
Scalable Data Mining for Rules

by

Mohammed Javeed Zaki

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Dr. Wei Li

Department of Computer Science

The College

Arts and Sciences

University of Rochester

Rochester, New York

1998

ii

To my parents and brothers.

Read! in the name of thy Lord and Cherisher, Who created
Created man, out of a (mere) clot of congealed blood:

Read! And thy Lord is Most Bountiful,
He Who taught (the use of) the pen,
Taught man that which he knew not...

Holy Quran, Sura 96, Ayat 1-5

iii

Curriculum Vitae

Mohammed Javeed Zaki was born in Hyderabad, India, on August 24th, 1971. He
attended Angelo State University, San Angelo, TX, from 1989 to 1993, and graduated
with a Bachelor of Science degree in 1993 with a dual major in Computer Science and
Mathematics. He came to the University of Rochester in the Fall of 1993 and began
graduate studies in Computer Science. He pursued his research in parallel data mining
and knowledge discovery under the direction of Dr. Wei Li and received the Master of
Science degree in 1995.

iv

Acknowledgments

I want to thank Dr. Wei Li for getting me started on data mining and for guiding
me through this thesis. Special thanks go to Dr. Mitsunori Ogihara, who was like a co-
advisor on this thesis, and to the other members of my thesis committee, Dr. Alexander
Albicki, Dr. Thomas LeBlanc, and Dr. Michael Scott for their helpful comments. Thanks
are also due to Dr. James Allen for providing summer support, and to Dr. Howard Ho
and Dr. Rakesh Agrawal for a valuable summer spent with the Quest data mining
group at IBM Almaden Research Center. Thanks to Dr. Mitsunori Ogihara, Srini
Parthasarathy and Dr. Neal Lesh for the collaborations on various papers.

The five years at Rochester were very enjoyable. I’ll always remember my classmates
Wagner Meira, Jim Vallino, Garbis Salgian, Mark Core, Aaron Kaplan, Umesh Berry,
Colm O’Rian, George Kardaras, Mauricio Marengoni, Mike Marchetti, and Terry Ri-
opka. Thanks to my raquetball and squash partners Jim Vallino, Olac Fuentes, Srini
Parthasarathy and Dana Ballard. The desi gang, which included Harmit Malik, Srini
Parthasarathy, Amit Singhal, Samantha Baker, Rajesh Rao and Ramesh Sarukkai, made
life in Rochester unforgettable.

Finally, I am grateful to my parents for always encouraging me to do my best, and
also to my brothers for their encouragement and support. All thanks and praises to
God Almighty for guiding and blessing me in this endeavor.

This research was supported in part by NSF research initiation award no. CCR-
9409120, NSF research grant no. CCR-9705594, ARPA contract no. F19628-94-C-0057,
and U.S. Air Force/Rome Labs research contract no. F30602-95-1-0025. The rights to
the work on mining classification rules are owned by IBM Corporation.

v

Abstract

Data Mining is the process of automatic extraction of novel, useful, and understandable
patterns in very large databases. High-performance scalable and parallel computing is
crucial for ensuring system scalability and interactivity as datasets grow inexorably in
size and complexity. This thesis deals with both the algorithmic and systems aspects of
scalable and parallel data mining algorithms applied to massive databases. The algo-
rithmic aspects focus on the design of efficient, scalable, disk-based parallel algorithms
for three key rule discovery techniques — Association Rules, Sequence Discovery, and
Decision Tree Classification. The systems aspects deal with the scalable implementation
of these methods on both sequential machines and popular parallel hardware ranging
from shared-memory systems (SMP) to hybrid hierarchical clusters of networked SMP
workstations.

The association and sequence mining algorithms use lattice-theoretic combinatorial
properties to decompose the original problem into small independent sub-problems that
can be solved in main memory. Using efficient search techniques and simple intersec-
tion operations all frequent patterns are enumerated in a few database scans. The
parallel algorithms are asynchronous, requiring no communication or synchronization
after an initial set-up phase. Furthermore, the algorithms are based on a hierarchi-
cal parallelization, utilizing both shared-memory and message-passing primitives. In
classification rule mining, we present disk-based parallel algorithms on shared-memory
multiprocessors, the first such study. Extensive experiments have been conducted for all
three problems, showing immense improvement over previous approaches, with linear
scalability in database size.

vi

Table of Contents

Curriculum Vitae iii

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis Outline . 5

2 Mining Association Rules 6

2.1 Introduction . 6

2.2 Problem Statement . 7

2.3 Related Work . 8

2.4 Itemset Enumeration: Lattice-Based Approach 10

2.5 Algorithm Design and Implementation 23

2.6 The Apriori and Partition Algorithms 28

2.7 Experimental Results . 29

2.8 Conclusions . 34

3 Parallel Association Mining 37

3.1 Introduction . 37

3.2 Related Work . 38

3.3 Apriori-based Parallel Algorithms . 39

3.4 Algorithm Design and Implementation 41

3.5 Experimental Results . 47

3.6 Conclusions . 58

vii

4 Theoretical Foundations of Association Rules 59

4.1 Introduction . 59

4.2 Related Work . 59

4.3 Itemset Discovery: Bipartite Graphs . 60

4.4 Itemset Discovery: Formal Concept Analysis 64

4.5 Rule Generation . 66

4.6 Conclusions . 71

5 Mining Sequence Rules 73

5.1 Introduction . 73

5.2 Problem Statement . 74

5.3 Related Work . 76

5.4 Sequence Enumeration: Lattice-based Approach 77

5.5 SPADE: Algorithm Design and Implementation 85

5.6 Parallel Sequence Mining . 90

5.7 The GSP Algorithm . 90

5.8 Experimental Results . 91

5.9 Conclusions . 96

6 Mining Classification Rules 98

6.1 Introduction . 98

6.2 Related Work . 100

6.3 Serial Classification . 101

6.4 Parallel Classification on Shared-memory Systems 108

6.5 Experimental Results . 118

6.6 Conclusions . 126

7 Summary and Future Work 128

7.1 Thesis Summary . 128

7.2 Future Work . 131

Bibliography 133

viii

List of Tables

2.1 Database Parameter Settings . 30

2.2 Number of Joins: T20.I6.D100K (0.25%) 31

3.1 Database Properties . 48

4.1 Mining Complexity . 63

5.1 Number of Ways to Obtain a 4-Sequence 79

5.2 Synthetic Datasets . 91

6.1 Machine Configurations . 119

6.2 Dataset Characteristics . 120

6.3 Sequential Setup and Sorting Times . 121

ix

List of Figures

1.1 Data Mining Process . 2

2.1 A Bookstore Database . 9

2.2 Frequent Itemsets and Strong Rules . 9

2.3 The Complete Powerset Lattice P(I) . 11

2.4 Tid-List for the Atoms . 13

2.5 Computing Support of Itemsets via Tid-List Intersections 14

2.6 Equivalence Classes of P(I) Induced by θ1 16

2.7 Equivalence Classes of [A]θ1
Induced by θ2 16

2.8 Final Lattice of Independent Classes . 17

2.9 Bottom-Up Search . 18

2.10 Top-Down Search . 18

2.11 Hybrid Search . 20

2.12 Maximal Cliques of the Association Graph 21

2.13 Maximal-Clique-Based Sub-lattices Induced by φ1 22

2.14 Prefix-Based Sub-lattices Induced by θ1 22

2.15 Pseudo-code for Bottom-Up Search . 24

2.16 Pseudo-code for Top-Down Search . 25

2.17 Pseudo-code for Hybrid Search . 25

2.18 Pseudo-code for AprClique Algorithm 27

2.19 The Apriori Algorithm . 28

2.20 Number of Frequent Itemsets . 31

2.21 Execution Time . 32

2.22 Execution Time . 33

2.23 Scale-up Experiments: Number of Transactions 35

2.24 Scale-up Experiments: Transaction Size 35

2.25 Eclat Memory Usage . 36

x

3.1 The Count Distribution Algorithm . 40

3.2 Pseudo-code for the New Parallel Algorithms 42

3.3 Database Partitioning and Class Scheduling 43

3.4 The Par-Eclat Algorithm . 46

3.5 The Memory Channel Space . 48

3.6 Number of Frequent Itemsets . 49

3.7 Parallel Performance: Par-Eclat vs Count Distribution 50

3.8 Parallel Performance: New Algorithms 51

3.9 Communication Cost in Par-Eclat . 52

3.10 Number of Intersections . 53

3.11 Memory Usage in Par-Eclat (H1.P1.T1) 55

3.12 Parallel Speedup (H4.P1.T4) . 56

3.13 Parallel Sizeup (H4.P1.T4) . 57

4.1 Maximal Unit Sub-Matrix of a Binary Matrix 61

4.2 Maximal Constrained Bipartite Clique 61

4.3 Galois Lattice of Concepts . 65

4.4 Frequent Concepts of the Galois Lattice 66

4.5 A Base for Global Implications . 68

4.6 Frequent Concepts with Edge Precisions 69

4.7 a) Generating Set for Precisions Between 50% and 100%; b) Generating
Set for Precisions Between 80% and 100% 70

4.8 Association Rules with 50% Min. Support and 80% Min. Confidence . . 71

5.1 Original Customer-Sequence Database 75

5.2 Rule Generation Algorithm . 76

5.3 Sequence Lattice Spanned by Subsequence Relation 78

5.4 Lattice Induced by Maximal Frequent Sequence D 7→ BF 7→ A 80

5.5 Id-lists for the Atoms . 81

5.6 Computing Support via Id-list Intersections 82

5.7 Equivalence Classes of S Induced by θ1 83

5.8 Equivalence Classes of [D]θ1
Induced by θ2 83

5.9 Recursive Decomposition of Class [D] into Smaller Sub-Classes via θk . 84

5.10 The SPADE Algorithm . 85

5.11 Vertical-to-Horizontal Database Recovery 86

5.12 Pseudo-code for Breadth-First and Depth-First Search 87

xi

5.13 Id-list Intersection . 88

5.14 Sequence Pruning . 89

5.15 The GSP Algorithm . 90

5.16 Performance Comparison: Synthetic Datasets 93

5.17 Performance Comparison: Planning Dataset 94

5.18 Scale-up: Number of Customers . 95

5.19 Scale-up: a) Number of Transactions/Customer; b) Transaction Size . . 96

5.20 Scale-up: a) Frequent Sequence Length; b) Frequent Itemset Length . . 96

6.1 Car Insurance Example . 101

6.2 General Tree-growth Algorithm . 102

6.3 Attribute Lists . 103

6.4 Evaluating a) Continuous and b) Categorical Split Points 104

6.5 Splitting a Node’s Attribute Lists . 106

6.6 Avoiding Multiple Attribute Files . 107

6.7 The BASIC Algorithm . 110

6.8 The FWK Algorithm . 113

6.9 Scheduling Attribute Files . 114

6.10 The MWK Algorithm . 115

6.11 The SUBTREE Algorithm . 117

6.12 Classification Functions for Synthetic Data 120

6.13 Local Disk Access: Functions 2 and 7; 8 Attributes; 1000K Records . . . 122

6.14 Local Disk Access: Functions 2 and 7; 32 Attributes; 250K Records . . . 123

6.15 Local Disk Access: Functions 2 and 7; 64 Attributes; 125K Records . . . 124

6.16 Main-memory Access: Functions 2 and 7; 8 Attributes; 1000K Records . 125

6.17 Main-memory Access: Functions 2 and 7; 32 Attributes; 250K Records . 126

6.18 Main-memory Access: Functions 2 and 7; 64 Attributes; 125K Records . 127

1

1 Introduction

Data Mining and Knowledge Discovery in Databases (KDD) is a new interdisciplinary
field merging ideas from statistics, machine learning, databases, and parallel computing.
It has been engendered by the phenomenal growth of data in all spheres of human
endeavor, and the economic and scientific need to extract useful information from the
collected data. The key challenge in data mining is the extraction of knowledge and
insight from massive databases, and it can be defined as follows.

Data Mining is the process of automatic extraction of novel, useful, and
understandable patterns in large databases.

Data mining refers to the overall process of discovering new patterns or building
models from a given dataset. There are many steps involved in the KDD enterprise
which include data selection, data cleaning and preprocessing, data transformation and
reduction, data-mining task and algorithm selection, and finally post-processing and
interpretation of discovered knowledge [Fayyad et al., 1996a; Fayyad et al., 1996b].
This KDD process tends to be highly iterative and interactive. Figure 1.1 illustrates
some of the KDD steps.

Typically data mining has the two high level goals of prediction and description
[Fayyad et al., 1996a]. In prediction, we are interested in building a model that will
predict unknown or future values of attributes of interest, based on known values of
some attributes in the database. In KDD applications, the description of the data in
human-understandable terms is equally if not more important than prediction. Two
main forms of data mining can be identified [Simoudis, 1996]. In verification-driven
data mining the user postulates a hypothesis, and the system tries to validate it. The
common verification-driven operations include query and reporting, multidimensional
analysis, and statistical analysis. Discovery-driven mining, on the other hand automat-
ically extracts new information, and it forms the main focus of this thesis. The typical
discovery-driven tasks include:

• Association Rules: Given a database of transactions, where each transaction
consists of a set of items, association discovery finds all the item sets that fre-
quently occur together, and also the rules among them [Agrawal et al., 1993b;
Agrawal et al., 1996]. An example of an association could be that, “40% of peo-
ple who buy Jane Austen’s Pride and Prejudice also buy Sense and Sensibility.”

2

ITERATION

SELECTED
CLEANED

ORIGINAL
DATABASE

DATABASE

DISCOVERED
PATTERNS RESULT

INTERPRETED

Figure 1.1: Data Mining Process

Potential application areas include catalog design, store layout, customer segmen-
tation, telecommunication alarm diagnosis, etc.

• Sequential Patterns: Sequence discovery aims at extracting sets of events that
commonly occur over a period of time [Agrawal and Srikant, 1995]. An example
of a sequential pattern could be that “70% of the people who buy Jane Austen’s
Pride and Prejudice also buy Emma within a month”. Such patterns are useful
in domains such as retail sales, telecommunications (e.g. alarm diagnosis) and
medicine (e.g. identifying symptoms that precede diseases).

• Classification and Regression: Classification aims to assign a new data item to
one of several predefined categorical classes [Weiss and Kulikowski, 1991; Michie
et al., 1994]. Since the field being predicted is pre-labeled, classification is also
known as supervised induction. While there are several classification methods
including neural networks [Lippmann, 1987] and genetic algorithms [Goldberg,
1989], decision trees [Breiman et al., 1984; Quinlan, 1993] are particularly suited
to data mining, since they can be constructed relatively quickly, and are simple and
easy to understand. While classification predicts a categorical value, regression is
applied if the field being predicted comes from a real-valued domain. Common
applications of classification include credit card fraud detection, insurance risk
analysis, bank loan approval, etc.

• Clustering: Clustering is used to partition a database into subsets or clusters,
such that elements of a cluster share a set of common interesting properties that

3

distinguish them from other clusters [Jain and Dubes, 1988; Cheeseman et al.,
1988; Fisher, 1987; Michalski and Stepp, 1983]. Unlike classification which has
predefined labels, clustering must in essence automatically come up with the la-
bels. For this reason clustering is also called unsupervised induction. Applications
of clustering include demographic or market segmentation for identifying common
traits of groups of people, discovering new types of stars in datasets of stellar
objects, and so on.

• Similarity Search: Similarity search is performed on a database of objects to
find the object(s) that are within a user-defined distance from the queried object,
or to find all pairs within some distance of each other [Agrawal et al., 1993c;
Faloutsos et al., 1994]. This kind of search is especially applicable to temporal
and spatial databases. Example applications include discovering stock with similar
price movements, identifying companies with similar sales patterns, etc.

1.1 Thesis Contributions

This thesis focuses on some of the key techniques in discovery-driven data mining,
and their intersection with high-performance scalable and parallel computing, i.e., Scal-
able Data Mining. We develop new sequential and parallel algorithms that are efficient,
disk-based, and that scale to very large databases. The main contributions of this thesis
are:

1. We look at three key rule discovery techniques that include Association Rules,
Sequence Discovery, and Decision Tree Classification.

2. Our algorithms scale to large disk-resident databases

3. Our techniques are based on a sound lattice-theoretic framework.

4. We experimentally evaluate our approach on major parallel platforms which in-
clude shared-memory multiprocessors, and hierarchical clusters of SMP worksta-
tions.

We will now briefly outline our contributions to each of the three rule mining tasks.

1.1.1 Mining Association Rules

Most of the extant algorithms for association mining [Agrawal et al., 1993b; Agrawal
et al., 1996; Houtsma and Swami, 1995; Park et al., 1995a] are iterative and make
repeated passes over the database, incurring high I/O overhead. They use complex hash
structures which suffer from poor locality. Furthermore, most parallel schemes [Park
et al., 1995b; Agrawal and Shafer, 1996; Cheung et al., 1996b; Shintani and Kitsuregawa,
1996; Han et al., 1997] involve repeated exchanges of frequency information or remote
database partitions, incurring high communication and synchronization cost.

4

This thesis has been successful in overcoming most of these limitations. We present
new algorithms that utilize lattice-theoretic techniques to decompose the original prob-
lem into smaller sub-problems, which can be independently solved in main memory using
efficient search techniques, and using simple join operations on inverted item lists. All
associations are discovered in a few passes over the database. The parallel algorithms
also selectively replicate the database on each node, so that after the initial setup there
is no more communication or synchronization. The new algorithms have been imple-
mented on a cluster of 8 DEC Alpha 4-processor SMP machines (32 processors in all)
with the fast Memory Channel network. The parallel implementation is hierarchical in
nature, exploiting SMP parallelism within a node and message-passing among nodes.
Extensive experiments have been conducted, showing immense improvement over pre-
vious algorithms, with linear scalability in database size. Another desirable property of
the new algorithms is that only simple intersection operations are used in computing
frequent item sets, making them suitable for direct implementation on general purpose
database management systems (DBMS), using SQL primitives.

We also present the computational complexity of itemset enumeration, and develop a
lattice-theoretic framework for association mining that can not only aid the development
of efficient algorithms, but can also help in the visualization of discovered associations,
and can provide a unifying framework for reasoning about some common data mining
tasks. Parts of the work on associations have appeared in [Zaki et al., 1996; Zaki et al.,
1997c; Zaki et al., 1997d; Zaki et al., 1997a; Zaki et al., 1997b; Zaki et al., 1997e;
Zaki and Ogihara, 1998; Parthasarathy et al., 1998].

1.1.2 Mining Sequence Rules

Existing solutions to this problem share most of the features and limitations of as-
sociation mining, namely that they tend to make repeated database scans, and use
complex hash structures [Agrawal and Srikant, 1995; Srikant and Agrawal, 1996b]. In
this thesis we develop a fast new algorithm for sequence discovery. As in the associa-
tion case, the new algorithm partitions the search space into small independent pieces,
which are solved in main memory. The new algorithm retains the simple intersection
operations, scales linearly with data size and outperforms previous approaches. Parts
of the work on sequences have appeared in [Zaki, 1998; Zaki et al., 1998b].

1.1.3 Mining Classification Rules

Classification is a well-studied problem [Weiss and Kulikowski, 1991; Michie et al.,
1994]; however, most of the current algorithms require that all or a portion of the
dataset remain permanently in memory [Mehta et al., 1996; Shafer et al., 1996]. This
requirement makes it difficult to mine large databases. This thesis focuses on the devel-
opment of new scalable parallel algorithms targeting shared-memory systems, the first
such study. The algorithms span the spectrum of data and task parallelism. The data
parallelism scheme is based on attribute scheduling among processors. This scheme
is extended with task pipelining and dynamic load balancing to yield more complex

5

schemes. The task parallel approach uses dynamic subtree partitioning among proces-
sors. All of these algorithms are disk-based and achieve excellent scalability. Part of
this work has appeared in [Zaki et al., 1998a; Zaki et al., 1999].

1.2 Thesis Outline

We begin by presenting new algorithms for mining association rules in Chapter 2.
New hierarchical parallel algorithms for association mining on a cluster of SMP machines
are described in Chapter 3. A theoretical foundation for association rules is formulated
in Chapter 4. Chapter 5 presents an efficient algorithm for mining sequence rules,
and Chapter 6 describes parallel algorithms for inducing classification rules on shared-
memory multi-processors. Finally, Chapter 7 summarizes the main contributions of this
thesis, and suggests avenues for future work.

6

2 Mining Association Rules

2.1 Introduction

The association mining task is to discover a set of attributes shared among a large
number of objects in a given database. For example, consider the sales database of
a bookstore, where the objects represent customers and the attributes represent au-
thors or books. The discovered patterns are the set of books most frequently bought
together by the customers. An example could be that, “40% of the people who buy
Jane Austen’s Pride and Prejudice also buy Sense and Sensibility.” The store can use
this knowledge for promotions, shelf placement, etc. There are many potential appli-
cation areas for association rule technology, which include catalog design, store layout,
customer segmentation, telecommunication alarm diagnosis, and so on.

The task of discovering all frequent associations in very large databases is quite
challenging. The search space is exponential in the number of database attributes, and
with millions of database objects the problem of I/O minimization becomes paramount.
However, most current approaches are iterative in nature, requiring multiple database
scans, which is clearly very expensive. Some of the methods, especially those using
some form of sampling, can be sensitive to the data-skew, which can adversely affect
performance. Furthermore, most approaches use very complicated internal data struc-
tures which have poor locality and add additional space and computation overheads.
Our goal is to overcome all of these limitations.

In this chapter we present new algorithms for discovering the set of frequent at-
tributes (also called itemsets). The key features of our approach are as follows:

1. We use a vertical tid-list database format, where we associate with each itemset a
list of transactions in which it occurs. We show that all frequent itemsets can be
enumerated via simple tid-list intersections.

2. We use a lattice-theoretic approach to decompose the original search space (lattice)
into smaller pieces (sub-lattices), which can be processed independently in main-
memory. We propose two techniques for achieving the decomposition: prefix-based
and maximal-clique-based partition.

7

3. We decouple the problem decomposition from the pattern search. We propose
three new search strategies for enumerating the frequent itemsets within each
sub-lattice: bottom-up, top-down and hybrid search.

4. Our approach roughly requires only a single database scan (with some pre-processed
information), minimizing the I/O costs.

We present six new algorithms combining the features listed above, depending on the
database format, the decomposition technique, and the search procedure used. These in-
clude Eclat (Equivalence CLAss Transformation), MaxEclat, Clique, MaxClique, Top-
Down, and AprClique. Our new algorithms not only minimize I/O costs by making
only one database scan, but also minimize computation costs by using efficient search
schemes. The algorithms are particularly effective when the discovered frequent itemsets
are long. Our tid-list based approach is also insensitive to data-skew. Furthermore, the
use of simple intersection operations makes the new algorithms an attractive option for
direct implementation in database systems, using SQL. With the help of an extensive
set of experiments, we show that the best new algorithm improves over current methods
by over an order of magnitude. At the same time, the proposed techniques retain linear
scalability in the number of transactions in the database.

The rest of this chapter is organized as follows: In Section 2.2 we describe the
association discovery problem. We look at related work in Section 2.3. In section 2.4
we develop our lattice-based approach for problem decomposition and pattern search.
Section 2.5 describes our new algorithms. Some previous methods, used for experimental
comparison, are described in more detail in Section 2.6. An experimental study is
presented in Section 2.7, and we conclude in Section 2.8.

2.2 Problem Statement

The association mining task, first introduced in [Agrawal et al., 1993b], can be
stated as follows: Let I be a set of items, and D a database of transactions, where
each transaction has a unique identifier (tid) and contains a set of items. A set of items
is also called an itemset. An itemset with k items is called a k-itemset. The support
of an itemset X, denoted σ(X), is the number of transactions in which it occurs as a
subset. A k length subset of an itemset is called a k-subset. An itemset is maximal
if it is not a subset of any other itemset. An itemset is frequent if its support is more
than a user-specified minimum support (min sup) value. The set of frequent k-itemsets
is denoted Fk.

An association rule is an expression A ⇒ B, where A and B are itemsets. The
support of the rule is given as σ(A∪B), and the confidence as σ(A∪B)/σ(A) (i.e., the
conditional probability that a transaction contains B, given that it contains A). A rule
is strong if its confidence is more than a user-specified minimum confidence (min conf).

The data mining task is to generate all association rules in the database, which have
a support greater than min sup, i.e., the rules are frequent. The rules must also have
confidence greater than min conf, i.e., the rules are strong. This task can be broken
into two steps [Agrawal et al., 1996]:

8

1. Find all frequent itemsets. This step is computationally and I/O intensive. Given
m items, there can be potentially 2m frequent itemsets. Efficient methods are
needed to traverse this exponential itemset search space to enumerate all the fre-
quent itemsets. Thus frequent itemset discovery is the main focus of this chapter.

2. Generate strong rules. This step is relatively straightforward; rules of the form
X\Y ⇒ Y , where Y ⊂ X, are generated for all frequent itemsets X, provided the
rules have at least minimum confidence.

Consider an example bookstore sales database shown in Figure 2.1. There are five
different items (names of authors the bookstore carries), i.e., I = {A,C,D, T,W}, and
the database consists of six customers who bought books by these authors. Figure 2.2
shows all the frequent itemsets that are contained in at least three customer transactions,
i.e., min sup = 50%. It also shows the set of all association rules with min conf = 100%.
The itemsets ACTW and CDW are the maximal frequent itemsets. Since all other
frequent itemsets are subsets of one of these two maximal itemsets, we can reduce the
frequent itemset search problem to the task of enumerating only the maximal frequent
itemsets. On the other hand, for generating all the strong rules, we need the support of
all frequent itemsets. This can be easily accomplished once the maximal elements have
been identified, by making an additional database pass, and gathering the support of
all uncounted subsets.

2.3 Related Work

Several algorithms for mining associations have been proposed in the literature
[Agrawal et al., 1993b; Agrawal et al., 1996; Brin et al., 1997; Houtsma and Swami, 1995;
Lin and Kedem, 1998; Lin and Dunham, 1998; Mueller, 1995; Park et al., 1995a;
Savasere et al., 1995; Toivonen, 1996]. The Apriori algorithm [Agrawal et al., 1996]
is the best known previous algorithm, and it uses an efficient candidate generation
procedure, such that only the frequent itemsets at a level are used to construct can-
didates at the next level. However, it requires multiple database scans. The DHP
algorithm [Park et al., 1995a] tries to reduce the number of candidates by collecting
approximate counts in the previous level. Like Apriori it requires as many database
passes as the longest itemset. The Partition algorithm [Savasere et al., 1995] mini-
mizes I/O by scanning the database only twice. It partitions the database into small
chunks which can be handled in memory. In the first pass it generates the set of all
potentially frequent itemsets, and in the second pass it counts their global support.
The DLG [Yen and Chen, 1996] algorithm uses a bit-vector per item, noting the tids
where the item occurred. It generates frequent itemsets via logical AND operations on
the bit-vectors. However, DLG assumes that the bit vectors fit in memory, and thus
scalability could be a problem for databases with millions of transactions. The DIC
algorithm [Brin et al., 1997] dynamically counts candidates of varying length as the
database scan progresses, and thus is able to reduce the number of scans. Another way
to minimize the I/O overhead is to work with only a small sample of the database. An
analysis of the effectiveness of sampling for association mining was presented in [Zaki

9

Conan DoyleSir Arthur D

Agatha Christie C

Jane Austen A

MarkTwain T

WodehouseP. G. W

C D T

A C D T W

A C D W

A C T W

C D W

A C T W1

2

3

4

5

6

Transaction Items

DATABASE

ITEMS

Figure 2.1: A Bookstore Database

A

C (5/5)W
T
D
A
A

C (4/4)
W (4/4)
CW (4/4)
C (4/4)
C (4/4)

W (4/4)
C (3/3)
W (3/3)
C (4/4)
C (3/3)
A (3/3)

AW
DW
TW

AT
AT

AC

TW
AT
TW

ACT
ATW
CTW

C (3/3)
CW (3/3)
AC (3/3)
W (3/3)
C (3/3)
A (3/3)

C

W, CW

A, D, T, AC, AW
CD, CT, ACW

100% (6)

83% (5)

67% (4)

50% (3)

ItemsetsSupport

CTW,

Maximal Frequent Itemsets:

FREQUENT ITEMSETS (min_sup = 50%)

AT, DW, TW, ACT, ATW
CDW, ACTW

CDW, ACTW
ASSOCIATION RULES (min_conf = 100%)

Figure 2.2: Frequent Itemsets and Strong Rules

10

et al., 1997b], and [Toivonen, 1996] presents an exact algorithm that finds all rules
using sampling. The AS-CPA algorithm and its sampling versions [Lin and Dunham,
1998] build on top of Partition and produce a much smaller set of potentially frequent
candidates. It requires at most two database scans. Also, sampling may be used to elim-
inate the second pass altogether. Approaches using only general-purpose DBMS sys-
tems and relational algebra operations have also been studied [Holsheimer et al., 1995;
Houtsma and Swami, 1995].

All the above algorithms generate all possible frequent itemsets. Methods for finding
the maximal elements include All-MFS [Gunopulos et al., 1997b], which is a randomized
algorithm to discover maximal frequent itemsets. The Pincer-Search algorithm [Lin and
Kedem, 1998] not only constructs the candidates in a bottom-up manner like Apriori,
but also starts a top-down search at the same time. This can help in reducing the
number of database scans. MaxMiner [Bayardo, 1998] is another algorithm for finding
the maximal elements. It uses efficient pruning techniques to quickly narrow the search
space. Our new algorithms [Zaki et al., 1997c; Zaki et al., 1997d] range from those that
generate all frequent itemsets to those that generate the maximal frequent itemsets.

2.4 Itemset Enumeration: Lattice-Based Approach

Before embarking on the algorithm description, we will briefly review some termi-
nology from lattice theory (see [Davey and Priestley, 1990] for a good introduction).

Definition 2.1 Let P be a set. A partial order on P is a binary relation ≤, such
that for all X,Y,Z ∈ P , the relation is:

1) Reflexive: X ≤ X.

2) Anti-Symmetric: X ≤ Y and Y ≤ X, implies X = Y .

3) Transitive: X ≤ Y and Y ≤ Z, implies X ≤ Z.

The set P with the relation ≤ is called an ordered set.

Definition 2.2 Let P be an ordered set, and let X,Z, Y ∈ P . We say X is covered
by Y , denoted X < Y , if X < Y and X ≤ Z < Y , implies Z = X, i.e., if there is no
element Z of P with X < Z < Y .

Definition 2.3 Let P be an ordered set, and let S ⊆ P . An element X ∈ P is an
upper bound (lower bound) of S if s ≤ X (s ≥ X) for all s ∈ S. The least upper
bound, also called join, of S is denoted as

∨

S, and the greatest lower bound, also called
meet, of S is denoted as

∧

S. The greatest element of P , denoted ⊤, is called the top
element, and the least element of P , denoted ⊥, is called the bottom element.

Definition 2.4 Let L be an ordered set. L is called a join (meet) semilattice if
X ∨ Y (X ∧ Y) exists for all X,Y ∈ L. L is called a lattice if it is a join and meet
semilattice, i.e., if X ∨ Y and X ∧ Y exist of all X,Y ∈ L. L is a complete lattice if
∨

S and
∧

S exist for all S ⊆ L. A ordered set M ⊂ L is a sublattice of L if X,Y ∈ M
implies X ∨ Y ∈ M and X ∧ Y ∈ M .

11

A C D T W

TWDWDTCWCTCDAWATAD

ACW ADT ATW

CDTWADTWACDWACDT

ACDTW

{}

CDTADWACTACD DTWCTW

AC

ACTW

CDW

Maximal Frequent Itemsets: ACTW, CDW

Figure 2.3: The Complete Powerset Lattice P(I)

For set S, the ordered set P(S), the power set of S, is a complete lattice in which
join and meet are given by union and intersection, respectively:

∨

{Ai | i ∈ I} =
⋃

i∈I

Ai

∧

{Ai | i ∈ I} =
⋂

i∈I

Ai

The top element of P(S) is ⊤ = S, and the bottom element of P(S) is ⊥ = {}.
For any L ⊆ P(S), L is called a lattice of sets if it is closed under finite unions and
intersections, i.e., (L;⊆) is a lattice with the partial order specified by the subset relation
⊆, X ∨ Y = X ∪ Y , and X ∧ Y = X ∩ Y .

Figure 2.3 shows the powerset lattice P(I) of the set of items in our example database
I = {A,C,D, T,W}. Also shown are the frequent (grey circles) and maximal frequent
itemsets (black circles). It can be observed that the set of all frequent itemsets forms
a meet semilattice since it is closed under the meet operation, i.e., for any frequent
itemsets X, and Y , X ∩ Y is also frequent. On the other hand, it doesn’t form a
join semilattice, since X and Y frequent, doesn’t imply X ∪ Y is frequent. It can be
mentioned that the infrequent itemsets form a join semilattice.

Lemma 2.1 All subsets of a frequent itemsets are frequent.

