
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

FETILDA: An Evaluation Framework for Effective Representations of Long
Financial Documents

BOLUN (NAMIR) XIA∗, Rensselaer Polytechnic Institute, USA

VIPULA D. RAWTE∗, University of South Carolina, USA

APARNA GUPTA, Rensselaer Polytechnic Institute, USA

MOHAMMED J. ZAKI, Rensselaer Polytechnic Institute, USA

In the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that
companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents
are typically very long and tend to contain valuable soft information about a company’s performance that is not present in quantitative
predictors. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting
numerical key performance indicators (KPIs). In recent years, there has been a great progress in natural language processing via
pre-trained language models (LMs) learned from large corpora of textual data. This prompts the important question of whether
they can be used effectively to produce representations for long documents, as well as how we can evaluate the effectiveness of
representations produced by various LMs. Our work focuses on answering this critical question, namely the evaluation of the efficacy
of various LMs in extracting useful soft information from long textual documents for prediction tasks. In this paper, we propose and
implement a deep learning evaluation framework that utilizes a sequential chunking approach combined with an attention mechanism.
We perform an extensive set of experiments on a collection of 10-K reports submitted annually by US banks, and another dataset
of reports submitted by US companies, in order to investigate thoroughly the performance of different types of language models.
Overall, our framework using LMs outperforms strong baseline methods for textual modeling as well as for numerical regression. Our
work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs for representing long
documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.

CCS Concepts: • Computing methodologies→Machine learning; Information extraction; Natural language processing.

Additional Key Words and Phrases: text regression, language models, long text documents, financial documents, 10-K reports

ACM Reference Format:
Bolun (Namir) Xia, Vipula D. Rawte, Aparna Gupta, and Mohammed J. Zaki. 2024. FETILDA: An Evaluation Framework for Effective
Representations of Long Financial Documents. 1, 1 (April 2024), 27 pages. https://doi.org/10.1145/3657299

∗Both authors contributed equally to the paper.

Authors’ addresses: Bolun (Namir) Xia, xiabolun@gmail.com, Rensselaer Polytechnic Institute, 110 8th St, Troy, New York, USA; Vipula D. Rawte,
rawtevipula25@gmail.com, University of South Carolina, 1112 Greene St, Columbia, South Carolina, USA, 29208; Aparna Gupta, guptaa@rpi.edu,
Rensselaer Polytechnic Institute, 110 8th St, Troy, New York, USA, 12180; Mohammed J. Zaki, zaki@cs.rpi.edu, Rensselaer Polytechnic Institute, 110
8th St, Troy, New York, USA, 12180.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-6841-9017
HTTPS://ORCID.ORG/0000-0003-4711-0234
https://doi.org/10.1145/3657299
https://orcid.org/0000-0001-6841-9017
https://orcid.org/0000-0003-4711-0234

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Xia, et al.

1 INTRODUCTION

Unstructured data such as text is growing very fast in different domains. Especially, textual data from financial documents
has been found to be beneficial in making predictions [8]. Utilizing such large volumes of textual data requires natural
language processing (NLP) and machine learning (ML) techniques. These techniques summarize the text as (a set of)
numeric feature vectors, which are called representations or embeddings, and which can in turn serve as inputs to
machine learning models to predict some target variables.

The traditional approach for text-based learning is via the Term Frequency - Inverse Document Frequency (TF-IDF)
method [17], which can represent the document as a long numeric vector of TF-IDF scores for each word. However,
TF-IDF does not attempt to directly extract the latent semantic information within the text. The current progress in text
representations was initiated by word embedding methods, such as word2vec [25] and GloVe [28], which capture both
the lexical and semantic information of a document to some extent. The main idea is to learn word representations
based on the context of each word. However, these methods learn only a single, static representation for each word,
and do not take into consideration the phenomenon of polysemy, where a word can change its meaning depending on
the context (for example, the the word ‘bank’ in the financial context has a very different meaning compared to the
‘bank’ of a river). The state-of-the-art (SOTA) pre-trained language models, such as GPT [29] and BERT [10] are built
on top of the very effective Transformer-based attention model [41], which can learn contextual word embeddings.
These embeddings are dynamic in terms of the surrounding block or context of the word, so that the same word can
get different representations that are most effective in capturing the lexical and semantic information. These models
have shown SOTA performance on a variety of downstream tasks such as question answering, text classification, and
regression. However, extracting “good” representations for such long documents remains a challenging task: the length
of the 10-K documents poses both a methodological and ontological burden. Methodologically, financial reports are
significantly longer, compared to the maximum length of a textual sequence that BERT [10]-based models can handle.
For instance, the Management Discussion and Analysis (MD&A) section of the 10-K reports that companies publish
annually is usually around 12,000 word-tokens. BERT-based models have a restriction on the maximum number of
tokens, around 512, with some newer models, such as Longformer [4] and BigBird [48], reaching up to 4,096 tokens.
Hence, to use these LMs on long documents directly would require significant truncations of the texts, leading to
information loss. Ontologically, the challenge is the classic machine learning task of extracting or learning informative
features that can represent the input well. This question becomes quite complex in the context of representing a long
document. Contextual word embeddings are well suited for this given their ability to “understand” different meanings
for a word in different contexts. However, it remains an open question as to how to combine the various contextual
word embeddings into an effective document level embedding.

An additional challenge is that the SOTA language models are pre-trained on massive and generic corpuses, e.g.,
from web crawls, wiki media, and so on. However, to be effective for the financial context, it is important for LMs to
learn domain-adapted and task-specific representations of long documents in order to meaningfully support predictive
analyses. This can usually be achieved either by pre-training (from scratch) a domain-specific language model on a
huge financial corpus to adapt to its particular domain, or by fine-tuning a pre-trained LM on a specific financial dataset
for the downstream tasks, or by combining the two approaches of adapting the LM to a particular financial domain
followed by fine-tuning on downstream tasks. Recently there have been several attempts at pre-training BERT on large
financial corpuses to adapt it for tasks in the financial domain. Liu et al.[23], Huang et al. [16], Araci [3], and DeSola et

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 3

al.[9], each pre-trained the BERT model from scratch on financial corpora, such as financial news, corporate reports,
financial websites, and so on. Incidentally, all four approaches are called FinBERT!

To address the long document representation challenge within the context of financial disclosure documents, we
propose our evaluation framework called Fin-tuned Embeddings of Texts In Long Document Analysis (FETILDA).
Our approach is particularly designed for downstream predictive or regression tasks, where the input document
representations are combined with other numeric attributes (if available) to predict a target response variable of
interest, such as key performance indicators (e.g., return on assets, earnings per share), stock volatility, and so on.
FETILDA comprises a chunk-based deep learning framework, where a long document is split into several smaller
chunks and then each chunk is processed using an specific language model (e.g., BERT [10], FinBERT [16], Longformer
[4], Nystromformer [44], etc.). The layers of the LM can remain frozen, or they may be unfrozen for fine-tuning, or only
the last layer can be frozen. The chunk level representations are then pooled together using a Bi-LSTM model equipped
with self-attention mechanism. The pooled chunks are then aggregated into a document level representation, which
serves as input to fully connected layers for target variable prediction. This way, long documents can be represented by
various LMs without significant information loss due to truncation.

We experiment our evaluation framework using different corpora: i) FIN10K (All Public Companies): 10-K reports
for all US companies from 1996 to 2013 [22], and ii) US Banks: 10-K reports submitted annually to the SEC by US
banks for the period from 2006 to 2016. We have conducted extensive experiments using these datasets and applied
our evaluation framework to different predictive analysis regression tasks: i) analysis of a company’s stock market
volatility on the FIN10K dataset, and ii) predicting key performance indicators (KPIs) of a bank’s financial performance
on the US Banks dataset: the indicators include Return on Assets (ROA), Earnings Per Share (EPS), Return on Equity
(ROE), Tobin’s Q Ratio (TQR), Leverage Ratio (LR), Tier 1 Capital Ratio (T1CR), Z-Score (Z) and Market to Book Ratio
(MBR). Our results compared against the different baseline methods show that our approach is significantly better and
yields SOTA results for long financial text regression tasks. In summary, our main contributions are:

• We propose an evaluation framework of language models for long document regression tasks in the financial
domain. Our FETILDA approach is designed to learn effective document level representations via a sequential
chunking approach combined with an attention mechanism. As such, our approach combines the best of both
the attention-based Transformer model and Bi-LSTM recurrent networks.

• We conduct an extensive set of experiments to quantitatively examine the efficacy of language models in
long financial document representation. We applied the framework on two different 10-K datasets, and on 9
different regression tasks (in terms of the target variable). We show that through our evaluation framework,
pre-trained domain specific LMs outperforms several different baseline methods, and achieves SOTA results on
long financial documents.

2 RELATEDWORK

Machine learning plays an important role in financial analytics. One of the important areas of finance is investment
stock return forecasting, as well as fundamentals forecasting and risk modeling, that mainly employ quantitative or
numeric data [12]. Different ML models such as Support Vector Machines (SVMs), single hidden layer Feed-forward
Neural Networks and Multi-layer Perceptrons (MLPs) were used for the prediction of future price movements in [27].
They mainly used two sets of features for their ML classifiers: (1) handcrafted features formed on the raw order book
data and (2) features extracted using ML algorithms. Some other models such as Random Forest [19], XGBoost [42],

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Xia, et al.

