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1. INTRODUCTION

Many real world applications, such as those in bioinformatics, Web accesses,
and text mining, encompass sequential or temporal data with long and short
range dependencies. Techniques for analyzing such data can be grouped in two
broad categories: pattern mining and data modeling. Efficient methods have
been proposed for sequence pattern mining in both data mining [Srikant and
Agrawal 1996; Mannila et al. 1995; Zaki 2001; Pei et al. 2001] and bioinfor-
matics [Gusfield 1997; Jensen et al. 2006]. For sequence data modeling, hidden
Markov models (HMMs) [Rabiner 1989] have been widely employed in a broad
range of applications such as speech recognition, Web usage analysis, and bio-
logical sequence analysis [Durbin et al. 1998; Felzenszwalb et al. 2003; Pitkow
and Pirolli 1999].

A simple, or first-order, Markov model is a stochastic process where each state
depends only on the previous state. In regular Markov models, each state emits
only one symbol, and only the transition probabilities have to be estimated. A
first-order hidden Markov model, on the other hand has hidden states—it may
emit more than one symbol, according to the state-dependent output probabil-
ities, which become additional parameters that have to be estimated. Due to
their very nature first-order (hidden) Markov models may not suitably capture
longer range sequential dependencies. For such problems, higher-order and
variable-order Markov models [Pitkow and Pirolli 1999; Saul and Jordan 1999;
Deshpande and Karypis 2001; Ron et al. 1996; Buhlmann and Wyner 1999]
and HMMs [du Preez 1998; Schwardt and Du Preez 2000; Galassi et al. 2007;
Law and Chan 1996; Wang et al. 2006] have been proposed. However, building
an m-order HMM requires estimation of the joint probabilities of the previous
m states. Furthermore, not all of the previous m states may be predictive of
the current state. Hence, the training process is extremely expensive and suf-
fers from local optima. As a result, higher-order models may suffer from high
state-space complexity, reduced coverage, and sometimes even low prediction
accuracy [Deshpande and Karypis 2001].

To address these limitations, we introduce a new approach to temporal/
sequential data analysis, which combines temporal pattern mining and data
modeling. The rationale behind our approach is that many real-world sequences
are difficult to directly model via HMMs due to the complex embedded de-
pendencies. Instead we first extract these frequent sequential patterns via se-
quence mining, and then use those to construct the HMM. We introduce a new
variable order HMM called VOGUE (Variable Order and Gapped HMM for
Unstructured Elements) to discover and interpret long and short range tem-
poral locality and dependencies in the analyzed data.2 The first step of our
method uses a new sequence mining algorithm, called Variable-Gap Sequence
miner (VGS), to mine variable-length frequent patterns that may contain dif-
ferent gaps between the elements. The second step of our technique uses
the mined variable-gap sequences to automatically build the variable-order
VOGUE HMM: the topology of the model is learned directly from the mined

2A preliminary version of this work appeared in Bouqata et al. [2006]
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sequences. In fact, VOGUE models multiple higher order HMMs via a single
variable-order model with explicit duration.

In this article we apply VOGUE on several real datasets. The first application
is for a problem in biological sequence analysis, namely, multi-class protein
classification. Given a database of protein sequences, the goal is to build a
statistical model that can determine whether or not a query protein belongs to
a given family (class). Statistical models for proteins, such as profiles, position-
specific scoring matrices, and hidden Markov models [Eddy 1998] have been
developed to find homologs. However, in most biological sequences, interesting
patterns repeat (either within the same sequence or across sequences) and
may be separated by variable length gaps. Therefore a method like VOGUE
that specifically takes these kinds of patterns into consideration can be very
effective. We show experimentally that VOGUE outperforms HMMER [Eddy
1998], an HMM model specifically designed for protein sequences.

We also apply VOGUE to the problems of Web usage mining, where the task
is to distinguish the affiliation of the users: to find out whether users come from
an academic (edu) or a commercial or other domain. We also looked at the prob-
lem of masquerading within intrusion detection. Given user command logs at a
terminal we look at the task of identifying the user. Finally, we look at spelling
correction. Given a dataset of commonly misspelled words along with their con-
text, we determine whether the usage is correct or incorrect. It is important
to keep in mind that the real purpose of using an HMM based approach like
VOGUE is to model the data—to build a generative model. VOGUE can also be
used as a discriminative model, but this mode is used mainly for comparison
against other HMM methods.

2. RELATED WORK

A recent book [Dong and Pei 2007] provides a very good introduction to the
issues that span sequence mining and modeling. Here we briefly review the
most relevant research.

2.1 Sequence Mining

Sequence mining helps to discover frequent sequential patterns across time
or positions in a given data set. Most of the methods in bioinformatics are de-
signed to mine consecutive subsequences, such as those that rely on suffix trees
[Gusfield 1997]. Within data mining, the problem of mining sequential pat-
terns was introduced in Agrawal and Srikant [1995]. The same authors then
extended the approach to include constraints like max/min gaps, and tax-
onomies in Srikant and Agrawal [1996]. Other sequence mining methods have
also been proposed, such as SPADE [Zaki 2001], which was later extended to
cSPADE [Zaki 2000] to consider constraints like max/min gaps and sliding win-
dows. GenPresixSpan [Antunes and Oliveira 2003] is another algorithm based
on PrefixSpan [Pei et al. 2001], which considers gap-constraints. More recent
works on gapped sequence mining appear in Li and Wang [2008] and Zhu and
Wu [2007]. Regular expressions and other constraints have been studied in
Garofalakis et al. [2002] and Zhang et al. [2005]. An approach in which even
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large gaps between frequent patterns can be bridged was proposed in Szyman-
ski and Zhang [2004] in the so-called recursive data mining (RDM) approach.
The system was initially used for intrusion detection and more recently for text
mining and role detection [Chaoji et al. 2008]. In contrast to all of these ap-
proaches, we explicitly mine the variable gap sequences while keeping track
of all the intermediate symbols (in the gaps), their frequencies, and the gap
frequency distributions. This analysis of the gap is used, later on, for building
the VOGUE state model.

2.2 Markov Models and HMMs

Markov models and HMMs have been proposed to model longer range depen-
dencies. However, such models suffer from high state-space complexity, since
a k-th order Markov model/HMM, with alphabet �, can potentially have |�|k
states. Estimating the joint probabilities of each k-th order state is also diffi-
cult. In the following, we briefly review the state-of-the-art approaches for these
methods.

2.2.1 Markov Models. The all-k-order Markov model was proposed
in Pitkow and Pirolli [1999], where one has to maintain a Markov model of order
j (where the current state depends on the j previous states) for all 1 ≤ j ≤ k.
Three post-pruning techniques based on frequency, transition probability, and
error thresholds, were proposed in Deshpande and Karypis [2001] to improve
the prediction accuracy and coverage, and to lower the state complexity of the
all k-order Markov model. Another approach, called WMo, combines the mining
of sequences with a Markov predictor for Web prefetching [Nanopoulos et al.
2003]. It also maintains various Markov models up to length k, but was shown
to be a generalization of the above approaches. The main limitations of all these
methods is that multiple models still have to be maintained, and these methods
do not explicitly model gaps.

In Saul and Jordan [1999], mixed order Markov models were proposed. How-
ever, they rely on expectation maximization (EM) algorithms that are prone to
local optima. Furthermore, their approach depends on a mixture of bigrams
over k consecutive previous states, whereas VOGUE automatically ignores ir-
relevant states. Probabilistic suffix automata and prediction suffix trees (PST),
proposed in Ron et al. [1996], are both variable memory Markov models. To
learn the PST, their algorithm grows the suffix tree starting from a root node.
New nodes are added to the tree if the sample supports the string labeled with
that node. The Variable Length Markov Chains (VLMC) approach [Buhlmann
and Wyner 1999] also uses a tree context, and focuses on minimizing the
number of states via an information-theoretic approach. Unlike VOGUE, nei-
ther PST nor VLMC explicitly handle gaps, and in any case they are not
hidden.

2.2.2 HMMs. One of the first approaches was to extend HMMs to second-
order [Kriouile et al. 1990]. They extended the Viterbi and Baum-Welch al-
gorithms [Durbin et al. 1998] that are used for state prediction and training,
to directly handle second-order models. Higher-order HMMs for a fixed length
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k ≥ 2, were considered in du Preez [1998]. The approach first converts the
fixed-order HMM to an equivalent first-order HMM, and then uses an incremen-
tal method to train the higher-order HMM from lower order models. Another
fixed-order HMM was proposed in Law and Chan [1996] in the context of lan-
guage modeling via n-grams (for a fixed n). Unlike the fixed-order approaches,
VOGUE is variable order, and it uses a more effective and efficient approach
of frequent sequence mining to extract the dependencies. Mixed order HMMs
were proposed in Schwardt and Du Preez [2000], where a prediction suffix tree
is incorporated in the training of the HMM. The use of the suffix tree implies
that only consecutive subsequences are considered in the modeling, and fur-
ther, the method still relies on an EM method for training. In contrast, VOGUE
is better able to capture the variable dependencies with gaps, via sequence
mining.