12

The above lemma is a consequence of the closure under meet operation for the set
of frequent itemsets. As a corollary, we get that all supersets of an infrequent itemset
are infrequent. This observation forms the basis of a very powerful pruning strategy in
a bottom-up search procedure for frequent itemsets, which has been leveraged in many
association mining algorithms [Agrawal et al., 1996; Park et al., 1995a; Savasere et al.,
1995]. Namely, only the itemsets found to be frequent at the previous level need to be
extended as candidates for the current level. However, the lattice formulation makes it
apparent that we need not restrict ourselves to a purely bottom-up search.

Lemma 2.2 The maximal frequent itemsets uniquely determine all frequent itemsets.

This observation tells us that our goal should be to devise a search procedure that
quickly identifies the maximal frequent itemsets. In the following sections we will see
how to do this efficiently.

2.4.1 Support Counting

Definition 2.5 A lattice L is said to be distributive if for all X,Y,Z ∈ L, X ∧ (Y ∨
Z) = (X ∧ Y) ∨ (X ∧ Z).

Definition 2.6 Let L be a lattice with bottom element ⊥. Then X ∈ L is called an
atom if ⊥ < X, i.e., X covers ⊥. The set of atoms of L is denoted by A(L).

Definition 2.7 A lattice L is called a Boolean lattice if

1) It is distributive.

2) It has ⊤ and ⊥ elements.

3) Each member X of the lattice has a complement.

We begin by noting that the powerset lattice P(I) on the set of database items I
is a Boolean lattice, with the complement of X ∈ L given as I\X. The set of atoms of
the powerset lattice corresponds to the set of items, i.e., A(P(I)) = I. We associate
with each atom (database item) X its tid-list, denoted L(X), which is a list of all
transaction identifiers containing the atom. Figure 2.4 shows the tid-lists for the atoms
in our example database. For example consider atom A. Looking at the database in
Figure 2.1, we see that A occurs in transactions 1, 3, 4, and 5. This forms the tid-list
for atom A.

Lemma 2.3 ([Davey and Priestley, 1990]) For a finite boolean lattice L, with X ∈ L,
X =

∨

{Y ∈ A(L) | Y ≤ X}.

In other words every element of a boolean lattice is given as a join of a subset of the set
of atoms. Since the powerset lattice P(I) is a boolean lattice, with the join operation
corresponding to set union, we get

13

3

4

5

1 1

2

3

4

5

6

6

5

4

2 1

3

5

6

5

4

3

2

1

WTDCA

Figure 2.4: Tid-List for the Atoms

Lemma 2.4 For any X ∈ P(I), let J = {Y ∈ A(P(I)) | Y ≤ X}. Then X =
⋃

Y ∈J Y ,
and σ(X) =|

⋂

Y ∈J L(Y) |.

The above lemma states that any itemset can be obtained is a join of some atoms of
the lattice, and the support of the itemset can be obtained by intersecting the tid-list
of the atoms. We can generalize this lemma to a set of itemsets:

Lemma 2.5 For any X ∈ P(I), let X =
⋃

Y ∈J J . Then σ(X) =|
⋂

Y ∈J L(Y) |.

This lemma says that if an itemset is given as a union of a set of itemsets in J , then
its support is given as the intersection of tid-lists of elements in J . In particular we
can determine the support of any k-itemset by simply intersecting the tid-lists of any
two of its (k − 1) length subsets. A simple check on the cardinality of the resulting tid-
list tells us whether the new itemset is frequent or not. Figure 2.5 shows this process
pictorially. It shows the initial database with the tid-list for each item (i.e., the atoms).
The intermediate tid-list for CD is obtained by intersecting the lists of C and D, i.e.,
L(CD) = L(C)∩L(D). Similarly, L(CDW) = L(CD)∩L(CW), and so on. Thus, only
the lexicographically first two subsets at the previous level are required to compute the
support of an itemset at any level.

Lemma 2.6 Let X and Y be two itemsets, with X ⊆ Y . Then L(X) ⊇ L(Y).

Proof: Follows from the definition of support.

This lemma states that if X is a subset of Y , then the cardinality of the tid-list
of Y (i.e., its support) must be less than or equal to the cardinality of the tid-list of

14

3

4

5

1 1

2

3

4

5

6

6

5

4

2 1

3

5

6

5

4

3

2

1

WTDCA

2

4

5

6

5

4

3

2

1

CD CW

2

4

5

CDWIntersect
CD & CW

C & D
Intersect

A C D T W

TWDWDTCWCTCDAWATAD

ACW ADT ATW

CDTWADTWACDWACDT

ACDTW

{}

CDTADWACTACD DTWCTW

AC

ACTW

CDW

INITIAL DATABASE
OF TID-LISTS

Figure 2.5: Computing Support of Itemsets via Tid-List Intersections

X. A practical and important consequence of the above lemma is that the cardinalities
of intermediate tid-lists shrink as we move up the lattice. This results in very fast
intersection and support counting.

2.4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory we could enumerate all the frequent itemsets by
traversing the powerset lattice, and performing intersections to obtain itemset supports.
In practice, however, we have only a limited amount of main-memory, and all the
intermediate tid-lists will not fit in memory. This brings up a natural question: can we
decompose the original lattice into smaller pieces such that each portion can be solved
independently in main-memory. We address this question below.

Definition 2.8 Let P be a set. An equivalence relation on P is a binary relation ≡
such that for all X,Y,Z ∈ P , the relation is:

1) Reflexive: X ≡ X.

2) Symmetric: X ≡ Y implies Y ≡ X.

3) Transitive: X ≡ Y and Y ≡ Z, implies X ≡ Z.

15

The equivalence relation partitions the set P into disjoint subsets called equivalence
classes. The equivalence class of an element X ∈ P is given as [X] = {Y ∈ P | X ≡ Y }.

Define a function p : P(I) 7→ P(I) where p(X, k) = X[1 : k], the k length prefix of X.
Define an equivalence relation θk on the lattice P(I) as follows: ∀X,Y ∈ P(I), X ≡θk

Y ⇔ p(X, k) = p(Y, k). That is, two itemsets are in the same class if they share a
common k length prefix. We therefore call θk a prefix-based equivalence relation.

Figure 2.6 shows the lattice induced by the equivalence relation θ1 on P(I), where
we collapse all itemsets with a common 1 length prefix into an equivalence class. The
resulting set or lattice of equivalence classes is {[A], [C], [D], [T], [W]}.

Lemma 2.7 Each equivalence class [X]θk
induced by the equivalence relation θk is a

sub-lattice of P(I).

Proof: Let U and V be any two elements in the class [X], i.e., U, V share the common
prefix X. U ∨ V = U ∪ V ⊇ X implies that U ∨ V ∈ [X], and U ∧ V = U ∩ V ⊇ X
implies that U ∧ V ∈ [X]. Therefore [X]θk

is a sublattice of P(I).

Each [X]θ1
is itself a boolean lattice with its own set of atoms. For example, the

atoms of [A]θ1
are {AC,AD,AT,AW}, and the top and bottom elements are ⊤ =

ACDTW , and ⊥ = A. By the application of Lemmas 2.4, and 2.5, we can generate
all the supports of the itemsets in each class (sub-lattice) by intersecting the tid-list of
atoms or any two subsets at the previous level. If there is enough main-memory to hold
temporary tid-lists for each class, then we can solve each [X]θ1

independently. Another
interesting feature of the equivalence classes is that the links between classes denote
dependencies. That is to say, if we want to prune an itemset if there exists at least
one infrequent subset (see Lemma 2.1), then we have to process the classes in a specific
order. In particular we have to solve the classes from bottom to top, which corresponds
to a reverse lexicographic order, i.e., we process [W], then [T], followed by [D], then [C],
and finally [A]. This guarantees that all subset information is available for pruning.

In practice we have found that the one level decomposition induced by θ1 is sufficient.
However, in some cases, a class may still be too large to be solved in main-memory. In
this scenario, we apply recursive class decomposition. Let’s assume that [A] is too large
to fit in main-memory. Since [A] is itself a boolean lattice, it can be decomposed using
θ2. Figure 2.7 shows the equivalence class lattice induced by applying θ2 on [A], where
we collapse all itemsets with a common 2 length prefix into an equivalence class. The
resulting set of classes are {[AC], [AD], [AT], [AW]}. Like before, each class can be
solved independently, and we can solve them in reverse lexicographic order to enable
subset pruning. The final set of independent classes obtained by applying θ1 on P(I)
and θ2 on [A] is shown in Figure 2.8. As before, the links show the pruning dependencies
that exist among the classes. Depending on the amount of main-memory available we
can recursively partition large classes into smaller ones, until each class is small enough
to be solved independently in main-memory.

16

A C D T W

TWDWDTCWCTCDAWATAD

ACW ADT ATW

CDTWADTWACDWACDT

ACDTW

{}

CDTADWACTACD CTW

AC

ACTW

CDW DTW

[W]

[T]

[D]

[C]

[A]

[{}]

Figure 2.6: Equivalence Classes of P(I) Induced by θ1

ACDTW

[AW]

[AT]

[AD]

[AC]

ADTWACDWACDT ACTW

A

AWATADAC

ACW ADT ATWADWACTACD

[A]

Figure 2.7: Equivalence Classes of [A]θ1
Induced by θ2

17

[W]

[T]

[D]

[C]

[AT]

[AC]

[AD]

[AW]

[A]

[{}]

Figure 2.8: Final Lattice of Independent Classes

2.4.3 Search for Frequent Itemsets

In this section we discuss efficient search strategies for enumerating the frequent
itemsets within each class.

Bottom-Up Search

The bottom-up search is based on a recursive decomposition of each class into
smaller classes induced by the equivalence relation θk. Figure 2.9 shows the decom-
position of [A]θ1

into smaller classes, and the resulting lattice of equivalence classes.
Also shown are the atoms within each class, from which all other elements of a class
can be determined. The equivalence class lattice can be traversed in either depth-first
or breadth-first manner. In this chapter we will only show results for a breadth-first
traversal, i.e., we first process the classes {[AC], [AT], [AW]}, followed by the classes
{[ACT], [ACW], [ATW]}, and finally [ACTW]. For computing the support of any item-
set, we simply intersect the tid-lists of two of its subsets at the previous level. Since the
search is breadth-first, this technique enumerates all frequent itemsets.

Top-Down Search

The top-down approach starts with the top element of the lattice. Its support is
determined by intersecting the tid-lists of the atoms. This requires a k-way intersection
if the top element is a k-itemset. The advantage of this approach is that if the maximal
element is fairly large then one can quickly identify it, and one can avoid finding the
support of all its subsets. The search starts with the top element. If it is frequent we are

18

AC AD AT AW

ATWADTACTACD

ACDT ACDW ADTW

ACDTW

A

ACW ADW

ACTW

ACW ATW

AC AWAT

ACTW

ACT

[ACT]

[A]

[AT][AC]

Equivalence Classes

Atoms in each Class

[AC] [AW]

[ACTW]

[AT]

[ACW] [ATW]

[A]

[ACT]

Figure 2.9: Bottom-Up Search

ACDT ACDW ADTW

ATWADWADTACWACTACD

ADAC AT AW

A

ACDTW

ACTW

Minimal Infrequent Itemset: AD

Figure 2.10: Top-Down Search

19

done. Otherwise, we check each subset at the next level. This process is repeated until
we have identified all minimal infrequent itemsets. Figure 2.10 depicts the top-down
search. This scheme enumerates only the maximal frequent itemsets within each sub-
lattice. However, the maximal elements of a sub-lattice may not be globally maximal.
It can thus generate some non-maximal itemsets.

Hybrid Search

The hybrid scheme is based on the intuition that the greater the support of an fre-
quent itemset the more likely it is to be a part of a longer frequent itemset. There are
two main steps in this approach. We begin with the set of atoms of the class sorted in
descending order based on their support. The first, hybrid phase starts by intersecting
the atoms one at a time, beginning with the atom with the highest support, generating
longer and longer frequent itemsets. The process stops when an extension becomes
infrequent. We then enter the second, bottom-up phase. The remaining atoms are
combined with the atoms in the first set in a breadth-first fashion described above to
generate all other frequent itemsets. Figure 2.11 illustrates this approach (just for this
case, to better show the bottom-up phase, we have assumed that AD and ADW are
also frequent). Like the bottom-up approach this scheme only requires 2-way intersec-
tions. This scheme enumerates the “long” maximal frequent itemsets discovered in the
hybrid phase, and also the non-maximal ones found in the bottom-up phase. Another
modification of this scheme is to recursively substitute the second bottom-up phase with
the hybrid phase. This approach will enumerate all the maximal elements only.

2.4.4 Generating Smaller Classes: Maximal Clique Approach

In this section we show how to produce smaller sub-lattices or equivalence classes
compared to the pure prefix-based approach, by using additional information. Smaller
sub-lattices have fewer atoms and can save unnecessary intersections. For example, if
there are k atoms, then we have to perform

(k
2

)

intersections for the next level in the
bottom-up approach. Fewer atoms thus lead to fewer intersections in the bottom-up
search. Fewer atoms also reduce the number of intersections in the hybrid scheme, and
lead to smaller maximum element size in the top-down search.

Definition 2.9 Let P be a set. A pseudo-equivalence relation on P is a binary
relation ≡ such that for all X,Y ∈ P , the relation is:

1) Reflexive: X ≡ X.

2) Symmetric: X ≡ Y implies Y ≡ X.

The pseudo-equivalence relation partitions the set P into possibly overlapping subsets
called pseudo-equivalence classes.

Definition 2.10 A graph consists of a set of elements V called vertices, and a set
of lines connecting pairs of vertices, called the edges. A graph is complete if there is
an edge between all pairs of vertices. A complete subgraph of a graph is called a clique.

20

ADW ADTACD

AC

ACW

AW AT AD

ACDTW

ACTW

Hybrid Phase

AT ADAWAC

AC AD AT AW

Item Pairs

Sort on Support

Bottom-Up Phase

Figure 2.11: Hybrid Search

Let Fk denote the set of frequent k-itemsets. Define an k-association graph, given
as Gk = (V,E), with the vertex set V = {X | X ∈ F1}, and edge set E = {(X,Y) |
X,Y ∈ V and ∃ Z ∈ F(k+1), such that X,Y ⊂ Z}. Let Mk denote the set of maximal
cliques in Gk. Figure 2.12 shows the association graph G1, and its maximal clique set
M1 = {ACTW,CDW}.

Define a pseudo-equivalence relation φk on the lattice P(I) as follows: ∀X,Y ∈
P(I), X ≡φk

Y ⇔ ∃ C ∈ Mk such that X,Y ⊆ C and p(X, k) = p(Y, k). That is, two
itemsets are related, i.e, they are in the same pseudo-class, if they are subsets of the
same maximal clique and they share a common prefix of length k. We therefore call φk

a maximal-clique-based pseudo-equivalence relation.

Lemma 2.8 Each pseudo-class [X]φk
induced by the pseudo-equivalence relation φk is

a sub-lattice of P(I).

Proof: Let U and V be any two elements in the class [X], i.e., U, V share the common
prefix X and there exists a maximal clique C ∈ Mk such that U, V ⊆ C. Clearly,

21

FREQUENT PAIRS

AC AW CD DWCTAT CW TW

ASSOCIATION GRAPH

Maximal Cliques: ACTW, CDW

T D

C

A

W

Figure 2.12: Maximal Cliques of the Association Graph

U ∪ V ⊆ C, and U ∩ V ⊆ C. Furthermore, U ∨ V = U ∪ V ⊇ X implies that
U ∨ V ∈ [X], and U ∧ V = U ∩ V ⊇ X implies that U ∧ V ∈ [X].

Thus, each pseudo-class [X]φ1
is a boolean lattice, and the supports of all elements

of the lattice can be generated by applying Lemmas 2.4, and 2.5 on the atoms, and
using any of the three search strategies described above.

Lemma 2.9 Let ℵk denote the set of pseudo-classes of the maximal-clique-based re-
lation φk. Each pseudo-class [Y]φk

induced by the prefix-based relation φk is a subset
of some class [X]θk

induced by θk. Conversely, each [X]θk
, is the union of a set of

pseudo-classes Ψ, given as [X]θk
=
⋃

{[Z]φk
| Z ∈ Ψ ⊆ ℵk}.

Proof: Let Γ(X) denote the neighbors of X in the graph Gk. Then [X]θk
= {Z |

X ⊆ Z ⊆ {X,Γ(X)}}. In other words, [X] consists of elements with the prefix X and
extended by all possible subsets of the neighbors of X in the graph Gk. Since any clique
Y is a subset of {Y,Γ(Y)}, we have that [Y]φk

⊆ [X]θk
, where Y is a prefix of X. On

the other hand it is easy to show that [X]θk
=
⋃

{[Y]φk
| Y is a prefix of X}.

This lemma states that each pseudo-class of φk is a refinement of (i.e., is smaller
than) some class of θk. By using the relation φk instead of θk, we can therefore, gener-
ate smaller sub-lattices. These sub-lattices require less memory, and can be processed

22

ACTW

AT AW

ACT

AC

ATW

A

ACW
CTWCDW

CD CT CW

C

DW

D T

TW

Figure 2.13: Maximal-Clique-Based Sub-lattices Induced by φ1

T

TWAC AD AT AW

ATWADTACTACD

ACDT ACDW ADTW

ACDTW

A

ACW ADW

ACTW

D

DT DW

DTW

CD CT CW

CTWCDW

C

CDT

CDTW

Figure 2.14: Prefix-Based Sub-lattices Induced by θ1

23

independently using any of the three search strategies described above. Figure 2.13 and
Figure 2.14 contrast the sub-lattices generated by φ1 and θ1. It is apparent that φ1

generates smaller sub-lattices. The increased precision of φk comes at a cost, since the
enumeration of maximal cliques can be computationally expensive. For general graphs
the maximal clique decision problem is NP-Complete [Garey and Johnson, 1979]. How-
ever, the k-association graph is usually sparse and the maximal cliques can be enu-
merated efficiently. As the edge density of the association graph increases the clique
based approaches may suffer. φk should thus be used only when Gk is not too dense.
Some of the factors affecting the edge density include decreasing support and increasing
transaction size. The effect of these parameters is studied in the experimental section.

Maximal Clique Generation

We used a modified version of the Bierstone’s algorithm [Mulligan and Corneil, 1972]
for generating maximal cliques in the k-association graph. A number of other faster
clique generating algorithms [Bron and Kerbosch, 1973; Chiba and Nishizeki, 1985;
Tsukiyama et al., 1977] can also be used.

2.5 Algorithm Design and Implementation

In this section we describe several new algorithms for efficient enumeration of fre-
quent itemsets. The first step involves the computation of the frequent items and
2-itemsets. The next step generates the sub-lattices (classes) by applying either the
prefix-based equivalence relation θ1, or the maximal-clique-based pseudo-equivalence
relation φ1 on the set of frequent 2-itemsets F2. The sub-lattices are then processed
one at a time in reverse lexicographic order in main-memory using either bottom-up,
top-down or hybrid search. We will now describe these steps in some more detail.

2.5.1 Computing Frequent 1-Itemsets and 2-Itemsets

Most of the current association algorithms [Agrawal et al., 1996; Brin et al., 1997;
Lin and Dunham, 1998; Park et al., 1995a; Savasere et al., 1995; Toivonen, 1996] assume
a horizontal database layout, such as the one shown in Figure 2.1, consisting of a list of
transactions, where each transaction has an identifier followed by a list of items in that
transaction. In contrast our algorithms use the vertical database format, such as the
one shown in Figure 2.4, where we maintain a disk-based tid-list for each item. This
enables us to check support via simple tid-list intersections.

Computing F1 Given the vertical tid-list database, all frequent items can be found in
a single database scan. For each item, we simply read its tid-list from disk into memory.
We then scan the tid-list, incrementing the item’s support for each entry.

24

Computing F2 Let N = |I| be the number of frequent items, and A the average id-
list size in bytes. A naive implementation for computing the frequent 2-itemsets requires
(N

2

)

id-list intersections for all pairs of items. The amount of data read is A·N ·(N−1)/2,
which corresponds to around N/2 data scans. This is clearly inefficient. Instead of the
naive method we propose two alternate solutions:

1. Use a preprocessing step to gather the counts of all 2-sequences above a user
specified lower bound. Since this information is invariant, it has to be computed
once, and the cost can be amortized over the number of times the data is mined.

2. Perform a vertical to horizontal transformation on-the-fly. This can be done quite
easily. For each item i, we scan its tid-list into memory. We insert i in an array
indexed by tid for each t ∈ L(i). This approach can be implemented with little
overhead. For example, Partition performs the opposite inversion from horizontal
to vertical tid-list format on-the-fly, with very little cost.

We plan to implement on-the-fly inversion in the future. However, our current imple-
mentation uses the first approach due to its simplicity.

2.5.2 Search Implementation

Bottom-Up Search Figure 2.15 shows the pseudo-code for the bottom-up search.
The input to the procedure is a set of atoms of a sub-lattice S. Frequent itemsets
are generated by intersecting the tid-lists of all distinct pairs of atoms and checking
the cardinality of the resulting tid-list. A recursive procedure call is made with those
itemsets found to be frequent at the current level. This process is repeated until all
frequent itemsets have been enumerated. In terms of memory management it is easy
to see that we need memory to store intermediate tid-lists for at most two consecutive
levels. Once all the frequent itemsets for the next level have been generated, the itemsets
at the current level can be deleted.

Bottom-Up(S):
for all atoms Ai ∈ S do

Ti = ∅;
for all atoms Aj ∈ S, with j > i do

R = Ai ∪ Aj ;
L(R) = L(Ai) ∩ L(Aj);
if σ(R) ≥ min sup then

Ti = Ti ∪ {R}; F|R| = F|R| ∪ {R};
end

end
for all Ti 6= ∅ do Bottom-Up(Ti);

Figure 2.15: Pseudo-code for Bottom-Up Search

25

Since each sub-lattice is processed in reverse lexicographic order all subset informa-
tion is available for itemset pruning. For fast subset checking the frequent itemsets can
be stored in a hash table. However, in our experiments on synthetic data we found
pruning to be of little or no benefit. This is mainly because of Lemma 2.6, which says
that the tid-list intersection is especially efficient for large itemsets. Nevertheless, there
may be databases where pruning is crucial for performance, and we can support pruning
for those datasets.

Top-Down(S):
R =

⋃

{Ai ∈ S};
if R 6∈ F|R| then

L(R) =
⋂

{L(Ai) | Ai ∈ S};
if σ(R) ≥ min sup then

F|R| = F|R| ∪ {R};
else

for all Y ⊂ R, with |Y | = |R| − 1
if Y /∈ HT then

Top-Down({Aj | Aj ∈ Y });
if σ(Y) < min sup then HT = HT ∪{Y };

end

Figure 2.16: Pseudo-code for Top-Down Search

Hybrid(S sorted on support):
R = A1; S1 = {A1};
for all Ai ∈ S, i > 1 do /* Maximal Phase */

R = R ∪ Ai; L(R) = L(R) ∩ L(Ai);
if σ(R) ≥ min sup then

S1 = S1 ∪ {Ai}; F|R| = F|R| ∪ {R};
else break;

end
S2 = S − S1;
for all Bi ∈ S2 do /* Bottom-Up Phase */

Ti = {Xj | σ(Xj) ≥ min sup, L(Xj) = L(Bi) ∩ L(Aj),∀Aj ∈ S1};
S1 = S1 ∪ {Bi};
if Ti 6= ∅ then Bottom-Up(Ti);

end

Figure 2.17: Pseudo-code for Hybrid Search

Top-Down Search The code for top-down search is given in Figure 2.16. The search
begins with the maximum element R of the sub-lattice S. A check is made to see if
the element is already known to be frequent. If not we perform a k-way intersection

26

to determine its support. If it is frequent then we are done. Otherwise, we recursively
check the support of each of its (k − 1)-subsets. We also maintain a hash table HT
of itemsets known to be infrequent from previous recursive calls to avoid processing
sub-lattices that have already been examined. In terms of memory management the
top-down approach requires that only the tid-lists of the atoms of a class be in memory.

Hybrid Search Figure 2.17 shows the pseudo-code for the hybrid search. The input
consists of the atom set S sorted in descending order of support. The maximal phase
begins by intersecting atoms one at a time until no frequent extension is possible. All the
atoms involved in this phase are stored in the set S1. The remaining atoms S2 = S\S1

enter the bottom-up phase. For each atom in S2, we intersect it with each atom in
S1. The frequent itemsets form the atoms of a new sub-lattice and are solved using
the bottom-up search. This process is then repeated for the other atoms of S2. The
maximal phase requires main-memory only for the atoms, while the bottom-up phase
requires memory for at most two consecutive levels.

2.5.3 Number of Database Scans

Before processing each sub-lattice from the initial decomposition all the relevant
item tid-lists are scanned into memory. The tid-lists for the atoms (frequent 2-itemsets)
of each initial sub-lattice are constructed by intersecting the item tid-lists. All the
other frequent itemsets are enumerated by intersecting the tid-lists of the atoms using
the different search procedures. If all the initial classes have disjoint set of items, then
each item’s tid-list is scanned from disk only once during the entire frequent itemset
enumeration process over all sub-lattices. In the general case there will be some degree
of overlap of items among the different sub-lattices. However only the database portion
corresponding to the frequent items will need to be scanned, which can be a lot smaller
than the entire database. Furthermore, sub-lattices sharing many common items can be
processed in a batch mode to minimize disk access. Thus we claim that our algorithms
will usually require a single database scan after computing F2, in contrast to the current
approaches which require multiple scans.

2.5.4 New Algorithms

The different algorithms that we propose are listed below. These algorithms differ
in the the search strategy used for enumeration and in the relation used for generating
independent sub-lattices.

1. Eclat: It uses prefix-based equivalence relation θ1 along with bottom-up search.
It enumerates all frequent itemsets.

2. MaxEclat: It uses prefix-based equivalence relation θ1 along with hybrid search.
It enumerates the “long” maximal frequent itemsets, and some non-maximal ones.

27

3. Clique: It uses maximal-clique-based pseudo-equivalence relation φ1 along with
bottom-up search. It enumerates all frequent itemsets.

4. MaxClique: It uses maximal-clique-based pseudo-equivalence relation φ1 along
with hybrid search. It enumerates the “long” maximal frequent itemsets, and
some non-maximal ones.

5. TopDown: It uses maximal-clique-based pseudo-equivalence relation φ1 along
with top-down search. It enumerates only the maximal frequent itemsets. Note
that for top-down search, using the larger sub-lattices generated by θ1 is not likely
to be efficient.

AprClique():
for all sub-lattices Si induced by φ1 do

R =
⋃

{Aj ∈ Si};
for all k > 2 and k ≤ |R| do

Insert each k-subset of R in Ck;
end
for all transactions t ∈ D do

for all k-subsets s of t, with k > 2 and k ≤ |t| do
if (s ∈ Ck) s.count + +;

end
Fk = {c ∈ Ck|c.count ≥ minsup};
Set of all frequent itemsets =

⋃

k Fk;

Figure 2.18: Pseudo-code for AprClique Algorithm

6. AprClique: It uses maximal-clique-based pseudo-equivalence relation φ1. How-
ever, unlike the algorithms described above, it uses horizontal data layout. It has
two main steps:

i) All possible subsets of the maximum element in each sub-lattice are generated
and inserted in hash trees [Agrawal et al., 1996], avoiding duplicates. There is one
hash tree for each length, i.e., a k-subset is inserted in the tree Ck. An internal
node of the hash tree at depth d contains a hash table whose cells point to nodes
at depth d + 1. All the itemsets are stored in the leaves. The insertion procedure
starts at the root, and hashing on successive items, inserts a candidate in a leaf.

ii) The support counting step is similar to the Apriori approach. For each trans-
action in the database t ∈ D, we form all possible k-subsets. We then search that
subset in Ck and update the count if it is found.

The database is thus scanned only once, and all frequent itemset are generated.
The pseudo-code is shown in Figure 2.18.

28

2.6 The Apriori and Partition Algorithms

We now discuss Apriori and Partition in some more detail, since we will experimen-
tally compare our new algorithms against them.

Apriori Algorithm Apriori [Agrawal et al., 1996] is an iterative algorithm that
counts itemsets of a specific length in a given database pass. The process starts by
scanning all transactions in the database and computing the frequent items. Next, a set
of potentially frequent candidate 2-itemsets is formed from the frequent items. Another
database scan is made to obtain their supports. The frequent 2-itemsets are retained for
the next pass, and the process is repeated until all frequent itemsets have been enumer-
ated. The complete algorithm is shown in figure 2.19. We refer the reader to [Agrawal
et al., 1996] for additional details.

There are three main steps in the algorithm:

1. Generate candidates of length k from the frequent (k − 1) length itemsets, by a
self join on Fk−1. For example, if F2 = {AB,AC,AD,AE,BC,BD,BE}. Then
C3 = {ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE}.

2. Prune any candidate with at least one infrequent subset. As an example, ACD
will be pruned since CD is not frequent. After pruning we get a new set C3 =
{ABC,ABD,ABE}.

3. Scan all transactions to obtain candidate supports. The candidates are stored in
a hash tree to facilitate fast support counting.

F1 = {frequent 1-itemsets };
for (k = 2;Fk−1 6= ∅; k + +)

Ck = Set of New Candidates;
for all transactions t ∈ D

for all k-subsets s of t
if (s ∈ Ck) s.count + +;

Fk = {c ∈ Ck|c.count ≥ min sup};
Set of all frequent itemsets =

⋃

k Fk;

Figure 2.19: The Apriori Algorithm

Partition Algorithm Partition [Savasere et al., 1995] logically divides the horizontal
database into a number of non-overlapping partitions. Each partition is read, and
vertical tid-lists are formed for each item, i.e., list of all tids where the item appears.
Then all locally frequent itemsets are generated via tid-list intersections. All locally
frequent itemsets are merged and a second pass is made through all the partitions. The
database is again converted to the vertical layout and the global counts of all the chosen

29

itemsets are obtained. The size of a partition is chosen so that it can be accommodated
in main-memory. Partition thus makes only two database scans. The key observation
used is that a globally frequent itemset must be locally frequent in at least one partition.
Thus all frequent itemsets are guaranteed to be found.

2.7 Experimental Results

Our experiments used a 100MHz MIPS processor with 256MB main memory, 16KB
primary cache, 1MB secondary cache and a non-local 2GB disk.

Synthetic Databases We used different synthetic databases that have been used
as benchmark databases for many association rules algorithms [Agrawal et al., 1993b;
Agrawal et al., 1996; Brin et al., 1997; Houtsma and Swami, 1995; Lin and Kedem, 1998;
Lin and Dunham, 1998; Park et al., 1995a; Savasere et al., 1995; Zaki et al., 1997c].
The dataset generation procedure is described in [Agrawal et al., 1996], and the code is
publicly available from IBM [IBMa].

These datasets mimic the transactions in a retailing environment, where people tend
to buy sets of items together, the so called potential maximal frequent set. The size
of the maximal elements is clustered around a mean, with a few long itemsets. A
transaction may contain one or more of such frequent sets. The transaction size is also
clustered around a mean, but a few of them may contain many items.

Let D denote the number of transactions, T the average transaction size, I the
size of a maximal potentially frequent itemset, L the number of maximal potentially
frequent itemsets, and N the number of items. The data is generated using the following
procedure. We first generate L maximal itemsets of average size I, by choosing from
the N items. We next generate D transactions of average size T by choosing from
the L maximal itemsets. We refer the reader to [Agrawal and Srikant, 1994] for more
detail on the database generation. In our experiments we set N = 1000 and L = 2000.
Experiments are conducted on databases with different values of D, T , and I. The
database parameters are shown in Table 2.1.

For fair comparison, all algorithms discover frequent k-itemsets for k ≥ 3, since the
supports of 2-itemsets are known from the preprocessing step. Figure 2.20 shows the
number of frequent itemsets of different sizes for the databases used in our experiments.