Bidirectional Long Short-Term Memory (Bi-LSTM) and stacked LSTMs [33] were also implemented to predict business
risk and stock volatility. The main limitation of these works is that they ignore valuable textual data that can provide
more insight into the intangible features such as sentiment, knowledge capital, risk culture, and so on.

2.1 Textual Data: Sentiment Analysis

An approach to predict financial quantitative variables is using financial textual sources such as news reports, analyst
assessments, earnings call transcripts, and company filing reports. And much work has been done in analyzing the value
of the soft information that financial reports contain over the years, such as in [11]. In [35], textual features were created
by using the negative words in the Harvard-IV-4 TagNeg dictionary and constructing a document-term matrix from the
news stories. These features were used to predict firms’ earnings and stock returns. A novel tree-structured LSTM was
proposed to automatically measure the usefulness of financial news using both text and cumulative abnormal returns
[6]. A dual-layer attention-based neural network model was developed to predict stock price movement using the text
in financial news [47]. Estimating the value of text in financial news is important because it drives the investment
decision making process.

Financial sentiment analysis is challenging because of lack of labeled data specific to this domain. Moreover, the
general-purpose pre-trained language models fail to capture the financial context. [3] proposed the FinBERT model,
which can be fine-tuned on the financial sentiment analysis dataset (FiQA) to outperform the general BERT model.
Besides financial news, in [21], the authors constructed textual features from 10-K reports. They used these features to
predict the future stock volatility indicating the effectiveness of text. A deep learning model trained on the SEC filings
was used to improve the prediction of company’s stock price over the traditional ML models [32].

The authors in [39] and [38] extracted additional textual features by expanding the L&M sentiment word list [24]
semantically and syntactically, using word2vec [25]. Similarly, the uncertainty word list in L&M dictionary was expanded
using word2vec to predict stock volatility [36]. The authors in [37] expanded the L&M dictionary by training industry-
specific word embedding models using word2vec to predict volatility, analyst forecast error and analyst dispersion.
[34] showed how automatic domain adaption of the L&M sentiment list using word2vec [25] improved the prediction
of excess return and volatility. The aforementioned dictionary expansion approaches used word2vec model to select
the top 𝑘 closest words to the words existing in the L&M dictionary. Since word2vec is a model based on static word
embeddings, it fails to capture the dynamic context of the words.

2.2 Language Models in Finance

In terms of domain-adapted pre-trained LMs, in the English-speaking Finance sphere, four models have been proposed
and implemented, all named FinBERT: Liu et al. [23], Huang et al. [16], Araci [3], and DeSola et al. [9], all of which are
pre-trained to adapt to different financial domains. Originally, in the general domain, BERT [10] was pre-trained on
two corpora: BooksCorpus (0.8 billion words), and English Wikipedia (2.5 billion words), forming a total of 3.3 billion
words, so the idea of these financial language models is to take the original model, and pre-train it on their respective
financial corpora.

Araci [3] was the first to propose FinBERT as a pre-trained domain-adapted BERT [10] on a corpus called TRC2-
financial, which includes 46,143 documents with more than 29M words and nearly 400K sentences, from a set of Reuters
news stories. In experimentation, they saw a 15% increase in accuracy for classification tasks, a significant margin.
Liu et al. [23] focused on financial news and dialogues present on websites, and collected three financial corpora: 13
million financial news (15GB) and financial articles (9GB) from Financial Web, totaling 24GB and 6.38 billion words;
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 5

financial articles from Yahoo! Finance, totaling 19GB and 4.71 billion words; and question-answer pairs about financial
issues from Reddit, totaling 5GB and 1.62 billion words. They pre-trained their model on these corpora to adapt it
to the financial news and dialogues domain. In experimentation, they saw their model outperform BERT [10] on all
the financial tasks in their experiments, in terms of accuracy, precision, and recall [23]. Huang et al. [16] focused on
financial and business communications that companies produce, and collected a corpus of three types of data: 10-K and
10-Q reports, totaling 2.5 billion word tokens; earnings call transcripts, totaling 1.3 billion word tokens; and analyst
reports, totaling 1.1 billion word tokens [16]. They report that their model outperforms BERT [10] in three sentiment
analysis tasks, all by significant margins [16]. DeSola et al. [9] introduced another domain-specific pre-trained language
model, also named FinBERT, for financial NLP applications. This model was trained on the 10-K filings from 1998 to
1999 and from 2017 to 2019, totaling 497 million words, and it showed better performance than BERT on the masked
LM and next sequence prediction tasks.

2.3 Long Document Language Models

Apart from LMs adapted to specialized domains, there has been a slew of papers on state-of-the-art pre-trained LMs in
the general domain, such as GPT-1 [29], GPT-2 [30], GPT-3 [5], T-5 [31], ELECTRA [7], and so on. These are massive
models trained on enormous corpora, but the challenge of representing long documents persists, in that these models
still cannot handle long textual sequences, due to the quadratic computational complexity that they usually entail.

To tackle this challenge head-on, several recent works, such as Longformer [4], ETC [1], and BigBird [48], have
been proposed, all of which innovate on the self-attention mechanism in order to reduce the computational complexity
from quadratic to linear, which then enables it to process longer sequences of text. In addition, more recent works
on transformer models with linear attention, such as Reformer [20] and Nystromformer [44], innovate on how to
mathematically approximate the self-attention matrix calculations with less time and space complexity, instead of
changing the self-attention mechanism.

Longformer [4] replaces the full self-attention matrix, which scales quadratically with the length of the input
sequence, with three types of sparse attention schemes: sliding window attention, which selects only the entries on the
descending diagonal line of the self-attention matrix, with the ‘thickness’ of the line being a certain size; dilated window
attention, which adds gaps of a certain size in between the sliding window, making the descending diagonal line dilated;
global attention, which has certain specific tokens attend to all the tokens across the sequence, both horizontally and
vertically, thereby enabling global contextual representation of the sequence. Longformer was shown to outperform
baseline methods consistently, and particularly, its results were more apparent where the experiment required long
contextual information.

Extended Transformer Construction (ETC) [1] is very similar to Longformer, with nuanced variations. ETC replaces
the full self-attention matrix with global-local attention, which splits the self-attention matrix into four parts: global-to-
global, which is a small square on the top left of the matrix, where certain special global tokens attend to each other;
global-to-long, which is a horizontal rectangle on the top right of the matrix, where global tokens attend to regular
tokens; long-to-global, which is a vertical rectangle on the bottom left of the matrix, where regular tokens attend to
global tokens; long-to-long, which is a compressed version of the descending diagonal line in the large square on the
bottom right of the matrix, essentially a sliding window attention compressed into a rectangular matrix, where regular
tokens attend to other regular tokens in its window. In experimentation, ETC yielded state-of-the-art results, especially
in question answering scenarios.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Xia, et al.

BigBird [48] extends further on ETC [1], adding random sparse attention into the mix, building on top of the
global-local attention mechanism of ETC. Random entries in the self-attention matrix are selected to generalize over
the full matrix. From a graph theory perspective, this means a shorter average path between any two nodes, making
it a better approximation of the full graph. And from a NLP perspective, in most texts, there tends to be locality of
reference, where a word relates closely with words around it, so BigBird tries to account for this with their particular
random sparse attention scheme.

2.4 Chunking-based Representation Schemes

Several papers proposed chunking-based approaches to enable representations of documents longer than the maximum
length of word-tokens that LMs can take, for various different downstream tasks. Yang et al. [46] proposed a Siamese
hierarchical matching model, using sentence blocks to construct representations for twin documents at the same time,
for the purpose of document matching. In their approach, the sentence block representations are passed through
a transformer model and the first token of the resulting output is used as the document representation. With this
framework, they are able to handle maximum document lengths up to 2,048 word tokens, being able to take a maximum
of 64 sentences, with the maximum length of each sentence being 32. Since their downstream task was document
matching, they chose the Siamese design for their model, which takes in two document inputs simultaneously to
compare their similarity, while our evaluation framework is oriented towards document regression, which utilizes a
document to predict quantitative metrics. In terms of the underlying architecture, they employ a sentence-level block
merging mechanism that can take in “long form” documents not exceeding 2,048 word tokens, while our framework
utilizes a paragraph-level chunking and merging mechanism that can actually analyze real-world long documents in
the financial domain. For example, even just one section of the 10-K reports that we learn on, namely, Item 7, averages
around 12,000 words, and can be more than 24,000 tokens after tokenization. Therefore, instead of sentence-level blocks,
we use (paragraph-level) chunks, and we weigh these chunks using their respective attention scores obtained by a
self-attention mechanism. Finally, we pool the weighted chunks together into a document representation, using a
bi-LSTM network. In our experiments, we utilize different models that can enable us to have the maximum chunk
length range from 512 up to 8,192 word tokens, which then enables us to generate representations for documents that
average 24,000 word tokens.