In more recent work, episode generating HMMs (EGH) [Laxman et al. 2005]
are especially relevant. Their main goal was to develop a generative model
for each frequent episode (or sequence) in the data. To achieve this aim, they
first mine frequent sequences from the data. However, they mine only nonover-
lapping sequences, and further they do not explicitly handle gaps, as we do in
VOGUE. In the second step, they build a specific HMM for a specific sequence—
there are as many EGHs as there are mined sequences. In contrast to this,
VOGUE is a single variable-order HMM incorporating all the frequent se-
quences. The variable-length HMM approach (VLHMM) [Wang et al. 2006]
is built upon variable memory Markov chains [Ron et al. 1996; Buhlmann and
Wyner 1999]; it uses a prediction prefix tree to store the context, and relies on
an EM method for training. Moreover, it requires the number of states as input
from the user. It does not use any form of pattern mining, as in VOGUE, to
learn the model. Another recent approach combines motif discovery with HMM
learning (called HPHMM) [Galassi et al. 2007]. They use a profile HMM [Eddy
1998] to learn the motifs (via local string alignment), and then combine them
into a two-level hierarchical HMM [Fine et al. 1998]. Unlike the general purpose
variable-order HMM architecture used in VOGUE, HPHMM uses the restricted
class of left-to-right models. Their motif discovery method is based on a pair-
wise comparison among all input sequences, whereas VOGUE directly mines
frequent sequences over the entire set of input sequences. Finally, HPHMM
does model the gap length via a separate HMM, but it does not model the
gap symbols: it emits a random symbol in a gap state. In contrast, VOGUE si-
multaneously models all nonconsecutive patterns, as well as gap symbols and
duration statistics.

3. VOGUE: VARIABLE ORDER AND GAPPED HMM

As noted above, building higher order HMMs is not easy, since we have to
estimate the joint probabilities of the previous k states in a k-order HMM. Also,
not all of the previous k states may be predictive of the current state. Moreover,
the training process is extremely expensive and suffers from local optima due to
the use of an EM (also known as Baum-Welch) algorithm for training the model.
VOGUE addresses these limitations. It first uses the VGS algorithm to mine
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variable-gap frequent sequences that can have g other symbols between any
two elements; g varies from 0 to a maximum gap (maxgap). These sequences
are then used as the estimates of the joint probabilities for the states used to
seed the model.

Consider a simple example to illustrate our main idea. Let the alphabet be
� = {A, . . . , K } and the sequence be S = ABACBDAE FBGHAI J K B. We
can observe that AB is a subsequence that repeats frequently (four times), but
with variable length gaps in-between. BA is also frequent (three times), again
with gaps of variable lengths. A first-order Markov model will fail to capture
any patterns since no symbol depends purely on the previous symbol; a first
order HMM will also have trouble modeling this sequence. We could try higher
order Markov models and HMMs, but they will model many irrelevant parts of
the input sequence. More importantly, no fixed-order model for k ≥ 1 can learn
this sequence, since none of them will detect the variable repeating pattern
between A and B (or vice versa). This is easy to see, since for any fixed sliding
window of size k, no k-letter word (or k-gram) ever repeats! In contrast our VGS
mining algorithm is able to extract both AB, and BA as frequent subsequences,
and it will also record how many times a given gap length is seen, as well as
the frequency of the symbols seen in those gaps. This knowledge of gaps plays a
crucial role in VOGUE, and distinguishes it from all previous approaches which
either do not consider gaps or allow only fixed gaps. VOGUE models gaps via
gap states between elements of a sequence. The gap state has a notion of state
duration which is executed according to the distribution of lengths of the gaps
and the intervening symbols.

The training and testing of VOGUE consists of three main steps: (1) pattern
mining via a novel variable-gap sequence (VGS) mining algorithm, (2) data
modeling using a novel Variable-Order HMM, and (3) interpretation of new
data via a modified Viterbi method [Durbin et al. 1998], called variable-gap
Viterbi (VG-Viterbi), to model the most probable path through a VOGUE model.
Details of these steps appear in the following.

3.1 Mining Variable Gap Sequences

Let � = {v1, v2, . . . , vm} be the alphabet of m distinct symbols. A sequence is an
ordered list of symbols, and is written as S = v1v2 · · · vq , where vi ∈ �. A se-
quence of length k is also called a k-sequence. For example, BAC is a 3-sequence.
A sequence S = s1 · · · sn is a subsequence of another sequence R = r1 · · · rm, de-
noted as S ⊆ R, if there exist integers i1 < i2 < · · · < in such that sj = ri j for
all sj . For example, the sequence BAD is a subsequence of ABEACD. If S ⊆ R,
we also say that R contains S.

Given a database D of sequences and a sequence S = s1 · · · sn, the absolute
support or frequency of S in D is defined as the total number of occurrences
of S across all sequences in D. Note that this definition allows for multiple
occurrences of S in the same sequence. Given a user-specified threshold called
the minimum support (denoted minsup), we say that a sequence is frequent if
it occurs at least minsup times. We use the maximum gap threshold maxgap
to limit the maximum gap allowed between any two elements of a k-sequence.
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Table I. VGS: Subsequences of Length 1 and 2, and Gap Information

A B C D E F G H I
frequency 4 3 2 2 1 1 1 1 1

Subsequence freq g = 0 g = 1 g = 2 Gap Symbols
AB 3 0 1 2 C(2), E, H, I
AC 2 1 1 0 H
AD 2 1 0 1 B, C
BA 2 1 1 0 D
BD 2 1 1 0 A
CA 2 0 1 1 B(2), D
CB 2 2 0 0 -
CD 2 0 1 1 A, B(2)
DA 2 1 0 1 F, G

We use the notation Fk to denote the set of all frequent k-sequences satisfying
the maxgap constraint between any two elements.

3.1.1 Variable-Gap Sequence Mining Algorithm (VGS). VGS is based on
cSPADE[Zaki 2000, 2001], a method for constrained sequence mining. Whereas
cSPADE essentially ignores the length of, and symbol distributions in, gaps,
VGS is specially designed to extract such patterns within one or more se-
quences. Note that whereas other methods can also mine gapped sequences
[Antunes and Oliveira 2003; Zaki 2000], the key difference is that during min-
ing VGS explicitly keeps track of all the intermediate symbols, their frequency,
and the gap frequency distributions, which are then used by VOGUE.

VGS takes as input the maximum gap allowed (maxgap), the maximum se-
quence length (k), and the minimum frequency threshold (minsup). VGS mines
all sequences having up to k elements, with a gap of at most maxgap length
between any two elements, such that the sequence occurs at least minsup times
in the data. An example is shown in Table I. Let S = ACBDAHCBADFGAIEB
be an input sequence over the alphabet � = {A, . . . , I}, and let maxgap = 2,
minsup = 2, and k = 2. VGS first mines the frequent subsequences of length 1,
as shown. Those symbols that are frequent are extended to consider sequences
of length 2. For example, AB is a frequent sequence with frequency freq = 3,
since it occurs once with gap of length 1 (ACB) and twice with a gap of length 2
(AHCB and AIEB). Thus, the gap length distribution of AB is 0, 1, 2, as shown
under columns g = 0, g = 1, and g = 2, respectively. VGS also records the
symbol distribution in the gaps for each frequent sequence. For AB, VGS will
record gap symbol frequencies as C(2), E(1), H(1), I (1), based on the three oc-
currences. Since k = 2, VGS would stop after mining sequences of length 2.
Otherwise, VGS would continue mining sequences of length k ≥ 3, until all
sequences with k elements have been mined.

VGS uses the vertical database format [Zaki 2001], where an id-list is kept
for each item in the dataset. Each entry in the id-list is a (sid, eid) pair, where
sid identifies the sequence id in the data set and eid defines the position in
this sequence at which the item appears. With the vertical idlists, computing
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the frequent items F1 is straightforward. We simply note all the occurrences
of an item within each sequence as well as across sequences. We next test for
the frequency of the candidate 2-sequences by joining the id-lists of pairs of
items. A new occurrence is noted if the difference between the eid of the two
items is less than the allowed maxgap. For each frequent 2-sequence, we then
count the occurrences for each value of the gap length g between its elements,
with g ∈ {0, . . . , maxgap}, where g = 0 means that there is no gap. Longer se-
quences are obtained via a depth-first search and id-list joins as in SPADE [Zaki
2001], with the key difference being that we record the gaps between elements
of the sequence. For example, for a 3-sequence XYZ, we have to note the val-
ues of the gaps between both XY and YZ. In this manner, VGS computes all
frequent sequences up to a maximum length k with variable gaps between
elements.

