestAtLength function for some commutative P-
selector is not in FP. The issue of whether the statement of Theorem 3.4 can be improved
to FPNP remains open.

Theorem 3.5 1. If P = NP, then every commutative P-selector f has a BestAtLength
function in FP.

2. If every commutative P-selector f has a BestAtLength function in FP then E = NE.

Proof. Part 1 follows immediately from Theorem 3.4. We now prove part 2. Consider a set
A that is complete for NE, and let B = {11x | x ∈ A}, where 11x denotes a string of 1’s
of length the number whose binary encoding is 1x. Note that B is in NP. Thus there is a
nondeterministic polynomial-time machine M and a constant k such that M accepts B and
all the computation paths of M on any input of size n have length exactly nk. We consider
the following function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗: If x = x1 . . . xk, xi ∈ Σ for all i ∈ {1, . . . , k},
and y are two strings, then 〈x, y〉 = x1x1 . . . xkxk00y, where b denotes the bit b flipped (i.e.,
b = 1−b). We have specified this (pairing-like, except non-onto) function explicitly because
the particular lengths its outputs have on particular inputs will be incorporated below. Let

C = {〈11x, w〉 | 11x ∈ B and w is an accepting path of M on input 11x}.

Clearly C is in P and so it certainly is P-selective via some commutative P-selector f . By
hypothesis, f has a BestAtLength function g in FP. Let x ∈ Σ∗ and let n be the integer
whose binary encoding is 1x. Then

1. x ∈ A ⇒ there is a string of length 2n + 2 + nk in C of the form

〈11x, accepting path of M on 11x〉,
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2. x 6∈ A ⇒ there is no string of length 2n + 2 + nk in C.

Thus, we calculate g(12n+2+nk
), which gives us a string of length 2n + 2 + nk having the

property that it is in C if C contains any strings of this length. If the output of this
calculation is not a string of the form 〈11x, w〉, then it means that x is not in A. If the
output of g(12n+2+nk

) is of the form 〈11x, w〉 then we check whether this string is in C. If
it is in C, that means by the definition of C that x ∈ A. If it is not in C, then C does not
have strings of length 2n + 2 + nk, and thus x 6∈ A. These computations take deterministic
exponential time in |x|. It follows that A ∈ E, and thus NE = E.

Since there are relativized worlds in which E and NE differ, Theorem 3.5 (in its rela-
tivized version, which holds also by the analogous proof) yields the following corollary.

Corollary 3.6 There is an oracle relative to which there is a commutative P-selector f
such that no BestAtLength function for f is in FP.

Theorem 3.5 relativizes. That is, for each set B it holds that: If every commutative
PB-selector f has a BestAtLength function in FPB then EB = NEB. Though neither
NP ∩ coNP nor coNE ∩ NE is currently known to have complete sets (see [Sip82,Gur83,
HI85] regarding NP∩ coNP), one nonetheless can (by a “set by set” argument—[HHN+95,
Corollary 6] for example employs a set-by-set argument in the completely different setting
of Karp–Lipton-type results), in light of the facts that ENP∩coNP = coNE ∩ NE and NE =
coNE ∩NE ⇐⇒ NE = coNE, as an application of this see that the following holds.

Corollary 3.7 If every commutative FPNP∩coNP-selector f has a BestAtLength function in
FPNP∩coNP then coNE = NE.

The reader may naturally wonder whether the E = NE conclusion of part 2 of
Theorem 3.5 can be strengthened to a P = NP conclusion. We do not have a definitive
answer; the fact that BestAtLength functions have tally inputs seems a difficult impediment
to proving this. We do note that it is the only impediment. That is, if we make a new
notion of BestAtLength function, let us call it BestBelowUsAtLength, that (for a fixed
commutative P-selector function f) takes as its input 〈1n, z〉 and (i) when |z| 6= n outputs
“illegal z”; and (ii) when |z| = n and [z]f is not in the bottom Toda equivalence class
(with respect to f at length n) outputs a string w, |w| = n, such that [w]f is the topmost
Toda equivalence class (with respect to f at length n) that is less than [z]f (i.e., such
that [z]f > [w]f yet, for each v ∈ Σn, it holds that [w]f < [v]f ⇒ [v]f ≥ [z]f ). (When
|z| = n and [z]f is in the bottom Toda equivalence class (with respect to f at length n), a
BestBelowUsAtLength function can output whatever lie it likes.) Under this definition, it
is easy to see that a P = NP conclusion holds.