Gong et al. [14] proposed a recurrent chunking mechanism for the purpose of machine reading comprehension,
where the machine is given a long document and a question, and is required to extract a piece of text from the document
as the answer to the questions. Towards that end, they needed the chunking mechanism to be such that the separation
point of various chunks would not cut the correct answer in half, nor prevent surrounding contexts from being retained.
Therefore, their main innovation is in enabling a more flexible chunking policy, and in a recurrent chunking mechanism
that can provide context surrounding a chunk segment. In experimentation, they use BERT, which enables maximum
sequence lengths ranging from 192 to 512 word tokens. Our framework takes a different approach to the chunking
policy, since our goal is the extraction of predictive financial text features from the document. Moreover, we also try
to increase the maximum sequence length of a chunk up to 8,192 word tokens, which then allows us to take in more
information in one chunk in an organic way.

In more recent work, Grail et al. [15] use a bi-GRU network to pool the chunks together, instead of a bi-LSTM
network. But the purpose of their framework is long document summarization, instead of extracting predictive text
features. In their approach, they use BERT as the LM, and therefore, can only process up to 512 word tokens for a
chunk. Further, they consider their approach to be an alternative to long sequence LMs such as Longformer. Instead of
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 7

considering long sequence LMs as alternatives, we incorporated them into our FETILDA framework. Therefore, in our
approach, we experiment with various underlying LMs for FETILDA, be it BERT-based models, or long sequence LMs,
or linear attention transformer LMs, enabling us to have different maximum sequence lengths ranging from 512 to
8,192 tokens.

Fig. 1. FETILDA: Overall Framework.

3 FETILDA: LONG DOCUMENT REPRESENTATION

Figure 1 shows the FETILDA framework. FETILDA first splits a long document into smaller fragments or chunks, then
processes each chunk using a language model, all of whose layers are fully unfrozen for fine-tuning, then pools the
chunks together using a Bi-LSTM layer endowedwith a self-attentionmechanism into an aggregate vector representation
of the entire document. The chunk representations are extracted from the underlying language model (BERT [10],
FinBERT [16], Longformer [4], or Nystromformer [44]) using several different pooling strategies including using the
default pooler output and combining the features from the last few layers. These chunk sequences are passed onto a
Bi-LSTM model whose hidden context states and outputs are used to learn chunk-level attention scores to extract the
final document embedding. Finally, the document embedding is passed through the linear layers to obtain the final
target prediction. In addition, we perform task-specific fine-tuning on our entire model, including BERT, FinBERT, or
Longformer, whose layers are fully unfrozen (or can be kept frozen if only pre-trained inputs are to be used), using MSE
as the loss function. Overall, as shown in Figure 1, our methodology consists of four stages: (1) Chunk Generation, (2)
Chunk-Level LM Pooling, (3) Document-Level Attention Pooling, and (4) Model Training and Fine-Tuning. We shall
describe each of these next.

3.1 Chunk Generation

Let 𝐿 = {𝑑1, 𝑑2, · · · , 𝑑𝑁 } denote a text corpus containing 𝑁 long documents, where 𝑑𝑖 denotes the 𝑖-th document in the
corpus. We tokenize each document 𝑑𝑖 into a sequence of tokens {𝑡1, 𝑡2, · · · , 𝑡𝑛𝑖 }, where 𝑛𝑖 is the number of tokens for
document 𝑑𝑖 . The document token sequence is divided into chunks of length 𝑏, where 𝑏 is the block or chunk size. Thus,
each document 𝑑𝑖 can be represented as a sequence of chunks {𝑐1, 𝑐2, · · · , 𝑐𝑚𝑖

}, with𝑚𝑖 chunks of length 𝑏. We also
prepend and append <CLS> and <SEP> tokens to each chunk, respectively, resulting in chunks of size 𝑏 + 2. The chunk
size dictates a maximum of 𝑏 + 2 tokens for each chunk 𝑐𝑖 = {𝑡0, 𝑡1, · · · , 𝑡𝑏 , 𝑡𝑏+1}, with 𝑡0 = <CLS> and 𝑡𝑏+1 = <SEP>.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Xia, et al.

Fig. 2. Chunk Generation

We experiment with 𝑏 + 2 = 512, 𝑏 + 2 = 4096 and 𝑏 + 2 = 8192, depending on the underlying language model used.
For document where the last chunk has 𝑘 < 𝑏 tokens, we pad the last chunk by appending the padding token (<PAD>)
(𝑏 − 𝑘) times to keep the chunk length intact. For each chunk, we also create an attention mask with [0] for padding
tokens and [1] for non-padding tokens, which helps in attending only to the valid tokens and not the <PAD> tokens.
Figure 2 shows an excerpt from Item 1 from a company’s 10-K report, and the tokenization and chunking process with
four resulting chunks.

3.2 Chunk-Level Language Model Pooling

Given the sequence of chunks for a document, {𝑐1, 𝑐2, · · · , 𝑐𝑚𝑖
}, we need to convert these into features vectors

{c1, c2, · · · , c𝑚𝑖
}, that represent the token sequence in each respective chunk as a whole. We use SOTA language

models like BERT [10], Longformer [4], and FinBERT [16] to generate contextual token and chunk embeddings. We thus
input each chunk into the underlying language model, which typically outputs 12 hidden state layers {𝑙1, 𝑙2, · · · , 𝑙12},
where 𝑙𝑖 denotes layer 𝑖 . The output of each of these layers contains 𝑏 + 2 hidden state vectors {z𝑙0, z

𝑙
1, · · · , z

𝑙
𝑏+1}, for

𝑏 + 2 tokens in the chunk, each of which has a size of 768, which is the dimensionality of the hidden states. The language
model also yields a default pooler output, which is the embedding vector for the <CLS> token, the first token, of the last
hidden state layer after processing and activation, denoted by z12

0 . Figure 3 shows the schematic of how we use the
underlying language model to generate the hidden state layers, as well as the default pooler output, which are then
combined using various strategies outlined below to yield the chunk embedding vector c𝑖 for each chunk 𝑐𝑖 within
each document.

Creating contextual embeddings is challenging, since a word can have different meanings in different contexts. So
it is important to first create contextual token embeddings and then experiment with different strategies to generate
different chunk representations from these contextual embeddings. We therefore studied several approaches for creating
the final chunk embedding vectors c𝑖 :
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 9

Fig. 3. Chunk Level Language Model Pooling For Chunk Embeddings.

• Default pooler output: Since the <CLS> token embedding is an attention-weighted aggregation of all the tokens
in a given chunk, each chunk 𝑐𝑖 can therefore be represented by the default pooling output vector z12

0 as the
chunk embedding vector c𝑖 . The size of c𝑖 is equal to the default hidden layer size of 768.

• Pooled hidden layers: The empirical evaluation conducted in BERT-as-a-Service [43] shows that using the last
hidden layer gives the highest accuracy, but they also observed that it could also be more biased since it is the
closest layer to the output layer. Hence, it is advisable to select the second-to-last hidden layer or a combination
of different layers. In implementing this idea in practice, we take the set of all 𝑏 + 2 hidden state vectors from
the penultimate layer, namely, {z11

0 , z11
1 , · · · , z11

𝑏+1} and mean/max pool them into one vector of size 768, which,
after some non-linear activation, can be used as the chunk embedding vector c𝑖 . In addition, we can also
follow a similar approach by selecting the last four hidden layers, namely {z9

0, z
9
1, · · · , z

9
𝑏+1}, {z

10
0 , z10

1 , · · · , z10
𝑏+1},

{z11
0 , z11

1 , · · · , z11
𝑏+1}, and {z

12
0 , z12

1 , · · · , z12
𝑏+1}, and produce four mean/max pooled vectors in the same way. These

four vectors and mean/max are pooled into one vector, which on activation can be used as the chunk embedding
vector c𝑖 .

3.3 Document-Level Attention Pooling

Given the chunk embedding vectors {c1, c2, · · · , c𝑚𝑖
}, we need to aggregate them into an effective document vector d𝑖

for document 𝑑𝑖 . Since the chunks are sequential in nature, we can accomplish this using a recurrent Bi-LSTM model.
Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Xia, et al.

Fig. 4. Attention Pooling via Bi-LSTM For Document Embeddings.