3.2 The Basic VOGUE Model

VOGUE uses the mined sequences to build a variable order/gap HMM. The
main idea here is to model each non-gap symbol in the mined sequences as a
state that emits only that symbol and to add intermediate gap states between
any two non-gap states. The gap states will capture the distribution of the gap
symbols and length. Let F be the set of frequent subsequences mined by VGS,
and let k be the maximum length of any sequence. For clarity of exposition,
we will first illustrate the working of VOGUE using mined sequences of length
k = 2, and later we will extend the model for any value of k ≥ 2. Let F1 and
F2 be the sets of all frequent sequences of length 1 and 2, respectively, so that
F = F1 ∪ F2. Thus, each mined sequence si ∈ F2 is of the form S : v1v2, where
v1, v2 ∈ �. Let � = {v1|v1v2 ∈ F2} be the set of all the distinct symbols in the
first positions, and � = {v2|v1v2 ∈ F2} be the set of all the distinct symbols in
the second positions of all sequences in F2. The basic VOGUE model is spec-
ified by the 6-tuple λ = {�, Q , B, A, �, π} where each component is defined
below.

3.2.1 Alphabet (�). The alphabet for VOGUE is given as:

� = {v1, · · · vM },
where |�| = M is the alphabet size. The alphabet must be specified upfront, or
alternately, VOGUE simply uses the set of symbols that occur at least once in
the training data, obtained as a result of the first iteration of VGS, as shown in
Table I. For the example sequence S shown in the table, we have nine distinct
symbols, thus M = 9 (note that in this case, we retain all symbols, not just the
frequent ones).

3.2.2 Set of States (Q). The set of states in VOGUE is given as:

Q = {q1, . . . , qN },
where

|Q | = N = N1 + G + N2 + 1.
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Here, N1 = |�| and N2 = |�| are the number of distinct symbols in the first and
second positions, respectively. Each frequent sequence vavb ∈ F2 having a gap
g ≥ 1 requires a gap state to model the gap between va and vb. G thus gives
the number of gap states required. Finally the 1 corresponds to an extra gap
state, called universal gap, that acts as the default state when no other state
satisfies an input sequence. For convenience, let the partition of Q be:

Q = Qs
1 ∪ Q g ∪ Qs

2 ∪ Qu,

where the first N1 states belong to Qs
1, the next G states belong to Q g , the

following N2 states belong to Qs
2, and the universal gap state belongs to Qu.

We call members of Qs
i the symbol states (i = 1, 2), and members of Q g , the

gap states.
For our example S from Table I we have N1 = 4, since there are four distinct

starting symbols in F2 (namely, A,B,C,D). We also have four ending symbols,
giving N2 = 4. The number of gap states is the number of sequences of length
2 with at least one occurrence with gap g ≥ 1. Thus G = 8, since CB is the
only sequence that has all consecutive (g = 0) occurrences. With one universal
gap state our model yields N = 4 + 8 + 4 + 1 = 17 states. As shown in the
VOGUE HMM in Figure 1, we have Qs

1 = {q1, . . . , q4}, Qs
2 = {q13, . . . , q16},

Q g = {q5, . . . , q12}, and Qu = {q17}.
3.2.3 Symbol Emission Probabilities (B). The emission probability matrix

is given as:

B = {b(qi, vm) = P (vm|qi), 1 ≤ i ≤ N and 1 ≤ m ≤ M },
where P (vm|qi) is the probability of emitting symbol vm in state qi. This prob-
ability differs depending on whether qi is a gap state or not. We assume that
each first symbol state qi ∈ Qs

1, outputs only a unique symbol. Likewise, each
second symbol state in Qs

2 also only emits a unique symbol. We will say that
a symbol state qi ∈ Qs

1 or qi ∈ Qs
2, emits the unique symbol vi ∈ �. The gap

states (qi ∈ Q g ∪ Qu) may output different symbols depending on the symbols
observed in those gaps. Note that since there is one gap state for each vavb ∈ F2,
we will use the notation qab to denote the gap state between va and vb. Since
there is a chance that some symbols that do not occur in the training data may
in fact be present in the testing data, we assign a very small probability of
emission of such a symbol in the gap states.

3.2.3.1 Symbol States. The emission probability for symbol states, qi ∈ Qs
1

or qi ∈ Qs
2, is given as follows:

b(qi, vm) =
{

1, if vm = vi

0, otherwise .

3.2.3.2 Gap States. If qab is in Q g , its emission probability depends on the
symbol distribution established by VGS. Let �ab be the set of symbols that were
observed by VGS in the gap between va and vb for any vavb ∈ F2. Let freqab(vm)
denote the frequency of observing the symbol vm between va and vb. For the gap
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Table II. Symbol Emission Probability Matrix (B)

A B C D E F G H I

First q1 1.000
Symbol q2 1.000
States q3 1.000

Qs
1 q4 1.000

q5 0.001 0.001 0.397 0.001 0.199 0.001 0.001 0.199 0.199
q6 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.991 0.001
q7 0.001 0.496 0.496 0.001 0.001 0.001 0.001 0.001 0.001

Gap q8 0.001 0.001 0.001 0.991 0.001 0.001 0.001 0.001 0.001
States q9 0.991 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Q g q10 0.001 0.661 0.001 0.331 0.001 0.001 0.001 0.001 0.001
q11 0.331 0.661 0.001 0.001 0.001 0.001 0.001 0.001 0.001
q12 0.001 0.001 0.001 0.001 0.001 0.496 0.496 0.001 0.001

Second q13 1.000
Symbol q14 1.000
States q15 1.000

Qs
2 q16 1.000

Qu q17 0.249 0.187 0.125 0.125 0.063 0.063 0.063 0.063 0.063

state qab, the emission probabilities are given as:

b(qab, vm) =
(

freqab(vm)∑
vj ∈�ab

freqab(vj )

)
× σ + 1

M
× (1 − σ ),

where σ acts as a smoothing parameter to handle the case when vm is a pre-
viously unseen symbol in the training phase. For instance we typically set
σ = 0.99, so that the second term ( 1−σ

M = 0.01
M ) essentially serves as a pseudo-

count to make the probability of unseen symbols non-zero.

3.2.3.3 Universal Gap. For the universal gap qN we have:

b(qN , vm) =
(

freq(vm)∑
vm∈� freq(vm)

)
× σ + 1

M
× (1 − σ ),

where freq(vm) is simply the frequency of symbol vm established by VGS. In
other words, vm is emitted with probability proportional to its frequency in
the training data. σ (set to 0.99) is the smoothing parameter as previously
described.

In our running example from Table I, for the symbol vm = C and the gap state
q5 between the states that emit A and B, we have the frequency of C as 2 out of
the total number (5) of symbols seen in the gaps. Thus C’s emission probability
is 2

5 × 0.99 + 0.01
9 = 0.397. The complete set of symbol emission probabilities for

topology in Figure 1 is shown in Table II.

3.2.4 Transition Probability Matrix (A). The transition probability matrix
between the states:

A = {a(qi, qj )|1 ≤ i, j ≤ N },
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 1, Article 5, Publication date: January 2010.
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where

a(qi, qj ) = P
(
qt+1 = qj |qt = qi

)
gives the probability of moving from state qi to qj (where t is the current position
in the sequence). The probabilities depend on the types of states involved in
the transitions. The basic intuition is to allow transitions from the first symbol
states to either the gap states or the second symbol states. A transition of a
second symbol state can go back to either one of the first symbol states or to
the universal gap state. Finally, a transition from the universal gap state can
go to any of the starting states or the intermediate gap states. We discuss these
cases in the following.

3.2.4.1 Transitions from First States. Any first symbol state qi ∈ Qs
1 may

transition only to either a second symbol state qj ∈ Qs
2 (modeling a gap of g = 0)

or to a gap state qj ∈ Q g (modeling a gap of g ∈ [1, maxgap]). Note that the
symbol states Qs

1 and Qs
2 only emit one distinct symbol as previously described,

so we can associate each state qi with the corresponding symbol it emits, say vi ∈
�. Let vavb ∈ F2 be a frequent 2-sequence uncovered by VGS. Let freq(va, vb)
denote the total frequency of the sequence, and let freq(va, vb, g ) denote the
number of occurrences of va followed by vb after a gap length of g , with g ∈
[1, maxgap]: freq(va, vb) =

max gap∑
g=0

freq(va, vb, g ). The transition probabilities from

qi ∈ Qs
1 are then given as:

a(qi, qj ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

freq(vi ,vj ,0)∑
vi vb∈F2

freq(vi ,vb)
, if qj ∈ Qs

2

∑
g>0 freq(vi ,vj , g )∑

vi vb∈F2
freq(vi ,vb)

, if qj ∈ Q g

0, otherwise

.