Proposition 3.8 If every commutative P-selector f has a BestBelowUsAtLength function
in FP then P = NP.

An element x in the top Toda class at length n has the property that for every string
y ∈ Σn there is a path from x to y in the induced tournament graph. We next investigate
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a related notion. It is known (this was noted as early as the 1950s [Lan53]) that in a
tournament graph there is at least one node v such that for every other node w there is a path
of length at most 2 from v to w. This property has played an important role in improving
from quasilinear to linear the amount of nondeterminism used to accept the P-selective
sets with optimal nonuniform advice ([HNP98], see also [HT96]) and in understanding the
complexity of the reachability problem in tournaments [Tan01]. A node v with the above
property is called a king. A function g is a Find-a-King function for a commutative P-
selector f if for all n, on input 1n, f outputs a king of the graph Gf,n.

Proposition 3.9 Every commutative P-selector function f has a Find-A-King function
computable in FPΣp

3 .

Proof. Given as input z and 1n, |z| ≤ n, note that the string z is a prefix of a king of Gn,f

if and only if

(∃w ∈ Σn−|z|)(∀y1 ∈ Σn)(∃y2 ∈ Σn)[(zw beats y1) ∨ ((zw beats y2) ∧ (y2 beats y1))].

It follows that using prefix search we can build a king of Gn,f in FPΣp
3 .

It is interesting to note that building a top Toda element seems to be easier than building
a king (as indicated by the previous theorems), yet recognizing a top Toda element seems
(given our current stage of knowledge) to be a more difficult task than recognizing a king.
This holds because a string x ∈ Σn is a top Toda element at length n exactly if for any
string y ∈ Σn there is a path from x to y; checking this condition is in PSPACE. One can
observe that this problem is also in the advice class [KL80] PP/ linear (that is it can be
done in PP given an advice string of size O(n)). We now sketch a proof of this. For an
arbitrary P-selector f , let us consider the Toda-equivalence classes for the strings in Σn

sorted according to the order relation defined above:

[x1]f > [x2]f > . . . > [xk]f .

Then any element x in [x1]f beats at least the elements in {x} ∪ (
⋃

2≤i≤k[xi]f ) and thus
has outdegree at least 1 +

∑
2≤i≤k ||[xi]f ||. Also note that any element (of Σn) that is not

in [x1]f cannot beat any element in [x1]f and thus its outdegree is at most
∑

2≤i≤k ||[xi]f ||.
Thus we will use as the advice string the binary encoding of 1 +

∑
2≤i≤k ||[xi]f || (prefixed

as needed with leading zeros to make it hit on the head the exact linear length if one uses
the definition of advice that requires that the linear advice be of length exactly that of the
specified linear function, rather than just bounded by it, see also the discussion in [HT96,
Section 2]; regardless of which of these two different definitional approachs one uses, the
class PP/linear remains the same, so this is not a critical issue, and similarly it is not a
critical issue for NP/linear). If we check, versus that threshold, the outdegree of whatever
node our PP/linear algorithm is interested in, this is a PP computation (given as input the
advice and the node), and we can in this fashion check whether the node is in the top Toda
class at that length. So, we have membership in PP/linear.
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On the other hand, a string x in Gn,f is a king node if and only if (∀y1 : |y1| = |x|)(∃y2 :
|y2| = |x|)[(x beats y1) ∨ ((x beats y2) ∧ (y2 beats y1))]. Thus checking whether a string x
is a king in Gn,f can be done with a Πp

2 computation. We note that this fact, and also
Proposition 3.9, could be shown indirectly using Tantau’s recent work on the complexity of
succinct tournament reachability [Tan01].