However, not all chunks in a long document are equally important. It is crucial to score the chunks based on their
importance in the document. For this, we introduce chunk-level attention within the Bi-LSTM model. Given a document,
we input its chunk feature vectors {c1, c2, · · · , c𝑚𝑖

} into the Bi-LSTM model. The output and hidden state vectors of the
Bi-LSTM for chunk 𝑖 are then obtained by concatenating the outputs and the hidden states in forward and backward
pass, respectively. Formally,

o𝑖 = −→o𝑖 ⊕ ←−o𝑖 h𝑖 =
−→
h𝑖 ⊕
←−
h𝑖

where ⊕ denotes concatenation, −→ denotes forward and←− denotes backward models, and the h𝑖 and o𝑖 denote the
hidden and output state vectors for chunk 𝑐𝑖 , respectively (𝑖 also denotes the 𝑖-th element of the chunk sequence). The
attention score 𝛼𝑖 for each chunk is calculated by taking softmax over the product of outputs with the hidden state
context vector. The document feature vector d𝑖 (of size 768) is obtained by taking the weighted sum of the chunks
according to their attention scores, normalized by the number of chunks for that document. Formally,

𝛼𝑖 = softmax
({
o𝑇1 h𝑖 , o

𝑇
2 h𝑖 , · · · , o

𝑇
𝑚𝑖

h𝑖
})

d𝑖 =

∑𝑚𝑖

𝑗=1 𝛼 𝑗 · c𝑗
𝑚𝑖

Figure 4 shows an illustration of the document level attention pooling step. At the bottom are the chunk embedding
vectors c𝑖 as inputs, which are passed to the Bi-LSTM and attention modules to create the document embedding d𝑖 .

3.4 Model Training

In the final stage of training, we feed each 768-dimensional document feature vector d𝑖 to two additional fully connected
linear layers 𝐹𝐶1 and 𝐹𝐶2 (see Figure 1), with size 601 and 1, respectively, with a leaky ReLU activation and a dropout
layer applied to 𝐹𝐶1. The last layer 𝐹𝐶2 represents the output neuron to predict a target numeric variable. In other
words, we concatenate the historic score 𝑦ℎ𝑖𝑠𝑡 (e.g., the previous year’s value for stock volatility or return on assets,
etc.) with the document vector d𝑖 so as to use both the numerical and textual features. Formally,

d𝑖 = o𝐹𝐶1 ⊕ 𝑦
hist

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 11

where o𝐹𝐶1 denotes the output features vector from 𝐹𝐶1. Hence, 𝐹𝐶1 has 601 neurons, the first 600 of which are textual
features, and the last one is the historical numeric value, all of which are input to 𝐹𝐶2 to predict the target numeric
score 𝑦. The loss function is MSE or mean squared error between the predicted and true target value.

4 EXPERIMENTS

Wenow showcase the effectiveness of our FETILDA framework on text regression tasks on very long financial documents.
All of our experiments were conducted on a machine with 2.5Ghz Intel Xeon Gold 6248 CPU, 768GB memory, and
a NVIDIA Tesla V100 GPU with 32GB memory. The neural network models are implemented using PyTorch v1.10
(pytorch.org) and the HuggingFace library (huggingface.co). Our code and datasets are publicly available on github via
https://github.com/Namir0806/FETILDA.

4.1 Data Description: 10-K Reports

A 10-K is a comprehensive report filed annually by a publicly traded company about its financial performance and is
required by the U.S. Securities and Exchange Commission (SEC). [18] The SEC requires this report to keep investors
aware of a company’s financial condition and to allow them to have enough information before they buy or sell shares
in the corporation, or before investing in the firm’s corporate bonds.

10-Ks thus give a clearer picture of everything a company does and what kinds of risks it faces [18]. However, the
length of 10-K reports has generally increased dramatically in recent years. According to a Wall Street Journal article
[26], the average 10-K report is getting longer, from about 30,000 words in 2000 to about 42,000 words in 2013. In the
article, GE finance chief Jeffrey Bornstein is reported to have said that not a retail investor on planet earth could get
through it, let alone understand it. Our goal, therefore, is to extract the soft information contained in the textual data of
these extremely lengthy 10-K reports, in order to better our predictions of forward-looking KPIs.

While the entire 10-K report is a very long disclosure document, Items 7/7A and 1A are considered as the important
subsections in a 10-K report [2]. Item 7 (MD&A) gives the company’s perspective on the business results of the past
financial year. It is meant for the management to relate in its own words the analysis of their financial condition. Item
7A (Quantitative and Qualitative Disclosures about Market Risk) provides information about the company’s exposure
to market risk, such as interest rate risk, foreign currency exchange risk, commodity price risk or equity price risk. Item
1A (Risk Factors) includes information about the most significant risks for a company or its securities. The risk factors
are typically reported in order of their importance. However, it focuses on the risks themselves, and not necessarily on
how the company addresses those risks. Some risks apply to the entire economy, some only to the specific industry
sector or region, and some are directly related to the company.

We thus focus on Item 7/7A and Item 1A of the 10-K reports, which contain a treasure trove of soft information that
can be leveraged for predictive analytics tasks. Since the industry standard is to only use quantitative data to predict
future KPIs, we want to add the qualitative data coming from text into the mix, in order to achieve better predictions.

4.2 Datasets and Target Metrics

4.2.1 FIN10K Dataset [22]. The FIN10K dataset [22], contains Item 7 of 10-K reports of US companies from 1996 to
2013, and the stock return volatilities twelve months before and after each report. Table 1 shows the statistics for this
dataset. Following earlier work [38], we use the reports from 1996 to 2000 as training and validation data, and reports
for each year from 2001 to 2006 as separate testing data. Further, we choose the first 80% of the reports from 1996 to

Manuscript submitted to ACM

pytorch.org
huggingface.co
https://github.com/Namir0806/FETILDA

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Xia, et al.

2000 as training data, and the remaining 20% as validation data. In the testing data, from 2001 to 2006, the number of
documents is generally increasing, as well as the average document length, which almost doubles from 2001 to 2006.

Table 1. FIN10K dataset [22] statistics.

Year 1996 - 2000 2001 2002 2003 2004 2005 2006
Number of total documents 8703 1825 2023 2866 2861 2698 2564
Average document length 5079.4 6245.6 8414.3 10324.7 11499.6 12528.1 12198.1

Prediction Task: Volatility. The regression task is to predict the stock return volatilities, based on data from twelve
months before and after each report. Volatility [38] is a common risk metric defined as the standard deviation of a
stock’s returns over a period of time. Historical volatilities are derived from time series of past stock market prices as a
proxy for financial risk. Let 𝑆𝑡 be the price of a stock at time 𝑡 . Holding the stock for one period from time 𝑡 − 1 to time
𝑡 results in a simple net return of 𝑅𝑡 = 𝑆𝑡

𝑆𝑡−1
− 1 [40]. Therefore, the volatility of returns for a stock from time 𝑡 − 𝑛 to 𝑡

is defined as

𝑣 [𝑡−𝑛,𝑡] =

√︄∑𝑡
𝑖=𝑡−𝑛 (𝑅𝑖 − 𝑅)2

𝑛
(1)

where 𝑅 =
∑𝑡
𝑖=𝑡−𝑛 𝑅𝑖/(𝑛 + 1).

4.2.2 US Banks Dataset. We collected the 10-K filings for all US banks for the period between 2006 and 2016 (from
the SEC EDGAR website: www.sec.gov/edgar), as well as the corresponding quantitative target data from the WRDS
Center for Research in Security Prices (wrds-www.wharton.upenn.edu). While the entire 10-K report is a very long
disclosure document, as noted above, Items 7/7A and 1A are considered as the important subsections in a 10-K report
[2]. These subsections are themselves also quite long. The dataset statistics for the 10-K reports for all US Banks for the
period of 2006-2016 are reported in Table 2.

Table 2. US bank dataset statistics.

Item 7/7A Item 1A
Number of total documents 5321
After extracting items 3396
Target data available 2500 2479
Average document length 12589.75 4435.69

The 10-K reports for US Banks (2006-2016) total 5321 documents, but not all reports have both the Item 7/7A
subsection. Out of the total, 3396 10-K reports have this important subsection. Furthermore, we found that not all
banks have all the eight target KPI values that we need for regression. Out of the 3396 documents, we have 2500 Item
7/7A and 2479 Item 1A, with their eight metrics in full as target data, which makes up the final document set used in
our experiments. The average document length (in terms of the number of words) is 12590 for Item 7/7A, though the
average length of 4437 is considerably shorter for Item 1, as noted in Table 2. We sort the documents chronologically
from 2006 to 2016, and choose the first 80% of the data for training, and the remaining 20% as validation and testing
data, with a 50/50 split between the latter two. In terms of target data normalization, for each of the eight target metrics,
we performed min-max scaling to normalize the data for training.
Manuscript submitted to ACM

www.sec.gov/edgar
wrds-www.wharton.upenn.edu

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 13

Prediction Task: Bank KPIs. For US banks our goal is to predict several KPI metrics using the 10-K reports. In
particular, we focus on eight metrics that indicate either the performance or risk of a given bank: Return on Assets
(ROA), Earnings per Share (EPS), Return on Equity (ROE), Tobin’s Q Ratio, Tier 1 Capital Ratio, Leverage Ratio, Z-Score,
and Market-to-Book Ratio. The target metrics are defined below.