Comparative Performance In Figure 2.21 and Figure 2.22 we compare our new
algorithms against Apriori and Partition (with 10 database partitions) for decreasing
values of minimum support on the different databases. We compare Eclat against Apri-
ori, AprClique and Partition in the left column, and we compare Eclat against the other
new algorithms in the right column to highlight the differences among them. As the
support decreases, the size and the number of frequent itemsets increases. Apriori thus
has to make multiple passes over the database, and performs poorly. Partition per-
forms worse than Apriori on small databases and for high support, since the database
is only scanned once or twice at these points. However, as the support is lowered,

30

Database T I D Size

T5.I2.D100K 5 2 100,000 2.8MB
T10.I2.D100K 10 2 100,000 4.8MB
T10.I4.D100K 10 4 100,000 4.8MB
T20.I2.D100K 20 2 100,000 8.8MB
T20.I4.D100K 20 4 100,000 8.8MB
T20.I6.D100K 20 6 100,000 8.8MB
T10.I4.D250K 10 4 250,000 12.0MB
T10.I4.D500K 10 4 500,000 24.0MB
T10.I4.D1000K 10 4 1,000,000 48.0MB
T10.I4.D2500K 10 4 2,500,000 120.0MB
T10.I4.D5000K 10 4 5,000,000 240.0MB

Table 2.1: Database Parameter Settings

Partition wins out over Apriori, since it only scans the database twice. These results
are in agreement with previous experiments comparing these two algorithms [Savasere
et al., 1995]. One problem with Partition is that as the number of partitions increases,
the number of locally frequent itemsets, which are not globally frequent, increases (this
can be reduced somewhat by randomizing the partition selection). Partition can thus
spend a lot of time in performing these redundant intersections. AprClique scans the
database only once, and out-performs Apriori in almost all cases, and generally lies
between Apriori and Partition. AprClique is very sensitive to the quality of maximal
cliques (sub-lattices) that are generated. For small support, or small average maximal
potential frequent itemset size I for fixed T , or with increasing average transaction size
T for fixed I, the edge density of the k-association graph increases, consequently in-
creasing the size of the maximal cliques. AprClique is unlikely to perform well under
these conditions. Eclat performs significantly better than all these algorithms in all
cases. It out-performs Apriori by more than an order of magnitude, and Partition by
more than a factor of five. Eclat makes only once database scan, requires no hash trees,
uses only simple intersection operations to generate frequent itemsets, avoids redundant
computations, and since it deals with one cluster at a time, has excellent locality.

To summarize, there are several reasons why Eclat outperforms previous approaches:

1. Eclat uses only simple join operation on tid-lists. As the length of a frequent
sequence increases, the size of its tid-list decreases, resulting in very fast joins.

2. No complicated hash-tree structure is used, and no overhead of generating and
searching of customer subsequences is incurred. These structures typically have
very poor locality [Parthasarathy et al., 1998]. On the other hand Eclat has
excellent locality, since a join requires only a linear scan of two lists.

3. As the minimum support is lowered, more and larger frequent sequences are found.
Apriori makes a complete dataset scan for each iteration. Eclat on the other hand

31

1

10

100

1000

10000

100000

2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

F
re

q
u

e
n

t
It

e
m

se
ts

Frequent Itemset Size

Min Support: 0.25%

T5.I2.D100K
T10.I2.D100K
T10.I4.D100K
T20.I2.D100K
T20.I4.D100K
T20.I6.D100K

Figure 2.20: Number of Frequent Itemsets

restricts itself to usually only one scan. It thus cuts down the I/O costs.

Eclat Clique MaxEclat MaxClique TopDown Partition

Joins 83606 61968 56908 20322 24221 895429
Time (sec) 46.7 42.1 28.5 18.5 48.2 174.7

Table 2.2: Number of Joins: T20.I6.D100K (0.25%)

The right hand columns in Figure 2.21 and Figure 2.22 presents the comparison
among the other new algorithms. Clique uses the maximal-clique-based decomposition,
which generates smaller classes with fewer number of candidates, and therefore performs
better than Eclat. The graphs for MaxEclat and MaxClique indicate that the reduction
in search space by performing the hybrid search also provides significant gains. Both
the maximal strategies outperform their normal counterparts. TopDown usually out-
performs both Eclat and MaxEclat, since it also only generates the maximal frequent
itemsets. Like AprClique, it is very sensitive to the size of the maximal cliques, and it
suffers as the cliques become larger. The best scheme for the databases we considered is
MaxClique since it benefits from the smaller sub-lattices and the hybrid search scheme.
Table 2.2 gives the number of intersections performed by the different algorithms on
T20.I6.D100K. MaxClique cuts down the candidate search space drastically, by more
than a factor of 4 over Eclat. In terms of raw performance MaxClique outperforms
Apriori by a factor of 40, Partition by a factor of 20, and Eclat by a factor of 2.5 for
this case. However, as previously mentioned, whenever the edge density of the associ-
ation graph increases, the number and size of the cliques becomes large and there is

32

0

2

4

6

8

10

12

14

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T5.I2.D100K

Apriori
Partition-10

AprClique
Eclat

0

0.5

1

1.5

2

2.5

3

3.5

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T5.I2.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

0

5

10

15

20

25

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T10.I2.D100K

Apriori
Partition-10

AprClique
Eclat

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T10.I2.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

0

5

10

15

20

25

30

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T10.I4.D100K

Apriori
Partition-10

AprClique
Eclat

0

1

2

3

4

5

6

7

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T10.I4.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

Figure 2.21: Execution Time

33

0

20

40

60

80

100

120

140

160

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I2.D100K

Apriori
Partition-10

AprClique
Eclat

0

50

100

150

200

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I2.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

0

20

40

60

80

100

120

140

160

180

200

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I4.D100K

Apriori
Partition-10

AprClique
Eclat

0

20

40

60

80

100

120

140

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I4.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

0

100

200

300

400

500

600

700

800

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I6.D100K

Apriori
Partition-10

AprClique
Eclat

0

5

10

15

20

25

30

35

40

45

50

2% 1.5% 1% 0.75% 0.5% 0.25%

T
im

e
 (

s
e
c
)

Minimum Support

T20.I6.D100K

TopDown
Eclat

Clique
MaxEclat

MaxClique

Figure 2.22: Execution Time

34

a significant overlap among different cliques. In such cases the clique based schemes
start to suffer. For example, consider Figure 2.24. As the transaction size increases
for a fixed support value the clique based algorithms start performing worse. We ex-
pect to reduce the overhead of the clique generation by implementing the faster clique
finding algorithms proposed in [Bron and Kerbosch, 1973; Chiba and Nishizeki, 1985;
Tsukiyama et al., 1977], instead of the modified Bierstone’s algorithm [Mulligan and
Corneil, 1972] used in our current implementation.

Scalability The goal of the experiments below is to measure how the new algorithms
perform as we increase the number of transactions and average transaction size.

Figure 2.23 shows how the different algorithms scale up as the number of transactions
increases from 100,000 to 5 million. The times are normalized against the execution time
for MaxClique on 100,000 transactions. A minimum support value of 0.25% was used.
The number of partitions for Partition was varied from 1 to 50. While all the algorithms
scale linearly, our new algorithms continue to out-perform Apriori and Partition.

Figure 2.24 shows how the different algorithms scale with increasing transaction
size. The times are normalized against the execution time for MaxClique on T = 5
and 200,000 transactions. Instead of a percentage, we used an absolute support of 250.
The physical size of the database was kept roughly the same by keeping a constant
T ∗ D value. We used D = 200, 000 for T = 5, and D = 20, 000 for T = 50. The
goal of this setup is to measure the effect of increasing transaction size while keeping
other parameters constant. We can see that there is a gradual increase in execution
time for all algorithms with increasing transaction size. However the new algorithms
again outperform Apriori and Partition. As the transaction size increases, the number
of cliques increases, and the clique based algorithms start performing worse than the
prefix-based algorithms.

Memory Usage Figure 2.25 shows the total main-memory used for the tid-lists in
Eclat as the computation of frequent itemsets progresses on T20.I6.D100K. The mean
memory usage is less than 0.018MB, roughly 2% of the total database size. The figure
only shows the cases where the memory usage was more than twice the mean. The
peaks in the graph are usually due to the initial construction of all the (2-itemset) atom
tid-lists within each sub-lattice. This figure confirms that the sub-lattices produced by
θ1 and φ1 are small enough, so that all intermediate tid-lists for a class can be kept in
main-memory. We expect the maximal-clique-based algorithms to use even less memory.

2.8 Conclusions

In this chapter we presented new algorithms for efficient enumeration of frequent
itemsets. We presented a lattice-theoretic approach to partition the frequent itemset
search space into small, independent sub-spaces using either prefix-based or maximal-
clique-based methods. Each sub-problem can be solved in main-memory using bottom-

35

1

10

100

1000

0.1 0.25 0.5 1 2.5 5

R
el

at
iv

e
T

im
e

Number of Transactions (millions)

T10.I4, Min Support 0.25%

Apriori
Partition

AprClique
TopDown

Eclat
Clique

MaxEclat
MaxClique

Figure 2.23: Scale-up Experiments: Number of Transactions

0.1

1

10

100

5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
T

im
e

Transaction Size

Min Support: 250

Apriori
Partition-10

Eclat
Clique

MaxEclat
MaxClique

Figure 2.24: Scale-up Experiments: Transaction Size

36

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
em

or
y

U
sa

ge
 >

 2
M

ea
n

(M
B

)

Time --->

T20.I6.D100K: Minsup 0.25%, Mean Memory = 0.018MB

Eclat

Figure 2.25: Eclat Memory Usage

up, top-down, or a hybrid search procedure, and the entire process usually takes only
one database scan.

Experimental evaluation showed that the maximal-clique-based decomposition is
more precise and leads to smaller classes. When this is combined with the hybrid
search, we obtain the best algorithm MaxClique, which outperforms current approaches
by more than an order of magnitude. We further showed that the new algorithms scale
linearly in the number of transactions.

37

3 Parallel Association Mining

3.1 Introduction

The discovery of association rules is a very computational and I/O intensive task,
and beyond a certain database size, it is crucial to leverage the combined computational
power of multiple processors for fast response and scalability. In this chapter we present
new parallel algorithms for frequent itemset discovery.

Most previous parallel algorithms [Park et al., 1995b; Zaki et al., 1996; Agrawal and
Shafer, 1996; Cheung et al., 1996b; Cheung et al., 1996a; Shintani and Kitsuregawa,
1996] make repeated passes over the disk-resident database partition, incurring high
I/O overhead, and exchange either the counts of candidates or the remote database
partitions during each iteration, resulting in high communication and synchronization
overhead. The previous algorithms also use complicated hash structures which entail
additional overhead in maintaining and searching them, and typically suffer from poor
cache locality [Parthasarathy et al., 1998].

Our work contrasts to these approaches in several ways. We present new paral-
lel algorithms based on concepts outlined in the last chapter. The new algorithms
use the prefix-based and clique-based problem decomposition techniques, and efficient
bottom-up and top-down search, along with the vertical database format. The work
is distributed among the processors in such a way that each processor can compute
the frequent itemsets independently, using simple intersection operations. These tech-
niques eliminate the need for synchronization after the initial set-up phase, and enable
us to scan the database only two times, drastically cutting down the I/O overhead.
Our experimental testbed is a 32-processor DEC Alpha SMP cluster (8 hosts, 4 pro-
cessors/host) inter-connected by the Memory Channel [Gillett, 1996] network. The
new parallel algorithms are also novel in that they are hierarchical in nature, i.e., they
assume a distributed-memory model across the 8 cluster hosts, but assume a shared-
memory model for the 4 processors on each host. Extensive experiments have been
conducted, showing immense improvement over existing algorithms, with linear scal-
ability in database size. We also present performance results on the speedup, sizeup,
communication cost and memory usage of the new algorithms.

The rest of the chapter is organized as follows. We begin with related work in
Section 3.2. Section 3.3 describes some of the previous Apriori based parallel algorithms.

38

Section 3.4 describes the design and implementation of the new parallel algorithms. Our
experimental study is presented in Section 3.5, and our conclusions in Section 3.6.

3.2 Related Work

Distributed-Memory Machines Three different parallelizations of Apriori on IBM-
SP2, a distributed-memory machine, were presented in [Agrawal and Shafer, 1996]. The
Count Distribution algorithm is a straight-forward parallelization of Apriori. Each pro-
cessor generates the partial support of all candidate itemsets from its local database
partition. At the end of each iteration the global supports are generated by exchang-
ing the partial supports among all the processors. The Data Distribution algorithm
partitions the candidates into disjoint sets, which are assigned to different proces-
sors. However to generate the global support each processor must scan the entire
database (its local partition, and all the remote partitions) in all iterations. It thus
suffers from huge communication overhead. The Candidate Distribution algorithm
also partitions the candidates, but it selectively replicates the database, so that each
processor proceeds independently. The local database portion is still scanned in ev-
ery iteration. Count Distribution was shown to have superior performance among
these three algorithms [Agrawal and Shafer, 1996]. Other parallel algorithms im-
proving upon these ideas in terms of communication efficiency, or aggregate mem-
ory utilization have also been proposed [Cheung et al., 1996b; Cheung et al., 1996a;
Han et al., 1997]. The PDM algorithm [Park et al., 1995b] presents a parallelization of
the DHP algorithm [Park et al., 1995a]. The hash based parallel algorithms NPA, SPA,
HPA, and HPA-ELD, proposed in [Shintani and Kitsuregawa, 1996] are similar to those
in [Agrawal and Shafer, 1996]. Essentially NPA corresponds to Count Distribution, SPA
to Data Distribution, and HPA to Candidate Distribution. The HPA-ELD algorithm
is the best among NPA, SPA, and HPA, since it eliminates the effect of data skew, and
reduces communication by replicating candidates with high support on all processors.
We also presented a new parallel algorithm Eclat [Zaki et al., 1997a] on a DEC Alpha
Cluster. Eclat uses the equivalence class decomposition scheme along with a bottom-up
lattice traversal. It was shown to outperform Count Distribution by more than an order
of magnitude. Parts of this chapter have appeared in [Zaki et al., 1997e].

Shared-Memory Machines In recent work we presented the CCPD parallel algo-
rithm for shared-memory machines [Zaki et al., 1996]. It is similar in spirit to Count
Distribution. The candidate itemsets are generated in parallel and are stored in a hash
tree which is shared among all the processors. Each processor then scans its logical parti-
tion of the database and atomically updates the counts of candidates in the shared hash
tree. CCPD uses additional optimization such as candidate balancing, hash-tree bal-
ancing and short-circuited subset counting to speed up performance [Zaki et al., 1996].
APM [Cheung et al., 1998] is an asynchronous parallel algorithm for shared-memory
machines based on the DIC algorithm [Brin et al., 1997].

39

3.3 Apriori-based Parallel Algorithms

In this section we will look at some previous parallel algorithms. These algorithms
assume that the database is partitioned among all the processors in equal-sized blocks,
which reside on the local disk of each processor.

The Count Distribution algorithm [Agrawal and Shafer, 1996] is a simple paralleliza-
tion of Apriori. All processors generate the entire candidate hash tree from Fk−1. Each
processor can thus independently get partial supports of the candidates from its local
database partition. This is followed by a sum-reduction to obtain the global counts.
Note that only the partial counts need to be communicated, rather than merging differ-
ent hash trees, since each processor has a copy of the entire tree. Once the global Fk has
been determined each processor builds Ck+1 in parallel, and repeats the process until all
frequent itemsets are found. The algorithm is pictorially depicted in Figure 3.1. This
simple algorithm minimizes communication since only the counts are exchanged among
the processors. However, since the entire hash tree is replicated on each processor, it
doesn’t utilize the aggregate memory efficiently. The implementation of Count Distribu-
tion used for comparison in our experiments differs slightly from the above description
and is optimized for our testbed configuration. Only one copy of the hash tree resides
on each of the 8 hosts in our cluster. All the 4 processors on each host share this hash
tree. Each processor still has its own local database portion and uses a local array to
gather the local candidate support. The sum-reduction is accomplished in two steps.
The first step performs the reduction only among the local processors on each host. The
second step performs the reduction among the hosts. We also utilize some optimization
techniques such as hash-tree balancing and short-circuited subset counting [Zaki et al.,
1996] to further improve the performance of Count Distribution.

The Data Distribution algorithm [Agrawal and Shafer, 1996] was designed to utilize
the total system memory by generating disjoint candidate sets on each processor. How-
ever to generate the global support each processor must scan the entire database (its
local partition, and all the remote partitions) in all iterations. It thus suffers from high
communication overhead, and performs poorly when compared to Count Distribution.

The Candidate Distribution algorithm [Agrawal and Shafer, 1996] uses a property
of frequent itemsets [Agrawal and Shafer, 1996; Zaki et al., 1996] to partition the candi-
dates during iteration l, so that each processor can generate disjoint candidates indepen-
dent of other processors. At the same time the database is selectively replicated so that
a processor can generate global counts independently. The choice of the redistribution
pass involves a trade-off between decoupling processor dependence as soon as possible
and waiting until sufficient load balance can be achieved. In their experiments the
repartitioning was done in the fourth pass. After this the only dependence a processor
has on other processors is for pruning the candidates. Each processor asynchronously
broadcasts the local frequent set to other processors during each iteration. This pruning
information is used if it arrives in time, otherwise it is used in the next iteration. Note
that each processor must still scan its local data once per iteration. Even though it uses
problem-specific information, it performs worse than Count Distribution [Agrawal and
Shafer, 1996]. Candidate Distribution pays the cost of redistributing the database, and

40

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

EXCHANGE LOCAL CANDIDATE COUNTS

EXCHANGE LOCAL CANDIDATE COUNTS

PARALLEL COUNTING

GET FREQUENT PAIRS

PARTITIONED DATABASE

GET FREQUENT ITEMS

PROCESSOR 0 PROCESSOR 1 PROCESSOR 2

COUNT TRIPLES

FORM CANDIDATE TRIPLES

COUNT PAIRS

FORM CANDIDATE PAIRS

COUNT ITEMS

EXCHANGE LOCAL CANDIDATE COUNTS

Figure 3.1: The Count Distribution Algorithm

41

it then scans the local database partition repeatedly.

3.4 Algorithm Design and Implementation

In this section we will discuss the design and implementation of new parallel algo-
rithms for mining frequent itemsets.

3.4.1 New Parallel Algorithms

We present four new parallel algorithms, depending on the decomposition relation
used to generate independent classes, and the lattice search scheme used. Each algo-
rithm is based on its sequential counterpart discussed in the last chapter.

• Par-Eclat: It uses prefix-based equivalence relation θ1 along with bottom-up
search. It enumerates all frequent itemsets.

• Par-MaxEclat: It uses prefix-based equivalence relation θ1 along with hybrid
search. It enumerates the “long” maximal frequent itemsets, and some non-
maximal ones.

• Par-Clique: It uses maximal-clique-based pseudo-equivalence relation φ1 along
with bottom-up search. It enumerates all frequent itemsets.

• Par-MaxClique: It uses maximal-clique-based pseudo-equivalence relation φ1 along
with hybrid search. It enumerates the “long” maximal frequent itemsets, and some
non-maximal ones.

We next present the parallel design and implementation issues, which are applicable
to all four algorithms.

3.4.2 Initial Database Partitioning

We assume that the database is in the vertical format, and that we have the support
counts of all 2-itemsets available locally on each host. We further assume that the
database of tid-lists is initially partitioned among all the hosts. This partitioning is
done off-line, similar to the assumption made in Count Distribution [Agrawal and Shafer,
1996]. The tid-lists are partitioned so that the total length of all tid-lists in the local
portions on each host are roughly equal. This is achieved using a greedy algorithm.
The items are sorted on their support, and the next item is assigned to the least loaded
host. Note that the entire tid-list for an item resides on a host. Figure 3.3 shows the
original database, and the resultant initial partition on two processors.

42

Begin ParAssociation:
/* Initialization Phase*/
F2 = { Set of Frequent 2-Itemsets }
Generate Independent Classes from F2 using:

Prefix-Based or Maximal-Clique-Based Partitioning
Schedule Classes among the processors P
Scan local database partition
Transmit relevant tid-lists to other processors
Receive tid-lists from other processors

/* Asynchronous Phase */
for each assigned Class, C2

Compute Frequent Itemsets: Bottom-Up(C2) or Hybrid(C2)

/* Final Reduction Phase*/
Aggregate Results and Output Associations

End ParAssociation

Figure 3.2: Pseudo-code for the New Parallel Algorithms

3.4.3 Parallel Design and Implementation

The new algorithms overcome the shortcomings of the Count and Candidate Distri-
bution algorithms. They utilize the aggregate memory of the system by partitioning the
itemsets into disjoint sets, which are assigned to different processors. The dependence
among the processors is decoupled right in the beginning so that the redistribution cost
can be amortized by the later iterations. Since each processor can proceed indepen-
dently, there is no costly synchronization at the end of each iteration. Furthermore
the new algorithms use the vertical database layout which clusters all relevant infor-
mation in an itemset’s tid-list. Each processor computes all the frequent itemsets from
one class before proceeding to the next. The local database partition is scanned only
once. In contrast Candidate Distribution must scan it once in each iteration. The new
algorithms don’t pay the extra computation overhead of building or searching complex
data structures, nor do they have to generate all the subsets of each transaction. As the
intersection is performed an itemset can immediately be inserted in Fk. Notice that the
tid-lists also automatically prune irrelevant transactions. As the itemset size increases,
the size of the tid-list decreases, resulting in very fast intersections. There are two dis-
tinct phases in the algorithms. The initialization phase, responsible for communicating
the tid-lists among the processors, and the asynchronous phase, which generates fre-
quent itemsets. The pseudo-code for the new algorithms is shown in Figure 3.2, and a
pictorial representation of the different phases is shown in Figure 3.3.

43

A C D T W

TWDWDTCWCTCDAWATAD

ACW ADT ATW

CDTWADTWACDWACDT

ACDTW

CDTADWACTACD CTW

AC

ACTW

CDW DTW

{}

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

CLASS PARTITIONING

CLASS SCHEDULE

ITEM SET LATTICE

Processor 0 (P0)
[A] = { AC, AT, AW }

[A] = { AC, AT, AW }
[C] = { CD, CT, CW }
[D] = { DW }
[T] = { TW }

[T] = { TW }

[C] = { CD, CT, CW }
[D] = { DW }

Processor 1 (P1)

EQUIVALENCE CLASSES

Partitioned Database After Tid-List Exchange
TID-LIST COMMUNICATION

Original Database

W W
A C D T W P0 P1

C A D T
P0 P1

C D TWTCA

Figure 3.3: Database Partitioning and Class Scheduling

44

Initialization Phase

The initialization step consists of three sub-steps. First, the support counts for 2-
itemsets from the preprocessing step are read, and the frequent ones are inserted into
F2. Second, applying one of the two decomposition schemes to F2 – prefix-based or
maximal-clique-based – the set of independent classes is generated. These classes are
then scheduled among all the processors so that a suitable level of load-balancing can
be achieved. Third, the database is repartitioned so that each processor has on its local
disk the tid-lists of all 1-itemsets in any class assigned to it.

Class Scheduling We first partition F2 into equivalence classes as described above.
We next generate a schedule of the equivalence classes on the different processors in a
manner minimizing the load imbalance and minimizing the inter-process communication
required in partially replicating the tid-lists. Note that it may be necessary to sacrifice
some amount of load balancing for a better communication efficiency. For this reason,
whole equivalence classes are assigned to the same processor. Load balancing is achieved
by assigning a weight to each equivalence class based on the number of elements in the
class. Since we have to consider all pairs of atoms for the next iteration, we assign
the weight

(s
2

)

to a class with s atoms. Once the weights are assigned we generate a
schedule using a greedy heuristic. We sort the classes on the weights, and assign each
class in turn to the least loaded processor, i.e., one having the least total weight at that
point. Ties are broken by selecting the processor with the smaller identifier. These
steps are done concurrently on all the processors since all of them have access to the
global F2. Figure 3.3 shows how the prefix-based classes of our example database (from
Figure 2.1) are scheduled on two processors. Notice how an entire class is assigned to a
single processor. Although the number of atoms of a class gives a good indication of the
amount of work that needs to be done for that class, better heuristics for generating the
weights are possible. For example, if we could better estimate the number of frequent
itemsets that would be enumerated from a class we could use that as our weight. We
believe that decoupling processor performance right in the beginning holds promise,
even though it may cause some load imbalance, since the repartitioning cost can be
amortized over later iterations. Deriving better heuristics for scheduling the classes,
which minimize the load imbalance and communication, is part of ongoing research.

Tid-list Communication Once the classes have been scheduled among the proces-
sors, each processor has to exchange information with every other processor to read the
non-local tid-lists over the Memory Channel network. To minimize communication, and
being aware of the fact that in our configuration there is only one local disk per host
(recall that our cluster has 8 hosts, with 4 processors per host), only the hosts take part
in the tid-list exchange. Additional processes on each of the 8 hosts are spawned only
in the asynchronous phase. To accomplish the inter-process tid-list communication,
each processor scans the item tid-lists in its local database partition and writes it to a
transmit region which is mapped for receive on other processors. The other processors
extract the tid-list from the receive region if it belongs to any class assigned to them.

45

For example, Figure 3.3 shows the initial local database on two hosts, and the final local
database after the tid-list communication.

Asynchronous Phase

At the end of the initialization step, the relevant tid-lists are available locally on
each host, thus each processor can independently generate the frequent itemsets from
its assigned classes eliminating the need for synchronization with other processors. Each
class is processed in its entirety before moving on to the next class in the schedule. This
step involves scanning the local database partition only once (depending on the amount
of overlap among the classes). We can thus benefit from huge I/O savings. Since
each class induces a sublattice, depending on the algorithm, we either use a bottom-up
traversal to generate all frequent itemsets, or we use the hybrid traversal to generate only
the “long” maximal and other frequent itemsets. The pseudo-code and implementation
of the two lattice search schemes was presented in the last chapter (see Figure 2.15 and
Figure 2.16). As an illustration of the various steps, the Par-Eclat algorithm is shown
in Figure 3.4. At the end of the asynchronous phase we accumulate all the results from
each processor and print them out.

Pruning Candidates Recall that both Count and Candidate Distribution use a prun-
ing step to eliminate unnecessary candidates. This step is essential in those algorithms
to reduce the size of the hash tree. Smaller trees lead to faster support counting, since
each subset of a transaction is tested against the tree. However, with the vertical
database layout we found the pruning step to be of little or no help. This can be at-
tributed to several factors. First, there is additional space and computation overhead in
constructing and searching hash tables. This is also likely to degrade locality. Second,
there is extra overhead in generating all the subsets of a candidate. Third, there is ex-
tra communication overhead in communicating the frequent itemsets in each iteration,
even though it may happen asynchronously. Fourth, because the average size of tid-lists
decreases as the itemsets size increases, intersections can be performed very quickly.

3.4.4 Salient Features of the New Algorithms

In this section we will recapitulate the salient features of our proposed algorithms,
contrasting them against Count and Candidate Distribution. Our algorithms differ in
the following respect:

• Unlike Count Distribution, they utilize the aggregate memory of the parallel sys-
tem by partitioning the candidate itemsets among the processors using the prefix-
based and maximal-clique-based decomposition schemes.

• They decouple the processors right in the beginning by repartitioning the database,
so that each processor can compute the frequent itemsets independently. This
eliminates the need for communicating the frequent itemsets at the end of each
iteration.

46

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

PARALLEL COUNTING

SCHEDULE EQUIVALENCE CLASSES

EXCHANGE LOCAL TID-LISTS

EXCHANGE FINAL RESULTS

SELECTIVELY REPLICATED DATABASE

PROCESSOR 1 PROCESSOR 2PROCESSOR 0

PARTITIONED DATABASE

Figure 3.4: The Par-Eclat Algorithm

47

• They use the vertical database layout which clusters the transactions containing
an itemset into tid-lists. Using this layout enables our algorithms to scan the
local database partition only two times on each processor. The first scan for
communicating the tid-lists, and the second for obtaining the frequent itemsets.
In contrast, both Count and Candidate Distribution scan the database multiple
times – once during each iteration.

• To compute frequent itemsets, they performs simple intersections on two tid-
lists. There is no extra overhead associated with building and searching complex
hash tree data structures. Such complicated hash structures also suffer from poor
cache locality [Parthasarathy et al., 1998]. In our algorithms, all the available
memory is utilized to keep tid-lists in memory which results in good locality. As
larger itemsets are generated the size of tid-lists decreases, resulting in very fast
intersections.

• Our algorithms avoid the overhead of generating all the subsets of a transaction
and checking them against the candidate hash tree during support counting.

3.5 Experimental Results

All the experiments were performed on a 32-processor (8 hosts, 4 processors/host)
Digital Alpha cluster inter-connected via the Memory Channel network [Gillett, 1996].
Each Alpha processor runs at 233MHz. There’s a total of 256MB of main memory per
host (shared among the 4 processors on that host). Each host also has a 2GB local disk
attached to it, out of which less than 500MB was available to us.

The Digital Memory Channel Digital’s Memory Channel network provides appli-
cations with a global address space using memory mapped regions. A region can be
mapped into a process’ address space for transmit, receive, or both. Virtual addresses
for transmit regions map into physical addresses located in I/O space on the Memory
Channel’s PCI adapter. Virtual addresses for receive regions map into physical RAM.
Writes into transmit regions are collected by the source Memory Channel adapter, for-
warded to destination Memory Channel adapters through a hub, and transferred via
DMA to receive regions with the same global identifier. Figure 3.5 shows the Memory
Channel space (The lined region is mapped for both transmit and receive on node 1 and
for receive on node 2; The gray region is mapped for receive on node 1 and for transmit
on node 2). Regions within a node can be shared across different processors on that
node. Writes originating on a given node will be sent to receive regions on that same
node only if loop-back has been enabled for the region. We do not use the loop-back
feature. We use write-doubling instead, where each processor writes to its receive region
and then to its transmit region, so that processes on a host can see modification made
by other processes on the same host. Though we pay the cost of double writing, we
reduce the amount of messages to the hub.

In our system unicast and multicast process-to-process writes have a latency of 5.2
µs, with per-link transfer bandwidths of 30 MB/s. Memory Channel peak aggregate

48

Memory Channel
Address Space

������
������
������
������

������
������
������

������
������
������ ������

������
������

������
������
������

������
������
������

������
������
������

Node 2Node 1

Receive

Transmit

Transmit
Receive

Receive

Figure 3.5: The Memory Channel Space

bandwidth is also about 32 MB/s. Memory Channel guarantees write ordering and
local cache coherence. Two writes issued to the same transmit region (even on different
nodes) will appear in the same order in every receive region. When a write appears in
a receive region it invalidates any locally cached copies of its line.

Database T I D1 D1 Size D4 D4 Size D6 Size

T10.I4.D2084K 10 4 2,084,000 91 MB 8,336,000 364MB 546MB
T15.I4.D1471K 15 4 1,471,000 93 MB 5,884,000 372MB 558MB
T20.I6.D1137K 20 6 1,137,000 92 MB 4,548,000 368MB 552MB

Table 3.1: Database Properties

Synthetic Databases All the partitioned databases reside on the local disks of each
processor. We used different synthetic databases, generated using the procedure de-
scribed in the last chapter. Table 3.1 shows the databases used and their properties.
The number of transactions is denoted as Dr, where r is the replication factor. For
r = 1, all the databases are roughly 90MB in size. Except for the sizeup experiments,
all results shown are on databases with a replication factor of r = 4 (≈360MB). We
could not go beyond a replication factor of 6 (≈540MB; used in sizeup experiments)
since the repartitioned database would become too large to fit on disk. The average
transaction size is denoted as T , and the average maximal potentially frequent itemset
size as I. The number of maximal potentially frequent itemsets was L = 2000, and the
number of items was N = 1000. We refer the reader to [Agrawal and Srikant, 1994]
for more detail on the database generation. All the experiments were performed with a
minimum support value of 0.25%. The number of large itemsets discovered are shown in

49

Figure 3.6. For a fair comparison, all algorithms discover frequent k-itemsets for k ≥ 3,
using the supports for the 2-itemsets from the preprocessing step.