Hemaspaandra et al. [HNOS96a] (without quite explicitly stating it) showed P-sel ⊆
PP/ linear. This was quickly improved to P-sel ⊆ NP/ linear ([HT96], see also [HNP98]). So
it is reasonable to wonder whether the above-given PP/ linear result for top Toda element
recognition can itself be strengthened to NP/ linear. We conjecture that it cannot; the
method that yielded NP/ linear does not seem to apply here in any obvious way. Also, we
note in passing that in the profoundly different model in which the tournament—far from
being uniformly specified via a P-selector function—can be explored only via queries to a
black box, and our input additionally includes the set of nodes inducing via that black box
a tournament over which a king (or a certain sequence of kings) is sought, bounds on the
numbers of queries to find such have been studied in, for example, [SSW03].

4 P-Selectivity and Ranking

While P-selectivity is an extension of polynomial-time decidability, the notion of polynomial-
time weak rankability goes in the opposite direction. It describes sets that are so simple
that there exists a polynomial-time algorithm that, on inputs that are elements in the set,
outputs the number of elements in the set up to that element. Weak-P-rankability can be
an attribute of extremely complex sets. One further generalization is to allow the ranking
functions to belong to some broader family of functions (e.g., having some complexity bound
less stringent than polynomial time), so that we can understand what computational power
is needed to capture cardinality issues for prefixes of sets/subsets from classes of interest
(see, e.g., Theorem 4.5). There have been many papers studying the issue of which sets can
be ranked [GS91,HR90,BGS91,Huy90].

Definition 4.1 For any set B and any string x, define rankB(x) = ||B≤x||.

1. [HR90] A set A is strongly-P-rankable if there is a polynomial-time computable func-
tion f such that (∀x ∈ Σ∗) [f(x) = rankA(x)]. We also use strongly-P-rankable to
denote the class of all sets that are strongly-P-rankable.

2. [GS91] A set A is P-rankable if there is a polynomial-time computable function f such
that (a) (∀x ∈ A) [f(x) = rankA(x)] and (b) (∀x 6∈ A) [f(x) = “not in A”]. We also
use P-rankable to denote the class of all sets that are P-rankable.

3. [HR90] A set A is weakly-P-rankable if there is a polynomial-time computable function
f such that (∀x ∈ A) [f(x) = rankA(x)]. We also use weakly-P-rankable to denote
the class of all sets that are weakly-P-rankable.
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4. Let F be a family of functions mapping strings into natural numbers. A set A is
weakly-F-rankable if there is a function f ∈ F such that (∀x ∈ A) [f(x) = rankA(x)].
We also use weakly-F-rankable to denote the class of all sets that are weakly-F-
rankable.

Note that, immediately from the definitions, strongly-P-rankable ⊆ P-rankable ⊆
weakly-P-rankable. (The first inclusion is easy to see in light of the fact that, for
each x 6= ε, x ∈ A ⇐⇒ rankA(x) > rankA(x− 1), where x− 1 denotes the immediate lex-
icographic predecessor of x.) Also note that for x 6∈ A, the definition of weakly-P-rankable
sets puts no constraint on the behavior of f on input x other than that f must run in
polynomial time. This is a point of similarity with P-selectivity useful for the following
refinement of P-selectivity, which has been introduced in [HZZ96]. The refinement adds
the requirement that when at least one of the inputs belongs to the set, we output not
merely an input that is in the set, but also output its correct ranking information.

Definition 4.2 [HZZ96] A set A is polynomial-time semi-rankable if there is a (total,
single-valued) function f such that, for every x and y,

1. (∃n) [f(x, y) = 〈x, n〉 or f(x, y) = 〈y, n〉], and

2. {x, y}
⋂

A 6= ∅ ⇒ [(x ∈ A and f(x, y) = 〈x, rankA(x)〉) or (y ∈ A and f(x, y) =
〈y, rankA(y)〉)].