3.2.4.2 Transitions from Gap States. Any gap state qab ∈ Q g may transi-
tion only to the second symbol state qb ∈ Qs

2. For qi = qab ∈ Q g we have:

a(qi, qj ) =
{

1, if qj = qb ∈ Qs
2

0, otherwise
.

3.2.4.3 Transitions from Second States. A second symbol state qi ∈ Qs
2

may transition only to either first symbol state qj ∈ Qs
1 (modeling a gap of

g = 0), or to the universal gap state qN (modeling other gaps). For qi ∈ Qs
2 we

thus have:

a(qi, qj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ ×
∑

qb∈Qs
2
freq(vj ,vb)∑

vavb∈F2
freq(va ,vb)

, if qj ∈ Qs
1

1 − σ, if qj = qN ∈ Qu

0, otherwise

.

Here σ = 0.99 acts as the smoothing parameter, but this time for state transi-
tions, so that there is a small probability (1−σ = 1−0.99 = 0.01) of transitioning
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Table III. State Transition Probability Matrix (A)

First Symbol States (Qs
i ) Gap States (Q g ) Second Symbol States (Q S

2 ) Qu

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17
q1 0.43 0.14 0.14 0.14 0.14
q2 0.33 0.33 0.33
q3 0.25 0.25 0.25 0.25
q4 0.50 0.50
q5 1.00
q6 1.00
q7 1.00
q8 1.00
q9 1.00

q10 1.00
q11 1.00
q12 1.00
q13 0.36 0.31 0.21 0.10 0.01
q14 0.36 0.31 0.21 0.10 0.01
q15 0.36 0.31 0.21 0.10 0.01
q16 0.36 0.31 0.21 0.10 0.01
q17 0.36 0.31 0.21 0.10 0.01

to Qu. Transitions back to first states are independent of second symbol state
qi. In fact, these transitions are the same as the initialization probabilities de-
scribed in the following. They allow the model to loop back after modeling a
frequent sequence mined by VGS. We assign an empirically chosen value of
1% to the transition from the second states Qs

2 to the universal gap state qN .
Furthermore, to satisfy

∑N
j=1 a(qi, qj ) = 1, we assign the remaining 99% to the

transition to the first states Qs
1.

3.2.4.4 Transitions from Universal Gap. The universal gap state can
only transition to the first states or to itself. For qi = qN we
have:

a(qi, qj ) =

⎧⎪⎪⎨
⎪⎪⎩

σ ×
∑

qb∈Qs
2
freq(vj ,vb)∑

vavb∈F2
freq(va ,vb)

, if qj ∈ Qs
1

1 − σ , if qj = qN

0, otherwise

.

Here σ = 0.99 weighs the probability of transitioning to a first symbol state,
whereas 1 − σ = 0.01 weighs the probability of self transition. These values
were chosen empirically. Table III shows transitions between states and their
probabilities in VOGUE for our running example in Table I (see Figure 1 for
the model topology).

3.2.5 State Duration Probabilities (�). Each state’s duration is considered
explicitly within that state. Here we treat the duration as the number of symbols
to emit from that state. The probability of generating a given number of symbols
is given by the state duration probability matrix:

� = {�(qi, d )|d ∈ [1, maxgap]},
where d gives the duration, which ranges from 1 to maxgap.
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Table IV. State Duration Probabilities (�)

q5 q6 q7 q8 q9 q10 q11 q12 Other qi

d=1 0.33 1.0 1.0 1.0 0.5 0.5 1.0
d=2 0.67 1.0 0.5 0.5 1.0 1.0

For a symbol state, qi ∈ Qs
j , the duration is always 1: we always emit one

symbol. For gap states, let qi = qab be the gap state between the state qa ∈ Qs
1

and the state qb ∈ Qs
2 corresponding to the sequence vavb ∈ F2. The duration

probability for qi will then be proportional to the frequency of observing a given
gap length value for that sequence. Putting the two cases together, we have

�(qi, d ) =

⎧⎪⎪⎨
⎪⎪⎩

freq(va ,vb,d )∑
g>0 freq(va ,vb, g )

, qi = qab ∈ Q g

1, qi ∈ Qs
1 ∪ Qs

2 and d = 1
0, otherwise.

For the gap states, the idea is to model the gap duration, which corresponds to
the number of gap symbols emitted from that state, which is proportional to
the probability of that gap value for that gap state. For instance, in our running
example, for the gap state g4 between the states that emit A and B, we have
�(g4, 2) = 2

3 = 0.67, since we twice observe a gap of 2, out of three occurrences.
The gap duration probabilities for our running example are shown in Table IV.

3.2.6 Initial State Probabilities (π ). The probability of being in state qi
initially is given by π = {π (i) = P (qi|t = 0), 1 ≤ i ≤ N }, where:

π (i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ ×
∑

q j ∈Qs
2
freq(vi ,vj )∑

vavb∈F2
freq(va ,vb)

, if qi ∈ Qs
1

1 − σ, if qi = qN ∈ Qu

0, otherwise

.

We use a small value (1 − σ = 1 − 0.99 = 0.01) for the universal gap state
as opposed to the states in Qs

1, to accentuate the patterns retained by VGS
while still providing a possibility for gaps after and before them. Note that the
empirical value of σ = 0.99 used in the transition and emission probabilities
works essentially like pseudo-counts [Durbin et al. 1998] to allow for symbols
that are unseen in the training data set or to allow the model to transition to
less likely states.

4. THE GENERAL VOGUE MODEL

We now generalize the basic VOGUE model to handle frequent k-sequences,
with k ≥ 2. Let F be the set of all frequent subsequences mined by VGS, and let
k be the maximum length of any sequence. Let F ( j ) be the set of subsequences
in F of length at least j , and let an l -sequence be denoted as v1v2 · · · , vl . Let
�( j ) be the set of symbols in the j th position across all the subsequences in
F ( j ), then �(k) is then the set of different last symbols across all subsequences
in F . The VOGUE model is specified by the 6-tuple λ = {�, Q , A, B, �, π}, as
before. These components are described in the following.
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Let Ni =| �(i) |, i = 1, . . . , k denote the number of distinct symbols in position
i over all the sequences. Thus, N1 is the number of distinct first symbols and
Nk is the number of distinct last symbols. Let Gi (for i < k) be the number
of distinct pairs of symbols in positions i and i + 1 across all sequences in
F (i + 1). This corresponds to the number of gap states required between states
at positions i and i + 1.

4.1 Alphabet (�)

The alphabet � = {v1, · · · vM } is the number of different symbols seen in the
training set.

4.2 Set of States (Q)

For the general VOGUE model, the set of states is given as Q = {q1, . . . , qN },
where N +1 = N1+G1+· · ·+Ni−1+Gi−1+· · ·+Nk +1. Here qN is the universal
gap state, as before. We assume further that the states are partitioned into the
symbol and gap states in the given order. That is, the first N1 states are the
first symbol states, the next G1 states are the gap states between the first and
second symbol states, the next N2 states are the second symbol states and so
on. Let Qs

i denote the set of i-th symbol states: those at position i, given by �(i),
with Ni = |�(i)|. Let Q g

i denote the i-th gap states: those between the i-th and
(i + 1)-th symbol states.

4.3 Symbol Emission Matrix (B)

A symbol state qi ∈ Qs
j , can emit only one symbol vi ∈ �( j ). The emission

probability from qi is then given as:

b(qi, vm) =
{

1, if vm = vi

0, otherwise.

Let the gap state qi ∈ Q g
j be the gap state between the states qa ∈ Qs

j and
qb ∈ Qs

j+1, which we denote as qi = qab. Across all the sequences in F ( j +1), let
freqab(vm, j , j+1) denote the total frequency of observing the symbol vm between
va and vb at positions j and j + 1 respectively. The emission probabilities from
qi ∈ Q g

j , are given as:

b(qab, vm) =
(

freqab(vm, j , j + 1)∑
vc

freqab(vc, j , j + 1)

)
× σ + 1 − σ

M
.

For qi = qN , the universal gap state, we have:

b(qN , vm) =
(

freq(vm)∑
vm∈� freq(vm)

)
× σ + 1 − σ

M
,

where freq(vm) is simply the frequency of symbol vm as mined by VGS.

4.4 Transition Matrix (A)

There are four main cases to consider for the transitions between states. The
symbol states in Qs

i may transition to (1) gap states Q g
i , or (2) directly to the
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symbol states at position i + 1, namely Qs
i+1 for i ∈ [1, k − 1], or (3) to the

universal gap state qN (to start a fresh cycle through the model). A gap state in
Q g

i may only transition to the symbol state Qs
i+1, for 1 ≤ i < k. The universal

gap state may transition to any of the first symbol states Qs
1 or to itself.