• Return on Assets (ROA): ROA is calculated by dividing a company’s net income by total assets:

ROA =
Net Income
Total Assets

(2)

Higher ROA shows more asset efficiency and productivity.
• Return on Equity (ROE): According to [13], ROE is a measure of financial performance calculated by dividing

net income by shareholders’ equity:

ROE =
Net Income
Total Equity

(3)

• Earning per share (EPS): EPS is an indicator of a company’s profitability. It is calculated as a company’s profit
divided by the outstanding shares of its common stock:

EPS =
Net Income − Preferred Dividends

End-of-Period Common Shares Outstanding
(4)

The higher a company’s EPS, the more profitable per share it is.
• Tobin’s Q Ratio (TQR): TQR represents the ratio of the market value of a firm’s assets to the replacement cost

of the firm’s assets:
TQR =

Equity Market Value + Liabilities Book Value
Equity Book Value + Liabilities Book Value

(5)

This ratio indicates how the market views the managers’ prospects of using firm’s asset to generate future
value for investors of the firm.

• Leverage Ratio (LR): The Leverage Ratio measures the extent of debt financing for a firm, therefore assesses
the ability of a company to meet its financial obligations. It is given as:

LR =
Average Total Assets
Average Equity

(6)

• Tier 1 Capital Ratio (T1CR): The Tier 1 capital ratio is the ratio of a bank’s core Tier 1 capital to its total
risk-weighted assets:

T1CR =
Tier 1 Capital

Total Risk-Weighted Assets
(7)

These risk-weighted assets include all assets that are systematically weighted for credit risk.
• Z-score (Z): The Z-score links a bank’s capitalization with its return (ROA) and risk (volatility of returns).

Z-Score =
ROA + CAR
𝜎 (ROA) (8)

where, 𝜎 (ROA) is the standard deviation of ROA for a specific time period, and CAR is the capital-to-assets
ratio.

• Market-to-Book Ratio (MBR): The Market-to-Book Ratio is used to evaluate a company’s current market
value relative to its book value, and is calculated by dividing the current stock price of all outstanding shares by
the book value:

MBR =
Market Capitalization
Total Book Value

(9)

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Xia, et al.

4.3 Methods

We now outline the results of our framework on both the FIN10K and US Banks datasets. Overall, we experiment
with four different types of methods, three of which being baseline methods with which we compare the FETILDA
framework to evaluate the performance of our approach. In order to effectively compare different methods, all results
report the mean squared error (MSE). The methods are as follows:

• Numeric Regression [49]: We compare with linear regression (LR) and support vector regression (SVR)
models. These baselines methods take the historical score 𝑦ℎ𝑖𝑠𝑡 and run (bivariate) regression model on it to
predict the target variable. These method therefore utilize only numerical data. The SVR method (from [38])
uses the logarithm of the historic volatility for the prior twelve months.

• Word Feature Vector Models: These are traditional but still quite effective baseline methods, based on the
TF-IDF or LOG1P word vector representations, as given below:

TF-IDF [17]: In this baseline method, we use the term frequency - inverse document frequency features,
as the input document embeddings, which help in scoring important words.

– LOG1P+ [38]: This is the method used in the volatility regression task proposed by Tsai and Wang [38].
The word features are formed using LOG1P, calculated as LOG1P = 𝑙𝑜𝑔(1 + 𝑇𝐶 (𝑡, d)), where 𝑇𝐶 (𝑡, d)
denotes the term count of a word 𝑡 in a given document d. Furthermore, the logarithm of the stock return
volatility twelve months before each report is used as an additional numeric feature, and together, the
word features and numeric features are input into a Support Vector Regression model.

• FETILDA Framework: Here we use our framework, detailed in Section 3, with different large language models,
including domain specific ones, as listed below. All methods use the default pooling strategy.
– FETILDA w/BERT: We use [10] as the underlying language model, setting the chunk size to 512 tokens.
– FETILDA w/FinBERT: Here we use FinBERT [16] as the LM, which was pre-trained on 10-K, 10-Q, and

analyst reports, with chunk size of 512 tokens.
– FETILDA w/Longformer: To test the effectiveness of a bigger block size with a pretrained model, we

use our approach with Longformer [4] as the underlying language model, setting the chunk size to 4096
tokens.

– FETILDA w/Nystromformer: For an even bigger block size, but without a pretrained model (that is,
training from scratch), we use our approach with Nystromformer [44] as the underlying language model,
setting the chunk size to 8192 tokens, the number of layers to one, and the number of attention heads to
eight.

• Truncated LMs: Here, we experiment with truncated LM baselines, where the each model uses only the first
chunk of each document and discards the rest of the document. The rest of the model training is identical to the
process detailed in Section 3.4. These baselines thus serve as ablated versions of our chunking approach for
each of the corresponding LMs.
– BERT Truncate: Here, we simply use the pretrained BERT [10] model with chunk size of 512.
– FinBERT Truncate: Here we use the financial domain pretrained FinBERT model [16] as the underlying

language model to learn on the first chunk of the document, with chunk size of 512 tokens.
– Longformer Truncate: This baseline uses pretrained Longformer [4], with 4096 as the chuck size, which

is considerably larger than the BERT/FinBERT baselines.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 15

– Nystromformer Truncate: For Nystromformer [44] we set the chuck size as 8192, which is double that
for Longformer, so that we can evaluate the effect of truncating on with a very large context or chunk size.
We further use 8 attention heads, and one tranformer layer.

– BigBird Truncate: Here we use the large context BigBird [48] model, with a chunk size of 4096. This also
shows the comparison with a sparse-attention based approach.

With all four versions of FETILDA, namely using BERT, FinBERT, Longformer, and Nystromformer, and baseline
numerical regressions, word feature vector models, and truncated LMs, namely BERT, FinBERT, Longformer, Nystrom-
former, and BigBird, we performed an extensive set of experiments, evaluating our approach in predicting stock return
volatility for the FIN10K dataset [22], and all eight different KPI metrics for the US banks dataset. For the US banks
dataset, the historical scores are numeric values of each of the eight metrics in the previous year of the report. For the
FIN10K dataset, they are the stock return volatilities twelve months before each report. In addition to applying our
approach as described in subsection 3.2 with fully unfrozen LM layers, enabling model fine-tuning, we also report the
effect of freezing all the LM layers and freezing only the last layer in FETILDA when we apply it on both the US banks
dataset and the FIN10K dataset [22]. This allows us to compare the effect of fine-tuning versus the default pre-training
approach.

4.4 Comparative Performance Results

In all four versions of FETILDA and truncated LMs, we train the model with varying learning rates from 10−1 to 10−8,
and pick the epoch and parameters with the best validation loss. Due to the memory constraint of 32GB, for a given
document, the GPU can only process up to around 20,480 tokens at a time, so we truncate the rest if a document goes
beyond that length. However, this only happens for a minority of cases in our experiments, and we do not truncate at
all in our experiments with fully frozen language models. As mentioned above, we use the default pooling strategy to
extract chunk embedding vectors, and among the various FinBERT alternatives, we use the Huang et al. FinBERT [16]
model. We empirically show below that both these choices are in fact the best ones among the different pooling and
FinBERT variants, respectively. Finally, for both FETILDA (w/BERT, w/FinBERT, w/LongFormer, and w/Nystromformer),
all truncated LMs, and TF-IDF we select the best among the following regression models based on the validation data:
(1) Linear Regression, (2) Support Vector Regression, using a RBF Kernel with 𝐶 = 0.1 and 𝜖 = 0.0001, and (3) Kernel
Ridge Regression, using a RBF Kernel with 𝛼 = 0.1 and 𝛾 = 0.1, in addition to the variant based on the predicted output
(from 𝐹𝐶2) with MSE loss.

4.4.1 FIN10K Dataset. Table 3 compares the performance of FETILDA variants with the other baseline methods listed
above. Note that LOG1P+:ALL refers to the model trained on the entire original text using the LOG1P features, and
LOG1P+:SEN refers to the model trained on only the sentiment bearing words taken from the L&M dictionary [24]. For
LOG1P+:ALL and LOG1P+:SEN, we report the results for these methods directly from their paper [38]. We also include
the results for the TF-IDF baseline. Among their methods, LOG1P+:SEN performs the best for all years, except 2001. For
the average over all test years, LOG1P+:SEN performs better than TF-IDF, even though TF-IDF performs better than
LOG1P+:SEN for 2001, 2002, and 2006. However, as we can observe, with the exception of 2003, FETILDA outperforms
LOG1P+:SEN by a large margin. Interestingly, FETILDA w/FinBERT outperforms both BERT and Longformer on all the
metrics. It is the best performing model over all the years, with the exception of 2003. Looking at the last column, which

shows the average performance across the years 2001-2006, FETILDA w/FinBERT is the best; it outperforms all previous

baselines by a significant margin, establishing new SOTA results.
Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Xia, et al.

Table 3 also shows what happens to the FETILDA variants if we freeze the layers of the language model and use only
the pre-trained embeddings, compared to fine-tuning through unfreezing all the layers or only freezing the last layer.
Interestingly, for the larger FIN10K dataset, fine-tuning results in a much better model for FinBERT, although fully
frozen FinBERT does well for 2001 and 2003, but not so much for BERT and Longformer. As such, the domain-specific
pre-training in FinBERT followed by fine-tuning results in the best overall model.

Table 3. MSE Results on FIN10K. Best results in bold.