In such a case, we say that f is a semi-ranking function for A. We use P-sr to denote the
class of sets that are polynomial-time semi-rankable.

As noted in [HZZ96], P-sr = P-sel ∩ weakly-P-rankable. Among other results, it is
shown in [HZZ96] that P-sr is a proper set of P-sel, i.e., there are P-selective sets that are
not weakly-P-rankable (there are also sets that are weakly-P-rankable but not P-selective).

For completeness and as an example of how one proves things regarding (non-)weak-P-
rankability, we provide a new and short proof of this fact. Let {Mi}i∈N+ be an enumeration
of all deterministic Turing machines (viewed as computing single-valued, possibly partial
functions). Let HALT = {i | Mi halts on input i}. Of course, HALT is not recursive. For
any real 0 ≤ γ < 1 the standard left cut of γ, denoted L(γ), is defined to be

L(γ) = {β1β2 · · ·βz | z ∈ N ∧ (∀j : 1 ≤ j ≤ z)[βj ∈ {0, 1}] ∧
∑

1≤i≤z

βi

2i
< γ},

i.e., it is the strings that when interpreted as binary fractional values are strictly less than
γ (see [Sel81,Ko82,Ko83]). Let α, 0 < α < 1, be the real number whose infinite binary
notation is given as follows: The ith bit after the decimal point is 1 if i ∈ HALT, and is 0
if i 6∈ HALT. It is known, due to Selman [Sel81], that each standard left cut is P-selective.
So, certainly, the left cut L(α) is P-selective. Suppose that L(α) is weakly-P-rankable by
some function f . Since α > 0 it holds that, for all j ≥ 0, 0j ∈ L(α). So f(0j) gives the
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correct rank of 0j in L(α). If we compute, successively, f(0j) for j = 0, 1, 2, . . ., then we
can (keeping in mind that if a standard left cut has, say, k strings at a given length, then
those strings will always be the lexicographically first k strings at that length) reconstruct,
bit by bit, the binary expansion of α. This implies that HALT is recursive, which is untrue.
So our assumption that (the P-selective set) L(α) is weakly-P-rankable is contradicted.

Note that the P-selective set L(α) exhibited above cannot, in fact, be weakly ranked
by any recursive function. By modifying the above construction (taking in lieu of HALT
an even harder set), one can see that there even are P-selective sets that are not weakly-
rankable by any function in the arithmetical hierarchy.

It is shown in [HZZ96] that P-sr has structural properties different from those of P-sel.
For example, unlike P-sel, P-sr is not closed under complementation, union with P sets, or
join with P sets. It is natural to ponder whether P-sel can be separated from the class of
weakly-P-rankable sets or from P-sr in a stronger sense, namely with immunity. We note
first that the above approach is hopeless regarding stronger separation from P-sr because
L(0) = ∅ and any standard left cut L(γ), 0 < γ < 1, contains the subset {0j | j ∈ N},
which belongs to P-sr. Perhaps somewhat surprisingly it turns out, as we will show as
Theorem 4.5, that the statement “P-sel is weakly-P-rankable immune” implies P 6= Σp

2

(equivalently, P 6= NP) and thus it seems beyond reach at this time.
A set S if P-printable [HY84] if there exists a polynomial-time algorithm such that, for

each n ∈ N, on input 0n the algorithm outputs exactly the members of S having length at
most n. Note that every P-printable set is sparse and belongs to P. The above definition
can be relativized in the standard way.

Lemma 4.3 Let Q be any set. If A is P-selective, S is PQ-printable, and A∩S is infinite,
then A ∩ S (and thus also S, and most particularly also A) has an infinite weakly-FPQ-
rankable subset.

Proof. Let A, Q, and S be any sets such that A is P-selective, S is PQ-printable, and
A ∩ S is infinite. As noted earlier, we may without loss of generality assume that A has a
commutative P-selector. Let E be an FPQ-algorithm witnessing that S is FPQ-printable.
Let B = A ∩ S. Clearly, B ⊆ A and B ⊆ S. We consider the following two cases.