1

10

100

1000

10000

2 4 6 8 10 12 14

N
um

be
r

of
 F

re
qu

en
t I

te
m

se
ts

Frequent Itemset Size (k)

Frequent Itemsets at Support = 0.25%

T20.I6.D1137K
T15.I4.D1471K
T10.I4.D2084K

Figure 3.6: Number of Frequent Itemsets

3.5.1 Performance Comparison

In this section we will compare the performance of our new algorithms with Count
Distribution (henceforth referred to as CD), which was shown to be superior to both
Data and Candidate Distribution [Agrawal and Shafer, 1996]. In all the figures the dif-
ferent parallel configurations are represented as Hx.Py.Tz, where H = x denotes the
number of hosts, P = y the number of processors per host, and T = H ·P = z, the total
number of processors used in the experiments. Figure 3.7 and Figure 3.8 show the total
execution time for the different databases and on different parallel configurations. The
configurations have been arranged in increasing order of T . Configurations with the
same T are arranged in increasing order of H. Figure 3.7 compares Par-MaxClique, the
best new algorithm, with Par-Eclat and CD, while Figure 3.8 compares only the new
algorithms, so that the differences among them become more apparent. It can be clearly
seen that Par-Eclat out-performs CD for almost all configurations on all the databases,
with improvements as high as a factor of 5. If we compare with the best new algorithm
Par-MaxClique, we see an improvement of upto an order of magnitude over CD. Even
more dramatic improvements are possible for lower values of minimum support [Zaki
et al., 1997a]. An interesting trend in the figures is that the performance gap seems to
decrease at larger configurations, with CD actually performing better on the 32 pro-

50

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)
Count Distribution

Par-Eclat

Par-MaxClique

T10.I4.D2084K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

1400

1600

1800

2000

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)

Count Distribution

Par-Eclat

Par-MaxClique

T15.I4.D1471K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

1000

2000

3000

4000

5000

6000

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)

Count Distribution

Par-Eclat

Par-MaxClqiue

T20.I6.D1137K

Figure 3.7: Parallel Performance: Par-Eclat vs Count Distribution

51

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

20

40

60

80

100

120

140

160

180

200

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)
Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T10.I4.D2084K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

50

100

150

200

250

300

350

400

450

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)

Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T15.I4.D1471K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

To
tal

 Ex
ec

uti
on

 Ti
me

 (s
ec

)

Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T20.I6.D1137K

Figure 3.8: Parallel Performance: New Algorithms

52

H2.P1.T2 H2.P2.T4 H2.P4.T8 H4.P1.T4 H4.P2.T8 H4.P4.T16 H8.P1.T8 H8.P2.T16 H8.P4.T32
0

10

20

30

40

50

60

70

80

%
 C

om
m

un
ica

tio
n

T10.I4.D2084K

H2.P1.T2 H2.P2.T4 H2.P4.T4 H4.P1.T4 H4.P2.T8 H4.P4.T16 H8.P1.T8 H8.P2.T16 H8.P4.T32
0

10

20

30

40

50

60

70

80

%
 C

om
m

un
ica

tio
n

T15.I4.D1471K

H2.P1.T2 H2.P2.T4 H2.P4.T8 H4.P1.T4 H4.P2.T8 H4.P4.T16 H8.P1.T8 H8.P2.T16 H8.P4.T32
0

10

20

30

40

50

60

%
 C

om
m

un
ica

tio
n

T20.I6.D1137K

Figure 3.9: Communication Cost in Par-Eclat

53

cessor configuration H8.P4.T32 for the databases T10.I4.D2084K and T15.I4.D1471K.
To see why, consider Figure 3.6, which shows the total number of frequent itemsets of
different sizes for the different databases. Also from Figure 3.9, which shows the initial
database repartitioning and tid-list communication cost as a percentage of the total ex-
ecution time of Par-Eclat, it becomes clear that there is not enough work for these two
databases to sufficiently offset the communication cost, consequently more than 70% of
the time is spent in the initialization phase. For T20.I6.D1137K, which has more work,
Par-Eclat is still about twice as fast as CD on 32 processors. The basic argument falls
on the computation versus communication trade-off in parallel computing. Whenever
this ratio is high we would expect Par-Eclat to out-perform CD. We would also ex-
pect the relative improvements of Par-Eclat over CD to be better for larger databases.
Unfortunately due to disk space constraints we were not able to test the algorithms on
larger databases. In all except the H = 1 configurations, the local database partition is
less than available memory. Thus for CD the entire database is cached after the first
scan. The performance of CD is thus a best case scenario for it since the results do not
include the “real” hit CD would have taken from multiple disk scans. As mentioned
in section 3.4, Par-Eclat was designed to scan the database only once during frequent
itemset computation, and would thus benefit more with larger database size.

0

10000

20000

30000

40000

50000

60000

70000

80000

T20.I6.D1137K T15.I4.D1471K T10.I4.D2084K

N
um

be
r

of
 In

te
rs

ec
tio

ns

Par-Eclat
Par-MaxEclat

Par-Clique
Par-MaxClique

Figure 3.10: Number of Intersections

Figure 3.8 shows the differences among the new algorithms for different databases
and parallel configurations. There are several parameters affecting their performance.
It can be seen that in general Par-Clique and Par-MaxClique perform better than Par-
Eclat and Par-MaxEclat, respectively. This is because they use the maximal-clique-

54

based decomposition, which generates more precise classes. On the other axis, in general
Par-MaxClique and Par-MaxEclat, out-perform Par-Clique and Par-Eclat, respectively.
This is because the hybrid lattice search scheme quickly generates the long maximal
frequent itemsets, saving on the number of intersections. The results are also dependent
on the number of frequent itemsets. The larger the number of frequent itemsets, the
more the opportunity for the hybrid approach to save on the joins. For example, consider
Figure 3.10, which shows the total number of tid-list intersections performed for the four
algorithms on the three databases. For T20.I6.D1137K, which has the largest number of
frequent itemsets (see Figure 3.6), Par-MaxClique cuts down the number of intersections
by more than 60% over Par-Eclat. The reduction was about 20% for Par-MaxEclat, and
35% for Par-Clique. These factors are responsible for the trends indicated above. The
winner in terms of the total execution time is clearly Par-MaxClique, with improvements
over Par-Eclat as high as 40%.

3.5.2 Memory Usage

Figure 3.11 shows the total memory usage of the Par-Eclat algorithm as the com-
putation of frequent itemsets progresses. The mean memory usage for the tid-lists is
less than 0.7MB for all databases, even though the database itself is over 360MB. The
figure only shows the cases where the memory usage was more than twice the mean.
The peaks in the graph are usually due to the initial construction of all the 2-itemset
tid-lists within each class. The maximum amount of memory consumed by the prefix-
based approach of Par-Eclat was 35MB, which is still less than 10% of the database.
For the maximal-clique-based algorithms, we expect these peaks to be lower, since the
classes are smaller.

3.5.3 Sensitivity Analysis

Speedup: The goal of the speedup experiments is to see how the new algorithms per-
form as we increase the number of processors while keeping the data size constant.
Figure 3.12, shows the speedup on the different databases and parallel configurations.
Due to disk constraints we used a replication factor of 4, for database sizes of approx-
imately 360MB. The speedup numbers are not as impressive at first glance. However,
this is not surprising. For example, on the largest configuration H8.P4.T32, there is
only about 11MB of data per processor. Combined with the fact that the amount of
computation is quite small (see Figure 3.6), and that about 50% to 70% of the time is
spent in tid-list communication (see Figure 3.9), we see a maximum speedup of about
5. Another reason is that the communication involves only the 8 hosts. Additional pro-
cesses on a host are only spawned after the initialization phase, which thus represents a
partially-parallel phase, limiting the speedups. If we take out the communication costs
we see a maximum speedup of 12 to 16. An interesting trend is the step-effect seen
in the speedup graphs. For the configurations which have the same number of total
processors, the ones with more hosts perform better. Also, for configurations with more
total processors, with P = 4, the configurations immediate preceding it, with only 1
processor per host, performs better. In both cases, the reason is that increasing the

55

1

2

3

4

5

6

7

8

9

10

11

Me
mo

ry
Us

ag
e >

 2M
ea

n (
MB

)

Time

T10.I4.D2084K: Memory Usage (Mean=0.55MB)

Par-Eclat

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Me
mo

ry
Us

ag
e >

 2M
ea

n (
MB

)

Time

T15.I4.D1471K: Memory Usage (Mean=0.43MB)

Par-Eclat

0

5

10

15

20

25

30

35

40

Me
mo

ry
Us

ag
e >

 2M
ea

n (
MB

)

Time

T20.I6.D1137K: Memory Usage (Mean=0.69MB)

Par-Eclat

Figure 3.11: Memory Usage in Par-Eclat (H1.P1.T1)

56

1

1.5

2

2.5

3

3.5

4

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32

R
el

at
iv

e
Sp

ee
du

p

T10.I4.D2084K: Speedup
Par-Eclat

Par-MaxEclat
Par-Clique

Par-MaxClique

1

1.5

2

2.5

3

3.5

4

4.5

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32

R
el

at
iv

e
S

pe
ed

up

T15.I4.D1471K: Speedup
Par-Eclat

Par-MaxEclat
Par-Clique

Par-MaxClique

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32

R
el

at
iv

e
Sp

ee
du

p

T20.I6.D1137K: Speedup
Par-Eclat

Par-MaxEclat
Par-Clique

Par-MaxClique

Figure 3.12: Parallel Speedup (H4.P1.T4)

57

0

20

40

60

80

100

120

140

160

180

1 2 4 6

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Replication Factor

T10.I4.D2084K: Sizeup

Par-Eclat
Par-MaxEclat

Par-Clique
Par-MaxClique

0

50

100

150

200

250

300

350

1 2 4 6

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Replication Factor

T15.I4.D1471K: Sizeup

Par-Eclat
Par-MaxEclat

Par-Clique
Par-MaxClique

0

100

200

300

400

500

600

700

800

1 2 4 6

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Replication Factor

T20.I6.D1137K: Sizeup

Par-Eclat
Par-MaxEclat

Par-Clique
Par-MaxClique

Figure 3.13: Parallel Sizeup (H4.P1.T4)

58

number of processors on a given host, causes increased memory contention (bus traffic),
and increased disk contention, as each processor tries to access the database from the
local disk at the same time.

Sizeup: The goal of the sizeup experiments is to see how the new algorithms perform
as we increase the size of the database while keeping the number of processors constant.
For the sizeup experiments we fixed the parallel configuration to H4.P1.T4, and varied
the database replication factor from 1 to 6, with the total database size ranging from
about 90MB to 540MB. Figure 3.13 shows the sizeup for the four algorithms on the
different databases. The figures indicate an almost linear sizeup. The slightly upward
bend is due to the relative computation versus communication cost. The larger the
database the more the time spent in communication, while the tid-list intersection cost
doesn’t increase at the same pace. Moreover, the number of frequent itemsets remains
constant (since we use percentages for minimum support, as opposed to absolute counts)
for all replication factors.

3.6 Conclusions

In this chapter we proposed new parallel algorithms for the discovery of association
rules. The algorithms use the prefix-based and maximal-clique-based decomposition
techniques, and the bottom-up and hybrid search schemes. The set of independent
classes is scheduled among the processors, and the database is also selectively replicated
so that the portion of the database needed for the computation of associations is local
to each processor. After the initial set-up phase the algorithms do not need any further
communication or synchronization. The algorithms minimize I/O overheads by scan-
ning the local database portion only two times. Once in the set-up phase, and once
when processing all the itemset classes. We implemented the algorithms on a 32 pro-
cessor Digital cluster interconnected with the Memory Channel network, and compared
them against a well known parallel algorithm Count Distribution [Agrawal and Shafer,
1996]. Experimental results indicate that our best parallel algorithm Par-MaxClique
outperformed Count Distribution by upto an order of magnitude.

59

4 Theoretical Foundations of
Association Rules

4.1 Introduction

In the previous chapters we developed efficient algorithms for mining association
rules. Most of the extant research effort has also focused on the algorithmic task
[Agrawal et al., 1993b; Agrawal et al., 1996; Bayardo, 1998; Brin et al., 1997; Houtsma
and Swami, 1995; Lin and Kedem, 1998; Lin and Dunham, 1998; Park et al., 1995a;
Savasere et al., 1995; Toivonen, 1996; Yen and Chen, 1996; Zaki et al., 1997c]. On the
other hand, there has been little work in formulating a theory of associations. Such a
theory can help in estimating the complexity of the mining task, and also in developing
a unified framework for common data mining problems.

This chapter begins by presenting some complexity results based on the connec-
tion between frequent itemsets and bipartite cliques. We then place association rule
mining within the lattice-theoretic framework of formal concept analysis introduced by
Wille [Wille, 1982]. Given a binary relation, a concept consists of an extent (transactions)
and an intent (attributes), such that all objects in the extent share the attributes in the
intent, and vice versa. We show that all frequent itemsets are uniquely determined by
the set of frequent concepts. We then tackle the problem of generating a base, a minimal
rule set, from which all the other association rules can be inferred. The concept lattice
framework can not only aid in the development of efficient algorithms, but can also help
in the visualization of discovered associations, and can provide a unifying framework
for reasoning about associations, and supervised (classification) and unsupervised (clus-
tering) concept learning [Carpineto and Romano, 1993; Carpineto and Romano, 1996;
Godin et al., 1991].

The rest of the chapter is organized as follows. We discuss related work in Section 4.2.
A graph-theoretic view of the association mining problem is given in Section 4.3. Sec-
tion 4.4 casts association mining as a search for frequent concepts, and Section 4.5 looks
at the problem of generating rule bases. We conclude in Section 4.6.

4.2 Related Work

In the previous chapters we have already discussed the astonishing amount of re-
search in developing efficient algorithms for mining frequent itemsets [Aggarwal and

60

Yu, 1998; Agrawal et al., 1993b; Agrawal et al., 1996; Bayardo, 1998; Brin et al., 1997;
Houtsma and Swami, 1995; Lin and Kedem, 1998; Lin and Dunham, 1998; Park et al.,
1995a; Savasere et al., 1995; Toivonen, 1996; Zaki et al., 1997c]. In [Gunopulos et al.,
1997b; Gunopulos et al., 1997a], the connection between associations and hypergraph
transversals was made. They also presented a model of association mining as the dis-
covery of maximal elements of theories, and gave some complexity bounds.

A lot of algorithms have been proposed for generating the Galois lattice of con-
cepts [Carpineto and Romano, 1993; Ganter, 1987; Godin et al., 1991; Guenoche, 1990;
Kuznetsov, 1993]. An incremental approach for building the concepts was studied
in [Carpineto and Romano, 1996; Godin et al., 1991]. These algorithms will have to be
adapted to enumerate only the frequent concepts. Further, they have only been studied
on small datasets. It remains to be seen how scalable these approaches are compared
to the association mining algorithms. Finally, there has been some work in pruning
discovered association rules by forming rule covers [Toivonen et al., 1995]. However, the
problem of constructing a base or generating set has not been studied previously. Some
parts of this chapter have appeared in [Zaki and Ogihara, 1998].

4.3 Itemset Discovery: Bipartite Graphs

Definition 4.1 A bipartite graph G = (U, V,E) has two distinct vertex sets U and
V , and an edge set E = {(u, v) | u ∈ Uand v ∈ V }. A complete bipartite subgraph is
called a bipartite clique.

Definition 4.2 An independent set of a graph G = (V,E) is a set of vertices I ⊆ V ,
such that no two vertices in I are connected by an edge.

Definition 4.3 A hypergraph ([Berge, 1989]) on I is a family H = {E1, E2, ..., En}
of edges or subsets of I, such that Ei 6= ∅, and

⋃n
i=1 Ei = I.

Definition 4.4 Let H = {E1, E2, ..., En} be a hypergraph on a set I. A set T ⊂ I is a
transversal of H if it intersects all the edges, that is to say: T ∩ Ei 6= ∅, for all Ei.

A hypergraph is a generalization of a graph in the following sense. While a graph has
edges connecting only two vertices, a hypergraph has edges connecting a set of vertices.
A transversal in a hypergraph is called a vertex cover in a graph.

Lemma 4.1 There is a one-to-one correspondence between bipartite graphs, hyper-
graphs, and binary matrices.

Lemma 4.2 A clique of a graph G = (V,E) corresponds to an independent set in the
complementary graph G = (V,E′), with E′ = {(u, v) | (u, v) 6∈ E}. In a bipartite graph,
an independent set is the complement of a vertex cover ([Harary, 1969]), i.e., if C ⊂ V
is a vertex cover, then I = V \C is an independent set.

61

A C D

1

2

3

6

4

5

WT

0

1 1 1

1 1 1 1

1

1 1 1

0 0

0

0

0 0

1 1 1 1

1 1 1 1

1 1 1 1

ITEMS

TR
AN

SA
CT

IO
NS

Figure 4.1: Maximal Unit Sub-Matrix of a Binary Matrix

The input database for association mining, as shown in Figure 2.1, is essentially
a very large bipartite graph, with U as the set of items, V as the set of tids, and
each (item, tid) pair as an edge. The problem of enumerating all (maximal) frequent
itemsets corresponds to the task of enumerating all (maximal) constrained bipartite
cliques, I × T , where I ⊆ U , T ⊆ V , and |T | ≥ min sup. Due to the one-to-one
correspondence between bipartite graphs, binary matrices and hypergraphs, one can
also view it as the problem of enumerating all (maximal) unit sub-matrices in a binary
matrix, or as the problem of enumerating all (minimal) transversals of a hypergraph,
satisfying the support constraints. Figures 4.1 and 4.2 show the bookstore database as

A C D T W

654321

TRANSACTIONS

ITEMS

CDTACDTWACDWACTWCDWACTW

Figure 4.2: Maximal Constrained Bipartite Clique

a binary matrix, and as a bipartite graph, respectively. They also show the maximal

62

unit sub-matrix and the maximal constrained bipartite clique ACTW × 135 (i.e., the
maximal frequent itemset ACTW).

Definition 4.5 Let Σ∗ denote strings composed of the symbols of a finite set Σ. Let
R ⊆ Σ∗ × Σ∗ be a binary relation on strings. R is called polynomially decidable if
there is a deterministic Turing Machine deciding the language {X;Y | (X,Y) ∈ R} in
polynomial time. R is polynomially balanced if (X,Y) ∈ R implies |Y | ≤ |X|k for
some k ≥ 1.

Lemma 4.3 (see, e.g. [Papadimitriou, 1994]) Let L ⊆ Σ∗ be a language. L is in the
class NP if and only if there is a polynomially decidable and polynomially balanced
relation R, such that L = {X | (X,Y) ∈ R for some Y }.

Definition 4.6 Let C be a complexity class, and let L be a language in C. L is called
C-Complete if any language L′ ∈ C is polynomial-time reducible to L, i.e., if
there exists a polynomial-time computable function f such that X ∈ L′ iff f(X) ∈ L.

Definition 4.7 ([Valiant, 1979]) Let Q be a polynomially balanced, polynomial-time
decidable binary relation. The counting problem for Q is the following: Given X,
how many Y are there such that (X,Y) ∈ Q? #P is the class of all counting problems
associated with polynomially balanced polynomial-time decidable relations.

The above definitions specify important tools for determining the computational
complexity of various problems. For example, showing that a problem is NP-Complete
establishes that it is unlikely to be solved in polynomial time. In this sense, these
problems are hard and one should perhaps concentrate on developing approximation
algorithms for the problem, or on developing solutions for special cases, etc. While the
class NP asks whether a desired solution exists, the class #P asks how many solutions
exist. In the cases known so far, the counting problems that correspond to NP-Complete
problems are #P-Complete.

Having given the basic notions of computational complexity, we now direct our
attention to the complexity of mining frequent itemsets. Table 4.1 shows the complexity
of decision problems for maximal bipartite cliques (itemsets) with restrictions on the
size of I (items) and T (support). For example, the problem whether there exists
a maximal bipartite clique such that |I| + |T | ≥ K (with constant K) is in P, the
class of problems that can be solved in polynomial time. On the other hand, the
problem whether there exists a maximal bipartite clique such that |I| + |T | = K is
NP-Complete [Kuznetsov, 1989]. The last row of the table may seem contradictory.
While there is unlikely to exist a polynomial time algorithm for finding a clique with
|I| + |T | ≤ K, the largest cliques with |I| + |T | ≥ K can be found by reducing it to
the maximum matching problem [Kashiwabara et al., 1992], which has O((|U |+ |V |)2.5)
complexity. The following theorem says that determining the number of maximal cliques
in a bipartite graph is extremely hard.

Theorem 4.1 ([Kuznetsov, 1989]) Determining the number of maximal bipartite cliques
in a bipartite graph is #P-Complete.

63

≤ K = K ≥ K

|I| P NP-Complete P
|T | P NP-Complete P

|I| + |T | NP-Complete NP-Complete P

Table 4.1: Mining Complexity

The complexity results shown above are quite pessimistic, and apply to general
bipartite graphs. We should therefore focus on special cases where we can find polyno-
mial time solutions. Fortunately for association mining, in practice the bipartite graph
(database) is very sparse, and we can in fact obtain linear complexity in the graph size.

Definition 4.8 The arboricity r(G) of a graph is the minimum number of forests into
which the edges of G can be partitioned. The arboricity of a graph is given as

r(G) = max
H⊂G

{e(H)/(n(H) − 1)}

where n(H) is the number of vertices and e(H) the number of edges of an non-trivial
subgraph H ⊂ G.

A bound on the arboricity is equivalent to a notion of hereditary sparsity. For a
bipartite graph, r(G) = |I|·|T |/(|I|+|T |−1), where I×T is a maximum bipartite clique.
Furthermore, if we assume |I| ≪ |T | (since we want large support), then r(G) ≈ |I|,
i.e., the arboricity of the association database is given by the maximum sized frequent
itemset. For sparse graphs, of bounded arboricity |I|, the complexity of finding all
maximal bipartite cliques is linear in number of items and transactions:

Theorem 4.2 ([Eppstein, 1994]) All maximal bipartite cliques can be enumerated in
time O(|I|3 · 22|I| · (|U | + |V |)).

Even though the above algorithm has linear complexity, it is not practical for large
databases due to the large constant overhead (|I| can easily be around 10 to 20 in
practice). Nevertheless, the result is very encouraging, and gives a reason why all
current association mining algorithms exhibit linear scalability in database size. This
result also says that at least in theory the association mining algorithms should scale
linearly in the number of items or attributes, a very important feature if practicable.

Theorem 4.3 ([Kashiwabara et al., 1992]) All maximum independent sets can be listed
in O((|U | + |V |)2.5 + γ) time, where γ is output size.

The above theorem states that all the maximum (largest) bipartite cliques (independent
sets in complimentary graph) of a bipartite graph can be found in time polynomial in
input, and linear in the output size, i.e., we can find all the largest frequent itemsets
in input polynomial time. However, due to the greater than quadratic complexity, it
remains to be seen if this algorithm is practical for large databases with millions of
transactions.

64

4.4 Itemset Discovery: Formal Concept Analysis

In this section we will show that association mining is very closely related to formal
concept analysis, which was introduced in a seminal paper by Wille [Wille, 1982].

Definition 4.9 Let S be a set. A function c : P(S) 7→ P(S) is a closure operator
on S if, for all X,Y ⊆ S, c satisfies the following properties:

1) Extension: X ⊆ c(X).

2) Monotonicity: if X ⊆ Y , then c(X) ⊆ c(Y).

3) Idempotency: c(c(X)) = c(X).

A subset X of S is called closed if c(X) = X.

Definition 4.10 A context is a triple (G,M, I), where G and M are sets and I ⊆
G × M . The elements of G are called objects, and the elements of M are called
attributes. For an arbitrary g ∈ G, and m ∈ M , we note gIm, when g is related to
m, i.e., (g,m) ∈ I.

Definition 4.11 Let (G,M, I) be a context with X ⊆ G, and Y ⊆ M . Then the
mappings

s : G 7→ M,s(X) = {m ∈ M | (∀g ∈ X) gIm}

t : M 7→ G, t(Y) = {g ∈ G | (∀m ∈ Y) gIm}

define a Galois connection between P(G) and P(M), the power sets of G and M ,
respectively.

The set s(X) is the set of attributes common to all the objects in X and t(Y)
is the set of objects common to all the attributes in Y . We note that X1 ⊆ X2 ⇒
s(X2) ⊆ s(X1), for X1,X2 ⊆ G (and “dually” for function t on M). Furthermore, the
compositions c = s ◦ t and dually, t ◦ s are closure operators.

Definition 4.12 A concept of the context (G,M, I) is defined as a pair (X,Y), where
X ⊆ G, Y ⊆ M , s(X) = Y , and t(Y) = X. In other words, a concept (X,Y) consists
of the closed sets X and Y , since X = t(Y) = t(s(X)) = s ◦ t(X) = c(X), and similarly
Y = c(Y). X is also called the extent and Y the intent of the concept (X,Y).

Definition 4.13 The concept generated by a single attribute m ∈ M given as α(m) =
(t(m), c(m)) is called an attribute concept, while the concept generated by a single
object g ∈ G given as β(g) = (c(g), s(g)) is called an object concept.

Definition 4.14 A concept (X1, Y1) is a subconcept of (X2, Y2), denoted as (X1, Y1) ≤
(X2, Y2), iff X1 ⊆ X2 (iff Y2 ⊆ Y1).

65

Notice that the mappings between the closed sets of G and M are anti-isomorphic, i.e.,
concepts with large extents have small intents, and vice versa. The set of all concepts
of the context is denoted by B(G,M, I). The different concepts can be organized as a
hierarchy of concepts based on the superconcept-subconcept partial order.

Definition 4.15 A subset P of an ordered set Q is join-dense if ∀q ∈ Q, there exists
Z ⊆ P , such that q =

∨

Q Z (and dually we can define meet-dense).

The fundamental theorem of formal concept analysis can now be stated as follows:

Theorem 4.4 ([Wille, 1982]) Let (G,M, I) be a context. Then B(G,M, I) is a complete
lattice with join and meet given by

∨

j(Xj , Yj) = (c(
⋃

j Xj),
⋂

j Yj)
∧

j(Xj , Yj) = (
⋂

j Xj , c(
⋃

j Yj))
Conversely, if L is a complete lattice then L is isomorphic to B(G,M, I) iff there are
mappings γ : G 7→ L, and µ : M 7→ L, such that γ(G) is join-dense in L, µ(M) is
meet-dense in L, and gIm is equivalent to γ(g) ≤ µ(M) for all g ∈ G and m ∈ M . In
particular L is isomorphic to B(L,L,≤).

4

A

W

(45 x ACDW)

(1345 x ACW)

(12345 x CW)

(245 x CDW)
2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

6
(56 x CDT)

5
(5 x ACDTW)

C
(123456 x C)

Figure 4.3: Galois Lattice of Concepts

The complete lattice B(G,M, I) is called the Galois lattice of the context. The
concept lattice can be represented graphically by a Hasse diagram, where each concept
is a circle, and for concepts c1 ≤ c2, there is a line joining them, with c1 being lower
than c2. For example, Figure 4.3 shows the Galois lattice for our example database.

66

It is shown with a minimal labeling, where the intent (extent) of a concept can be
reconstructed by considering all labels reachable above (below) that concept. In other
words, each concept is labeled with an attribute (object) if it is an attribute (object)
concept. It is clear that an appropriately drawn diagram can aid in visualizing and
understanding the relationships among the attributes and objects (i.e., associations).

A

W

(1345 x ACW)

(12345 x CW)

2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

C
(123456 x C)

(245 x CDW)

Figure 4.4: Frequent Concepts of the Galois Lattice

Define a frequent concept as a concept (X,Y) with X ⊆ G, Y ⊆ M , and |X| ≥
min sup. Figure 4.4 shows all the frequent concepts with min sup = 50%. All fre-
quent itemsets can be determined by the meet operation on attribute concepts. For
example, since meet of attribute concepts D and T , α(D) ∧ α(T), doesn’t exist, DT
is not frequent, while α(A) ∧ α(T) = (135, ACTW), thus AT is frequent. Further-
more, the support of AT is given by the cardinality of the resulting concept’s extent,
i.e., σ(AT) = |{1, 3, 5}| = 3. Thus all frequent itemsets are uniquely determined by
the frequent concepts. This observation can possibly aid the development of efficient
algorithms since we need to enumerate only the closed frequent itemsets, instead of enu-
merating all frequent itemsets like most current algorithms. In our example database,
there are only 7 closed frequent itemsets versus 19 frequent itemsets.

4.5 Rule Generation

Association rules were originally proposed in [Agrawal et al., 1993b]. However, we
will show below that association rules are exactly the partial implications, satisfying
support and confidence constraints, proposed in an earlier paper [Luxenburger, 1991].

Let (G,M, I) be a context. A partial implication rule X
p
⇒ Y is a triple (X,Y, p),

where X,Y ⊆ M are sets of attributes, and the precision p = P (Y |X) = |t(X ∪

67

Y)|/|t(X)|. Clearly, association rules correspond to partial implications meeting the
support and confidence constraints, i.e., with |t(X∪Y)| ≥ min sup, and p ≥ min conf ,
respectively.

Definition 4.16 Let S = {X
p
⇒ Y | X,Y ⊆ M,p = P (Y |X)}, be a set of partial

implications. A rule K
p
⇒ L can be derived from a set of rules S, denoted S ⊢ K

p
⇒ L,

iff we can obtain K
p
⇒ L from S by applying certain inference rules. In this case we

also call K
p
⇒ L a redundant rule according to S.

Definition 4.17 A set R ⊆ S is called a generating set for S iff R ⊢ S. A minimal-
by-inclusion generating set is called a base.

Since the set of all partial implications (i.e., association rules) can be very large, we are
interested in finding a base for it. This means that only a small and easily understand-
able set of rules can be presented to the user, who can later selectively derive other rules
of interest. The set of partial implications can be broken into two parts: implications
with p = 1, called the global implications, and those with p < 1, called the proper partial
implications. A base for all partial implications can be obtained by combining the bases
of these two sets.

Global Implications A global implication rule is denoted as X ⇒ Y , where X,Y ⊆
M , and t(X) ⊆ t(Y), i.e., all objects related to X are also related to Y . It can
be shown that t(X) ⊆ t(Y) ⇔ P (Y |X) = 1. Thus, global implications are pre-
cisely the association rules with 100% confidence. A global implication can be di-
rectly discerned from the Hasse diagram of the concept lattice, since in this case the
meet of attribute concepts in X is less than (lies below) the meet of attribute con-
cepts in Y . For example, consider the frequent concepts in Figure 4.6. AD ⇒ CW ,
since α(A) ∧ α(D) = (45, ACDW) ≤ α(C) ∧ α(W) = (12345, CW). The problem
of finding a base of all global implication rules has been well studied [Ganter, 1987;
Guigues and Duquenne, 1986; Maier, 1983; Wild, 1991]. One characterization of a base
is given as follows:

Theorem 4.5 ([Ganter, 1987]) The set {X ⇒ c(X)\X | X is a pseudo-intent} is a
base for all global implications, where X is a pseudo-intent if X 6= c(X), and for all
pseudo-intents Q ⊂ X, c(Q) ⊆ X.

For example, {A,D, T,W,CTW} is the set of pseudo-intents in our example database.
A base of global implications is thus given by the set R = {A ⇒ CW, D ⇒ C, T ⇒
C, W ⇒ C, CTW ⇒ A}. This set is shown in Figure 4.5. All other global implications
can be derived from R by application of simple inference rules such as those given in
[Maier, 1983, pp. 47], 1) Reflexivity: X ⊆ Y implies Y ⇒ X, 2) Augmentation: X ⇒ Y
implies XZ ⇒ Y Z, 3) Transitivity: X ⇒ Y and Y ⇒ Z implies X ⇒ Z, and so on.

68

1

1

1

1

1

1

1

1

A W

TW A

A CW
WAC

CW A
ACTW

CW

(135 x ACTW)(245 x CDW)

(2456 x CD)

(1356 x CT) (1345 x ACW)

(12345 x CW)

(123456 x C)

2 1, 3

D
T A

W

C
1

1

1

Figure 4.5: A Base for Global Implications

Proper Partial Implications We now turn to the problem of finding a base for
proper partial implications with p < 1, i.e., association rules with confidence less
than 100%. Note that for any Z ⊆ X, P (Y |X) = P (Y ∪ Z|X), and thus X

p
⇒ Y

iff X
p
⇒ Y ∪ Z. In particular, X

p
⇒ Y iff X

p
⇒ X ∪ Y . We thus only discuss

the rules X
p
⇒ Y , with X ⊆ Y . Furthermore, it can be shown that X

p
⇒ Y iff

c(X)
p
⇒ c(Y). We can thus restrict ourselves to only the rules where X and Y are

intents of a frequent concept. The set of all proper partial implications is given by
S<1(B(G,M, I)) = {K

p
⇒ L | K ⊂ L are intents of B(G,M, I)}. The following theo-

rem states that unlike global implications, partial implications satisfy transitivity and
commutativity only under certain conditions.

Theorem 4.6 ([Luxenburger, 1991]) Let M1,M2,M3,M4 ⊆ M be intents with M1 ⊆
M2 ⊆ M4 and M1 ⊆ M3 ⊆ M4. Then P (M2|M1) · P (M4|M2) = P (M4|M1) =

P (M3|M1) · P (M4|M3) (i.e., M1
p
⇒ M2 and M2

q
⇒ M4 implies M1

pq
⇒ M4).

Consider the Hasse diagram of the frequent concepts with the precision on the edges,
shown in Figure 4.6. The edge between attribute concepts C and W corresponds to the

implication C
5/6
⇒ W . The reverse implication W ⇒ C has precision 1 by definition.

Only the implications between adjacent concepts need to be considered, since the other
implications can be derived from the above theorem. For example, C ⇒ A has precision
p = 4/6, since P (A|C) = P (W |C) · P (A|W) = 5/6 · 4/5 = 4/6. The diagram provides
a wealth of embedded information; the link joining attribute concept T and object
concept 1, 3 corresponds to the rule T ⇒ A. Immediately we can see that it has the
same confidence (3/4) as the rules T ⇒ W, T ⇒ AC, T ⇒ AW, T ⇒ ACW, CT ⇒
A, CT ⇒ W, and CT ⇒ AW . All these other rules are thus redundant! On the other

69

T ACW
CT
CT

A
W

CT AW

T W
T
T

AC
AWA

W

(1345 x ACW)

(12345 x CW)

(245 x CDW)
2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

C
(123456 x C)

4/6

4/5

3/4

4/
6

5/6

3/
5

3/4

3/4

4/5

3/4

5/6

CW A

T A

AW

C W

Figure 4.6: Frequent Concepts with Edge Precisions

hand the link from A to 1, 3 corresponds to the rule A ⇒ T , which generates another
set of redundant rules.