Model\Year 2001 2002 2003 2004 2005 2006 Average
SVR 0.174700 0.160020 0.187340 0.144210 0.136470 0.146380 0.150860
LOG1P+:ALL 0.180820 0.171750 0.171570 0.128790 0.130380 0.142870 0.154360
LOG1P+:SEN 0.185060 0.163670 0.157950 0.128220 0.130290 0.139980 0.150860
TF-IDF 0.123816 0.121450 0.218520 0.176087 0.148645 0.138113 0.154438
Truncated LMs
BERT Truncate (Fully Unfrozen) 0.123519 0.109091 0.188643 0.117910 0.099342 0.094656 0.122193
FinBERT Truncate (Fully Unfrozen) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701
Longformer Truncate (Fully Unfrozen) 0.123086 0.108659 0.187317 0.116490 0.097997 0.093773 0.121220
BigBird Truncate (Fully Unfrozen) 0.124220 0.108205 0.185940 0.115778 0.097545 0.092892 0.120763
Nystromformer Truncate (Fully Unfrozen) 0.123561 0.108854 0.187848 0.116714 0.098098 0.093215 0.121382
FETILDA w/ LMs
FETILDA w/BERT (Fully Unfrozen) 0.128406 0.111145 0.180670 0.111339 0.094401 0.091456 0.119569
FETILDA w/FinBERT (Fully Unfrozen) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885
FETILDA w/Longformer (Fully Unfrozen) 0.124797 0.109595 0.183509 0.113019 0.094623 0.090408 0.119325
FETILDA w/Nystromformer (Fully Unfrozen) 0.120945 0.108224 0.174019 0.109716 0.095050 0.093098 0.116842
FETILDA w/BERT (Last Layer Frozen) 0.129132 0.111559 0.181691 0.110962 0.093300 0.089595 0.119373
FETILDA w/FinBERT (Last Layer Frozen) 0.125969 0.109420 0.176483 0.108349 0.092103 0.089228 0.116925
FETILDA w/Longformer (Last Layer Frozen) 0.135215 0.114627 0.193750 0.117404 0.096162 0.089970 0.124521
FETILDA w/BERT (Fully Frozen) 0.121354 0.108529 0.175446 0.108837 0.093004 0.090500 0.116278
FETILDA w/FinBERT (Fully Frozen) 0.118620 0.113750 0.159487 0.108527 0.097878 0.095545 0.115635
FETILDA w/Longformer (Fully Frozen) 0.126380 0.109627 0.169686 0.108116 0.091884 0.089902 0.115932

Comparing with Truncated Models. Table 3 also shows how our evaluation framework compares with LMs in Finance
and Long Document LMs. Since these models have a fixed context/chuck size and do not create document level
representations, we truncate the models to use only the first chunk from each document. However, we study the
effect of models with larger chuck sizes, ranging from 512 used for BERT/FinBERT, to 4096 used in Longformer and
BigBird (which also uses sparse attention), to 8192 used in Nystromformer. As we can see, none of the truncated LM
baselines methods outperform FETILDA w/FinBERT. Thus, truncating the documents is not an effective strategy. This
provides strong evidence on the advantage of our framework that considers all the chunks so that long documents
can be processed without significant information loss, and that further allows fair comparisons between different
underlying LMs. For example, FinBERT Truncate achieves almost the same performance as Longformer Truncate, which
may lead one to prematurely conclude the futility of pre-trained domain-specific models such as FinBERT. However,
truncated FinBERT can only “see” the first 512 tokens of the document, whereas truncated Longformer uses the first
4096 tokens. However, when utilizing our chunking framework, we observe that FinBERT can unleash its full potential
and outperform Longformer, showcasing the effectiveness of pre-trained domain-specific LMs in finance. This due
to the fact that now FinBERT and Longformer, when used through FETILDA, can exploit the full text from the long
document.
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 17

4.4.2 US Banks Dataset: Item 7/7A. Table 4 shows the performance comparison between the four versions of our
approach on Item 7/7A and baseline methods: truncated versions of all BERT, FinBERT, Longformer, Nystromformer,
and BigBird, TF-IDF for textual modeling with historic scores, and linear regression for numerical modeling. For most

metrics, our method outperforms the baseline methods (TF-IDF and linear regression), with FETILDA w/Longformer and

FETILDA w/Nystromformer performing the best in a majority of cases. As such, FETILDA variants using all of the chunks
outperform all other baselines on 6 out of the 8 metrics. In addition, we also see a significant edge in the performance
of FETILDA w/FinBERT in the prediction of ROA target values.

Table 4. MSE results on Item 7/7A. Best results in bold per KPI.

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR
TF-IDF 0.000879 0.010422 0.001022 0.022000 0.000767 0.002594 0.028926 0.005765
Linear Regression 0.001432 0.010096 0.001564 0.022587 0.000306 0.002441 0.030760 0.005757
Truncated LMs
BERT Truncate (Fully Unfrozen) 0.000769 0.007790 0.000873 0.020440 0.000396 0.002607 0.029508 0.005641
FinBERT Truncate (Fully Unfrozen) 0.000827 0.007458 0.000855 0.016940 0.000308 0.002599 0.028715 0.005655
Longformer Truncate (Fully Unfrozen) 0.000817 0.007462 0.001056 0.020103 0.000272 0.002446 0.033579 0.005889
BigBird Truncate (Fully Unfrozen) 0.000781 0.007422 0.000909 0.017403 0.000240 0.002576 0.029046 0.005617
Nystromformer Truncate (Fully Unfrozen) 0.000879 0.008459 0.000853 0.016444 0.000239 0.002596 0.027976 0.005591
FETILDA w/ LMs
FETILDA w/BERT (Fully Unfrozen) 0.000796 0.009227 0.000897 0.021409 0.000325 0.002502 0.029505 0.005651
FETILDA w/FinBERT (Fully Unfrozen) 0.000746 0.008901 0.000932 0.019150 0.000317 0.002535 0.029516 0.005657
FETILDA w/Longformer (Fully Unfrozen) 0.000813 0.008507 0.000858 0.017358 0.000296 0.002467 0.028697 0.005683
FETILDA w/Nystromformer (Fully Unfrozen) 0.000788 0.007338 0.000835 0.016862 0.000310 0.002503 0.029397 0.005735
FETILDA w/BERT (Last Layer Frozen) 0.000850 0.009903 0.000960 0.021728 0.000306 0.002469 0.029203 0.005798
FETILDA w/FinBERT (Last Layer Frozen) 0.000844 0.008543 0.000988 0.021425 0.000304 0.002445 0.029637 0.005678
FETILDA w/Longformer (Last Layer Frozen) 0.000849 0.008356 0.000851 0.016436 0.000291 0.002419 0.029011 0.005481
FETILDA w/BERT (Fully Frozen) 0.000890 0.010052 0.001109 0.022748 0.000328 0.002581 0.028966 0.005950
FETILDA w/FinBERT (Fully Frozen) 0.001093 0.009401 0.001906 0.021882 0.000447 0.002514 0.030094 0.005695
FETILDA w/Longformer (Fully Frozen) 0.000801 0.008501 0.000876 0.019053 0.000308 0.002436 0.028965 0.005957

Table 4 also shows the comparisons between applying FETILDA w/ LMs, and using LMs directly in truncated
mode. As we can see, the shorter window size models, namely BERT and FinBERT, when using all chunks, performed
better in some metrics and worse in some metrics compared to their truncated counterparts. This may be due to the
chunk attention weights not being well assigned in the document-level attention pooling phase in a portion of shorter
documents, as we examine in Section 4.6.1. As for longer window size LMs, namely, Longformer and Nystromformer,
we can observe that for the majority of the metrics, our framework is able to further improve the performance of longer
window LMs for long documents on six out of the eight metrics. On the two metrics where Nystromformer truncate
performs best, it demonstrates the benefit of having a larger window size, as the window size in this case is 8, 196.

4.4.3 US Banks: Item 1A Section. Next, we report results on Item 1A. Table 5 shows the performance comparison
between our approach and baseline methods, namely truncated versions of BERT, FinBERT, Longformer, Nystromformer,
and BigBird; TF-IDF for textual modeling with historic scores, and linear regression for numerical modeling. In five out
of eight metrics, FETILDA w/ LMs with our framework outperform other methods, with FETIDA w/Longformer [4]
performing the best in two metrics, and FETILDA w/BERT and FinBERT performing the best in the other three metrics.
Longformer truncate and BigBird truncate, both with a window size of 4, 096, performed best on two of the metrics,
demonstrating the benefits of a larger context size. The Item 1A section is generally a shorter document, as shown
in Table 2, and FETILDA is designed for long documents, so when our framework trains on this corpus, it may suffer

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Xia, et al.

Table 5. MSE results on Item 1A. Best results in bold per KPI.