Case 1: There is a string y in B such that there are infinitely many elements of B that
beat y.

We take y0 to be the lexicographically first such string and define

C = {x ∈ B | x >lex y0 ∧ x beats y0}.

C ⊆ B, so C ⊆ A. The set C is weakly-FPQ-rankable. This is true because of the following
procedure: Note that

rankC(x) = ||{w | y0 <lex w ≤lex x ∧ w ∈ S ∧ w beats y0}||.

(To see this, it may help to recall that, since y0 ∈ A, any w that beats y0 is certainly a
member of A; and if additionally w ∈ S, then w ∈ A ∩ S = B.) To compute rankC(x) we
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run E on input 0|x|, so E outputs S ∩ Σ≤|x|. From S ∩ Σ≤|x|, we keep only those strings w
that both beat y0 and satisfy y0 <lex w ≤lex x, and we count the number of such strings.
This is the desired rank. This can be done in FPQ, so C is weakly-FPQ-rankable. (In fact,
the procedure just given even shows that, in this case, C is strongly-FPQ-rankable.)

Case 2: It is not the case that there is a string y in B such that there are infinitely
many elements of B that beat y.

We build the weakly-FPQ-rankable set C, C ⊆ B ⊆ A, as follows. First let y0 be the
lexicographically first element in B. We insert y0 in C. Then, inductively for each i ≥ 0,
we let yi+1 be the lexicographically least string such that

(1) yi+1 ∈ B,

(2) yi+1 loses to each of yi, yi−1, . . . , y0, and

(3) yi+1 >lex yi.

Since each of y0, . . . , yi loses to only finitely many strings in B, there exists such a string
yi+1. We insert yi+1 in C.

We show next that, as claimed, C is weakly-FPQ-rankable. Let z be a string for which
we wish to assert a rank (in C) that will be correct if z ∈ C. (For strings z 6∈ C, our only
constraint is not to ruin the overall required polynomial running time.) If z belongs to C,
there must be an index i such that z = yi and the rank of z in C will be i + 1. Thus, we
seek to determine i. Observe that

y0 <lex y1 <lex . . . <lex yi

and
y0 >f y1 >f . . . >f yi−1 >f yi.

So, if z ∈ C, we have yi = z ∈ C ⊆ B and so (still assuming z ∈ C) it follows that
y1, y2, . . . , yi−1 are all in B. If i > 1, it can be seen that (still assuming z ∈ C) y1 is the
shortest string in S that

(a) is, with respect to lexicographic order, greater than y0 and less than z (which if z ∈ C
satisfies z = yi),

(b) loses to y0, and

(c) wins at z (which if z ∈ C equals yi).

Thus, in time polynomial in |z|, using the FPQ-printing algorithm E (to let us check mem-
bership in S), we can ourselves via an FPQ-procedure find y1. (Note that the true y0 will
be hardcoded into our algorithm.) Then inductively, for j = 2, . . . , i− 1, it can be checked
that (still assuming yi = z) yj is the shortest string in S that

(a) is, in lexicographic order, greater than yj−1 and less than z,
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(b) loses to y0, . . . , yj−1, and

(c) wins at z.

So with an FPQ computation we can (still assuming z ∈ C) determine one by one the strings
y2, . . . , yi−1 (going until the above process stops producing yj ’s), and thus determine i. If
z 6∈ C, the i value we compute by doing the above is nonsense (because z is not a yi and so
the construction in this case was flawed in its belief that beating z is a proof of membership),
but that is not a problem; our process is, overall, an FPQ process.

We feel that the construction in Case 2 above is a novel one. The following results
immediately follow from Lemma 4.3.

Theorem 4.4 P-sel is not bi-immune to the class of weakly-P-rankable sets.

Proof. Let A be an arbitrary P-selective set and let S = 0∗. Clearly, S is P-printable. By
Lemma 4.3, if A∩S is infinite it has an infinite weakly P-rankable subset (and thus so does
A). By Lemma 4.3, if A∩S is infinite it has an infinite weakly P-rankable subset (and thus
so does A). However, at least one of A ∩ S and A ∩ S is infinite, so we are done.