Let qi ∈ Qs
p be a p-th symbol state. Let freqp(vi) denote the frequency of ob-

serving the symbol vi at position p across all sequences in F (p). Let freqp(vi, vj )
denote the total frequency of observing the symbol vi at position p and vj at
position p + 1 across all sequences in F (p + 1). Further, let freqp(vi, vj , g ) de-
note the frequency for a given gap value g . Then, transition probabilities for a
symbol state qi ∈ Qs

p are:

a(qi, qj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

freqp(vi ,vj ,0)

freqp(vi )
, if qj ∈ Qs

p+1∑
g>0 freqp(vi ,vj , g )

freqp(vi )
, if qj ∈ Q g

p

1 − freq(vi ,vj )

freqp(vi )
, if qj = qN

0, otherwise.

A gap state qi = qab ∈ Q g
p , may transition only to a symbol state qj ∈ Q g

p+1
at position p + 1:

a(qi, qj ) =
{

1, if qj = qb ∈ Q g
p+1

0, otherwise.

Finally, the universal gap state qN may transition to itself or to any of the
first states Qs

1:

a(qN , qj ) =

⎧⎪⎪⎨
⎪⎪⎩

σ × freq1(vj )∑
vb∈� freq1(vb)

, if qj ∈ Qs
1

1 − σ, if qj = qN

0, otherwise.

As before, we set σ = 0.99.

4.5 State Duration Probabilities (�)

As before, for symbol states the duration is always d = 1. For the gap state
qi ∈ Q g

p , assuming that qi = qab—it lies between the symbol va ∈ Qs
p and

vb ∈ Qs
p+1, we have:

�(qi, d ) =

⎧⎪⎪⎨
⎪⎪⎩

freq(va ,vb,d )∑
g>0 freq(va ,vb, g )

, qi = qab ∈ Q g
p

1, qi ∈ Qs
j and d = 1

0, otherwise.

5. DECODING: FINDING THE BEST STATE SEQUENCE

After extracting the patterns and modeling the data, the model is ready to be
used to find for the given newly observed sequence, the best matching state
sequence in the model. This problem is referred to in HMMs [Rabiner 1989]
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as the decoding problem. This problem is difficult to solve even though there
are several possible ways of solving it. One possible solution is to choose indi-
vidually, the most likely states for each position in the test sequence. However,
while this approach maximizes the states that will explain the observation se-
quence, it may yield an infeasible sequence of the states, for instance, if some of
the transitions needed to generate the model sequence have zero probabilities
for the corresponding model states. The best matching state sequence can be
found using the dynamic programming based Viterbi algorithm [Durbin et al.
1998].

Due to VOGUE’s unique structure, we modified the Viterbi algorithm to
handle the notion of duration in the states. We call this new algorithm variable-
gap Viterbi (VG-Viterbi). Given a test sequence O = o1o2 · · · oT , VG-Viterbi finds
the sequence of states from the model λ, as well as the state durations, whose
traversal generates the sequence that best matches the observed sequence.
That is, VG-Viterbi finds a sequence of states q∗ = {q∗

1, q∗
2, . . . , q∗

T } from the
model λ such that:

q∗ = arg max
q

P (O, q|λ).

Let δt( j ) be the highest probability path that produces the subsequence Ot =
o1o2 · · · ot and terminates in state j at position t:

δt( j ) = max
q1···qt−1

P(o1, . . . , ot , q1, . . . , qt−1, qt = qj | λ).

Assuming that each state has a corresponding duration, we can rewrite this
expression as:

δt( j ) = max
d1,... ,dr

P (o1, . . . , od1 , q1 = · · · = qd1 ,

od1+1, . . . , od1+d2 , qd1+1 = · · · = qd1+d2 ,
...

od1+···+dr−1+1, . . . , od1+···+dr = ot ,
qd1+···+dr−1+1 = · · · = qd1+···+dr = qt = qj | λ).

In other words, we are assuming that the first d1 symbols o1, . . . , od1 are being
emitted from a single state, say s1, with a duration of d1. The next d2 symbols
are emitted from state s2 with a duration of d2, and so on. Finally, the last dr
symbols are emitted from state sr with duration dr . The probability is taken
to be the maximum over all such values of state durations, d1, . . . , dr . We can
rewrite this expression purely in terms of the states si and their durations di,
as follows:

δt( j ) = max
s1···sr ,d1,... ,dr

P(o1, . . . , ot , s1, . . . , sr−1, sr = qj | λ).

Separating out the state sr−1, which we assume is the state qi, with i 
= j , we
get:

δt( j ) = max
s1 · · · sr ,

d1, . . . , dr

P(o1, . . . , ot , s1, . . . , sr−2, sr = qj | sr−1 = qi, λ) · P(sr−1 = qi | λ).
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Further separating out the symbols from the last state sr , we get:

δt( j ) = max
s1 · · · sr ,

d1, . . . , dr

P(o1, . . . , ot−dr , s1, . . . , sr−2 | ot−dr +1, . . . , ot , sr−1 = qi , sr = qj , λ) ·

P(ot−dr +1, . . . , ot | sr−1 = qi , sr = qj , λ) ·
P(sr = qj | sr−1 = qi , λ) ·
P(sr−1 = qi | λ)

Using the Markovian assumption that each state depends only on the previ-
ous state, we can finally rewrite the equation as:

δt( j ) = max
s1 · · · sr ,

d1, . . . , dr

P(o1, . . . , ot−dr , s1, . . . , sr−2, sr−1 = qi | ot−dr +1, . . . , ot , sr = qj , λ) ·

P(ot−dr +1, . . . , ot | sr−1 = qi , sr = qj , λ) ·
P(sr = qj | sr−1 = qi , λ)

Assuming that the duration distribution of a state is independent of the
observations of that state, and writing dr as d , we get the following recursive
relationship:

δt( j ) = max
d<min(t,maxgap)

i 
= j

δt−d (i) · a(qi, qj ) · �(qj , d ) ·
t∏

s=t−d+1

b(qj , os). (1)

In other words, the probability of being in state qj at position t, is given as the
product of the probability of being in state qi at position t − d , transitioning
from qi to qj , probability of the duration d in state qj , and emitting the d
symbols ot−d+1, . . . , ot in state qj . The maximum is taken over all values of
duration d . Using Equation 1 VG-Viterbi computes the probability of observing
the sequence O given the model λ, by computing δT ( j ) over all states qj in
a recursive manner. At each step it also remembers the state that gives the
maximum value to obtain the final sequence of states q∗.

Given a model with N states, and a sequence O of length T , the Viterbi
algorithm takes O(N 2T ) [Durbin et al. 1998] time to find the optimal state
sequence. This is obviously expensive when the number of states is large and
the observation sequence is very long. For VG-Viterbi, we have the extra search
over the state durations, which gives a complexity of O(N 2 · maxgap · T ). The
most effective way to reduce the complexity is to exploit the inherent sparseness
of the VOGUE models. For example, consider the state transition probability
matrix A, given in Table III. By design, the matrix is very sparse, with allowed
transitions from Qs

1 to either Qs
2 or Q g , from Q g to Qs

2, from Qs
2 to Qs

1 or Qu,
and from Qu to Qs

1 or Qu.
Considering that many of the transitions in VOGUE are nonexistent

(a(qi, qj ) = 0), we optimized the recursion in Equation 1 to search over only
the non-zero transitions. For example, for the basic VOGUE model built us-
ing k = 2 length sequences, we can then obtain the complexity as follows:
Given the set of frequent sequences mined by VGS, let F1 denote the fre-
quent symbols, and let F2 denote the frequent 2-sequences. First, note that
|Qs

1| ≤ |F1| � M and |Qs
2| ≤ |F1| � M , since the frequent symbols are gener-

ally much smaller than M , the total number of symbols in the alphabet. Second,
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note that |Q g | = |F2| ≤ |F1|2 � M 2. Using the sparseness of the model to our
advantage, we can reduce the number of states to search over when computing
δt( j ).

—If qj ∈ Qs
1, then search only over qi ∈ Qs

2 or qi = qN .
—If qj ∈ Qs

2, then search only over qi ∈ Qs
1 ∪ Q g .

—If qj ∈ Q g , then search only over qi ∈ Qs
1.

—If qj = qN , then search only over qi ∈ Qs
2 or qi = qN .

Since |Qs
1| ≈ |Qs

2| ≈ M � |Q g | � M 2, in the worst case we search over
O(|Q g |) states in these cases. Thus the complexity of VG-Viterbi is O(|Q g | ·
N · T · maxgap) � O(N 2 · T · maxgap). The practical effect of exploiting the
sparseness is in the much reduced decoding time as opposed to a search over
the full set of states at each step.

6. EXPERIMENTAL RESULTS AND ANALYSIS

VOGUE was implemented in Python, and all experiments were done on a 2.8
Ghz quad-core Intel Xeon MacPro, with 4 GB 800MHz memory, and 500 GB
disk, running Mac OS X 10.5.6. The VOGUE implementation and the datasets
used in this paper are available as open-source3.