Definition 4.18 ([Rota, 1964]) The Möbius function on an ordered set L is defined
as µL : L × L 7→ Z, where Z is the set of Integers, and for all X,Y,Z ∈ L,

1) µL(X,X) = 1.

2) µL(X,Y) = −
∑

X<Z≤Y µL(Z, Y) if X < Y , otherwise µL(X,Y) = 0.

Theorem 4.7 ([Luxenburger, 1991]) Let K = B(G,M, I) be the set of concepts of the
context (G,M, I), and let X,Y ⊆ M be intents. Then the partial implications also
satisfy the following properties:

1) Let X ⊆ Y and P (Y |X) = 0. Then Y = M .

2)
∑

W∈J P (W |X) ·µK((t(W),W), (t(X),X)) ≥ 0, where J = {Y | X ⊆ Y = c(Y)}.

3) 1 − P (X|X ∩ Y) − P (Y |X ∩ Y) + P (X|X ∩ Y) · P (c(X ∪ Y)|X) ≥ 0.

For S ′ ⊆ S<1(B(G,M, I)), define the graph G(S ′) = (V,E), with vertex set V =

{N ⊆ M | N is an intent}, and edge set E = {(K,L) ∈ V × V | K
p
⇒ L ∈ S ′}.

Lemma 4.4 ([Luxenburger, 1991]) If there exists a cycle in G(S ′), then there exists a
partial implication K ∈ S ′ such that S ′\K ⊢ K.

As a consequence of this lemma, one rule in every cycle is redundant, and it can be
discarded. The next theorem gives a more precise characterization of a generating set.

70

Theorem 4.8 ([Luxenburger, 1991]) S ′ is a generating set if

1) Gr(S ′) is a spanning tree.

2) M is a consequent of only one partial implication in S ′.

A

W

(1345 x ACW)

(12345 x CW)

(245 x CDW)
2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

C
(123456 x C)

4/
6

5/6

3/
5

4/6

4/5

3/4

A

W

(1345 x ACW)

(12345 x CW)

(245 x CDW)
2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

C
(123456 x C)

5/6

4/5

Figure 4.7: a) Generating Set for Precisions Between 50% and 100%; b) Generating Set
for Precisions Between 80% and 100%

Figure 4.7a shows a generating set (a minimal spanning tree) for all the proper
partial implications in our example. We can derive the precision of a redundant rule by
multiplying the precisions of the other rules involved in the cycle (except, we need to
invert the precision if we go from a lower concept to a higher concept in the cycle). For
example, in Figure 4.7a, the precision of the missing edge D ⇒ W can be obtained by
multiplying the inverted precision on the edge from D to C, with the precisions on the
edges from C to W , and from W to 2, i.e., 6

4 · 5
6 · 3

5 = 3
4 .

To obtain the rules satisfying a given value of min conf, one can simply discard all
edges in the diagram with p < min conf For example, Figure 4.7b shows the generating
set for rules with min conf = 80%.

Definition 4.19 A element x ∈ L of the lattice L, is called join-irreducible (dually
meet-irreducible) if it has exactly one lower (dually upper) neighbor.

Let J (L) and M(L) denote the set of all join- and meet-irreducible elements, respec-
tively. Any finite lattice (L,≤) is uniquely determined (up to isomorphism) by J (L)
and M(L), and restricting the order relation to the set J (L)∪M(L). For the lattice in
Figure 4.3, J (L) = {2, 4, 6, 13}, and M(L) = {A,D, T,W}. This observation can thus
help in reducing the size of the original database. The following theorem gives upper
and lower bounds on the size of a base:

71

Theorem 4.9 ([Luxenburger, 1991]) If S ′ ⊆ S<1(K = B(G,M, I)) is a base, then

1/2 · |J (K) ∩M(K)| ≤ |S ′| ≤ |K| − 1

The bad news is that the upper bound is tight for a large number of lattices, and thus
for such concept lattices the construction of a base will not lead to a reduction in storage
over a generating set. Furthermore, the lower limit is not very interesting since there
exist lattices with J (K) ∩M(K) = ∅.

A

C (5/5)W
T
D
A
A

C (4/4)
W (4/4)
CW (4/4)
C (4/4)
C (4/4)

W (4/4)
C (3/3)
W (3/3)
C (4/4)
C (3/3)
A (3/3)

AW
DW
TW

AT
AT

AC

TW
AT
TW

ACT
ATW
CTW

C (3/3)
CW (3/3)
AC (3/3)
W (3/3)
C (3/3)
A (3/3)

W A (4/5) W AC (4/5) CW A (4/5)C W (5/6)

Association Rules with Confidence = 100%

Association Rules with Confidence >= 80%

Figure 4.8: Association Rules with 50% Min. Support and 80% Min. Confidence

The problem of finding a canonical base for all partial implications is thus open.
Nevertheless, the generating set obtained by the application of Theorem 4.8 should be
a good substitute for a base in practice. For example, by combining the base for rules
with p = 1, shown in Figure 4.5 and the generating set for rules with p ≥ 0.8, shown in
Figure 4.7b, we obtain a generating set for all association rules with min sup = 50%,

and min conf = 80%: {A
1
⇒ CW, D

1
⇒ C, T

1
⇒ C, W

1
⇒ C, CTW

1
⇒ A, C

5/6
⇒

W, W
4/5
⇒ A}. It can be easily verified that all the association rules shown in Figure 4.8,

for our example database from Figure 2.1, can be derived from this set. If we consider
all possible association rules with min sup = 50% (and consequently min conf = 50%),
then there are 72 possible association rules versus only 11 in the generating set obtained
by combining the base from Figure 4.5 and the generating set from Figure 4.7a.

4.6 Conclusions

In this chapter we presented a lattice-theoretic foundation for the task of mining
associations based on formal concept analysis. We showed that the set of frequent

72

concepts uniquely determines all the frequent itemsets. The lattice of frequent concepts
can also be used to obtain a rule generating set from which all associations can be
derived. We showed that while there exists a characterization of a base for rules with
100% confidence, the problem of constructing a base for all associations is still open.

73

5 Mining Sequence Rules

5.1 Introduction

The sequence mining task is to discover a set of attributes, shared across time among
a large number of objects in a given database. For example, consider the sales database
of a bookstore, where the objects represent customers and the attributes represent au-
thors or books. Let’s say that the database records the books bought by each customer
over a period of time. The discovered patterns are the sequences of books most fre-
quently bought by the customers. An example could be that “70% of the people who
buy Jane Austen’s Pride and Prejudice also buy Emma within a month.” Stores can
use these patterns for promotions, shelf placement, etc. Consider another example of a
web access database at a popular site, where an object is a web user and an attribute
is a web page. The discovered patterns are the sequences of most frequently accessed
pages at that site. This kind of information can be used to restructure the web-site, or
to dynamically insert relevant links in web pages based on user access patterns. Other
domains where sequence mining has been applied include identifying plan failures [Zaki
et al., 1998b], finding network alarm patterns [Hatonen et al., 1996], and so on.

The task of discovering all frequent sequences in large databases is quite challenging.
The search space is extremely large. For example, with m attributes there are O(mk)
potentially frequent sequences of length k. With millions of objects in the database the
problem of I/O minimization becomes paramount. However, most current algorithms
are iterative in nature, requiring as many full database scans as the longest frequent
sequence, which is clearly very expensive. Some of the methods, especially those using
some form of sampling, can be sensitive to the data-skew, which can adversely effect
performance. Furthermore, most approaches use very complicated internal data struc-
tures which have poor locality [Parthasarathy et al., 1998], and add additional space
and computation overheads. Our goal is to overcome all of these limitations.

In this chapter we present a new algorithm, called SPADE (Sequential PAttern
Discovery using Equivalence classes), for discovering the set of all frequent sequences.
The key features of our approach are as follows:

1. We use a vertical id-list database format, where we associate with each sequence
a list of objects in which it occurs, along with the time-stamps. We show that all
frequent sequences can be enumerated via simple id-list intersections.

74

2. We use a lattice-theoretic approach to decompose the original search space (lattice)
into smaller pieces (sub-lattices) which can be processed independently in main-
memory. Our approach usually requires three database scans, or only a single
scan with some pre-processed information, thus minimizing the I/O costs.

3. We decouple the problem decomposition from the pattern search. We propose
two different search strategies for enumerating the frequent sequences within each
sub-lattice: breadth-first and depth-first search.

SPADE not only minimizes I/O costs by reducing database scans, but also mini-
mizes computational costs by using efficient search schemes. The vertical id-list based
approach is also insensitive to data-skew. An extensive set of experiments shows that
SPADE outperforms previous approaches by a factor of two, and by an order of mag-
nitude if we have some additional off-line information. Furthermore, SPADE scales
linearly in the database size, and a number of other database parameters.

The rest of the chapter is organized as follows: In Section 5.2 we describe the
sequence discovery problem and look at related work in Section 5.3. In Section 5.4 we
develop our lattice-based approach for problem decomposition, and for pattern search.
Section 5.5 describes our new algorithm. Section 5.6 describes how it can be parallelized
efficiently. We briefly discuss a popular previous algorithm in Section 5.7, which is used
as a base case for comparison against SPADE. An experimental study is presented in
Section 5.8. Finally, we conclude in Section 5.9.

5.2 Problem Statement

The problem of mining sequential patterns can be stated as follows: Let I =
{i1, i2, · · · , im} be a set of m distinct attributes, also called items. An itemset is a
non-empty unordered collection of items (without loss of generality, we assume that
items of an itemset are sorted in lexicographic order). A sequence is an ordered list of
itemsets. An itemset i is denoted as (i1i2 · · · ik), where ij is an item. An itemset with
k items is called a k-itemset. A sequence α is denoted as (α1 7→ α2 7→ · · · 7→ αq), where
the sequence element αj is an itemset. A sequence with k items (k =

∑

j |αj |) is called
a k-sequence. For example, (B 7→ AC) is a 3-sequence. An item can occur only once in
an itemset, but it can occur multiple times in different itemsets of a sequence.

A sequence α = (α1 7→ α2 7→ · · · 7→ αn) is a subsequence of another sequence
β = (β1 7→ β2 7→ · · · 7→ βm), denoted as α � β, if there exist integers i1 < i2 < · · · < in
such that aj ⊆ bij for all aj. For example the sequence (B 7→ AC) is a subsequence of
(AB 7→ E 7→ ACD), since the sequence elements B ⊆ AB, and AC ⊆ ACD. On the
other hand the sequence (AB 7→ E) is not a subsequence of (ABE), and vice versa.
We say that α is a proper subsequence of β, denoted α ≺ β, if α � β and β 6� α. A
sequence is maximal if it is not a subsequence of any other sequence. A subsequence of
length k is called a k-subsequence.

A transaction T has a unique identifier and contains a set of items, i.e., T ⊆ I.
A customer C has a unique identifier and has associated with it a list of transactions

75

{T1,T2, · · · ,Tn}. We assume that no customer has more than one transaction with the
same time-stamp, so that we can use the transaction-time as the transaction identifier.
We also assume that a customer’s transaction list is sorted by the transaction-time,
forming a sequence T1 7→ T2 7→ · · · 7→ Tn called the customer-sequence. The database D
consists of a number of such customer-sequences.

A customer-sequence C is said to contain a sequence α, if α � C, i.e., if α is a
subsequence of the customer-sequence C. The support or frequency of a sequence, de-
noted σ(α), is the the total number of customers that contain this sequence. Given a
user-specified threshold called the minimum support (denoted min sup), we say that a
sequence is frequent if occurs more than min sup times. The set of frequent k-sequences
is denoted as Fk.

Given a database D of customer sequences and min sup, the problem of mining se-
quential patterns is to find all frequent sequences in the database. For example, consider
the customer database shown in Figure 5.1 (used as a running example throughout this
chapter). The database has eight items (A to H), four customers, and ten transactions
in all. The figure also shows all the frequent sequences with a minimum support of
50% or 2 customers. In this example we have a unique maximal frequent sequence
D 7→ BF 7→ A.

D G H

B F

A G H

4

4

4 25

10

20

A B F

E

2

2

15

20

A C D F

A B F

C D

A B C

1

1

1

1

10

20

15

25

Transaction-TimeCustomer-Id Items

BF->A
D->BF

D->B->A
D->F->A

ABF 3
2
2
2
2

Frequent 3-Sequences

B
D
F

4
4

4
2

A
Frequent 1-Sequences

AB

B->A

F->A
D->F
D->B
D->A
BF

AF
3

2
2
2
2
4
2
3

Frequent 2-Sequences

D->BF->A 2
Frequent 4-Sequences

FREQUENT SEQUENCES

A B F103

DATABASE

Figure 5.1: Original Customer-Sequence Database

76

5.2.1 Sequence Rules

RuleGen(F , min conf):
for all frequent sequences β ∈ F do

for all subsequences α ≺ β do
conf = fr(β)/fr(α);
if (conf ≥ min conf) then

output the rule α ⇒ β, and conf

Figure 5.2: Rule Generation Algorithm

Once the frequent sequences are known, they can be used to obtain rules that de-
scribe the relationship between different sequence items. For example, the sequence
(BF) occurs in four customers, while (ABF) in three customers. We can therefore say
that if BF occurs together, then there is a 75% chance that A also occurs. In other
words we say that the rule (BF) ⇒ (BFA) has a 75% confidence. Another example
of a rule is that (D 7→ BF) ⇒ (D 7→ BF 7→ A). It has 100% confidence. Given a
user-specified minimum confidence (min conf), we can generate all rules that meet the
condition by means of the simple algorithm shown in figure 5.2. Since the rule genera-
tion step is quite straightforward, in the rest of the chapter we will only concentrate on
the frequent sequence discovery phase.

5.3 Related Work

The problem of mining sequential patterns was introduced in [Agrawal and Srikant,
1995]. They also presented three algorithms for solving this problem. The AprioriAll
algorithm was shown to perform equal to or better than the other two approaches. In
subsequent work [Srikant and Agrawal, 1996b], the same authors proposed the GSP
algorithm that outperformed AprioriAll by up to 20 times. They also introduced max-
imum gap, minimum gap, and sliding window constraints on the discovered sequences.

The problem of finding frequent episodes in a sequence of events was presented
in [Mannila et al., 1995]. An episode consists of a set of events and an associated
partial order over the events. Our definition of a sequence can be expressed as an
episode, however their work is targeted to discover the frequent episodes in a single
long event sequence, while we are interested in finding frequent sequences across many
different customer-sequences. They further extended their framework in [Mannila and
Toivonen, 1996] to discover generalized episodes, which allows one to express arbitrary
unary conditions on individual episode events, or binary conditions on event pairs. The
MEDD and MSDD algorithms [Oates et al., 1997] discover patterns in multiple event
sequences. However, they only find sequences of length two with a given window size
and a time-gap.

Sequence discovery can essentially be thought of as association discovery [Agrawal
et al., 1996] over a temporal database. While association rules discover only intra-

77

transaction patterns (itemsets), we now also have to discover inter-transaction patterns
(sequences). The set of all frequent sequences is a superset of the set of frequent itemsets.
Due to this similarity sequence mining algorithms like AprioriAll, GSP, etc., utilize some
of the ideas initially proposed for the discovery of association rules [Agrawal et al., 1996;
Savasere et al., 1995]. Our new algorithm is based on the fast association mining
techniques presented by us in [Zaki et al., 1997c]. Nevertheless, the sequence search
space is much more complex and challenging than the itemset space, and thus warrants
specific algorithms. Pars of this chapter have appeared in [Zaki, 1998].

5.4 Sequence Enumeration: Lattice-based Approach

Lemma 5.1 Let S be the set of all sequences on the items in I. Then the subsequence
relation �, defines a partial order on S.

Theorem 5.1 Given a set I of items, the ordered set S of all possible sequences on the
items, is a complete lattice in which join and meet are given by union and intersection,
respectively:

∨

{Ai | i ∈ I} =
⋃

i∈I

Ai

∧

{Ai | i ∈ I} =
⋂

i∈I

Ai

From our example database (Figure 5.1), we have F1 = {A,B,D,F}. Figure 5.3
shows the sequence lattice S spanned by the subsequence relation on these four frequent
items, which are also the atoms. The bottom element of the sequence lattice is ⊥ = {},
but the top element is undefined, since in the abstract the sequence lattice is infinite.
Thus only some parts of the lattice are shown. The figure shows the complete set of 2-
sequences, the 3-sequences that can be generated from A 7→ A and AB, and the possible
4-sequences that can be generated from A 7→ A 7→ A. The recursive combinatorial
structure of the subsequence lattice should be apparent. For example consider the set
of sequences generated from the item A, and the sequence A 7→ A. The two sets are
identical except for the extra A 7→ prefix in the latter set.

Lemma 5.2 Let n denote the total number of frequent items. Then the total number

of k-sequences is given as:
k
∑

i1=1

(

n

i1

)

k−i1
∑

i2=1

(

n

i2

)

· · ·

k−i1−···−ik−1
∑

ik=1

(

n

ik

)

Proof: We will count the number of ways in which a k sequence can be constructed,
and then assign items for each arrangement. The number of ways a k-sequence can be
constructed is given by the number of ways we can obtain k as a sum of integers. For
example, Table 5.1 shows the number of ways we can obtain 4 as a sum of integers.
The integers in the sum are interpreted to be the sizes of the itemsets comprising a k
length sequence. We now assign items to each such itemset. For an itemset of length i,
we have

(n
i

)

item assignments. Multiplying the choices for each case, and adding all the
cases we obtain the total number of k-sequences shown above.

78

A->A->A->A A->A->A->FA->A->A->B A->A->A->D A->A->AB A->A->AD A->A->AF

B->A B->B B->D B->F BFBD D->A D->B D->D D->F DF F->B F->D F->FF->A

AB->A AB->B AB->D AB->F ABD ABF

A B D F

A->A A->B A->D A->F AFADAB

A->A->A A->A->B A->A->D A->A->F A->AB A->AD A->AF

{ }

Figure 5.3: Sequence Lattice Spanned by Subsequence Relation

As mentioned above, in the abstract case the lattice of sequences is infinite. Fortu-
nately in all practical cases it is bounded. The number of sequence elements (itemsets)
is bounded above by the maximum number of transactions per customer (say C). Since
the size of an itemset is bounded above by the maximum transaction size (say T), a
sequence can have at most C · T items, and hence the subsequence lattice is bounded
above by C · T . In our example, C = 4 and T = 4, so that the maximum possible
sequence can have 16 items.

In all practical cases not only is the lattice bounded, but the set of frequent sequences
is also very sparse (depending on the min sup value). For example, consider Figure 5.4
which shows the sequence lattice induced by the maximal frequent sequence D 7→ BF 7→
A in our example. The set of atoms A is given by the frequent items {A,B,D,F}. It
is obvious that the set of all frequent sequences forms a meet-semilattice, because it is
closed under the meet operation, i.e., if X and Y are frequent sequences, then the meet
X ∩ Y is also frequent. However, it is not a join-semilattice, since it is not closed under
joins, i.e., X and Y being frequent, doesn’t imply that X ∪ Y is frequent. The closure
under meet leads to the well known observation on sequence frequency:

Lemma 5.3 All subsequences of a frequent sequence are frequent.

The above lemma leads very naturally to a bottom-up search procedure for enumer-

79

i1 i2 i3 i4

1 1 1 1
1 1 2
1 2 1
1 3
2 1 1
2 2
3 1
4

Table 5.1: Number of Ways to Obtain a 4-Sequence

ating frequent sequences, which has been leveraged in many sequence mining algo-
rithms [Srikant and Agrawal, 1996b; Mannila et al., 1995; Oates et al., 1997]. In essence
what the lemma says is that we need to focus only on those sequences whose subse-
quences are frequent. This leads to a very powerful pruning strategy, where we eliminate
all sequences, at least one of whose subsequences is infrequent. However, the lattice for-
mulation makes it apparent that we need not restrict ourselves to a purely bottom-up
search. We can employ different search procedures, which we will discuss below.

5.4.1 Support Counting

Let’s associate with each atom X in the sequence lattice its id-list, denoted L(X),
which is a list of all customer (cid) and transaction identifier (tid) pairs containing the
atom. Figure 5.5 shows the id-lists for the atoms in our example database. For example
consider the atom D. In our original database in Figure 5.1, we see that D occurs in the
following customer and transaction identifier pairs {(1, 10), (1, 25), (4, 10)}. This forms
the id-list for item D.

Lemma 5.4 For any X ∈ S, let J = {Y ∈ A(S) | Y ≤ X}. Then X =
⋃

Y ∈J Y , and
σ(X) =|

⋂

Y ∈J L(Y) |.

The above lemma states that any sequence in S can be obtained as a union or join
of some atoms of the lattice, and the support of the sequence can be obtained by
intersecting the id-list of the atoms. This lemma is applied only to the atoms of the
lattice. We generalize this for a set of sequences in the next lemma.

Lemma 5.5 For any X ∈ S, let X = ∪Y ∈JY . Then σ(X) =| ∩Y ∈JL(Y) |.

This lemma says that if X is given as a union of a set of sequences in J , then its support
is given as the intersection of id-lists of elements in J . In particular we can determine
the support of any k-sequence by simply intersecting the id-lists of any two of its (k−1)
length subsequences. A simple check on the cardinality of the resulting id-list tells us

80

BF->AABF D->B->A D->BF D->F->A

A B D F

{ }

D->BF->A

AB AF D->A D->B D->F F->AB->ABF

Figure 5.4: Lattice Induced by Maximal Frequent Sequence D 7→ BF 7→ A

whether the new sequence is frequent or not. Figure 5.6 shows this process pictorially.
It shows the initial vertical database with the id-list for each atom. The intermediate
id-list for D 7→ A is obtained by intersecting the lists of atoms D and A, i.e., L(D 7→
A) = L(D)∩L(A). Similarly, L(D 7→ BF 7→ A) = L(D 7→ BF)∩L(D 7→ B 7→ A), and
so on. Thus, only the lexicographically first two subsequences at the previous level are
required to compute the support of a sequence at a given level.

Lemma 5.6 Let X and Y be two sequences , with X � Y . Then L(X) ⊇ L(Y).

This lemma says that if the sequence X is a subsequence of Y , then the cardinality
of the id-list of Y (i.e., its support) must be equal to or less than the cardinality of
the id-list of X. A practical and important consequence of this lemma is that the
cardinalities of intermediate id-lists shrink as we move up the lattice. This results in
very fast intersection and support counting.

5.4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory, we could enumerate all the frequent sequences
by traversing the lattice, and performing intersections to obtain sequence supports.

81

1

1

2

3

4

20

25

15

10

25

A

TIDCID CID TID

D

1

1

4

10

25

10

B

1

1

2

3

4

15

20

15

10

20

TIDCID

F

1

1

2

3

4

20

25

10

20

15

TIDCID

1 15

Figure 5.5: Id-lists for the Atoms

In practice, however, we only have a limited amount of main-memory, and all the
intermediate id-lists will not fit in memory. This brings up a natural question: can we
decompose the original lattice into smaller pieces such that each piece can be solved
independently in main-memory. We address this question below.

Define a function p : S 7→ S where p(X, k) = X[1 : k]. In other words, p(X, k)
returns the k length prefix of X. Define an equivalence relation θk on the lattice S as
follows: ∀X,Y ∈ S, we say that X is related to Y under θk, denoted as X ≡θk

Y if and
only if p(X, k) = p(Y, k). That is, two sequences are in the same class if they share a
common k length prefix.

Figure 5.7 shows the lattice induced by the equivalence relation θ1 on S, where we
collapse all sequences with a common item prefix into an equivalence class. The resulting
set of equivalence classes is {[A], [B], [D], [F]}. At the bottom of the figure, it also shows
the links among the four classes. These links carry pruning information. In other words
if we want to prune a sequence (if it has at least one infrequent subsequence) then we
may need some cross-class information. We will have more to say about this later.

Lemma 5.7 Each equivalence class [X]θk
induced by the equivalence relation θk is a

sub-lattice of S.

Proof: Let U and V be any two elements in the class [X], i.e., U, V share the common
prefix X. U ∨ V = U ∪ V ⊇ X implies that U ∨ V ∈ [X], and U ∧ V = U ∩ V ⊇ X
implies that U ∧ V ∈ [X]. Therefore [X]θk

is a sub-lattice of S.

Each [X]θ1
is thus a lattice with its own set of atoms. For example, the atoms of

[D]θ1
are {D 7→ A,D 7→ B,D 7→ F}, and the bottom element is ⊥ = D. By the

82

{ }

BF->AABF D->B->A D->BF D->F->A

D->BF->A

A B D F

AB AF D->A D->B D->F F->A
1

1

4

20

25

25

1

2

3

4

20

25

15

10

25

(Intersect D->B->A and D->BF)

(Intersect D->B and D->F)

(Intersect D and A)

BF B->A

A

1

TIDCID CID TID

D

1

1

4

10

25

10

B

1

1

2

3

4

15

20

15

10

20

TIDCID

CID TID CID TID

1

1

4

15

20

20

CID TID

1

1

20

25

204

D->A D->B D->F

F

1

1

2

3

4

20

25

10

20

15

TIDCID

CID TID

1

1

4

20

25

25

D->B->A

CID TID

1

4

25

25

D->BF->A

CID TID

1

4

20

20

D->BF

ID-LIST DATABASE

1

1

15

151

Figure 5.6: Computing Support via Id-list Intersections

application of Lemmas 5.4 and 5.5, we can generate all the supports of the sequences in
each class (sub-lattice) by intersecting the id-list of atoms or any two subsequences at
the previous level. If there is enough main-memory to hold temporary id-lists for each
class, then we can solve each [X]θ1

independently.

In practice we have found that the one level decomposition induced by θ1 is sufficient.
However, in some cases, a class may still be too large to be solved in main-memory. In
this scenario, we apply recursive class decomposition. Lets assume that [D] is too large
to fit in main-memory. Since [D] is itself a lattice, it can be decomposed using the
relation θ2. Figure 5.8 shows the classes induced by applying θ2 on [D] (after applying
θ1 on S). Each of the resulting six classes, [A], [B], [D 7→ A], [D 7→ B], [D 7→ F],
and [F], can be solved independently. Thus depending on the amount of main-memory
available, we can recursively partition large classes into smaller ones, until each class is
small enough to be solved independently in main-memory.

83

{ }

D->F->A

B->ABF

BF->A

AB AF

B D F

D->B->A D->BF

D->A D->B D->F

D->BF->A

ABF

F->A

A

[{}]

[A] [B] [F][D]

Equivalence Classes

Figure 5.7: Equivalence Classes of S Induced by θ1

{ }

D->F->A

B->ABF

BF->A

AB AF

B D F

D->B->A D->BF

D->A D->B D->F

D->BF->A

ABF

F->A

A

Equivalence Classes

[D->F][D->A]
[D->B]

[A] [B] [F][D]

Figure 5.8: Equivalence Classes of [D]θ1
Induced by θ2

84

5.4.3 Search for Frequent Sequences

In this section we discuss efficient search strategies for enumerating the frequent
sequences within each class. We will discuss two main strategies: breadth-first and
depth-first search. Both these methods are based on a recursive decomposition of each
class into smaller classes induced by the equivalence relation θk. Figure 5.9 shows the
decomposition of [D]θ1

into smaller and smaller classes, and the resulting lattice of
equivalence classes.

Breadth-First Search (BFS) In a breadth-first search the lattice of equivalence
classes generated by the recursive application of θk is explored in a bottom-up manner.
We process all the child classes at a level before moving on to the next level. For example,
in Figure 5.9, we process the equivalence classes {[D 7→ A], [D 7→ B], [D 7→ F]}, before
moving on to the classes {[D 7→ B 7→ A], [D 7→ BF], [D 7→ F 7→ A]}, and so on.

{ }

D->A D->B D->F

D->F->AD->B->A D->BF

D->BF->A

[D]

[D->B][D->A] [D->F]

[{}]

[D->BF][D->B->A] [D->F->A]

[D->BF->A]

D

Equivalence Class Lattice

Figure 5.9: Recursive Decomposition of Class [D] into Smaller Sub-Classes via θk

Depth-First Search (DFS) In a depth-first search, we completely solve all child
equivalence classes along one path before moving on to the next path. For example, we
process the classes in the following order [D 7→ A], [D 7→ B], [D 7→ B 7→ A], [D 7→ BF],
[D 7→ BF 7→ A], and so on.

85

The advantage of BFS over DFS is that we have more information available for prun-
ing. For example, we know the set of 2-sequences before constructing the 3-sequences,
while this information is not available in DFS. On the other hand DFS requires less
main-memory than BFS. DFS only needs to keep the intermediate id-lists for two con-
secutive classes along a single path, while BFS must keep track of id-lists for all the
classes in two consecutive levels.

Besides BFS and DFS search, there are many other search possibilities. For example,
in the DFS scheme, if we determine that D 7→ BF 7→ A is frequent, then we do not
have to process the classes [D 7→ F], and [D 7→ F 7→ A], since they must necessarily be
frequent. We are currently investigating such schemes for efficient enumeration of only
the maximal frequent sequences.

5.5 SPADE: Algorithm Design and Implementation

In this section we describe the design and implementation of SPADE. Figure 5.10
shows the high level structure of the algorithm. The main steps include the computa-
tion of the frequent 1-sequences and 2-sequences, the decomposition into prefix-based
equivalence classes, and the enumeration of all other frequent sequences via BFS or DFS
search within each class. We will now describe each step in some more detail.

SPADE (min sup,D):
F1 = { frequent items or 1-sequences };
F2 = { frequent 2-sequences };
E = { equivalence classes [X]θ1

};
for all [X] ∈ E do Enumerate-Frequent-Seq([X]);

Figure 5.10: The SPADE Algorithm

5.5.1 Computing Frequent 1-Sequences and 2-Sequences

Most of the current sequence mining algorithms [Agrawal and Srikant, 1995; Srikant
and Agrawal, 1996b] assume a horizontal database layout such as the one shown in
Figure 5.1. In the horizontal format the database consists of a set of customers. Each
customer has a set of transactions, along with the items contained in the transaction. In
contrast our algorithm uses a vertical database format, where we maintain a disk-based
id-list for each item. Each entry of the id-list is a (cid, tid) pair where the item occurs.
This enables us to check support via simple id-list intersections.

Computing F1: Given the vertical id-list database, all frequent 1-sequences can be
computed in a single database scan. For each database item, we read its id-list from
the disk into memory. We then scan the id-list, incrementing the support for each new
cid encountered.

86

Computing F2: Let N = |I| be the number of frequent items, and A the average
id-list size in bytes. A naive implementation for computing the frequent 2-sequences
requires

(N
2

)

id-list intersections for all pairs of items. The amount of data read is
A·N ·(N−1)/2, which corresponds to around N/2 data scans. This is clearly inefficient.
Instead of the naive method we propose two alternate solutions:

1. Use a preprocessing step to gather the counts of all 2-sequences above a user
specified lower bound. Since this information is invariant, it has to be computed
once, and the cost can be amortized over the number of times the data is mined.

2. Perform a vertical-to-horizontal transformation on-the-fly. This can be done quite
easily, with very little overhead. For each item i, we scan its id-list into memory.
For each customer and transaction id pair, say (c, t) in L(i), we insert (i, t) in
the list for customer c. For example, consider the id-list for item A, shown in
Figure 5.5. We scan the first pair (1, 15), and then insert (A, 15) in the list for
customer 1. Figure 5.11 shows the complete horizontal database recovered from
the vertical item id-lists. Computing F2 from the recovered horizontal database
is straight-forward. We form a list of all 2-sequences in each customer sequence,
and update counts in a 2-dimensional array indexed by the frequent items.

cid (item, tid) pairs

1 (A 15) (A 20) (A 25) (B 15) (B 20) (C 10) (C 15) (C 25)
(D 10) (D 25) (F 20) (F 25)

2 (A 15) (B 15) (E 20) (F 15)

3 (A 10) (B 10) (F 10)

4 (A 25) (B 20) (D 10) (F 20) (G 10) (G 25) (H 10) (H 25)

Figure 5.11: Vertical-to-Horizontal Database Recovery

5.5.2 Enumerating Frequent Sequences of a Class

Figure 5.12 shows the pseudo-code for the breadth-first and depth-first search. The
input to the procedure is a set of atoms of a sub-lattice S, along with their id-lists.
Frequent sequences are generated by intersecting the id-lists of all distinct pairs of
atoms and checking the cardinality of the resulting id-list against min sup. Before
intersecting the id-lists a pruning step is inserted to ensure that all subsequences of
the resulting sequence are frequent. If this is true, then we go ahead with the id-list
intersection, otherwise we can avoid the intersection. The sequences found to be frequent
at the current level form the atoms of classes for the next level. This recursive process
is repeated until all frequent sequences have been enumerated. In terms of memory
management it is easy to see that we need memory to store intermediate id-lists for
at most two consecutive levels. The depth-first search requires memory for two classes

87

Enumerate-Frequent-Seq(S):
for all atoms Ai ∈ S do

Ti = ∅;
for all atoms Aj ∈ S, with j > i do

R = Ai ∪ Aj;
if (Prune(R) == FALSE) then

L(R) = L(Ai) ∩ L(Aj);
if σ(R) ≥ min sup then

Ti = Ti ∪ {R}; F|R| = F|R| ∪ {R};
end
if (Depth-First-Search) then Enumerate-Frequent-Seq(Ti);

end
if (Breadth-First-Search) then

for all Ti 6= ∅ do Enumerate-Frequent-Seq(Ti);

Figure 5.12: Pseudo-code for Breadth-First and Depth-First Search

on the two levels. The breadth-first search requires memory of all the classes on the
two levels. Once all the frequent sequences for the next level have been generated, the
sequences at the current level can be deleted.