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR
TF-IDF 0.001153 0.009350 0.000970 0.018660 0.000322 0.003117 0.029103 0.005922
Linear Regression 0.001407 0.010174 0.001577 0.022500 0.000299 0.002534 0.032102 0.005802
Truncated LMs
BERT Truncate (Fully Unfrozen) 0.000783 0.009169 0.000955 0.019806 0.000324 0.002655 0.031074 0.005991
FinBERT Truncate (Fully Unfrozen) 0.000774 0.007453 0.000861 0.017555 0.000290 0.002597 0.031737 0.005979
Longformer Truncate (Fully Unfrozen) 0.000925 0.008200 0.001645 0.017472 0.000221 0.002553 0.034199 0.005923
BigBird Truncate (Fully Unfrozen) 0.000816 0.006908 0.000963 0.015997 0.000318 0.002632 0.031801 0.006205
Nystromformer Truncate (Fully Unfrozen) 0.000790 0.007385 0.000882 0.017392 0.000275 0.002614 0.030956 0.006388
FETILDA w/ LMs
FETILDA w/BERT (Fully Unfrozen) 0.000811 0.008520 0.000820 0.019151 0.001353 0.002559 0.029614 0.004944
FETILDA w/FinBERT (Fully Unfrozen) 0.000867 0.008671 0.001171 0.017383 0.000385 0.002560 0.030583 0.004937
FETILDA w/Longformer (Fully Unfrozen) 0.000790 0.007940 0.000826 0.015620 0.000937 0.002527 0.030130 0.004555
FETILDA w/Nystromformer (Fully Unfrozen) 0.000780 0.007659 0.000925 0.016263 0.000226 0.002831 0.029426 0.005640
FETILDA w/BERT (Last Layer Frozen) 0.000774 0.007803 0.000824 0.017883 0.000726 0.002751 0.029729 0.004943
FETILDA w/FinBERT (Last Layer Frozen) 0.000850 0.008814 0.000834 0.018282 0.000485 0.002612 0.030115 0.004967
FETILDA w/Longformer (Last Layer Frozen) 0.000795 0.007409 0.000821 0.018100 0.000242 0.002715 0.030415 0.004894
FETILDA w/BERT (Fully Frozen) 0.000856 0.008788 0.001076 0.018572 0.000315 0.010919 0.030225 0.004908
FETILDA w/FinBERT (Fully Frozen) 0.000976 0.008626 0.001274 0.018254 0.000428 0.002471 0.032155 0.004911
FETILDA w/Longformer (Fully Frozen) 0.000811 0.008053 0.000854 0.018429 0.000930 0.002619 0.034284 0.004955

from the uneven spread of attention due to the document-level attention pooling focusing on a few select chunks while
ignoring the rest, as demonstrated in the case study analysis below (see Section 4.6.2).

Table 5 also shows the comparisons between applying FETILDA with LMs and using LMs directly in truncate mode.
As for the shorter window size models, namely BERT and FinBERT, when applied in FETILDA, these LMs performed
better in a majority of metrics compared to using the it directly in truncate mode, with BERT performing better in
FETILDA for all metrics compared to BERT in truncate mode. As for longer window size LMs, namely, Longformer
and Nystromformer, we can observe that for the majority of the metrics, our framework is again able to deliver extra
performance on longer window LMs for long documents. Finally, even for these shorter documents, using all of the
chunks via the FETILDA approach results in the best performing model on five out of eight metrics, and a second best
on the remaining three metrics.

4.5 Algorithmic Choices

Having shown the effectiveness of our FETILDA framework, we now present some results to justify some of the
algorithmic choices, such as which document-level pooling strategy and which chunk-level pooling strategy does the
best, and which FinBERT model performs the best.

4.5.1 Effectiveness of Document-level Attention Pooling. As elaborated in Subsection 3.3, in the FETILDA framework,
our approach to generating a document-level embedding from chunk-level embeddings is to pool them together using a
Bi-LSTM layer with self attention. In this way, each chunk is weighted by its importance and aggregated together. To
showcase the effectiveness of this approach on a large corpus of long documents, we performed three sets of additional
experiments on the FIN10K dataset: i) truncating the document, so that we use only the first chunk of every document,
ii) mean-pooling and iii) max-pooling the chunks together into one document-level embedding. As we can see in Table
6, compared to these three simpler approaches, the advantage and gains in using our document-level attention pooling
approach are evident. Moreover, we can observe that mean-pooling all the chunks together even performs slightly worse
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 19

than just using the first chunk of every document. This means that our attention-based pooling approach effectively
captures information from all the chunks, whereas simpler pooling methods are not able to do so.

Table 6. Document level attention pooling: MSE results on FETILDA w/FinBERT (fully unfrozen) variants. Best results in bold.

Model\Year 2001 2002 2003 2004 2005 2006 Average
FETILDA w/FinBERT (Bi-LSTM + Self Attention) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885
FETILDA w/FinBERT (Only Using First Chunk) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701
FETILDA w/FinBERT (Mean-Pooling Chunks) 0.122950 0.108655 0.187268 0.116554 0.098074 0.093308 0.121135
FETILDA w/FinBERT (Max-Pooling Chunks) 0.122072 0.108241 0.186018 0.115826 0.097591 0.092913 0.120444

4.5.2 Chunk-level Pooling Strategy. Recall that in subsection 3.2 we outlined several chunk-level pooling strategies to
create the final chunk embeddings. These include: (1) the default pooling method (default pooler output) using the
hidden state of the first token of the last layer, (2) mean pooling method using the hidden states of the second-to-last
layer, (3) mean pooling method using the hidden states of the last four layers, (4) max pooling method using the hidden
states of the second-to-last layer, and (5) max pooling method using the hidden states of the last four layers. In Table 7,
we present the comparative MSE results for these alternatives on Item 7/7A for predicting ROA. We observe that the
default pooler output yields the best results for both validation and testing datasets. We thus chose the default pooling
method using the hidden state of first token of the last layer, and this is used for the different versions of FETILDA in
our experiments above.

Table 7. A comparison of different chunk-level pooling methods.

Results\Methods Mean pooling Max pooling Default pooling
Second-to-last layer Last four layers Second-to-last layer Last four layers Last layer

Validation MSE 0.0011465 0.0012064 0.0011102 0.0011188 0.0010205
Testing MSE 0.0008547 0.0008221 0.0007686 0.0008820 0.0007458

4.5.3 FinBERT Variants. As discussed in related work, there are four different FinBERT approaches proposed recently.
Out of these, the implementation for Liu et. al FinBERT [23] is not publicly available. We therefore compare the three
FinBERT implementations that are available: Araci [3], DeSola [9], and Huang et al. [16]. Table 8 shows the MSE results
when predicting ROA using both textual data from Item 7/7A and numeric historic data (using a learning rate of 0.001)
for the US Banks dataset. The results show that Huang et al. implementation results in the best performance. We thus
choose the Huang et. al FinBERT [16] as the underlying FinBERT model for FETILDA. Recall that this FinBERT model
was pre-trained on a very huge financial corpus containing 10-K and 10-Q reports, earnings call transcripts, and analyst
reports.

Table 8. A comparison of three different models of FinBERT.

Results\Models Araci[3] DeSola et al.[9] Huang et al.[16]
Validation loss 0.0011482 0.0010539 0.0010205
Testing error 0.0007781 0.0008682 0.0007458

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Xia, et al.

4.6 Qualitative Analysis and Case Study

4.6.1 Sentence Sentiment and Document-level Attention Pooling. To discover insights into the nature of the contents in
the 10-K reports we have trained on, we first performed a sentiment analysis of the the sentences contained in these
documents, both in the FIN10K dataset and US Banks dataset, using the finbert-tone model developed by Huang et
al. [16]. This model was fine-tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst
reports, and classifies a given sentence with one of these 3 labels with a score between 0 and 1. Tables 9 and 10 show
the results of this analysis. As we can see, in the Item 7 section of 10-K reports, which forms the entirety of the training
data for the FIN10K experiments and one portion of the training data for the US Banks experiments, the majority of
sentences, around 70% to 75%, are all neutral sentences, with over 90% confidence (i.e., the average score value) from
the classifier. This indicates that the majority of the textual content that we are training on is neutral content. Only
around 10% to 15% of the sentences are negative, and a smaller percentage of sentences are positive. And in the Item 1A
section of 10-K reports in the US Banks dataset, which is a shorter type of document focusing on risk factors, over half
of the sentences are neutral, with around 40% of the sentences negative and a small percentage of sentences positive.
This brings up the question of what the model will decide to focus on when making quantitative predictions, that is,
whether attention will be paid mostly to neutral sentences, or sentences that indicate some sort of positive or negative
sentiment. We explore this more in Section 4.6.2.

Table 9. A sentiment analysis of documents from the FIN10K dataset.

1996-2000 2001 2002 2003 2004 2005 2006
Number of neutral sentences 969556 252398 396105 691779 734407 752487 701754

Percentage of neutral sentences 75.1% 75.5% 76.7% 78.0% 76.7% 77.3% 79.4%
Neutral average score 0.969249 0.967979 0.969975 0.971859 0.970663 0.971246 0.973817

Number of positive sentences 155546 34816 41887 68310 88937 94444 91481
Percentage of positive sentences 12.0% 10.4% 8.1% 7.7% 9.3% 9.7% 10.3%

Positive average score 0.931751 0.928670 0.927051 0.927983 0.935404 0.937857 0.940044
Number of negative sentences 166200 46983 78609 127057 133900 126587 90814

Percentage of negative sentences 12.9% 14.1% 15.2% 14.3% 14.0% 13.0% 10.3%
Negative average score 0.924655 0.920516 0.921983 0.921626 0.919780 0.917041 0.913382

Table 10. A sentiment analysis of documents from the US Banks dataset.