6.1 Datasets

We tested the VOGUE model on a variety of datasets, including biological se-
quences, Web usage logs, intrusion commands, and spelling. We discuss details
of these datasets in the following. Table V shows the number of training and
testing instances in each class for the various datasets. It also shows the aver-
age sequence length per class.

6.1.1 Biological Sequence Datasets: PROSITE and SCOP. In recent years,
a large amount of work in biological sequence analysis has focused on methods
for finding homologous proteins [Durbin et al. 1998]. Computationally, protein
sequences are treated as long strings of characters with a finite alphabet of 20
amino acids, namely, � = {A, C, D, E, F, G, H, I, K , L, M , N , P, Q , R, S, T,
V , W, Y }. Given a database of protein sequences, the goal is to build a statistical
model so that we can determine whether a query protein belongs to a given
family or not. We used two different biological datasets for our experiments:
(1) the PROSITE [Falquet et al. 2002] database containing families of protein
sequences, and (2) the SCOP [Murzin et al. 1995] dataset, which includes a
curated classification of known protein structures with the secondary structure
knowledge embedded in the dataset.

6.1.1.1 PROSITE. We used ten families from PROSITE, namely, PDOC0
0662, PDOC00670, PDOC00561, PDOC00064, PDOC00154, PDOC00224,
PDOC00271, PDOC00343, PDOC00397, PDOC00443. We will refer to these
families as F1, F2, . . . , F10, respectively. The number of sequences in each

3www.cs.rpi.edu/∼zaki/software/VOGUE.
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Table V. Dataset Characteristics: Number of Training and Testing Instances per Class, and
the Average Length of the Training and Testing Sequences

PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Training #Seq 34 169 64 43 97 74 113 87 16 22
Avg. Len 814.1 311.9 371.1 684.3 250.0 252.1 120.4 959.5 341.9 511.1

Testing #Seq 11 56 21 14 32 24 37 28 5 7
Avg. Len 749.5 572.1 318.1 699.4 386.0 266.5 407.9 870.6 180.8 405.3

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Training #Seq 6 6 6 6 6 6 6 6 6 6
Avg. Len 182.2 153.2 103.3 52.2 57.3 78.0 68.7 276.5 177.0 125.7

Testing #Seq 4 4 4 4 4 4 4 4 4 4
Avg. Len 135.8 152.0 81.0 61.3 60.3 86.8 89.8 270.8 177.0 122.8

CSLOGS edu oth

Training #Seq 3577 12598
Avg. Len 5.8 6.9

Testing #Seq 1190 4197
Avg. Len 7.7 8.7

Intrusion User0 User1 User2 User3 User4 User5 User6 User7 User8

Training #Seq 423 367 568 364 685 411 1280 1006 1194
Avg. Len 14.0 35.9 26.3 36.2 39.1 51.7 24.9 10.5 29.7

Testing #Seq 139 121 187 120 226 135 605 333 396
Avg. Len 13.7 46.9 8.9 21.5 40.5 91.8 19.7 11.1 37.0

Spelling Incorrect Correct

Training #Seq 986 1204
Avg. Len 24.5 27.9

Testing #Seq 327 400
Avg. Len 25.5 26.5

family is, respectively: N 1 = 45, N 2 = 225, N 3 = 85, N 4 = 56, N 5 = 119,
N 6 = 99, N 7 = 150, N 8 = 21, N 9 = 29. The families consist of sequences of
lengths ranging from 597 to 1043 amino acids. Each family is characterized
by a well-defined motif. Family F1, for example, shares the consensus motif
[G] − [IVT ] − [LVAC ] − [LVAC ] − [IVT ] − [D] − [DE ] − [FL ] − [DNST], which
has 9 components. Each component can contain any of the symbols within the
square brackets. For example, for the second component, namely [IVT ], either
I , V , or T may be present in the sequences. We treat each PROSITE family
as a separate class. We divided the data set of each family Fi into two subsets:
the training data Ni

train consists of 75% of the data, while the testing data Ni
test

contains the remaining 25%. For example, N 1
train = 34 and N 1

test = 11. There
are a total of 235 test sequences across all families. Details on the number of
sequences and average sequence length for training/test sets for the different
classes are given in Table V.
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6.1.1.2 SCOP. The SCOP dataset is divided into four hierarchical levels:
Class, Fold, Superfamily, and Family. For SCOP 1.61 (from 2002), the 44327
protein domains were classified into 701 folds, resulting in an average of 64
domains per fold. We used 10 superfamilies from the SCOP dataset, namely,
family 49417, 46458, 46626, 46689, 46997, 47095, 47113, 48508, 69118, and
81296. Each family has 10 sequences. We divided each family data set into 60%
(6 sequences from each family) for training and 40% for testing (4 from each
family). Thus there are 40 test sequences across the 10 families.

6.1.2 Web Usage Logs Dataset: CSLOGS. The CSLOGS dataset consists
of Web logs files collected at the CS department at RPI. User sessions are
expressed as subgraphs of the Web graph, and contain complete history of the
user clicks. Each user session has a name (IP or host name), a list of edges
giving source and target pages and the time when the link was traversed. We
convert the user graph into a sequence by arranging all the visited pages in
increasing order of their timestamps.

The CSLOG dataset spans 3 weeks worth of such user-session sequences.
To convert it into a classification dataset we chose to categorize each user-
session into one of two class labels: edu corresponds to users from an “edu”
domain, (also includes “ac” academic domain), while oth class corresponds to
all users visiting the CS department from any other domain. The goal of clas-
sification is to find out if we can separate users who come from academic ver-
sus other domains from their browsing behavior within the CS Web site at
RPI.

We used the first two weeks of logs as the training, and the third week’s logs
as the testing datasets, adjusted slightly so that the training set had 75%, and
the testing set had 25% of the sequences. In all, the CSLOGS dataset contains
16206 unique Web pages, which make up the alphabet. As shown in Table V,
the training dataset had 16175 sessions, with 3577 labeled as edu and 12598
labeled as other. The testing dataset had 5387 sessions, with 1190 (22.1%)
having true class edu and 4197 with true class other.

6.1.3 Intrusion Detection Dataset. The intrusion detection dataset deals
with the problem of differentiating between masqueraders and the true user
of a computer terminal. The data consists of user-specific UNIX command
sequences. We use command stream data collected from eight UNIX users
from Purdue University [Lane and Brodley 1999] over varying periods of
time (USER0 and USER1 are the same person working on different projects).
User data enters the system by the monitoring of UNIX shell command
data [Lane and Brodley 1999], captured via the (t)csh history file mecha-
nism. An example session could be: ls -l; vi t1.txt; ps -eaf; vi t2.txt;
ls -a /usr/bin/*; rm -i /home/*; vi t3.txt t4.txt; ps -ef;. Each pro-
cess/command in the history data together with its arguments is treated as
a single token. However, to reduce the alphabet size, we omitted filenames in
favor of a file count as in Lane and Brodley [1999]. For example, the user se-
quence is converted to the following set of tokens, T = {ti : 0 ≤ i < 8}, where t0=
ls -l, t1= vi <1>, t2= ps -eaf, t3 = vi <1>, t4= ls -a <1>, t5= rm -i <1>,
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t6= vi <2>, and t7= ps -ef. The notation <n> gives the number of arguments
(n) of a command. For instance, the command vi t1.txt is tokenized as vi
<1>, while vi t3.txt t4.txt as vi <2>.

In all there are 2354 unique commands across the users; this number thus
gives the cardinality of the set of symbols (the alphabet) for the Intrusion
dataset. The class-specific training (75%) and testing (25%) instances are given
in Table V.

6.1.4 Context-Sensitive Spelling Correction Dataset. We also tested our al-
gorithm on the task of correcting spelling errors that result in valid words, such
as there vs. their, I vs. me, than vs. then, and you’re vs. your [Golding and Roth
1996]. For each test, we chose the two commonly confused words and searched
for sentences in the 1-million-word Brown corpus [Kucera and Francis 1967]
containing either word. We removed the target word and then represented each
word by the word itself, the part-of-speech tag in the Brown corpus, and the po-
sition relative to the target word. For example, the sentence “And then there
is politics” is translated into (word=and tag=cc pos=-2) → (word=then tag=rb
pos=-1) → (word=is tag=bez pos=+1) → (word=politics tag=nn pos=+2). The fi-
nal dataset consists of all examples from the correct and incorrect usages, which
form the two classes for the classifier. Overall 25% of the instances are used
for testing, and 75% for training. The numbers of test and training instances
in each class are shown in Table V. The alphabet size is 12,280, which is the
number of unique words in the corpus.

6.2 Alternative HMM Models

We compare VOGUE with three different HMMs. As a baseline, we compare
with a regular first-order HMM. On the biological sequences, we also compare
against HMMER [Eddy 1998]. Finally, we compare with kth-order HMMs on
some selected datasets.