Disk Scans Before processing each of equivalence classes from the initial decompo-
sition, all the relevant item id-lists for that class are scanned from disk into memory.
The id-lists for the atoms of each initial class are constructed by intersecting the item
id-lists. All the other frequent sequences are enumerated as described above. If all the
initial classes have disjoint set of items, then each item’s id-list is scanned from disk
only once during the entire frequent sequence enumeration process over all sub-lattices.
In the general case there will be some degree of overlap of items among the different
sub-lattices. However only the database portion corresponding to the frequent items
will need to be scanned, which can be a lot smaller than the entire database. Further-
more, sub-lattices sharing many common items can be processed in a batch mode to
minimize disk access. Thus we claim that our algorithms will usually require a single
database scan after computing F2, in contrast to the current approaches which require
multiple scans.

5.5.3 Id-List Intersection

We now describe how we perform the id-list intersections for two sequences. Consider
an equivalence class [B 7→ A] with the atom set {B 7→ AB,B 7→ AD,B 7→ A 7→ A,B 7→
A 7→ D,B 7→ A 7→ F}. If we let P stand for the prefix B 7→ A, then we can rewrite
the class to get [P] = {PB,PD,P 7→ A,P 7→ D,P 7→ F}. One can observe the
class has two kinds of atoms: the itemset atoms {PB,PD}, and the sequence atoms
{P 7→ A,P 7→ D,P 7→ F}. We assume without loss of generality that the itemset
atoms of a class always precede the sequence atoms. To extend the class it is sufficient

88

to intersect the id-lists of all pairs of atoms. However, depending on the atom pairs
being intersected, there can be upto three possible resulting frequent sequences:

1. Itemset Atom vs Itemset Atom: If we are intersecting PB with PD, then
the only possible outcome is new itemset atom PBD.

2. Itemset Atom vs Sequence Atom: If we are intersecting PB with P 7→ A,
then the only possible outcome is new sequence atom PB 7→ A.

3. Sequence Atom vs Sequence Atom: If we are intersecting P 7→ A with
P 7→ F , then there are three possible outcomes: a new itemset atom P 7→ AF ,
and two new sequence atoms P 7→ A 7→ F and P 7→ F 7→ A. A special case arises
when we intersect P 7→ A with itself, which can only produce the new sequence
atom P 7→ A 7→ A.

TIDCIDTIDCID

10

70

20

15 60

20

10

80

50

308

8

8

8

7

4

1

1

1 20

30

40

60

40

10

1

1

3

5

8

8

8

8

11

16

20 20

80

30

80

50

40

30

80

70

17

13

13

50

70

13 10

TIDCID
1

1

8

8

8

8 80

50

40

30

80

70

TIDCID
8

8 80

50

13

13

50

70

TIDCID
30

50

808

8

8

P->F->A

P->A->F

P->AF

P->FP->A

Figure 5.13: Id-list Intersection

We now describe how the actual id-list intersection is performed. Consider Fig-
ure 5.13, which shows the hypothetical id-lists for the sequence atoms P 7→ A and
P 7→ F . To compute the new id-list for the resulting itemset atom P 7→ AF , we simply

89

need to check for equality of (cid,tid) pairs. In our example, the only matching pairs
are {(8, 30), (8, 50), (8, 80)}. This forms the id-list for P 7→ AF . To compute the id-list
for the new sequence atom P 7→ A 7→ F , we need to check for a follows relationship,
i.e., for a given pair (c, t1) in L(P 7→ A), we check whether there exists a pair (c, t2) in
L(P 7→ F) with the same cid c, but with t2 > t1. If this is true, it means that the item F
follows the item A for customer c. In other words, the customer c contains the pattern
P 7→ A 7→ F , and the pair (c, t2) is added to the pattern’s id-list. Finally, the id-list
for P 7→ F 7→ A can be obtained in a similar manner by reversing the roles of P 7→ A
and P 7→ F . The final id-lists for the three new sequences are shown in Figure 5.13.
Since we only intersect sequences within a class, which have the same prefix (whose
items have the same tid or time-stamp), we only need to keep track of the last item’s
tid for determining the equality and follows relationships. As a further optimization,
we generate the id-lists of all the three possible new sequences in just one intersection.

5.5.4 Pruning Sequences

Prune (β):
for all (k − 1)-subsequences, α ≺ β do

if ([α1] has been processed, and α 6∈ Fk−1) then
return TRUE;

return FALSE;

Figure 5.14: Sequence Pruning

The pruning algorithm is shown in Figure 5.14. Let α1 denote the first item of
sequence α. Before generating the id-list for a new k-sequence β, we check whether
all its k subsequences of length k − 1 are frequent. If they all are frequent then we
perform the id-list intersection. Otherwise, β is dropped from consideration. Note that
all subsequences except the last are within the current class. For example consider a
sequence β = (D 7→ BF 7→ A). The first three subsequences, (D 7→ BF), (D 7→ B 7→
A), and (D 7→ F 7→ A) are all lie in the class [D]. However, the last subsequence
(BF 7→ A) belongs to the class [B]. If [B] has already been processed then we have
complete subsequence information for pruning. Otherwise, if [B] has not been processed,
then we cannot determine whether (BF 7→ A) is frequent or not. Nevertheless, partial
pruning based on the members of the same class is still possible. It is generally better
to process the class in lexicographically descending order, since in this case at least for
itemsets all information is available for pruning. This is because items of an itemset are
kept sorted in increasing order. For example, if we wanted to test β = ABDF , then
we would first check within its class [A] if ADF is frequent, and since [B] will have
been processed if we solve the classes in reverse lexicographic order, we can also check
if BDF is frequent.

90

5.6 Parallel Sequence Mining

We will now briefly discuss how the SPADE algorithm can be efficiently parallelized.
Since SPADE retains most of the feature of Par-Eclat the parallelization can be essen-
tially the same as that described in Section 3.4:

1. We initially partition the id-lists equally among the different processors.

2. We compute the set of frequent 2-sequences, and then generate independent classes
by using the prefix-based decomposition. These classes are then scheduled among
the processors using the greedy heuristic described in Section 3.4.

3. We exchange the id-lists among the processors so that the id-lists of all atoms of
classes scheduled on a given processor are local to that processor.

4. Finally, we enter the asynchronous phase. Each processor can generate all the
frequent sequences independently since each class is self-contained.

5.7 The GSP Algorithm

Below we describe the GSP algorithm [Srikant and Agrawal, 1996b] in some more
detail, since we use it as a base against which we compare SPADE, and it is one of the
best previous algorithms.

F1 = { frequent 1-sequences };
for (k = 2;Fk−1 6= ∅; k = k + 1) do

Ck = Set of candidate k-sequences;
for all customer-sequences E in the database do

Increment count of all α ∈ Ck contained in E
Fk = {α ∈ Ck|α.sup ≥ min sup};

Set of all frequent sequences =
⋃

k Fk;

Figure 5.15: The GSP Algorithm

GSP makes multiple passes over the database. In the first pass, all single items
(1-sequences) are counted. From the frequent items a set of candidate 2-sequences are
formed. Another pass is made to gather their support. The frequent 2-sequences are
used to generate the candidate 3-sequences, and this process is repeated until no more
frequent sequences are found. There are two main steps in the algorithm.

1. Candidate Generation: Given the set of frequent (k − 1)-sequences Fk−1, the
candidates for the next pass are generated by joining Fk−1 with itself. A pruning
phase eliminates any sequence at least one of whose subsequences is not frequent.
For fast counting, the candidate sequences are stored in a hash-tree.

91

2. Support Counting: To find all candidates contained in a customer-sequence
E , all k-subsequences of E are generated. For each such subsequence a search is
made in the hash-tree. If a candidate in the hash-tree matches the subsequence,
its count is incremented.

The GSP algorithm is shown in Figure 5.15. For more details on the specific mechanisms
for constructing and searching hash-trees, please refer to [Srikant and Agrawal, 1996b].

5.8 Experimental Results

In this section we compare the performance of SPADE with the GSP algorithm.
The GSP algorithm was implemented as described in [Srikant and Agrawal, 1996b]. For
SPADE results are shown only for the BFS search. Experiments were performed on a
100MHz MIPS processor with 256MB main memory running IRIX 6.2. The data was
stored on a non-local 2GB disk.

Dataset C T S I D Size (MB)

C10-T2.5-S4-I1.25-D100K 10 2.5 4 1.25 100,000 18.4
C10-T2.5-S4-I1.25-D200K 10 2.5 4 1.25 200,000 36.8
C10-T2.5-S4-I1.25-D500K 10 2.5 4 1.25 500,000 92.0
C10-T2.5-S4-I1.25-D1000K 10 2.5 4 1.25 1,000,000 184.0

C10-T5-S4-I1.25-D200K 10 5 4 1.25 200,000 56.5
C10-T5-S4-I2.5-D200K 10 5 4 2.5 200,000 54.3

C20-T2.5-S4-I1.25-D200K 20 2.5 4 1.25 200,000 76.7
C20-T2.5-S4-I2.5-D200K 20 2.5 4 2.5 200,000 66.5
C20-T2.5-S8-I1.25-D200K 20 2.5 8 1.25 200,000 76.4

Table 5.2: Synthetic Datasets

Synthetic Datasets The synthetic datasets are the same as those used in [Srikant
and Agrawal, 1996b], albeit with twice as many customers. We used the publicly avail-
able dataset generation code from the IBM Quest data mining project [IBMa]. These
datasets mimic real-world transactions, where people buy a sequence of sets of items.
Some customers may buy only some items from the sequences, or they may buy items
from multiple sequences. The customer sequence size and transaction size are clustered
around a mean and a few of them may have many elements. The datasets are generated
using the following process. First NI maximal itemsets of average size I are generated
by choosing from N items. Then NS maximal sequences of average size S are created
by assigning itemsets from NI to each sequence. Next a customer of average C trans-
actions is created, and sequences in NS are assigned to different customer elements,
respecting the average transaction size of T . The generation stops when D customers
have been generated. Like [Srikant and Agrawal, 1996b] we set NS = 5000, NI = 25000

92

and N = 10000. The number of data-sequences was set to D = 200, 000. Table 5.2
shows the datasets with their parameter settings. We refer the reader to [Agrawal and
Srikant, 1995] for additional details on the dataset generation.

Plan Dataset The real-life dataset was obtained from a Natural Language Planning
domain. The planner generates plans for routing commodities from one city to another.
A “customer” corresponds to a plan identifier, while a “transaction” corresponds to
an event in a plan. An event consists of an event identifier, an outcome (such as
“success”, “late”, or “failure”), an action name (such as “move”, or “load”), and a
set of additional parameters specifying things such as origin, destination, vehicle type
(“truck”, or “helicopter”), weather conditions, and so on. The data mining goal is to
identify the causes of plan failures. There are 77 items, 202071 plans (customers), and
829236 events (transactions). The average plan length is 4.1, and the average event
length is 7.6.

5.8.1 Comparison of SPADE with GSP

Figure 5.16 compares our SPADE algorithm with GSP, on different synthetic datasets.
Each graph shows the results as the minimum support is changed from 1% to 0.25%.
Two sets of experiments are reported for each value of support. The bar labeled SPADE
corresponds to the case where we computed F2 via the vertical-to-horizontal transfor-
mation method described in Section 5.5.1. The times for GSP and SPADE include the
cost of computing F2. The bars labeled SPADE-F2 and GSP-F2 correspond to the case
where F2 was computed in a pre-processing step, and the times shown don’t include
the pre-processing cost.

The figures clearly indicate that the performance gap between the two algorithms
increases with decreasing minimum support. SPADE is about twice as fast as GSP at
lower values of support. In addition we see that SPADE-F2 outperforms GSP-F2 by an
order of magnitude in most cases. There are several reasons why SPADE outperforms
GSP:

1. SPADE uses only simple join operation on tid-lists. As the length of a frequent
sequence increases, the size of its tid-list decreases, resulting in very fast joins.

2. No complicated hash-tree structure is used, and no overhead of generating and
searching of customer subsequences is incurred. These structures typically have
very poor locality [Parthasarathy et al., 1998]. On the other hand SPADE has
excellent locality, since a join requires only a linear scan of two lists.

3. As the minimum support is lowered, more and larger frequent sequences are found.
GSP makes a complete dataset scan for each iteration. SPADE on the other hand
restricts itself to usually only three scans. It thus cuts down the I/O costs.

Another conclusion that can be drawn from the SPADE-F2 and GSP-F2 comparison
is that nearly all the benefit of SPADE comes from the improvement in the running time

93

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

50

100

150

200

250

300

350
T

im
e

(s
ec

on
ds

)
GSP

SPADE

GSP-F2

SPADE-F2

C10-T2.5-S4-I1.25-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

T
im

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

C10-T5-S4-I1.25-D200K

1 0.75 0.5 0.33

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

C10-T5-S4-I2.5-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

C20-T2.5-S4-I1.25-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

C20-T2.5-S4-I2.5-D200K

1 0.75 0.5 0.33 0.25

Minimum Support (%)

0

500

1000

1500

2000

2500

3000

T
im

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

C20-T2.5-S8-I1.25-D200K

Figure 5.16: Performance Comparison: Synthetic Datasets

94

after the F2 pass since both algorithms spend roughly the same time in computing F2.
Between F3 and Fk, SPADE outperforms GSP anywhere from a factor of three to an
order of magnitude.

75 67 50 40

Minimum Support (%)

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

ec
on

ds
)

GSP

SPADE

GSP-F2

SPADE-F2

Natural Language Planning

Figure 5.17: Performance Comparison: Planning Dataset

We also compared the performance of the two algorithms on the plan database. The
results are shown in Figure 5.17. As in the case of synthetic databases, the SPADE
algorithm outperforms GSP by a factor of two.

5.8.2 Scaleup

We first study how SPADE performs with increasing number of customers. Fig-
ure 5.18 shows how SPADE scales up as the number of customers is increased ten-fold,
from 0.1 million to 1 million (the number of transactions is increased from 1 million to
10 million, respectively). All the experiments were performed on the C10-T2.5-S4-I1.25
dataset with different minimum support levels ranging from 0.5% to 0.1%. The execu-
tion times are normalized with respect to the time for the 0.1 million customer dataset.
It can be observed that SPADE scales quite linearly.

We next study the scale-up as we vary the dataset parameters in two ways: 1)
keeping the average number of items per transaction constant, we increase the average
number of transactions per customer; and 2) keeping the average number of transactions
per customer constant, we increase the average number of items per transaction. The
size of the datasets is kept nearly constant by ensuring that the product of the average
transaction size, the average number of transactions per customer, and the number
of customers T · C · D remains the same. The aim of these experiments is to gauge
the scalability with respect to the two test parameters, and independent of factors like
database size or the number of frequent sequences.

95

100 200 500 1000

Number of Customers (’000s)

1

2

3

4

5

6

7

8

9

10

11

12

13

R
el

at
iv

e
Ti

m
e

SPADE-0.1%

SPADE-0.25%

SPADE-0.5%

GSP-0.1%

GSP-0.25%

GSP-0.5%

C10-T2.5-S4-I1.25

Figure 5.18: Scale-up: Number of Customers

Figure 5.19 shows the scalability results. To ensure that the number of frequent
sequences doesn’t increase by a great amount, we used an absolute minimum support
value instead of using percentages (the graph legends indicate the value used). For both
the graphs, we used S4-I1.25, and the database size was kept a constant at T ·C ·D =
500K. For the first graph we used T = 2.5, and varied C from 10 to 100 (D varied from
200K to 20K), and for the second graph we set C = 10, and varied T from 2.5 to 25 (D
varied from 200K to 20K). It can be easily observed the the algorithm scales linearly with
the two varying parameters. The scalability is also dependent on the minimum support
value used, since for a lower minimum support relatively more frequent sequences are
generated with increase in both the number of transactions and the transaction size,
and thus it takes more time for pattern discovery in these cases.

We further study the scalability as we change the size of the maximal elements in
two ways: 1) keeping all other parameters constant, we increase the average length of
maximal potential frequent sequences; and 2) keeping all other parameters constant,
we increase the average length of maximal potential frequent itemsets. The constant
parameters for the first experiment were C10-T2.5-I1.25-D200K, and S was varied from
2 to 10. For the second experiment, the constant parameters were C10-T5-S4-D200K,
and I was varied from 1 to 5.

Figure 5.20 shows how the algorithm scales with the two test parameters. For higher
values of support the time starts to decrease with increasing maximal element size. This
is because of the fact that the average transaction size and average number of customer
transactions remains fixed, and increasing the maximal frequent sequence or itemset
size means that fewer of these will fit in a customer-sequence, and thus fewer frequent
sequences will be discovered. For lower values of support, however, a larger sequence

96

10 25 50 100

Number of Transactions per Customers

1

2

3

4

5

6

7

8
R

el
at

iv
e

T
im

e
1000

500

T2.5-S4-I1.25

2.5 5 10 20 25

Transaction Size

1

2

3

4

5

6

R
el

at
iv

e
T

im
e

1000

500

C10-S4-I1.25

Figure 5.19: Scale-up: a) Number of Transactions/Customer; b) Transaction Size

2 4 6 8 10

Frequent Sequence Length

0

1

2

R
el

at
iv

e
T

im
e

0.5%

0.25%

0.1%

C10-T2.5-I1.25-D200K

1 2 3 4 5

Frequent Itemset Length

0

1

2

R
el

at
iv

e
T

im
e

1%

0.5%

0.25%

C10-T5-S4-D200K

Figure 5.20: Scale-up: a) Frequent Sequence Length; b) Frequent Itemset Length

will introduce many more subsequences, thus the time starts to increase initially, but
then decreases again due to the same reasons given above. The peak occurs at roughly
the median values of C10 (at S6) for the sequences experiment, and of T5 (at I2) for
the itemsets experiment.

5.9 Conclusions

In this chapter we presented SPADE, a new algorithm for fast mining of sequential
patterns in large databases. Unlike previous approaches which make multiple database
scans and use complex hash-tree structures that tend to have sub-optimal locality,
SPADE decomposes the original problem into smaller sub-problems using equivalence

97

classes on frequent sequences. Not only can each equivalence class be solved indepen-
dently, but it is also very likely that it can be processed in main-memory. Thus SPADE
usually makes only three database scans – one for frequent 1-sequences, another for
frequent 2-sequences, and one more for generating all other frequent sequences. If the
supports of 2-sequences is available then only one scan is required. SPADE uses only
simple intersection operations, and is thus ideally suited for direct integration with
a DBMS. An extensive set of experiments has been conducted to show that SPADE
outperforms the best previous algorithm, GSP, by a factor of two, and by an order
of magnitude with precomputed support of 2-sequences. It also has excellent scaleup
properties with respect to a number of parameters such as the number of customers,
the number of transactions per customer, the transaction size, and the size of potential
maximal frequent itemsets and sequences.

98

6 Mining Classification Rules

6.1 Introduction

An important task of data mining can be thought of as the process of assigning
things to predefined categories or classes – a process called Classification. Since the
classes are predefined this is also known as Supervised Induction. The input for the
classification system consists of a set of example records, called a training set, where
each record consists of several fields or attributes. Attributes are either continuous,
coming from an ordered domain, or categorical, coming from an unordered domain.
One of the attributes, called the classifying attribute, indicates the class or label to
which each example belongs. The induced model consists of patterns that are useful
in class discrimination. Once induced, the model can help in the automatic prediction
of new unclassified data. Classification has been identified as an important problem in
the emerging field of data mining [Agrawal et al., 1993a]. It has important applications
in diverse domains such as retail target marketing, customer retention, fraud detection
and medical diagnosis [Michie et al., 1994].

Classification is a well-studied problem (see [Weiss and Kulikowski, 1991; Michie
et al., 1994] for excellent overviews) and several models have been proposed over the
years, which include neural networks [Lippmann, 1987], statistical models like lin-
ear/quadratic discriminants [James, 1985], decision trees [Breiman et al., 1984; Quinlan,
1993] and genetic algorithms [Goldberg, 1989]. Among these models, decision trees are
particularly suited for data mining [Agrawal et al., 1993a; Mehta et al., 1996]. Decision
trees can be constructed relatively fast compared to other methods. Another advan-
tage is that decision tree models are simple and easy to understand [Quinlan, 1993].
Moreover, trees can be easily converted into SQL statements that can be used to ac-
cess databases efficiently [Agrawal et al., 1992]. Finally, decision tree classifiers obtain
similar, and sometimes better, accuracy when compared with other classification meth-
ods [Michie et al., 1994]. We have therefore focused on building scalable and parallel
decision-tree classifiers.

While there has been a lot of research in classification in the past, the focus had been
on memory-resident data, thus limiting their suitability for mining over large databases.
Recent work has targeted the massive databases usual in data mining. Classifying larger
datasets can enable the development of higher accuracy models. Various studies have

99

confirmed this hypothesis [Catlett, 1991; Chan and Stolfo, 1993a; Chan and Stolfo,
1993b]. Examples of fast scalable classification systems include SLIQ [Mehta et al.,
1996], which for the first time was successful in handling disk-resident data. However,
it did require some hashing information to be maintained in memory, restricting its
scalability. The SPRINT [Shafer et al., 1996] classifier was able to remove all such
restrictions. It was also parallelized on the IBM SP2 parallel distributed-memory ma-
chine [Shafer et al., 1996].

A continuing trend in data mining is the rapid and inexorable growth in the data that
is being collected. The development of high-performance scalable data mining tools must
necessarily rely on parallel computing techniques. Past work on parallel classification
has utilized distributed-memory parallel machines. In such a machine, each processor
has private memory and local disks, and communicates with other processors only via
passing messages. Parallel distributed-memory machines are essential for scalable mas-
sive parallelism. However, shared-memory multiprocessor systems (SMPs), often called
shared-everything systems, are also capable of delivering high performance for low to
medium degree of parallelism at an economically attractive price. SMP machines are
the dominant types of parallel machines currently used in industry. Individual nodes of
parallel distributed-memory machines are also increasingly being designed to be SMP
nodes. For example, an IBM SP2 parallel system may consist of up to 64 high nodes,
where each high node is an 8-way SMP system with PowerPC 604e processors [IBMb].
A shared-memory system offers a single memory address space that all processors can
access. Processors communicate through shared variables in memory and are capable of
accessing any memory location. Synchronization is used to co-ordinate processes. Any
processor can also access any disk attached to the system.

This chapter presents fast scalable decision-tree-based classification algorithms tar-
geting shared-memory systems, the first such study. The algorithms are based on the
sequential SPRINT classifier, and span the gamut of data and task parallelism. The
data parallelism is based on attribute scheduling among processors. This is extended
with task pipelining and dynamic load balancing to yield more complex schemes. The
task parallel approach uses dynamic subtree partitioning among processors. These al-
gorithms are evaluated on two SMP configurations: one in which data is too large to
fit in memory and must be paged from a local disk as needed and the other in which
memory is sufficiently large to hold the whole input data and all temporary files. For
the local disk configuration, the speedup ranged from 2.97 to 3.86 for the build phase
and from 2.20 to 3.67 for the total time on a 4-processor SMP. For the large memory
configuration, the range of speedup was from 5.36 to 6.67 for the build phase and from
3.07 to 5.98 for the total time on an 8-processor SMP.

The rest of the chapter is organized as follows. We review related work in Section 6.2.
In Section 6.3 we describe the sequential SPRINT decision-tree classifier, which forms
the backbone of the new algorithms. This section is adapted from [Shafer et al., 1996].
Section 6.4 describes our new SMP algorithms based on various data and task paral-
lelization schemes. We give experimental results in Section 6.5 and conclude with a
summary in Section 6.6.

100

6.2 Related Work

Random sampling is often used to handle large datasets when building a classi-
fier. Previous work on building tree-classifiers from large datasets includes Catlett’s
study of two methods [Catlett, 1991; Wirth and Catlett, 1988] for improving the time
taken to develop a classifier. The first method used data sampling at each node of
the decision tree, and the second discretized continuous attributes. However, Catlett
only considered datasets that could fit in memory; the largest training data had only
32,000 examples. Chan and Stolfo [Chan and Stolfo, 1993a; Chan and Stolfo, 1993b]
considered partitioning the data into subsets that fit in memory and then developing
a classifier on each subset in parallel. The output of multiple classifiers is combined
using various algorithms to reach the final classification. Their studies showed that al-
though this approach reduces running time significantly, the multiple classifiers did not
achieve the accuracy of a single classifier built using all the data. Incremental learning
methods, where the data is classified in batches, have also been studied [Quinlan, 1979;
Wirth and Catlett, 1988]. However, the cumulative cost of classifying data incrementally
can sometimes exceed the cost of classifying the entire training set once. In [Agrawal
et al., 1992], a classifier built with database considerations, the size of the training set
was overlooked. Instead, the focus was on building a classifier that could use database
indices to improve the retrieval efficiency while classifying test data.

Work by Fifield in [Fifield, 1992] examined parallelizing the ID3 [Quinlan, 1986]
decision-tree classifier, but it assumes that the entire dataset can fit in memory and
does not address issues such as disk I/O. The algorithms presented there also require
processor communication to evaluate any given split point, limiting the number of pos-
sible partitioning schemes the algorithms can efficiently consider for each leaf. The
Darwin toolkit from Thinking Machines also contained a parallel implementation of the
decision-tree classifier CART [Breiman et al., 1984]; however, details of this paralleliza-
tion are not available in published literature.

The recently proposed SLIQ classification algorithm [Mehta et al., 1996] addressed
several issues in building a fast scalable classifier. SLIQ gracefully handles disk-resident
data that is too large to fit in memory. It does not use small memory-sized datasets
obtained via sampling or partitioning, but builds a single decision tree using the entire
training set. However, SLIQ does require that some data per record stay memory-
resident all the time. Since the size of this in-memory data structure grows in direct
proportion to the number of input records, this limits the amount of data that can be
classified by SLIQ. Its successor, the SPRINT classifier [Shafer et al., 1996] removed
all memory restrictions and was fast and scalable. It was also parallelized on the IBM
SP2 distributed-memory system. As noted earlier, our goal in this chapter is to study
the efficient implementation of SPRINT on shared-memory systems. These machines
represent a popular parallel programming architecture and paradigm, and have very
different characteristics.

101

6.3 Serial Classification

A decision tree contains tree-structured nodes. Each node is either a leaf, indicating a
class, or a decision node, specifying some test on one or more attributes, with one branch
or subtree for each of the possible outcomes of the split test. Decision trees successively
divide the set of training examples until all the subsets consist of data belonging entirely,
or predominantly, to a single class. Figure 6.1 shows a decision-tree classifier developed
from the example training set. (Age < 27.5) and (CarType ∈ {sports}) are two split
points that partition the records into High and Low risk classes. The decision tree can
be used to screen future insurance applicants by classifying them into the High or Low
risk categories.

Car Type

family

sports

sports

family

family

truck

Age

23

43

68

32

20

Tid

0

1

2

3

4

5 LowHigh

High

Age < 27.5

CarType in {Sports}17

New Entry: Age = 30, CarType = Sports
then Class = CategoricalContinuous

?

?

Y

Y N

N

TRAINING SET DECISION TREE

Class

High

High

High

Low

Low

High

High

Figure 6.1: Car Insurance Example

A decision tree classifier is usually built in two phases [Breiman et al., 1984; Quinlan,
1993]: a growth phase and a prune phase. The tree is grown using an elegantly simple
divide and conquer approach. It takes as input a set of training examples S. There are
basically two cases to be considered. If all examples in S entirely or predominantly (a
user specified parameter) belong to a single class, then S becomes a leaf in the tree. If
on the other hand it contains a mixture of examples from different classes, we need to
further partition the input into subsets that tend towards a single class. The data is
partitioned based on a test on the attributes, and can take the form of a binary or k-ary
split. We will consider only binary splits because they usually lead to more accurate
trees; however, our techniques can be extended to handle multi-way splits. Based on
the outcomes, the data is partitioned into two subsets S1 and S2, which in turn serve

102

as inputs to the recursive process. This tree growth phase is shown in Figure 6.2.

Partition(Data S)
if (all points in S are of the same class) then

return;
for each attribute A do

evaluate splits on attribute A;
Use best split found to partition S into S1 and S2;
Partition(S1);
Partition(S2);

Initial call: Partition(TrainingData)

Figure 6.2: General Tree-growth Algorithm

The tree built using the recursive partitioning approach can become very complex,
and as such can be thought of as being an “overfit” of the data. Remember that the
goal of classification is to predict new unseen cases. The tree pruning phase tries to
generalize the tree by removing dependence on statistical noise or variation that may
be particular only to the training set. This step requires access only to the fully grown
tree, while the tree growth phase usually requires multiple passes over the training data,
and as such is much more expensive. Previous studies from SLIQ suggest that usually
less than 1% of the total time needed to build a classifier was spent in the pruning
phase. In this chapter we will therefore only concentrate on the computation and I/O
intensive tree growth phase. We use a Minimum Description Length [Rissanen, 1989]
based algorithm for the tree pruning phase. (see [Mehta et al., 1996] for additional
details). There are two major issues that have critical performance implications in the
tree-growth phase.

1. How to find split points that define node tests.

2. Having chosen a split point, how to partition the data.

We will first look at the data structures used in SPRINT, and then describe how it
handles the two steps above.

6.3.1 Data Structures

The SPRINT classifier was designed to be disk-based. It builds the tree breadth-
first and uses a one-time pre-sorting technique to reduce the cost of continuous attribute
evaluation. In contrast to this, the well-known CART [Breiman et al., 1984] and C4.5
[Quinlan, 1993] classifiers, grow trees depth-first and repeatedly sort the data at every
node of the tree to arrive at the best splits for continuous attributes.

103

Age

17

20

23

32

43

68

Class

High

High

High

Low

High

Low

Tid

1

5

0

4

2

3

Car Type

family

sports

sports

family

family

truck

Class

High

High

High

High

Low

Low

Tid

0

1

2

3

4

5

Car Type

family

sports

sports

family

family

truck

Class

High

High

High

High

Low

Low

Age

23

43

68

32

20

Tid

0

1

2

3

4

5

17

Training Set Attribute lists

continuous (sorted) categorical (orig order)

Figure 6.3: Attribute Lists

Attribute lists SPRINT initially creates an disk-based attribute list for each attribute
in the data. Each entry in the list is called an attribute record, and consists of an
attribute value, a class label, and a record identifier or tid. Initial lists for continuous
attributes are sorted by attribute value when first created. The lists for categorical
attributes remain in unsorted order. Figure 6.3 shows the initial attribute lists for our
example training set. The initial lists created from the training set are associated with
the root of the classification tree. As the tree is grown and is split into two subtrees, the
attribute lists are also split at the same time. By simply preserving the order of records
in the partitioned lists, they don’t require resorting. Figure 6.5 shows an example of the
initial sorted attribute lists associated with the root of the tree and also the resulting
partitioned lists for the two children.

Histograms SPRINT uses histograms tabulating the class distributions of the input
records. For continuous attributes, two histograms are maintained – Cbelow keeps the
counts for examples that have already been processed, and Cabove for those that have
not been seen yet. For categorical attributes one histogram, called the count matrix, is
sufficient for the class distribution of a given attribute. There is one set of histograms
for each node in the tree. However, since the attribute lists are processed one after the
other, only one set of histograms need be kept in memory at any given time. Example
histograms are shown in Figure 6.4.

6.3.2 Finding good split points

The form of the split used to partition the data depends on the type of the attribute
used in the split. Splits for a continuous attribute A are of the form value(A) < x where

104

Cbelow

Cabove

0 0

H L

4 2

Cbelow

Cabove

H L

4 2

0 0

Cbelow

Cabove

0

H L

2

3

1

tid

1

3

0

4

2

5

Age

68

17

23

32

43

20

Class

High

High

High

High

Low

Low

Attribute List

position 0

position 3

position 6

position 0:
cursor

State of Class Histograms

Position of
cursor in scan

position 6:
cursor

position 3:
cursor

2

H L

family

sports

truck 1

0

0

2 1

tid

0

1

2

3

4

5

Car Type

family

sports

sports

family

truck

family

Class

High

High

High

High

Low

Low

Attribute List

Count Matrix

Figure 6.4: Evaluating a) Continuous and b) Categorical Split Points

x is a value in the domain of A. Splits for a categorical attribute A are of the form
value(A) ∈ X where X ⊂ domain(A).