Theorem 4.5 Any infinite P-selective set A has an infinite weakly-FPΣp
2 -rankable subset.

Proof. Let g be the FPΣp
2 -computable function given by Theorem 3.4, which on input 1n

outputs some string of length n in the top Toda class of A at length n (recall that, like all
P-selective sets, A has a commutative P-selector, and thus Theorem 3.4 can be applied).
For any n ∈ N+, let xn = g(1n). Let S = {x1, x2, x3, . . .}. Then S is FPΣp

2 -printable. Since
A is infinite, for infinitely many m, A=m 6= ∅. For each m ≥ 1 such that A=m 6= ∅, xm ∈ A.
So, A ∩ S is infinite. Now, by Lemma 4.3, it follows that A has weakly-FPΣp

2 -rankable
subset.

Corollary 4.6 If P = NP, then P-sel is not immune to the class of weakly-P-rankable sets.

The reader may wish to compare Theorem 4.5 with the following result—neither of
which seems to imply the other—from [HHN04] regarding printability [HY84]: Each infinite
P-selective set B has an infinite FPB⊕Σp

2 -printable subset.
An important subclass of P-sel is the class of sets that are standard left cuts, a class

that we have already used. Recall that for each real 0 ≤ γ < 1 the standard left cut of γ
is the set L(γ) = {β1β2 · · ·βz | z ∈ N ∧ (∀j : 1 ≤ j ≤ z)[βj ∈ {0, 1}] ∧

∑
1≤i≤z

βi

2i < γ}.
All the P-selective sets that have been constructed in the literature are either standard
left cuts or are ≤p

m-equivalent to a standard left cut and, in fact, proving that there is
a P-selective set that is not ≤p

m-equivalent to a standard left cut is known to be as hard
as showing P 6= PP [HNOS96a]. In contrast, we observe that standard left cuts that are
weakly-rankable are always in P.

Theorem 4.7 If A is a standard left cut, then A is weakly-P-rankable if and only if A is
strongly-P-rankable.

14



Proof. Let A be an arbitrary standard left cut. In particular, let γ, 0 ≤ γ < 1, be such that
A = L(γ). Assume that A is weakly-P-rankable, and let r be a polynomial-time function
that weakly ranks A (in the sense of having the properties of the function f of part 3 of
Definition 4.1). We seek to show that A is strongly-P-rankable.

If γ = 0, then L(γ) = ∅, so L(γ) indeed is strongly-P-rankable, via the function that
always outputs zero. So we now consider only the case 0 < γ < 1. We describe, for this case,
a strong-P-ranking function for A. Our strong-P-ranking function will do the following. On
input z, compute

u(z) =
∑

0≤j≤|z|−1

mj ,

where mj = r(0j+1) − r(0j). Also compute v(z) = r(0|z|+1) − r(0|z|). Note—crucially to
our algorithm’s correctness—that, since 0 < γ, each string of the form 0i belongs to L(γ),
and so the weak-P-ranking function r does not lie on strings of the form 0i.

(Recall that if a standard left cut has, say, k strings at a given length, then those
strings will always be the lexicographically first k strings at that length.) If z is one of
the lexicographically first v(z) strings of length |z|, recalling Definition 4.1 (regarding the
definition of the function “rank”), output u(z)+rankΣ|z|(z), e.g., if z = 0|z|, output u(z)+1.
Otherwise (i.e., if z is not one of the lexicographically first v(z) strings of length |z|), output
u(z) + v(z). Note that this function is a strong-P-ranker for A since it in effect correctly
counts, at each length starting at zero, the number of strings in A that are lexicographically
less than or equal to z.

Since strongly-P-rankable ⊆ P-rankable = P ∩ weakly-P-rankable, we have the following
immediate corollary.

Corollary 4.8 Each weakly-P-rankable standard left cut belongs to P.
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