6.2.1 First-Order HMM. For the baseline, we used an open-source python
HMM implementation called logilab-hmm v0.5,4 which takes as input the num-
ber of states and output symbols. It initializes the state transition matrix ran-
domly, and then uses Baum-Welch training [Rabiner 1989] to optimize the state
transition and symbol emission probabilities. It uses the standard Viterbi al-
gorithm to compute the probability of the test sequences. Baum-Welch is es-
sentially an Expectation-Maximization algorithm, which can get stuck in local
minima, starting from the random initial probabilities. For a given number of
states, we therefore train multiple (actually, three) models from different ran-
dom starting transition matrices, and we report the best results. Furthermore,
since the number of states is an input parameter, we try several values and
choose the one that consistently yields better results.

6.2.2 Higher Order HMM. We also built several k-th order HMMs, denoted
as k-HMM, for different values of k. A k-th order HMM is built by replacing
each consecutive subsequence of size k with a unique symbol. These different

4http://www.logilab.org/project/logilab-hmm.
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unique symbols across the training and testing sets were used as observation
symbols. Then we model the resulting sequence with the baseline first-order
HMM.

For the order, we considered k = 2 and k = 4. Of course k = 1 is the same as
the baseline 1st order HMM. We could not run with higher order (with k > 4)
HMMs since the baseline HMM implementation ran into precision problems.
As before, we tried different values for the number of states, and reported the
best results. The number of observations M for the k = 1 case was set to 20
since it is the number of amino acids. M = 394; 17835 were the number of
observations used for k = 2; 4, respectively. These values were obtained from a
count of the different new symbols used for each value of k.

6.2.3 HMMER. HMMER [Eddy 1998], a profile HMM, is one of the state-
of-the-art approaches for biological sequence modeling and classification. To
model the data using HMMER, we first need to align the training sequences
using CLUSTAL-W.5 We then build a profile HMM using the multiple sequence
alignment and compute the scores for each test sequence using HMMER. HM-
MER depends heavily on a good multiple sequence alignment. It models gaps,
provided that they exist in the alignment of all the training sequences. How-
ever, if a family of sequences has several overlapping motifs, which may occur in
different sequences, these sequences will not be aligned correctly, and HMMER
will not perform well.

6.2.4 VOGUE. We built VOGUE models with different values of minsup
and maxgap but with the constant k = 2 for the length of the mined sequences
in VGS. We then choose the parameters that give consistently good results and
use them for the comparison.

6.3 Evaluation and Scoring

We built models for each class using each of the competing methods, namely
VOGUE, HMM, k-th order HMM, and HMMER, using the training sequences
for each class. Assuming that there are c classes in a dataset, we train c HMM
models, M0, M1, . . . , Mc. For each test sequence, we score it against all of the
c models for each class, using the Viterbi algorithm; the predicted class is the
one for which the corresponding model yields the maximum score. For a test
instance seq, its class is given as arg maxi{P (seq|Mi)}.

Note that we use the log-odds score for the test sequences, defined as the
ratio of the probability of the sequence using a given model, to the probability
of the sequence using the Null model:

Log-Odds(seq) = log2

(
P (seq|Model)
P (seq|Null)

)
.

As noted, P (seq|Model) is computed using the Viterbi algorithm, which com-
putes the most probable path through the model. The Null model is a simple
one-state HMM, which emits each observation with equal probability (1/|�|).

5http://www.ebi.ac.uk/clustalw.
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Table VI. Accuracy on PROSITE: Bold Values Indicate the Best Results

Class VOGUE HMMER HMM 2-HMM 4-HMM
F1-PDOC00662 81.82 72.73 27.27 36.36 18.18
F2-PDOC00670 80.36 73.21 71.43 50.0 41.07
F3-PDOC00561 95.24 42.86 61.9 80.95 33.33
F4-PDOC00064 85.71 85.71 85.71 85.71 64.29
F5-PDOC00154 71.88 71.88 59.38 40.62 56.25
F6-PDOC00224 87.50 100 79.17 87.5 91.67
F7-PDOC00271 89.19 100 64.86 5.41 27.03
F8-PDOC00343 89.29 96.43 71.43 96.43 100.0
F9-PDOC00397 100.0 40.0 60.0 20.00 40.00

F10-PDOC00443 100.0 85.71 85.71 42.86 71.43
Total 85.11 80.43 67.66 54.47 53.62

The log-odds ratio measures whether the sequence is a better match to the
given model (if the score is positive) or to the null hypothesis (if the score is
negative). Thus, the higher the score the better the model.

For comparing alternative approaches, we compute the total accuracy of the
classifier, as well as class specific accuracies. We show experimentally that
VOGUE’s modeling power is superior to higher-order HMMs. VOGUE also out-
performs regular HMMs and HMMER [Eddy 1998], an HMM model especially
designed for protein sequences, which takes into consideration insertions, dele-
tions, and substitutions between similar amino acids.

6.4 Accuracy Comparison

We now compare the classification accuracy of VOGUE with the other HMM
models, on the different datasets.

6.4.1 Comparison on Biological Datasets: PROSITE and SCOP

6.4.1.1 PROSITE Accuracy Comparison. Table VI shows the accuracy re-
sults on the ten families from PROSITE for VOGUE, HMM, HMMER, and
kth-order HMM. The class specific and total accuracy results are shown, with
the best accuracy highlighted in bold. For VOGUE, we set the minimum sup-
port at 1: all patterns that occur even once are used to build the model. The
maximum gap is also set to 1 for all classes, except for F5 and F6, which use a
gap of 2, and F7, which uses a gap of 8. The PROSITE motifs for these classes,
especially F7, contain several gaps, necessitating a larger maximum gap value.
The number of states for VOGUE is given in Table VII, whereas the number of
states in the HMMER model is given in Table VIII.

For the basic HMM we tried N = 50, 100, 200 and found that 100 states
worked the best. We then ran the HMM three times, and recorded the best
results in Table VI. We tried a similar approach to select the number of states
for higher order HMMs, namely for 2-HMM (2nd order) and 4-HMM (4th order).
We found that for 2-HMM, a model with N = 5 states performed the best.
It yielded a total accuracy of 54%, whereas increasing the number of states
decreased the classification accuracy. For example for N = 10 the accuracy
was 53%, for N = 20 it was 51%, for N = 50 it was 49%, and for N = 100 it
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Table VII. VOGUE: Number of States

PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N1 20 20 20 20 20 20 20 20 20 20
N2 20 20 20 20 20 20 20 20 20 20
G 394 400 400 400 399 400 400 400 392 400
N 435 441 441 441 440 441 441 441 433 441

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

N1 20 20 20 20 20 20 20 20 20 20
N2 20 20 20 20 20 20 20 20 20 20
G 400 397 398 365 275 390 252 298 380 399
N 441 438 439 406 311 431 247 439 421 440

CSLOGS edu oth

N1 124 649
N2 201 814
G 329 1819
N 655 3283

Intrusion User0 User1 User2 User3 User4 User5 User6 User7 User8

N1 95 103 112 112 183 154 232 176 281
N2 92 100 113 105 191 152 236 168 280
G 609 790 847 936 1532 1167 2169 1149 2531
N 797 994 1073 1154 1907 1474 2638 1494 3093

Spelling Incorrect Correct

N1 105 116
N2 106 124
G 785 930
N 997 1171

Table VIII. HMMER: Number of States

PROSITE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
N 1049 391 411 897 198 312 88 1157 357 664

SCOP F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
N 195 163 142 54 59 83 69 279 177 143

was only 37%. For 4-HMM, the models with N = 5 and N = 10 gave the same
accuracy, with higher number of states yielding worse results; we report results
for N = 5.

We find that in general the higher order HMMs, 2-HMM and 4-HMM, were
not able to model the training sequences well. The best accuracy was only
54.47% for 2-HMM and 53.62% for 4-HMM, whereas for the basic 1st order
HMM the accuracy was 67.66%. HMMER did fairly well, which is not surpris-
ing, since it is specialized to handle protein sequences. It’s overall accuracy was
80.43%. VOGUE vastly outperforms the regular HMM. Even more interest-
ing is that VOGUE outperforms HMMER, with VOGUE having an accuracy of
85.11%. This is remarkable when we consider that VOGUE is completely au-
tomatic and does not have explicit domain knowledge embedded in the model,
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Table IX. Accuracy on SCOP

Class VOGUE HMMER HMM 2-HMM
F1-49417 100 25 100 100
F2-46458 100 100 100 75
F3-46626 100 75 75 75
F4-46689 50 50 50 25
F5-46997 25 100 25 0
F6-47095 75 75 100 50
F7-47113 25 100 25 0
F8-48508 100 25 75 0
F9-69118 100 100 100 100

F10-81296 100 100 75 50
Total 77.5 75.0 72.5 47.5

except what is recovered from the relationship between the symbols in the pat-
terns via mining.