To build compact trees modeling the training set, one approach would be to explore
the space of all possible trees and select the best one. This process is unfortunately NP-
Complete. Most tree construction methods therefore use a greedy approach, the idea
being to determine the split point that “best” divides the training records belonging
to that leaf. The “goodness” of the split obviously depends on how well it separates
the classes. Several splitting indices have been proposed in the past to evaluate the
goodness of the split. SPRINT uses the gini index [Breiman et al., 1984] for this task.
For a data set S containing examples from n classes, gini(S) is defined as

gini(S) = 1 −
∑

p2
j

where pj is the relative frequency of class j in S. If a split divides S into two subsets S1

and S2, with n1 and n2 classes, respectively, the index of the divided data ginisplit(S)
is given by

ginisplit(S) =
n1

n
gini(S1) +

n2

n
gini(S2)

The computation of the gini index only requires the class distributions on each side of
a candidate partition point. This information is kept in the class histograms described
above. Once this information is known, the best split can be found using a simple
approach. Each node’s attribute lists are scanned, the histograms are updated, and the
gini value for different split points is calculated. The attribute with the minimum gini
value and the associated split point is used to partition the data.

105

Continuous attributes For continuous attributes, the candidate split points are
mid-points between every two consecutive attribute values in the training data. Initially
Cbelow has all zeros, while Cabove has the class distributions of the current node under
consideration. For each attribute record, the histograms are updated and the gini index
is calculated. The current minimum gini value, also called the winning split point is
saved during this process. Since all the continuous values are sorted one scan over the
attribute lists is sufficient. Figure 6.4a illustrates the histogram update for continuous
attributes.

Categorical attributes For categorical attributes, all possible subsets of the at-
tribute values are considered as potential split points. If the cardinality is too large a
greedy subsetting algorithm (initially used in IND [NASA, 1992]) is used. The histogram
updation is shown in Figure 6.4b.

6.3.3 Splitting the data

Once the winning split point has been found for a node, the node is split into two
children, along with the division of the node’s attribute lists into two. Figure 6.5 shows
this process. The attribute list splitting for the winning attribute (Age in our example)
is quite straightforward. We simply scan the attribute records, and apply the split test.
Those records satisfying the test go to the left child, and those that fail the test go
to the right child. For the remaining “losing” attributes (CarType in our example)
more work is needed. While dividing the winning attribute SPRINT also constructs a
probe structure (bit mask or hash table) on the tids, noting the child where a particular
record belongs. To split the other attributes now only requires a scan of each record
and a probe to determine the child where this record should be placed. This probe
structure need not be memory-resident. If it occupies too much memory the splitting
takes multiple steps. In each step only a portion of the attribute lists are partitioned.
At the same time the split happens, SPRINT also collects the new class distribution
histograms for the children nodes.

Avoiding multiple attribute lists Recall that the attribute lists of each attribute
are stored in disk files. As the tree is split, we would need to create new files for the
children, and delete the parent’s files. File creation is usually an expensive operation,
and this process can add significant overhead. For example, Figure 6.6 shows that if we
create new files at each level, then if the tree has N levels, we would potentially require
2N files. Rather than creating a separate attribute list for each attribute for each node,
SPRINT actually uses only four physical files per attribute. Since we are dealing with
binary splits, we have one attribute file for all leaves that are “left” children (file L0)
and one file for all leaves that are “right” children (file R0). We also have two more list
files per attribute that serve as alternates (files L1 and R1). All the attribute records
for a node are kept in a contiguous section within one of the two primary files (files
L0 and R0). When reading records for a particular node, we read the corresponding
portion of the attribute’s left or right file. When splitting a node’s attribute records,

106

sports High 1

family High 0

family High 5

Car Type Class Tid

32

43

68

Low 4

2

3

High

Low

Age Class Tid

sports

family

truck

High

Low

Low

2

3

4

Car Type Class Tid

Age

17

20

23

32

43

68

Class

High

High

High

Low

High

Low

Tid

1

5

0

4

2

3

Car Type

family

sports

sports

family

family

truck

Class

High

High

High

High

Low

Low

Tid

0

1

2

3

4

5

Class TidAge

17

20

23

High

High

High

1

5

0

Decision Tree

Hash Table
0 1 3 542

1 1 12 2 2

Tid
Child

2

0

1

Age < 27.5

Attribute lists for node 1 Attribute lists for node 2

Attribute lists for node 0

Figure 6.5: Splitting a Node’s Attribute Lists

107

we append the left and right child’s records to the end of the alternate left and right
files (files L1 and R1).

L2

L1

L0

R1

R2 L3 R3

R7L7R6L6R5L5R4L4

R8L8 L9 R9 L10 R10 L11 R11 L12 R12 R13L13 L14 R14 L15 R15

TOTAL FILES PER ATTRIBUTE: 32

CREATING NEW ATTRIBUTE FILES

L1

L0

R1

R0

L1

L0 L0

L1 L1 L1R1R1R1

L0 L0 L0 L0 L0 L0L0R0 R0 R0 R0 R0 R0 R0

REUSING ATTRIBUTE FILES

TOTAL FILES PER ATTRIBUTE: 4

R0

R1

L0 R0

Figure 6.6: Avoiding Multiple Attribute Files

After splitting each node, all the training data will reside in the alternate files.
These become the primary files for the next level. The old primary lists are cleared and
they become new alternate files. Thus, we never have to pay the penalty of creating
new attribute lists for new leaves; we can simply reuse the ones we already have. By
processing tree nodes in the order they appear in the attribute files, this approach also
avoids any random seeks within a file to find a node’s records — reading and writing

108

remain sequential operations. This optimization can be done with virtually no overhead
and with no modifications to the SPRINT algorithm. It also has important implications
for the parallelization strategies presented below.

6.4 Parallel Classification on Shared-memory Systems

We now turn our attention to the problem of building classification trees in parallel
on SMP systems. We will only discuss the tree growth phase due to its compute and
data-intensive nature. Tree pruning is relatively inexpensive [Mehta et al., 1996], as it
requires access to only the decision-tree grown in the training phase.

6.4.1 SMP Schemes

While building a decision-tree, there are three main steps that must be performed
for each node at each level of the tree:

1. Evaluate split points for each attribute (denoted as step E).

2. Find the winning split-point and construct a probe structure using the attribute
list of the winning attribute (denoted as step W).

3. Split all the attribute lists into two parts, one for each child, using the probe
structure (denoted as step S).

Our parallel schemes will be described in terms of these steps. Our prototype imple-
mentation of these schemes uses the POSIX threads (pthread) standard [Lewis and
Berg, 1996]. A thread is a light weight process. It is a schedulable entity that has only
those properties that are required to ensure its independent flow of control, including
the stack, scheduling properties, set of pending and blocking signals, and some thread-
specific data. To keep the exposition simple, we will not differentiate between threads
and processes and pretend as if there is only one process per processor. We propose two
approaches to building a tree classifier in parallel: a data parallel approach and a task
parallel approach.

Data parallel In data parallelism the P processors work on distinct portions of the
datasets and synchronously construct the global decision tree. It essentially exploits the
intra-node parallelism, i.e. that available within a decision tree node. There are two
kinds of data parallelism possible in classification. In the first case, which can be called
record parallelism, we split the attribute lists evenly among all the processors. Each
processor is responsible for 1/P records from each attribute list. The implementation
of this scheme on the IBM SP2 was presented in [Shafer et al., 1996]. In the second
case, called attribute parallelism, the attributes are divided equally among the different
processors so that each element is responsible for 1/P attributes. The record parallelism
approach doesn’t look very promising on an SMP system. Some of the reason are: 1) It
would require a lot of data structure and attribute file replication. For example, each

109

input file will have to be pre-split into P files, or it will have to split during the attribute
list creation phase, resulting in P files per attribute. The hash probe, count matrix and
class histograms will also have to be replicated on each processor, so that they can
independently process their local attribute lists. 2) If the attribute lists are partitioned
in a simple blocked manner, there is potential of load imbalance, especially if the record
values are skewed. Furthermore, performing any kind of dynamic load balancing is likely
to be quite complex and will introduce extra overhead. In the following discussion we
will present three schemes of varying complexity based on the attribute parallelism
approach. As part of future work we plan to experimentally verify our hypothesis for
the record parallelism approach.

Task Parallelism The other major kind of parallelism is provided by the task parallel
approach. It exploits the inter-node parallelism, i.e. different portions of the decision
tree can be built in parallel among the processors.

6.4.2 Attribute Data Parallelism

We first describe the Moving-Window-K algorithm (MWK) based on attribute data
parallelism. For pedagogical reasons, we will introduce two intermediate schemes called
BASIC and Fixed-Window-K (FWK) and then evolve them to the more sophisticated
MWK algorithm. MWK and the two intermediate schemes utilize dynamic attribute
scheduling. In a static attribute scheduling, each process gets d/P attributes where d
denotes the number of attributes. However, this static partitioning is not particularly
suited for classification. Different attributes may have different processing costs because
of two reasons. First, there are two kinds of attributes – continuous and categorical,
and they use different techniques to arrive at split tests. Second, even for attributes of
the same type, the computation depends on the distribution of the record values. For
example, the cardinality of the value set of a categorical attribute determines the cost of
gini index evaluation. These factors warrant a dynamic attribute scheduling approach.

The Basic Scheme (BASIC)

Figure 6.7 shows the pseudo-code for the BASIC scheme. A barrier represents a
point of synchronization. While a full tree is shown here, the tree generally may have a
sparse irregular structure. At each level a processor evaluates the assigned attributes,
which is followed by a barrier.

Attribute scheduling Attributes are scheduled dynamically by using an attribute
counter and locking. A processor acquires the lock, grabs an attribute, increments
the counter, and releases the lock. This method achieves the same effect as self-
scheduling [Tang and Yew, 1986], i.e., there is lock synchronization per attribute. For
typical classification problems with up to a few hundred attributes, this approach works
fine. For thousands of attributes self-scheduling can generate too much unnecessary

110

forall attributes in parallel (dynamic scheduling)

(master) thenif

forall attributes in parallel (dynamic scheduling)
each leaffor

each leaffor

for each leaf

// Starting with the root node execute the
// following code for each new tree level

barrier

split attributes (S)

evaluate attributes (E)

barrier

get winning attribute; form hash-probe (W)

L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

BARRIER

P={0,1,2,3}

TOTAL FILES PER ATTRIBUTE: 4

Figure 6.7: The BASIC Algorithm

111

synchronization. The latter can be addressed by using guided self-scheduling [Poly-
chronopoulos and Kuck, 1987] or its extensions, where a processor grabs a dynamically
shrinking chunk of remaining attributes, thus minimizing the synchronization. Another
possibility would be to use affinity scheduling [Markatos and LeBlanc, 1994], where at-
tention is paid to the location of the attribute lists so that accesses to local attribute
lists are maximized.

Finding split points (E) Since each attribute has its own set of four reusable at-
tribute files, as long as no two processors work on the same attribute at the same time,
there is no need for file access synchronization. To minimize barrier synchronization
the tree is built in a breadth-first manner. The advantage is that once a processor
has been assigned an attribute, it can evaluate the split points for that attribute for
all the leaves in the current level. This way, each attribute list is accessed only once
sequentially during the evaluation for a level. Once all attributes have been processed
in this fashion, a single barrier ensures that all processors have reached the end of the
attribute evaluation phase. In contrast, depth-first tree growth would require a barrier
synchronization once per leaf, which could become a significant source of overhead in
large trees.

As each processor works independently on the entire attribute list, they can inde-
pendently carry out gini index evaluation to determine the best split point for each
attribute assigned to it.

Hash probe construction (W) Once all the attributes of a leaf have been processed,
each processor will have what it considers to be the best split for that leaf. We now
need to find the best split point from among each processor’s locally best split. We can
then proceed to scan the winning attribute’s records and form the hash probe.

The breadth-first tree construction imposes some constraints on the hash probe
construction. We could keep separate hash tables for each leaf. If there is insufficient
memory to hold these hash tables in memory, they would have to be written to disk.
The size of each leaf’s hash table can be reduced by keeping only the smaller child’s tids,
since the other records must necessarily belong to the other child. Another option is to
maintain a global bit probe for all the current leaves. It has as many bits as there are
tuples in the training set. As the records for each leaf’s winning attribute are processed,
the corresponding bit is set to reflect whether the record should be written to a left or
right file. A third approach is to maintain an index of valid tids of a leaf, and relabel
them starting from zero. Then each leaf can keep a separate bit probe.

BASIC uses the second approach, that maintains a global bit vector, due to its
simplicity. Both the tasks of finding the minimum split value and bit probe construction
are performed serially by a pre-designated master processor. This step thus represents
a potential bottleneck in this BASIC scheme, which we will eliminate later in MWK.
During the time the master computes the hash probe, the other processors enter a
barrier and go to sleep. Once the master finishes, it also enters the barrier and wakes
up the sleeping processors, setting the stage for the splitting phase.

112

Attribute list splitting (S) The attribute list splitting phase proceeds in the same
manner as the evaluation. A processor dynamically grabs an attribute, scans its records,
hashes on the tid for the child node, and performs the split. Since the files for each
attribute are distinct there is no read/write conflict among the different processors.

The Fixed-Window-K Scheme (FWK)

We noted above that the winning attribute hash probe construction phase W in BA-
SIC is a potential sequential bottleneck. The Fixed-Window-K (FWK) scheme shown
in Figure 6.8 addresses this problem. The basic idea is to overlap the W-phase with
the E-phase of the next leaf at the current level, a technique called task pipelining. The
degree of overlap can be controlled by a parameter K denoting the window of current
overlapped leaves. Let Ei, Wi, and Si denote the evaluation, winning hash construction,
and partition steps for leaf i at a given level. Then for K = 2, we get the overlap of
W0 with E1. For K = 3, we get an overlap of W0 with {E1, E2}, and an overlap of
W1 with E2. For a general K, we get an overlap of Wi with {Ei+1, · · · , EK−1}, for all
1 ≤ i ≤ K − 1.

The attribute scheduling, split finding, and partitioning remain the same. The
difference is that depending on the window size K, we group K leaves together. For
each leaf within the K-block (i.e., K leaves of the same group), we first evaluate all
attributes. At the last leaf in each block we perform a barrier synchronization to ensure
that all evaluations for the current block have completed. The hash probe for a leaf is
constructed by the last processor to exit the evaluation for that leaf. This ensures that
no two processors access the hash probe at the same time.

Managing attribute files There are four reusable files per attribute in the BASIC
scheme. However, if we are to allow overlapping of the hash probe construction step
with the evaluation step, which uses dynamic attribute scheduling within each leaf, we
would require K distinct files for the current level, and K files for the parent’s attribute
lists, that is 2K files per attribute. This way all K leaves in a group have separate
files for each attribute and there is no read/write conflict. Another complication arises
from the fact that some children may turn out to be pure (i.e., all records belong to
the same class) at the next level. Since these children will not be processed after the
next stage, we have to be careful in the file assignment for these children. A simple
file assignment, without considering the child purity, where children are assigned files
from 0, · · · ,K − 1, will not work well, as it may introduce “holes” in the schedule (see
Figure 6.9). However, if we knew the pure children of the next level, we can do better.

The class histograms gathered while splitting the children are adequate to determine
purity. We add a pre-test for child purity at this stage. If the child will become pure
at the next level, it is removed from the list of valid children, and the files are assigned
consecutively among the remaining children. This insures that there are no holes in the
K block, and we get perfect scheduling. The two approaches are contrasted in Figure 6.9.
The bold circles show the valid children for the current and next level. With the simple
labeling scheme the file labels for the valid children are L0, L0, R0, R0, R0. With a

113

forall attributes in parallel (dynamic scheduling)

forall attributes in parallel (dynamic scheduling)
each leaffor

barrier

split attributes (S)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor

evaluate attributes (E)
each leaf ifor

barrierbarrier

get winning attribute; form hash-probe (W)

(last leaf of block)if

(last processor finishing on leaf i)if then

then

L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

P={0,1,2,3}
BARRIER

TOTAL FILES PER ATTRIBUTE: (2*WindowSize) = 2*2 = 4

Figure 6.8: The FWK Algorithm

114

window of size K = 2, there is only one instance where work can overlap, i.e., when
going from L0 to R0. However, if we relabel the valid children’s files then we obtain the
perfectly schedulable sequence L0, R0, L0, R0, L0.

L1

L0

R1

R0 R0L0 L0

L0 R0 L0 L0 L0R0 R0 R0SIMPLE SCHEME:

NEXT LEVEL

CURRENT LEVEL

RELABEL SCHEME: L0 R0 L0 R0 L0-- -- --

Figure 6.9: Scheduling Attribute Files

Note that the overlapping of work is achieved at the cost of increased barrier syn-
chronization, one per each K-block. A large window size not only increases the overlap
but also minimizes the number of synchronizations. However, a larger window size re-
quires more temporary files, which incurs greater file creation overhead and tends to
have less locality. The ideal window size is a trade-off between the above conflicting
goals.

The Moving-Window-K Algorithm (MWK)

We now describe the Moving-Window-K (MWK) algorithm which eliminates the
serial bottleneck of BASIC and exploits greater parallelism than FWK. Figures 6.10
shows the pseudo-code for MWK.

Consider a current leaf frontier: {L01, R01, L02, R02}. With a window size of K = 2,
not only is there parallelism available for fixed blocks {L01, R01} and {L02, R02} (used
in FWK), but also between these two blocks, {R01, L02}. The MWK algorithm makes
use of this additional parallelism.

This scheme is implemented by replacing the barrier per block of K leaves with a
wait on a conditional variable. Before evaluating leaf i, a check is made whether the i-th
leaf of the previous block has been processed. If not, the processor goes to sleep on the
conditional variable. Otherwise, it proceeds with the current leaf. The last processor
to finish the evaluation of leaf i from the previous block constructs the hash probe, and
then signals the conditional variable, so that any sleeping processors are woken up.

115

forall attributes in parallel (dynamic scheduling)

forall attributes in parallel (dynamic scheduling)
each leaffor

barrier

split attributes (S)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor
each leaf ifor
if (last block’s i-th leaf not done) then

wait
evaluate attributes (E)
if (last processor finishing on leaf i)

get winning attribute; form hash-probe (W)
signal that i-th leaf is done

then

L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

P={0,1,2,3}
LOCK SYNCHRONIZATION

TOTAL FILES PER ATTRIBUTE: (2*WindowSize) = 2*2 = 4

Figure 6.10: The MWK Algorithm

116

It should be observed that the gain in available parallelism comes at the cost of
increased lock synchronization per leaf (however, there is no barrier anymore). As in
the FWK approach, the files are relabeled by eliminating the pure children. A larger
K value would increase parallelism, and while the number of synchronizations remain
about the same, it will reduce the average waiting time on the conditional variable.
Like FWK, this scheme requires 2K files per attribute, so that each of the K leaves has
separate files for each attribute and there is no read/write conflict.

6.4.3 Task Parallelism — The Subtree Algorithm (SUBTREE)

The data parallel approaches target the parallelism available among the different
attributes. On the other hand the task parallel approach is based on the parallelism
that exists in different sub-trees. Once the attribute lists are partitioned, each child can
be processed in parallel. One implementation of this idea would be to initially assign all
the processors to the tree root, and recursively partition the processor sets along with
the attribute lists. Once a processor gains control of a subtree, it will work only on that
portion of the tree. This approach would work fine if we have a full tree. In general, the
decision trees are imbalanced and this static partitioning scheme can suffer from large
load imbalances. We therefore use a dynamic subtree task parallelism scheme.

The pseudo-code and illustration for the dynamic SUBTREE algorithm is shown
in Figure 6.11. To implement dynamic processor assignment to different subtrees, we
maintain a queue of currently idle processors, called the FREE queue. Initially this
queue is empty, and all processors are assigned to the root of the decision tree, and
belong to a single group. One processor within the group is made the group master (we
chose the processor with the smallest identifier as the master). The master is responsible
for partitioning the processor set.

At any given point in the algorithm, there may be multiple processor groups working
on distinct subtrees. Each group independently executes the following steps once the
BASIC algorithm has been applied to the current subtree level. First, the new subtree
leaf frontier is constructed. If there are no children remaining, then each processor
inserts itself in the FREE queue, ensuring mutually exclusive access via locking. If
there is more work to be done, then all processors except the master go to sleep on a
conditional variable. The group master checks if there are any new arrivals in the FREE
queue and grabs all free processors in the queue. This forms the new processor set.

There are three possible cases at this juncture. If there is only one leaf remaining,
then all processors are assigned to that leaf. If there is only one processor in the previous
group and there is no processor in the FREE queue, then it forms a group on its own
and works on the current leaf frontier. Lastly, if there are multiple leaves and multiple
processors, the group master splits the processor set into two parts, and also splits the
leaves into two parts. The two newly formed processor sets become the new groups,
and work on the corresponding leaf sets.

Finally, the master wakes up the all the relevant processors—those in the original
group and those acquired from the FREE queue. Since there are P processors, there

117

(Processor Group P = {p1, p2, ..., px},
 Leaf Frontier L = {l1, l2, ..., ly})

SubTree

apply SIMPLE algorithm on L with P processors
NewL = {l1, l2, ..., lm} //new leaf frontier

if (NewL is empty) then

(group master) thenelseif

if (only one leaf remaining) then
(NewP, l1)SubTree

elseif (only one processor in group) then

//multiple leaves and processorselse
(p1, NewL)SubTree

SubTree (P1, L1)

split NewL into L1 and L2
split NewP into P1 and P2

SubTree (P2, L2)

get FREE processors; NewP = {p1, p2, ..., pn}

wakeup processors in NewP

//not the group masterelse

put self in FREE queue

go to sleep

L0

L0

L4

L2 L6

L1

L0 L4

L3 L5 L7 R7R5R3R1

L0 L0 L2 L2 L4 L6L6L4R0 R0 R2 R2 R4 R4 R6 R6

P={0,1,2,3}

P={2,3}P={0,1}

P={0} P={1} P={2} P={3}

BARRIER

TOTAL FILES PER ATTRIBUTE: (4*P) = 4*4 = 16

Figure 6.11: The SUBTREE Algorithm

118

can be at most P groups, and since the attribute files for all of these must be distinct,
this scheme requires up to 4P files per attribute.

6.4.4 Discussion

We now qualitatively discuss the relative merits of each of the proposed algorithms.
The MWK scheme eliminates the hash-probe construction bottleneck of BASIC via task
pipelining. Furthermore, it fully exploits the available parallelism via the moving win-
dow mechanism, instead of using the fixed window approach of FWK. It also eliminates
barrier synchronization completely. However, it introduces a lock synchronization per
leaf per level. If the tree is bushy, then the increased synchronization could nullify the
other benefits. A feature of MWK and FWK is that they exploit parallelism at a finer
grain. The attributes in a K-block may be scheduled dynamically on any processor.
This can have the effect of better load balancing compared to the coarser grained BASIC
approach where a processor works on all the leaves for a given attribute. While MWK
is essentially a data parallel approach, it utilizes some elements of task parallelism in
the pipelining of the evaluation and hash probe construction stages.

The SUBTREE approach is also a hybrid approach in that it uses the BASIC scheme
within each group. In fact we can also use FWK or MWK as the subroutine. The pros
of SUBTREE are that it has only one barrier synchronization per level within each
group and it has good processor utilization. As soon as a processor becomes idle it is
likely to be grabbed by some active group. Some of the cons are that it is sensitive
to the tree structure and may lead to excessive synchronization for the FREE queue,
due to rapidly changing groups. Another disadvantage is that it requires more memory,
because we need a separate hash probe per group.

As described above, our SMP algorithms ostensibly can create a large number of
temporary files (2Kd for MWK and 4dP for SUBTREE). However, it is possible to
have a little more complex design so that lists for different attributes are combined into
the same physical file. Such a design will reduce the number of temporary files to 2K
for MWK and 4P for SUBTREE. The essential idea is to associate physical files for
writing attribute lists with a processor (rather than with an attribute). In the split
phase, a processor now writes all attribute lists to the same two physical files (for the
left and right children). Additional bookkeeping data structures keep track of the start
and end of different attribute lists in the file. These data structures are shared at the
next tree level by all processors to locate the input attribute list for each dynamically
assigned attribute. Note that this scheme does not incur additional synchronization
overhead because a processor starts processing a new attribute list only after completely
processing the one on hand.

6.5 Experimental Results

The primary metric for evaluating classifier performance is classification accuracy —
the percentage of test examples (different from training examples used for building the

119

classifier) that are correctly classified. The other important metrics are time to build
the classifier and the size of the decision tree. The ideal goal for a decision tree classifier
is to produce compact, accurate trees in a short time.

The accuracy and tree size characteristics of our SMP classifier are identical to SLIQ
and SPRINT since they consider the same splits and use the same pruning algorithm.
SLIQ’s accuracy, execution time, and tree size have been compared with other classifiers
such as CART [Breiman et al., 1984] and C4 (a predecessor of C4.5 [Quinlan, 1993]).
This performance evaluation, available in [Mehta et al., 1996], shows that compared to
other classifiers SLIQ achieves comparable or better classification accuracy, but produces
small decision trees and has small execution times. We, therefore, focus only on the
classifier build time in our performance evaluation.

6.5.1 Experimental Setup

Machine Configuration Experiments were performed on two SMP machines with
different configurations shown in Table 6.1. On both machines, each processor is a
PowerPC-604 processor running at 112 MHz with a 16 KB instruction cache, a 16 KB
data cache, and a 1 MB L2-Cache. These two machines represent two possible scenarios.
With Machine A, the amount of memory is insufficient for training data, temporary files,
and data structures to fit in memory. Therefore, the data will have to be read from and
written to the disk for almost every new level of the tree. Machine B has a large memory
relative to the size of the data. Therefore, all the temporary files created during the run
are cached in memory. The first case is of greater interest to the database community
and we present a detailed set of experiments for this configuration. However, due to
the decreasing cost of RAM, the second configuration is also increasingly realizable in
practice. We present this case to study the impact of large memories on the performance
of our algorithms.

Machine Number Main Disk Space Access Operating
Name Processors Memory Available Type System

Machine A 4 128 MB 300 MB local disk AIX 4.1.4
Machine B 8 1 GB 2 GB main-memory(cached) AIX 4.1.5

Table 6.1: Machine Configurations

Datasets An often used classification benchmark is STATLOG[Michie et al., 1994].
Its largest dataset contains about 57,000 records. In our performance study we are
interested in evaluating the SMP algorithms on large out-of-core data. We therefore
use the synthetic benchmark proposed in [Agrawal et al., 1992] and used in several
past studies. Example tuples in this benchmark have both continuous and categorical
attributes. The benchmark gives several classification functions of varying complexity
to generate synthetic databases. We present results for two of these functions, which
are at the two ends of the complexity spectrum. Function 2 is a simple function to learn
and results in fairly small decision trees, while Function 7 is the most complex function

120

Function 2 (F2) - Group A:
((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨
((40 ≤ age < 60) ∧ (75K ≤ salary ≥ 125K)) ∨
((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

Function 7 (F7) - Group A:
disposable > 0
where disposable = (0.67 × (salary + commission))

− (0.2 × loan − 20K)

Figure 6.12: Classification Functions for Synthetic Data

and produces large trees (see Table 6.2). Both these functions divide the database into
two classes: Group A and Group B. Figure 6.12 shows the predicates for Group A for
each function. For each of Functions 2 and 7, we try 3 different databases: 8 attributes
with 1 million records, 32 attributes with 250K records, and 64 attributes with 125K
records. The database parameters are shown in Table 6.2. The notation Fx-Ay-DzK is
used to denote the dataset with function x, y attributes and z · 1000 example records.
The above choices allow us to investigate the effect of different data characteristics such
as number of tuples and number of attributes. Also note that while the initial input
size of the ASCII databases is around 60MB, the final input size after the creation of
attribute lists is roughly 4 times more, i.e., around 240MB. Since Machine A has only
128MB main memory, the databases will be disk resident.

Dataset Corresponding Tree

Dataset Func. No. No. Initial Final No. Max. No.
Notation Attr. Tuple Size Size Levels Leaves/Level

F2-A8-D1000K F2 8 1000K 61 MB 240MB 4 2
F2-A32-D250K F2 32 250K 57.3 MB 225MB 4 2
F2-A64-D125K F2 64 125K 56.6 MB 225MB 4 2

F7-A8-D1000K F7 8 1000K 61 MB 240MB 60 4662
F7-A32-D250K F7 32 250K 57.3 MB 225MB 59 802
F7-A64-D125K F7 64 125K 56.6 MB 225MB 55 384

Table 6.2: Dataset Characteristics

Algorithms Our initial experiments confirmed that MWK was indeed better than
BASIC as expected, and that it performs as well or better than FWK. Thus, we will
only present the performance of MWK and SUBTREE.

We experimented with window sizes of 2, 4 and 8 for MWK. A larger window size
implies more overhead on the file creation and managing related data structures. On
the other head, a smaller window size may not have enough parallelism, especially when
there are many processors and relatively few attributes. We found for our experiments a

121

window size of 4 to be a good overall choice unless the ratio of the number of attributes
to the number of processors is small (less than 2) and in that case we use a window size
of 8 (which performs better than a window size of 4 by as much as 9%). In general,
a simple rule of thumb for the window size is that if the number of attributes is at
least twice the number of processors (which is typically the case for a real world run),
a window size of 4 should be chosen. In the rare case when d/P < 2, we choose the
smallest W such that W ∗ d/P ≥ 8.

6.5.2 Initial Setup and Sort Time

Table 6.3 shows the uniprocessor time spent in the initial attribute list creation
phase (setup phase), as wells as the time spent in one-time sort of the attribute lists for
the continuous attributes (sort phase). The time spent in these two phases as a fraction
of total time to build a classifier tree depends on the complexity of the input data for
which we are building the classification model. For simple datasets such as F2, it can
be significant, whereas it is negligible for complex datasets such as F7.

We have not focussed on parallelizing these phases, concentrating instead on the
more challenging build phase. There is much existing research in parallel sorting on
SMP machines [Bitton et al., 1984]. The creation of attribute lists can be speeded up
by essentially using multiple input streams and merging this phase with the sort phase.
In our implementation, the data scan to create attribute lists is sequential, although we
write attribute lists in parallel. Attribute lists are sorted in parallel by assigning them
to different processors. When we present the speedup graphs in the next section, we will
show the speedups separately for the build phase as well as for the total time (including
initial setup and sort times). There is obvious scope for improving the speedups for the
total time.

Dataset Setup Time Sort Time Total Time Setup % Sort %
(seconds) (seconds) (seconds)

F2-A8-D1000K 721 633 3597 20.0% 17.6%
F2-A32-D250K 685 598 3584 19.1% 16.6%
F2-A64-D125K 705 626 3665 19.2% 17.1%

F7-A8-D1000K 989 817 23360 4.2% 3.5%
F7-A32-D250K 838 780 24706 3.4% 3.2%
F7-A64-D125K 672 636 22664 3.0% 2.8%

Table 6.3: Sequential Setup and Sorting Times

6.5.3 Parallel Build Performance: Local Disk Access

We consider four main parameters for performance comparison: 1) number of proces-
sors, 2) number of attributes, 3) number of example tuples, and 4) classification function
(Function 2 or Function 7). We first study the effect of varying these parameters on the

122

MWK and SUBTREE algorithms on Machine A, which has less main memory than the
database size, so that disk I/O is required at each level while building the tree.

Figure 6.13 shows the parallel performance and speedup of the two algorithms as we
vary the number of processors for the two classification functions F2 and F7, and using
the dataset with eight attributes and one million records (A8-D1000K). Figures 6.14
and 6.15 show similar results for datasets A32-D250K and A64-D125K, respectively.
The speedup chart in the bottom right part of each figure shows the speedup of the
total time (including setup and sort time), while the speedup chart to the left of it and
the two top bar charts show only the build time (excluding setup and sort time).

1 2 3 4

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F2-A8-D1000K

1 2 3 4

Number of Processors

0

5000

10000

15000

20000

25000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A8-D1000K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A8-D1000K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A8-D1000K

Figure 6.13: Local Disk Access: Functions 2 and 7; 8 Attributes; 1000K Records

Considering the build time only, the speedups for both algorithms on 4 processors
range from 2.97 to 3.32 for function F2 and from 3.25 to 3.86 for function F7. For
function F7, the speedups of total time for both algorithms on 4 processors range from
3.12 to 3.67. The important observation from these figures is that both algorithms

123

1 2 3 4

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)
MW4

SUBTREE

F2-A32-D250K

1 2 3 4

Number of Processors

0

5000

10000

15000

20000

25000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A32-D250K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A32-D250K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A32-D250K

Figure 6.14: Local Disk Access: Functions 2 and 7; 32 Attributes; 250K Records

perform quite well for various datasets. Even the overall speedups are good for complex
datasets generated with function F7. As expected, the overall speedups for simple
datasets generated by function F2, in which build time is a smaller fraction of total
time, are relatively not as good (around 2.2 to 2.5 on 4 processors). These speedups
can be improved by parallelizing the setup phase more aggressively.