It is worth noting that for protein sequences, since the alphabet is small
(only 20 amino acids), and the sequences are long, all 400 pairs of symbols (2-
sequences) are frequent, and as such, the minimum support does not impact
the number of first and second symbol states. Both N1 and N2 remain 20 for all
the values of minimum support across all classes; thus we kept the minimum
support at 1. That is, all classes have N1 = N2 = 20 and the number of gap
states is close to ≈ 400 (G ∈ [392, 400]), as shown in Table VII. However, the
models are not identical, since the frequencies of the various 2-sequences are
different, and more importantly, the symbols that appear in the gaps and their
frequencies are all different. It is these differences that are extracted by the
VGS method and then modeled by VOGUE, that enable us to discriminate
between the classes.

6.4.1.2 SCOP Accuracy Comparison. Table IX shows the comparison be-
tween VOGUE, HMMER, HMM, and 2-HMM, on the 10 test sequences from
all 10 SCOP families. HMM gave the best results for N = 20 states, whereas
2-HMM was run with N = 5 states, since it gave the same results as with
N = 10, 20 states. VOGUE was run with a minimum support of 1, but the
maximum gap was set to 30. The number of different types of states in VOGUE
is shown in Table VII. The number of states in the HMMER model is given in
Table VIII. Unlike the PROSITE dataset, which has a well defined sequence mo-
tif per family, the SCOP dataset groups structurally similar proteins together
into the families, and there may not be a well defined sequence motif. For this
reason, we had to increase the max-gap to a larger value to capture longer
range dependencies in the model. Note also that due to its structural nature,
the SCOP dataset is slightly harder to model via purely sequence based meth-
ods like HMMs. The table shows that 2-HMM fared poorly, whereas VOGUE
had the the highest classification accuracy of 77.5%. It tied for, or had, the best
class-specific accuracy in 7 out of the 10 classes.

6.4.2 Comparison on CSLOGS Dataset. On CSLOGS we compare VOGUE
with a first order HMM. Since HMMER only models protein sequences, it is not
used here. For HMM, N = 10 states worked the best, and the accuracy reported
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Table X. Accuracy on
CSLOGS Dataset

Class VOGUE HMM
edu 67.39 61.51
oth 84.87 85.04

Total 81.01 79.84

Table XI. Accuracy on
Intrusion Dataset

Class VOGUE HMM
User0 87.05 71.22
User1 52.89 64.46
User2 77.01 72.19
User3 90.0 90.0
User4 82.30 84.51
User5 73.33 70.37
User6 59.5 55.21
User7 66.97 64.56
User8 88.38 91.41
Total 73.17 71.49

Table XII. Accuracy on Spelling
Dataset

Class VOGUE HMM
Correct 78.5 78.75

Incorrect 56.27 42.51
Total 68.5 62.45

is the best among three runs. For VOGUE, we used a minimum support of 10,
and a maximum gap of 1. Table VII shows the number of first and second symbol,
gap, and total states in the VOGUE model. Table X shows the accuracy results.
Overall, VOGUE has a slightly higher accuracy than HMM. However, it is
worth noting that VOGUE is significantly better for the minority edu class (edu
comprises 22.1% of the test instances), which is harder to model and classify.
HMM has a slight edge on the easier majority oth class.

6.4.3 Comparison on Intrusion Dataset. Table XI shows the results on the
Intrusion dataset. The best baseline HMM model used N = 20 states. VOGUE
used minimum support of 2 and maximum gap of 1. The number of different
types of states in VOGUE is shown in Table VII. VOGUE outperformed the
baseline HMM method for 6 out of the 9 classes (users), and also had a higher
overall accuracy.

6.4.4 Comparison on Spelling Dataset. Table XII shows the results on the
spelling Dataset. For HMM, we used N = 20, and report the best of three runs.
For VOGUE we used minimum support of 10 and minimum gap of 5. Table VII
shows the number of different types of states in VOGUE. VOGUE significantly
outperforms HMM, with an overall accuracy of 68.5%, and moreover, it does
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Table XIII. Run Times: PROSITE, SCOP, CSLOGS, Intrusion and Spelling

PROSITE VOGUE HMMER HMM 2-HMM 4-HMM
Training 1.21s 38.3s 100.67s 0.76s 3.11s
Testing 2.9s 0.85s 0.51s 0.03s 1.88s

SCOP VOGUE HMMER HMM 2-HMM
Training 0.57s 0.14s 0.58s 0.05s
Testing 3.08s 0.05s 0.03s 0.02s

CSLOGS VOGUE HMM
Training 77.56s 1200.01s
Testing 0.03s 0.71s

Intrusion VOGUE HMM
Training 14.31s 64.81s
Testing 0.11s 0.12s

Spelling VOGUE HMM
Training 44.25s 25.76s
Testing 0.38s 0.69s

much better on the class of more relevance, namely the incorrect spellings, as
opposed to the correct spellings.

6.5 Timing Comparison

In Table XIII, we show the execution time for building and testing the different
HMM models on the various datasets. The training times are the average across
all classes, and the testing times give the average time per test sequence for the
Viterbi algorithm. For example, for PROSITE the time reported for training is
the average time per family taken over all ten families. The time for testing is
the average time per test sequence taken over all 235 test sequences run against
the ten families (average over 2350 runs). The time for VOGUE includes the
mining by VGS, and for HMMER, the alignment by CLUSTAL-W. VOGUE
builds the models much faster than HMMER (over 30 times), since the time
taken by CLUSTAL-W for multiple sequence alignment dominates the overall
training time for HMMER. On the other hand, HMMER’s testing time is more
than twice as fast as VOGUE; this is because HMMER is essentially a left-
to-right model, whereas VOGUE also models durations. The training time for
the basic HMM is high, since the best model had 100 states and the Baum-
Welch (or expectation-maximization) training over a large number of states is
slow. Once the model is built, the Viterbi algorithm runs very fast. Finally, the
training times for 2-HMM and 4-HMM are very low, since the model only has
5 states.

The training and testing times on the SCOP dataset are very small, since
there are only 6 sequences to train over, and 4 sequences to test over, for each of
the models. The regular HMM used only 20 states and 2-HMM, only 5 states,
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thus they train very quickly. On the Web usage logs, even though there were only
10 states in the HMM model, the Baum-Welch training took a very long time,
due to the large number (16175; see Table V) of training sequences. VOGUE
was over 15 times faster during training, and was also faster for testing. For
the Intrusion dataset, the best HMM model had 20 states, but since there were
a large number of training sequences (between 364 and 1280) per class, the
Baum-Welch algorithm took longer to converge. VOGUE is over 4 times faster
during model building, since mining the 2-sequences in VGS is fairly fast. On
Spelling, the HMM model with 20 states is about 1.7 times faster than VOGUE.

Overall we conclude that as expected, the training times depend on the
number of training sequences and states in the model. For HMMER, the time
is dominated by the multiple sequence alignment step. For HMM and high-
order HMMs, the time is dominated by the Baum-Welch training method. For
VOGUE the main time is spent in the VGS method. In general the VGS min-
ing is much faster than the alignment or Baum-Welch steps, especially when
there are many training sequences. For testing, all methods are generally very
efficient.

7. CONCLUSIONS AND FUTURE WORK

VOGUE combines two separate but complementary techniques for modeling
and interpreting long range dependencies in sequential data: pattern mining
and data modeling. The use of data mining for creating a state machine re-
sults in a model that captures the data reference locality better than a tradi-
tional HMM created from the original noisy data. In addition, our approach
automatically finds all the dependencies for a given state, and these need not
be of a fixed order, since the mined patterns can be arbitrarily long. Moreover,
the elements of these patterns do not need to be consecutive—a variable length
gap could exist between the elements. This enables us to automatically model
multiple higher order HMMs via a single variable-order model that executes
faster and yields much greater accuracy then the state-of-the-art techniques.
For data decoding and interpretation, we designed an optimized Viterbi algo-
rithm that exploits the fact that the transition matrix between the states of our
model is sparse, so there is no need to model the transitions between all the
states.

We applied VOGUE to finding homologous proteins in the given database of
protein sequences. The goal is to build a statistical model to determine whether
a query protein belongs to a given family (class) or not. We show experimen-
tally that on this dataset VOGUE outperforms HMMER [Eddy 1998], a HMM
model especially designed for protein sequences. Likewise VOGUE outperforms
higher-order HMMs, and the regular HMM model on other real sequence data
taken from Web usage logs at the CS department at RPI, user command se-
quences for masquerade and intrusion detection, and text data for spelling
correction.

In the future, we plan to apply VOGUE to other interesting and challenging
real world problems. We also would like to implement and test the generalized
VOGUE model for sequences of longer length. Finally, we would like to develop

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 1, Article 5, Publication date: January 2010.



5:30 • M. J. Zaki et al.

alternate variable length and variable duration HMM models, with the aim of
further improving the modeling capabilities of VOGUE.
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