MWK’s performance is mostly comparable or better than SUBTREE. The difference
ranges from 8% worse than SUBTREE to 22% better than SUBTREE. Most of the
MWK times are within 10% better than SUBTREE.

An observable trend is that having greater number of processors tends to favor
SUBTREE. In other words, the advantage of MWK over SUBTREE tends to decrease
as the number of processors increases. This is can be seen from figures for both F2 and
F7 by comparing the build times for the two algorithms first with 2 processors, then
with 4 processors. This is because after about log P levels of the tree growth, the only

124

1 2 3 4

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)
MW4

SUBTREE

F2-A64-D125K

1 2 3 4

Number of Processors

0

5000

10000

15000

20000

25000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A64-D125K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A64-D125K

1 2 3 4

Number of Processors

1

2

3

4

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A64-D125K

Figure 6.15: Local Disk Access: Functions 2 and 7; 64 Attributes; 125K Records

synchronization overhead for SUBTREE, before any processor becomes free, is that each
processor checks the FREE queue once per level. On the other hand, for MWK, there
will be relatively more processor synchronization overhead, as the number of processors
increases, which includes acquiring attributes, checking on conditional variables, and
waiting on barriers. As part of future work we plan to compare these algorithms on
larger SMP configurations.

6.5.4 Parallel Build Performance: Main-Memory (Cached) Access

We next compare the parallel performance and speedups of the algorithms on Ma-
chine B. This configuration has 1 GB of main-memory available. Thus after the very
first access the data will be cached in main-memory, leading to fast access times. Ma-
chine B has 8 processors. Figures 6.16, 6.17, and 6.18 show three sets of timing and

125

speedup charts for the A8-D1000K, A32-D250K and A64-D125K datasets, on Functions
2 and 7, and on 1, 2, 4 and 8 processors.

1 2 4 8

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F2-A8-D1000K

1 2 4 8

Number of Processors

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A8-D1000K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A8-D1000K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A8-D1000K

Figure 6.16: Main-memory Access: Functions 2 and 7; 8 Attributes; 1000K Records

Considering the build time only, the speedups for both algorithms on 8 processors
range from 5.46 to 6.37 for function F2 and from 5.36 to 6.67 (and at least 6.22 with
32 or 64 attribute) for function F7. For function F7, the speedups of total time for
both algorithms on 8 processors range from 4.63 to 5.77 (and at least 5.25 for 32 or 64
attributes). Again, the important observation from these figures is that both algorithms
perform very well for various datasets even up to 8 processors. The advantage of MWK
over SUBTREE is more visible for the simple function F2. The reason is that F2
generates very small trees with 4 levels and a maximum of 2 leaves in any new leaf
frontier. Around 40% of the total time is spent in the root node, where SUBTREE has
only one process group. Thus on this dataset SUBTREE is unable to fully exploit the
inter-node parallelism successfully. MWK is the winner because it not only overlaps the

126

1 2 4 8

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)
MW4

SUBTREE

F2-A32-D250K

1 2 4 8

Number of Processors

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A32-D250K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A32-D250K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A32-D250K

Figure 6.17: Main-memory Access: Functions 2 and 7; 32 Attributes; 250K Records

E and W phases, but also manages to reduce the load imbalance.

The overall trends observable from these figures are similar to those for the disk
configuration. First, shallow trees (e.g., generated by F2) tend to hurt SUBTREE, 2)
Greater number of processors tends to favor SUBTREE more, 3) Having a small number
of attributes tends to hurt MWK.

6.6 Conclusions

We presented parallel algorithms for building decision-tree classifiers on SMP sys-
tems. The proposed algorithms span the gamut of data and task parallelism. The MWK
algorithm uses data parallelism from multiple attributes, but also uses task pipelining
to overlap different computing phases within a tree node, thus avoiding potential a
sequential bottleneck for the hash-probe construction in the split phase. The MWK al-

127

1 2 4 8

Number of Processors

0

500

1000

1500

2000

2500

E
xe

cu
ti

on
 T

im
e

(s
ec

)
MW4

SUBTREE

F2-A64-D125K

1 2 4 8

Number of Processors

0

5000

10000

15000

20000

25000

E
xe

cu
ti

on
 T

im
e

(s
ec

)

MW4

SUBTREE

F7-A64-D125K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A64-D125K

1 2 4 8

Number of Processors

1

2

3

4

5

6

7

8

S
pe

ed
up

 (
B

ui
ld

+
S

et
up

+
S

or
t)

MW4-F7

SUBTREE-F7

MW4-F2

SUBTREE-F2

A64-D125K

Figure 6.18: Main-memory Access: Functions 2 and 7; 64 Attributes; 125K Records

gorithm employs a conditional variable, instead of a barrier, among leaf nodes to avoid
unnecessary processor blocking time. It also exploits dynamic assignment of attribute
files to a fixed set of physical files, which maximizes the number of concurrent accesses
to disk without file interference. The SUBTREE algorithm uses recursive divide-and-
conquer to minimize processor interaction, and assigns free processors dynamically to
busy groups to achieve load balancing.

Experiments show that both algorithms achieve good speedups in building the clas-
sifier on a 4-processor SMP with disk configuration and on an 8-processor SMP with
memory configuration, for various numbers of attributes, various numbers of example
tuples of input databases, and various complexities of data models. The performance of
both algorithms are comparable, but MWK has a slight edge on the SMP configurations
we looked at. These experiments demonstrate that the important data mining task of
classification can be effectively parallelized on SMP machines.

128

7 Summary and Future Work

In this chapter we will summarize the research contributions of this thesis, and point
out directions for future work.

7.1 Thesis Summary

The main contributions of this thesis are: 1) We study three key rule discovery
techniques that include Association Rules, Sequence Discovery, and Decision Tree Clas-
sification. 2) Our algorithms scale to large disk-resident databases 3) Our techniques
are based on a sound lattice-theoretic framework. 4) We experimentally evaluate our
approach on major parallel platforms which include shared-memory multiprocessors,
and hierarchical clusters of SMP workstations. We now present a summary of each
chapter in the thesis.

7.1.1 Mining Association Rules

We began this thesis by presenting new algorithms for fast mining of association
rules. The main contributions of this work are:

1. Combinatorial Decomposition: We used lattice-theoretic combinatorial properties
to decompose the original search space into smaller pieces that can be solved
independently. Two techniques were presented: prefix-based and maximal-clique-
based decomposition. The prefix-based approach returns coarser partitions, while
the maximal-clique-based returns a more refined set, but at a greater computa-
tional cost.

2. Efficient Search Techniques: Once the problem is partitioned, each sub-problem
is solved for frequent patterns using one of the three lattice search techniques:
bottom-up search, top-down search and hybrid search. The bottom-up search
enumerates all the frequent itemsets. The top-down search lists only the maximal
ones. The hybrid technique enumerates a few long maximal frequent patterns and
some non-maximal ones, and it was found to work best in practice.

129

3. Efficient Counting: The vertical database format using tid-lists enables us to
compute itemset support via simple intersection operations. Coupled with the
problem decomposition and efficient search methods, this format allows us to
enumerate all patterns in usually a single database scan after a pre-processing
step or in three scans without the preprocessing.

Six new algorithms were proposed and tested: Eclat, MaxEclat, Clique, MaxClique,
Top-Down, and AprClique. We showed experimentally that the best new algorithm
MaxClique outperforms the best previous algorithm by more than an order of magni-
tude. Future work will concentrate on the development of new algorithms for mining
generalized and quantitative association rules [Srikant and Agrawal, 1995; Srikant and
Agrawal, 1996a], and on the direct implementation of these algorithms on DBMS sys-
tems using SQL.

7.1.2 Parallel Association Mining

The parallel formulation is based on the sequential association mining algorithms
using the techniques proposed above. The main features of the parallel algorithms are:

1. Set-up Phase: We decouple processors up-front. The independent sub-problems
are scheduled among the available processors, and the database is selectively repli-
cated, so that all information needed for computing the associations is local to each
processor.

2. Asynchronous Phase: Since each sub-problem is independent, and all data is lo-
cally available, each processor can enumerate the frequent itemsets asynchronously.
There is no communication or synchronization beyond the set-up phase.

3. Good Locality and Memory Usage: The vertical tid-lists enable us to compute
support via simple intersections, which involve only a linear scan of two lists.
This results in very good data locality (unlike previous approaches that use hash
trees for computing support, which have poor locality). Furthermore, the aggre-
gate memory of the whole system is used effectively, since each processor solves
disjoint sub-problems (unlike previous algorithms that replicate the hash trees
on all processors). Finally, usually only two database scans are needed to com-
pute all frequent itemsets: one pass for replicating the database, and another for
enumerating the patterns.

Four new algorithms, Par-Eclat, Par-MaxEclat, Par-Clique, and Par-MaxClique, were
proposed, and the best new algorithm Par-MaxClique was shown to outperform earlier
approaches by upto an order of magnitude. Future work will involve applying these
techniques for developing new algorithms on SMP systems, and for implementing new
parallel algorithms for the task of mining generalized and quantitative associations rules.

130

7.1.3 Theoretical Foundations of Association Rules

We presented some complexity results of mining associations based on the connection
between frequent itemsets and bipartite cliques. We also placed association rule mining
within the lattice-theoretic framework of formal concept analysis. We showed that all
frequent itemsets are uniquely determined by the set of frequent concepts. We then
tackled the problem of constructing a rule generating set and a base, a minimal rule
set, from which all the other association rules can be inferred. We showed that while
there exists a characterization of a base for rules with 100% confidence, the problem
of constructing a base for all associations is still open, which provides an opportunity
for future research. Nevertheless, we showed how to construct a generating set for all
associations rules, which is a good approximation for a base, and which can drastically
reduce the number of rules presented to the user.

7.1.4 Mining Sequence Rules

We presented SPADE, a new algorithm for fast mining of sequential patterns in
large databases. It has the same features as the association mining algorithm, even
though the search space is larger and more complex, and the intersection is also more
complicated. The new algorithm decomposes the original problem into smaller sub-
problems using equivalence classes on frequent sequences. Not only can each equivalence
class be solved independently, but it is also very likely that it can be processed in main-
memory. The new approach makes only three database scans and uses only simple
intersection operations. An extensive set of experiments was conducted to show that
SPADE outperforms the best previous algorithm by a factor of two, and by an order of
magnitude with a preprocessing step. This work opens several research opportunities,
which we plan to address in the future:

1. Direct integration with a DBMS system.

2. Discovery of quantitative sequences – where the quantity of items bought is also
considered.

3. Efficient solutions to the problem of generalized sequences using the SPADE ap-
proach – introducing minimum and maximum time gap constraints on sequence
elements, relaxing the definition of a transaction to encompass all transaction
within a sliding window, and imposing a taxonomy on the items.

7.1.5 Mining Classification Rules

We developed fast scalable decision-tree-based classification algorithms targeting
shared-memory systems, the first such study. The algorithms were based on the se-
quential SPRINT classifier, and spanned the gamut of data and task parallelism. The
data parallelism was based on attribute scheduling among processors. This was extended
with task pipelining and dynamic load balancing to yield more complex schemes. The
task parallel approach used dynamic subtree partitioning among processors. Two main

131

algorithms were presented: MWK and SUBTREE. These algorithms were evaluated on
two SMP configurations: one in which data is too large to fit in memory and must be
paged from a local disk as needed and the other in which memory was sufficiently large
to hold the whole input data and all temporary files. Experiments confirmed that the
new algorithms achieved excellent speedup and sizeup, making them ideal for mining
large datasets. Future work will study the scaleup of these algorithms on larger SMP
configurations.

7.2 Future Work

Data Mining or KDD refers to the overall process of discovering new, useful, and
understandable patterns in data. Developing fast algorithms is just one of the steps
in the process. The other steps include data selection, cleaning and preprocessing,
transformation, data-mining task and algorithm selection, and finally post-processing.
This KDD process tends to be highly interactive and iterative. Future research needs to
target the interaction of the overall KDD process and parallel computing, in addition to
developing faster parallel solutions for the core data mining tasks. Some of the problems
that need to be addressed are:

• Scalability: Databases will continue to increase in size, in both the number of
records and the number of attributes. Parallel processing is ideally suited for
addressing issues of scalability. The ultimate goal is to handle giga/tera-bytes of
data efficiently.

• Incremental Techniques: In many domains the data changes over time. Old ex-
tracted knowledge may need to be updated or may even become invalid. Parallel
incremental algorithms can provide fast modification, deletion or augmentation of
discovered knowledge.

• Interaction: The KDD process is highly interactive. The human is involved in
almost all the steps. For example, the user is heavily involved in the initial data
understanding, selection, cleaning, and transformation phases. These steps in
fact consume more time than data mining per se. Moreover, the output of data
mining may itself be large, requiring additional refinement or generalization to
produce understandable patterns. Parallel methods can be successful in providing
the desired rapid response in all of the above steps.

• Data Type and Locality: Distributed collaboration is becoming increasingly com-
mon, with need for data analysis at widely dispersed sites. Furthermore, the rapid
growth of resources on the Internet, which is inherently distributed in nature, and
has data in a variety of non-standard and unstructured formats, poses new chal-
lenges in KDD. Techniques from parallel and distributed computing will lie at the
heart of any proposed solutions.

• Parallel DBMS Integration: The various steps of the KDD process, along with
the core data mining methods, need to be integrated with a DBMS to provide

132

common representation, storage, and retrieval, to build general purpose KDD
systems. Moreover, enormous gains are possible when combined with parallel
DBMS or parallel file servers.

• Applications: KDD is ultimately motivated by the need to analyze data from
a variety of practical applications, be it in business domains such as finance,
marketing, telecommunications and manufacturing, or in scientific fields such as
biology, geology, astronomy and medicine. Future research must identify new
application domains that can benefit from data mining. This will lead to the
refinement of existing techniques, and also to the development of new methods
where current tools are inadequate.

In conclusion, the phenomenal growth of data has spurred the need for KDD. While
the existing techniques are usually ad hoc, as the field matures, solutions are being pro-
posed for the problems outlined above along with other crucial problems of incorporation
of prior knowledge, avoiding over-fitting, handling missing data, adding visualization,
and improving understandability. Furthermore, as the data continue to increase in
complexity (which includes size, type, and location of data), parallel computing will be
essential in delivering fast interactive solutions for the overall KDD process. This thesis
is a step in this direction.

133

Bibliography

[Aggarwal and Yu, 1998] C. Aggarwal and P. Yu, “Online Generation of Association
Rules,” In 14th Intl. Conf. on Data Engineering, February 1998.

[Agrawal et al., 1992] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, “An
Interval Classifier for Database Mining Applications,” In 18th VLDB Conference,
August 1992.

[Agrawal et al., 1993a] R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A
Performance Perspective,” IEEE Transactions on Knowledge and Data Engineering,
5(6):914–925, December 1993.

[Agrawal et al., 1993b] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between sets of items in large databases,” In ACM SIGMOD Conf. Management
of Data, May 1993.

[Agrawal et al., 1996] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri
Verkamo, “Fast Discovery of Association Rules,” In U. Fayyad and et al, editors,
Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI Press,
Menlo Park, CA, 1996.

[Agrawal and Shafer, 1996] R. Agrawal and J. Shafer, “Parallel Mining of Association
Rules,” IEEE Trans. on Knowledge and Data Engg., 8(6):962–969, December 1996.

[Agrawal and Srikant, 1994] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” In 20th VLDB Conference, September 1994.

[Agrawal and Srikant, 1995] R. Agrawal and R. Srikant, “Mining Sequential Patterns,”
In 11th Intl. Conf. on Data Engg., 1995.

[Agrawal et al., 1993c] Rakesh Agrawal, Christos Faloutsos, and Arun Swami, “Effi-
cient Similarity Search in Sequence Databases,” In Proc. of the Fourth Int’l Confer-
ence on Foundations of Data Organization and Algorithms, October 1993.

[Bayardo, 1998] R. J. Bayardo, “Efficiently mining long patterns from Databases,” In
ACM SIGMOD Conf. Management of Data, June 1998.

[Berge, 1989] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland,
1989.

134

[Bitton et al., 1984] Dina Bitton, David DeWitt, David K. Hsiao, and Jaishankar
Menon, “A Taxonomy of Parallel Sorting,” ACM Computing Surveys, 16(3):287–
318, September 1984.

[Breiman et al., 1984] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, Wadsworth, Belmont, 1984.

[Brin et al., 1997] S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset
Counting and Implication Rules for Market Basket Data,” In ACM SIGMOD Conf.
Management of Data, May 1997.

[Bron and Kerbosch, 1973] C. Bron and J. Kerbosch, “Finding all cliques of an undi-
rected graph,” Communications of the ACM, 16(9):575–577, 1973.

[Carpineto and Romano, 1993] C. Carpineto and G. Romano, “GALOIS: An order-
theoretic approach to conceptual clustering,” In 10th Intl. Conf. on Machine Learn-
ing, June 1993.

[Carpineto and Romano, 1996] C. Carpineto and G. Romano, “A lattice conceptual
clustering system and its application to browsing retrieval,” Machine Learning, 24:95–
112, 1996.

[Catlett, 1991] Jason Catlett, Megainduction: Machine Learning on Very Large
Databases, PhD thesis, University of Sydney, 1991.

[Chan and Stolfo, 1993a] Philip K. Chan and Salvatore J. Stolfo, “Experiments on
Multistrategy Learning by Meta-Learning,” In Proc. Second Intl. Conference on
Info. and Knowledge Mgmt., pages 314–323, 1993.

[Chan and Stolfo, 1993b] Philip K. Chan and Salvatore J. Stolfo, “Meta-learning for
Multistrategy and Parallel Learning,” In Proc. Second Intl. Workshop on Multistrat-
egy Learning, pages 150–165, 1993.

[Cheeseman et al., 1988] P. Cheeseman, James Kelly, Matthew Self, et al., “AutoClass:
A Bayesian Classification System,” In 5th Int’l Conference on Machine Learning.
Morgan Kaufman, June 1988.

[Cheung et al., 1996a] D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu, “A fast distributed
algorithm for mining association rules,” In 4th Intl. Conf. Parallel and Distributed
Info. Systems, December 1996.

[Cheung et al., 1998] D. Cheung, K. Hu, and S. Xia, “Asynchronous parallel algorithm
for mining association rules on shared-memory multi-processors,” In 10th ACM Symp.
Parallel Algorithms and Architectures, June 1998.

[Cheung et al., 1996b] D. Cheung, V. Ng, A. Fu, and Y. Fu, “Efficient Mining of As-
sociation Rules in Distributed Databases,” In IEEE Trans. on Knowledge and Data
Engg., pages 8(6):911–922, 1996.

135

[Chiba and Nishizeki, 1985] N. Chiba and T. Nishizeki, “Arboricity and subgraph list-
ing algorithms,” SIAM J. Computing, 14(1):210–223, 1985.

[Davey and Priestley, 1990] B. A. Davey and H. A. Priestley, Introduction to Lattices
and Order, Cambridge University Press, 1990.

[Eppstein, 1994] D. Eppstein, “Arboricity and bipartite subgraph listing algorithms,”
Information Processing Letters, 51:207–211, 1994.

[Faloutsos et al., 1994] Christos Faloutsos, M. Ranganathan, and Yannis Manolopou-
los, “Fast Subsequence Matching in Time-Series Databases,” In Proc. of the ACM
SIGMOD Conference on Management of Data, May 1994.

[Fayyad et al., 1996a] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data
Mining to Knowledge Discovery: An Overview,” In Advances in Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, CA, 1996.

[Fayyad et al., 1996b] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD
process for extracting useful knowledge from volumes of data,” In Communications
of the ACM – Data Mining and Knowledge Discovery in Databases, November 1996.

[Fifield, 1992] D. J. Fifield, “Distributed Tree Construction from Large Data-sets,”
Bachelor’s Honours Thesis, Australian National University, 1992.

[Fisher, 1987] Douglas H. Fisher, “Knowledge Acquisition Via Incremental Conceptual
Clustering,” Machine Learning, 2(2), 1987.

[Ganter, 1987] B. Ganter, “Algorithmen zur formalen begriffsanalyse,” Beiträge zur
Begriffsanalyse (Ganter, Wille, Wolff, eds.), Wissenschaft-Verlag, 1987.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., 1979.

[Gillett, 1996] R. Gillett, “Memory Channel: An Optimized Cluster Interconnect,” In
IEEE Micro, 16(2), February 1996.

[Godin et al., 1991] R. Godin, R. Missaoui, and H. Alaoui, “Incremental concept for-
mation algorithms based on Galois (concept) lattices,” Computational Intelligence,
11(2):246–267, 1991.

[Goldberg, 1989] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Morgan Kaufmann, 1989.

[Guenoche, 1990] A. Guenoche, “Construction du treillis de Galois d’une relation bi-
naire,” Math. Sci. Hum., 109:41–53, 1990.

[Guigues and Duquenne, 1986] J. L. Guigues and V. Duquenne, “Familles minimales
d’implications informatives resultant d’un tableau de donnees binaires,” Math. Sci.
hum., 24(95):5–18, 1986.

136

[Gunopulos et al., 1997a] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen,
“Data mining, Hypergraph Transversals, and Machine Learning,” In 16th ACM Symp.
Principles of Database Systems, May 1997.

[Gunopulos et al., 1997b] D. Gunopulos, H. Mannila, and S. Saluja, “Discovering all
the most specific sentences by randomized algorithms,” In Intl. Conf. on Database
Theory, January 1997.

[Han et al., 1997] E-H. Han, G. Karypis, and V. Kumar, “Scalable Parallel Data Mining
for Association Rules,” In ACM SIGMOD Conf. Management of Data, May 1997.

[Harary, 1969] F. Harary, Graph Theory, Addison-Wesley Pub. Co., 1969.

[Hatonen et al., 1996] K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and
H. Toivonen, “Knowledge Discovery from Telecommunication Network Alarm
Databases,” In 12th Intl. Conf. Data Engineering, February 1996.

[Holsheimer et al., 1995] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen, “A
perspective on databases and data mining,” In 1st Intl. Conf. Knowledge Discovery
and Data Mining, August 1995.

[Houtsma and Swami, 1995] M. Houtsma and A. Swami, “Set-oriented mining of asso-
ciation rules in relational databases,” In 11th Intl. Conf. Data Engineering, 1995.

[IBMa] IBM, http://www.almaden.ibm.com/cs/quest/syndata.html, Quest Data Mining
Project, IBM Almaden Research Center, San Jose, CA 95120.

[IBMb] IBM, http://www.rs6000.ibm.com/hardware/largescale/index.html, IBM
RS/6000 SP System, IBM Corp.

[Jain and Dubes, 1988] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1988.

[James, 1985] M. James, Classificaton Algorithms, Wiley, 1985.

[Kashiwabara et al., 1992] T. Kashiwabara, S. Masuda, K. Nakajima, and T. Fujisawa,
“Generation of maximum independent sets of a bipartite graph and maximum cliques
of a circular-arc graph,” J. of Algorithms, 13:161–174, 1992.

[Kuznetsov, 1989] S. O. Kuznetsov, “Interpretation on graphs and complexity charac-
teristics of a search for specific patterns,” Nauchn. Tekh. Inf., Ser. 2 (Automatic
Document. Math. Linguist.), 23(1):23–37, 1989.

[Kuznetsov, 1993] S. O. Kuznetsov, “Fast algorithm for construction of all intersections
of the objects from a finite semi-lattice,” Nauchn. Tekh. Inf., Ser. 2 (Automatic
Document. Math. Linguist.), 9:11–21, 1993.

[Lewis and Berg, 1996] Bill Lewis and Daniel J. Berg, Threads Primer, Prentice Hall,
New Jersey, 1996.

137

[Lin and Kedem, 1998] D-I. Lin and Z. M. Kedem, “Pincer-Search: A New Algorithm
for Discovering the Maximum Frequent Set,” In 6th Intl. Conf. Extending Database
Technology, March 1998.

[Lin and Dunham, 1998] J-L. Lin and M. H. Dunham, “Mining Association Rules:
Anti-Skew Algorithms,” In 14th Intl. Conf. on Data Engineering, February 1998.

[Lippmann, 1987] R. Lippmann, “An Introduction to Computing with Neural Nets,”
IEEE ASSP Magazine, 4(22), April 1987.

[Luxenburger, 1991] M. Luxenburger, “Implications partielles dans un contexte,” Math.
Inf. Sci. hum., 29(113):35–55, 1991.

[Maier, 1983] D. Maier, The Theory of Relational Databases, Computer Science Press,
1983.

[Mannila and Toivonen, 1996] H. Mannila and H. Toivonen, “Discovering generalized
episodes using minimal occurences,” In 2nd Intl. Conf. Knowledge Discovery and
Data Mining, 1996.

[Mannila et al., 1995] H. Mannila, H. Toivonen, and I. Verkamo, “Discovering frequent
episodes in sequences,” In 1st Intl. Conf. Knowledge Discovery and Data Mining,
1995.

[Markatos and LeBlanc, 1994] E.P. Markatos and T.J. LeBlanc, “Using Processor Affin-
ity in Loop Scheduling on Shared-Memory Multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, 5(4), April 1994.

[Mehta et al., 1996] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen, “SLIQ: A
Fast Scalable Classifier for Data Mining,” In Proc. of the Fifth Int’l Conference on
Extending Database Technology (EDBT), Avignon, France, March 1996.

[Michalski and Stepp, 1983] Ryszard S. Michalski and Robert E. Stepp, “Learning from
Observation: Conceptual Clustering,” In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, volume I,
pages 331–363. Morgan Kaufmann, 1983.

[Michie et al., 1994] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning,
Neural and Statistical Classification, Ellis Horwood, 1994.

[Mueller, 1995] A. Mueller, “Fast Sequential and Parallel Algorithms for Association
Rule Mining: A Comparison,” Technical Report CS-TR-3515, University of Mary-
land, College Park, August 1995.

[Mulligan and Corneil, 1972] G. D. Mulligan and D. G. Corneil, “Corrections to Bier-
stone’s Algorithm for Generating Cliques,” J. of the ACM, 19(2):244–247, 1972.

[NASA, 1992] NASA, Introduction to IND Version 2.1, NASA Ames Research Center,
GA23-2475-02 edition, 1992.

138

[Oates et al., 1997] T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen, “A family of
algorithms for finding temporal structure in data,” In 6th Intl. Workshop on AI and
Statistics, March 1997.

[Papadimitriou, 1994] C. H. Papadimitriou, Computational Complexity, Addison-
Wesley Pub. Co., 1994.

[Park et al., 1995a] J. S. Park, M. Chen, and P. S. Yu, “An effective hash based algo-
rithm for mining association rules,” In ACM SIGMOD Intl. Conf. Management of
Data, May 1995.

[Park et al., 1995b] J. S. Park, M. Chen, and P. S. Yu, “Efficient parallel data mining
for association rules,” In ACM Intl. Conf. Information and Knowledge Management,
November 1995.

[Parthasarathy et al., 1998] S. Parthasarathy, M. J. Zaki, and W. Li, “Memory place-
ment techniques for parallel association mining,” In 4th Intl. Conf. Knowledge Dis-
covery and Data Mining, August 1998.

[Polychronopoulos and Kuck, 1987] C. D. Polychronopoulos and D. J. Kuck, “Guided
Self-Scheduling: a Practical Scheduling Scheme for Parallel Supercomputers,” IEEE
Trans. on Computers, C-36(12), December 1987.

[Quinlan, 1979] J. R. Quinlan, “Induction over large databases,” Technical Report
STAN-CS-739, Stanfard University, 1979.

[Quinlan, 1986] J. Ross Quinlan, “Induction of Decision Trees,” Machine Learning,
1:81–106, 1986.

[Quinlan, 1993] J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
man, 1993.

[Rissanen, 1989] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Sci-
entific Publ. Co., 1989.

[Rota, 1964] G.-C. Rota, “On the foundations of combinatorial theory: I. theory of
Möbius functions,” Z. Wahrscheinlichkeitstheorie, 2:340–368, 1964.

[Savasere et al., 1995] A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algo-
rithm for mining association rules in large databases,” In 21st VLDB Conf., 1995.

[Shafer et al., 1996] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Par-
allel Classifier for Data Mining,” In 22nd VLDB Conference, March 1996.

[Shintani and Kitsuregawa, 1996] T. Shintani and M. Kitsuregawa, “Hash based paral-
lel algorithms for mining association rules,” 4th Intl. Conf. Parallel and Distributed
Info. Systems, December 1996.

[Simoudis, 1996] E. Simoudis, “Reality Check for Data Mining,” In IEEE Expert:
Intelligent Systems and Their Applications, pages 11(5):26–33, October 1996.

139

[Srikant and Agrawal, 1995] R. Srikant and R. Agrawal, “Mining Generalized Associa-
tion Rules,” In 21st VLDB Conf., 1995.

[Srikant and Agrawal, 1996a] R. Srikant and R. Agrawal, “Mining Quantitative Asso-
ciation Rules in Large Relational Tables,” In ACM SIGMOD Conf. Management of
Data, June 1996.

[Srikant and Agrawal, 1996b] R. Srikant and R. Agrawal, “Mining Sequential Pat-
terns: Generalizations and performance improvements,” In 5th Intl. Conf. Extending
Database Technology, March 1996.

[Tang and Yew, 1986] P. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple
Nested Parallel Loops,” In International Conference On Parallel Processing, August
1986.

[Toivonen, 1996] H. Toivonen, “Sampling Large Databases for Association Rules,” In
22nd VLDB Conf., 1996.

[Toivonen et al., 1995] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hätönen, and
H. Mannila, “Pruning and grouping discovered association rules,” In MLnet Wkshp.
on Statistics, Machine Learning, and Discovery in Databases, April 1995.

[Tsukiyama et al., 1977] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new
algorithm for generating all the maximal independent sets,” SIAM J. Computing,
6(3):505–517, 1977.

[Valiant, 1979] L. G. Valiant, “The complexity of computing the permanent,” Theoret-
ical Computer Science, 8:189–201, 1979.

[Weiss and Kulikowski, 1991] Sholom M. Weiss and Casimir A. Kulikowski, Computer
Systems that Learn: Classification and Prediction Methods from Statistics, Neural
Nets, Machine Learning, and Expert Systems, Morgan Kaufman, 1991.

[Wild, 1991] M. Wild, “Implicational bases for finite closure systems,” Arbeitstagung,
Begriffsanalyse und Künstliche Intelligenz (W. Lex, ed.), pages 147–169, 1991.

[Wille, 1982] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts,” Ordered Sets (I. Rival, ed.), pages 445–470, Reidel, Dordrecht-boston,
1982.

[Wirth and Catlett, 1988] J. Wirth and J. Catlett, “Experiments on the Costs and
Benefits of Windowing in ID3,” In 5th Int’l Conference on Machine Learning, 1988.

[Yen and Chen, 1996] S.-J. Yen and A. L. P. Chen, “An efficient approach to discovering
knowledge from large databases,” In 4th Intl. Conf. Parallel and Distributed Info.
Systems, December 1996.

[Zaki, 1998] M. J. Zaki, “Efficient Enumeration of Frequent Sequences,” In 7th Intl.
Conf. on Information and Knowledge Management, November 1998.

140

[Zaki et al., 1998a] M. J. Zaki, C.-T. Ho, and R. Agrawal, “Parallel Classification on
SMP Systems,” In 1st Workshop on High Performance Data Mining, March 1998.

[Zaki et al., 1999] M. J. Zaki, C.-T. Ho, and R. Agrawal, “Parallel Classification for
Data Mining on Shared-Memory Multiprocessors,” In 15th IEEE Intl. Conf. on Data
Engineering, March 1999.

[Zaki et al., 1998b] M. J. Zaki, N. Lesh, and M. Ogihara, “PLANMINE: Sequence
mining for plan failures,” In 4th Intl. Conf. Knowledge Discovery and Data Mining,
August 1998.

[Zaki and Ogihara, 1998] M. J. Zaki and M. Ogihara, “Theoretical Foundations of As-
sociation Rules,” In 3rd ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, June 1998.

[Zaki et al., 1996] M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li, “Parallel Data
Mining for Association Rules on Shared-memory Multi-processors,” In Supercomput-
ing’96, November 1996.

[Zaki et al., 1997a] M. J. Zaki, S. Parthasarathy, and W. Li, “A localized algorithm for
parallel association mining,” In 9th ACM Symp. Parallel Algorithms and Architec-
tures, June 1997.

[Zaki et al., 1997b] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara, “Evaluation
of Sampling for Data Mining of Association Rules,” In 7th Intl. Wkshp. Research
Issues in Data Engg, April 1997.

[Zaki et al., 1997c] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New al-
gorithms for fast discovery of association rules,” In 3rd Intl. Conf. on Knowledge
Discovery and Data Mining, August 1997.

[Zaki et al., 1997d] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New al-
gorithms for fast discovery of association rules,” Technical Report URCS TR 651,
University of Rochester, April 1997.

[Zaki et al., 1997e] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New paral-
lel algorithms for fast discovery of association rules,” Data Mining and Knowledge
Discovery: An International Journal, 1(4):343-373, December 1997.