Item 7 Item 1A
Number of neutral sentences 977863 216876

Percentage of neutral sentences 79.9% 52.6%
Neutral average score 0.971906 0.945267

Number of positive sentences 129278 14170
Percentage of positive sentences 10.6% 3.4%

Positive average score 0.923350 0.892079
Number of negative sentences 116839 181097

Percentage of negative sentences 9.5% 43.9%
Negative average score 0.909770 0.944259

We also examined the chunk attention weights in the document-level attention pooling phase (see Section 3.3). Since
this phase evaluates different chunks based on their importance and weighs the tokens in each chunk accordingly,
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 21

the process can affect which parts of the document the model ends up focusing on to capture signals from, in order
to make predictions. We decided to focus on the FIN10K dataset for this analysis as it is a larger dataset, which can
produce more representative conclusions. In examining documents where FETILDA w/FinBERT did not perform well,
we discovered that on account of the shortness of the document, the chunk attention weights focused on one of the
chunks with a very high weight, and on others with very low weights, and some chunks even had zero weight. This
was due to the fact that some chunks had mundane regulatory content or padding at the end, but they also contained
sentences that could be of importance to volatility change. It was evident in this case that much of the information
contained in the less weighed chunks was lost.

This led us to further investigate the relationship between the length of the document and the entropy of the
chunk attention weights, and how much this factor leads to information loss that affects performance. We therefore
calculated the entropy of all the chunk attention weights produced after training. Given a list of chunk attention weights
{𝛼1, 𝛼2, ..., 𝛼𝑚} (see Section 3.3) for document 𝑑 , which all sum up to 1 since they are the result of a softmax function,
the chunk entropy is given as:

𝐻 = −
𝑚∑︁
𝑖=1

𝛼𝑖 log(𝛼𝑖) (10)

Higher entropy would mean that the weights are more spread out, giving attention to each chunk more evenly, and
lower entropy would mean that the weights are skewed, giving attention to few chunks while ignoring the rest.

Fig. 5. Entropies of chunk attention weights produced by FETILDA w/FinBERT after training on the FIN10K dataset.

Figure 5 shows a histogram of the results. Overall, the entropies ranged between 0 and 3.5, and though we see a
rough normal distribution for the majority of documents, a significant portion of the documents had low entropies
between 0 and 0.5. For these documents, the chunk attention focuses only on a single or a few chunks. To examine the
implications of this further, we divided the training set into 7 buckets based on the chunk entropy value, and calculated
their respective average document lengths and the mean training losses (in terms of MSE), as shown in Table 11. As we
can observe, the length of the document has a proportional relationship with the entropy of the chunk attention weights,
which in turn has an inverse relationship with the MSE loss (or proportional relationship with model performance).
The longer documents have higher entropies, and the shorter documents have lower entropies. In turn, lower entropy

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Xia, et al.

documents have worse performance, producing higher losses, and higher entropy documents have better performance,
producing lower losses.

Table 11. An analysis of chunk entropies produced by FETILDA w/FinBERT on the FIN10K.

Number of documents Average document length Mean training loss (MSE)
Entropy within [0.0, 0.5] 1343 1893.3 0.281587
Entropy within [0.5, 1.0] 1116 2792.5 0.247949
Entropy within [1.0, 1.5] 1273 3594.5 0.221757
Entropy within [1.5, 2.0] 1299 4746.3 0.177632
Entropy within [2.0, 2.5] 991 6478.5 0.171708
Entropy within [2.5, 3.0] 566 9187.0 0.181916
Entropy within [3.0, 3.5] 374 14200.0 0.148555

From this analysis, we conclude that our approach performs better on longer documents than on shorter documents,
because its document-level attention pooling weighs chunksmore evenly in longer documents than in shorter documents.
This makes sense, as our approach is designed for long documents, and in the training process, documents of varying
lengths are fed to the framework, resulting in a generalized model that performs well on long documents. Therefore,
to handle shorter documents, a corpus could be divided into several buckets based on document length, and separate
models can be trained on different buckets of documents, which can fine-tune each model more specifically tailored to
the document length. This is part of future investigation.

4.6.2 Case Study Analysis. In order to gain insights into what our most effective model, FETILDA w/FinBERT, learned
from the FIN10K dataset, we designed a method to extract the “important” sentences learned from the data. For a
given document, we rated the “importance” of each unique word in the following way. For a given word-token 𝑡𝑖 that
appears in chunk 𝑘 of size 𝑏, we sum up the attention scores it gets from all other words in the chunk, that is, how
much attention it was paid to when querying each word in the chunk. Thereafter, we take the weight 𝛼𝑘 that has been
given to chunk 𝑘 by the self-attention mechanism detailed in Section 3.3, which determines how “important” each
chunk is, and multiply it with the sum above to get the final score for this instance of 𝑡𝑖 , given as follows:

𝑠 (𝑡𝑖) = 𝛼𝑘

𝑏∑︁
𝑗=1

𝑎 𝑗𝑖

where 𝑎 𝑗𝑖 is the attention that 𝑡𝑖 gets from token 𝑡 𝑗 (in the given chuck 𝑘). Next, for each sentence, we aggregate the
scores of each word together into a sentence attention score by averaging them over the length of the sentence.

Using this approach, we generated the top 30 sentences based on their attention score, from a document that our
method performed well on in the year that it performed best on, namely the 10-K report of Microtune Inc. in 2006, and a
document that it performed poorly on in the year that it performed worst on, namely the 10-K report of Federal Screw
Works in 2003, in terms of squared error when predicting price log volatility. Some examples sentences are shown in
Table 12. Looking at these sentences, we can see a clear difference. For the good performance case, the top sentences
were more informative to the company’s future prospects, whereas for the bad performance case, the top sentences
were more mundane accounting-related sentences.

To analyze these sentences more objectively, we applied sentiment analysis using the finbert-tone model developed
by Huang et al. [16]. Table 13 shows the general statistics from the result of this sentiment analysis. In both cases, as a
matter of course, a good number of neutral sentences garnered attention, since most of the 10-K reports are neutral
Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 23

Microtune Inc., 2006: Good Performance Federal Screw Works, 2003: Poor Performance
“Further, several existing and potential customers
have substantial internal technological capabilities
and could develop products internally that compete
with or replace our products.”

“The decrease resulted primarily from a decrease in
inventories.”

“A decision by any of our significant customers to
internally design and manufacture products that
compete with our products could have a material
adverse effect on our business and results of opera-
tions.”

“Sales price increases in each of these years were
insignificant.”

“We believe that our future results of operations will
continue to depend on the success of our largest
customers, on our ability to sell existing and new
products to these customers in significant quanti-
ties.”

“Critical accounting policies the accompanying fi-
nancial statements have been prepared in confor-
mity with accounting principles.”

“We compete with, or may in the future compete
with, a number of major domestic and international
suppliers of integrated circuit and system modules
in the cable, digital TV and automotive markets.”

“In an effort to increase the plan assets of the qual-
ified pension plans, the company contributed
$2,850,000 to the plans’ funding in the fourth quar-
ter of fiscal 2003.”

“Our international operations, including our opera-
tions in Germany, Taiwan, Japan, China and Korea,
the operations of our international suppliers and our
overall financial results may be adversely affected
by events that occur in or otherwise affect these
countries.”

“Accordingly, in the fourth quarter of fiscal 2003, the
company recorded a non-cash charge of $5,080,000,
after-tax, related to the additional minimum liabil-
ity for certain underfunded pension plans which
increased accumulated other comprehensive loss in
shareholders’ equity.”

“We cannot assure you that any acquisition or joint
venture will be successfully integrated with our op-
erations and the failure to avoid these or other risks
associated with such acquisitions or investments
could have a material adverse effect on our business,
financial condition and results of operations.”

“Inventories were reduced to reflect lower demand
from our automotive customers and also to reflect
the elimination of strike banks required earlier but
no longer necessary with the signing of a new four
year contract with the employees of our Romulus
division effective February 1, 2003.”

“Many of these technologies compete effectively
with cable modem and cable telephony services and
do not require RF tuners like the ones that we sell.”

“Further, the charge did not impact net income, and
will reverse should the fair value of the pension
plans’ assets again exceed the accumulated benefit
obligations at March 31, 2004.”

Table 12. Examples of top attention sentences from the 10-K report of Microtune Inc. in 2006 (good performance) and Federal
Screw Works in 2003 (poor performance), from the FIN10K dataset, using FETILDA w/FinBERT.

sentences that are part of mundane regulatory filings. In the case of good performance forMicrotune, Inc., 2006, attention
was paid more to negative sentences that are classified to be negative with a high score, and some attention was paid to
positive sentences that are classified to be positive with a medium score, but in the case of bad performance for Federal
Screw Works, 2003, we see that attention was paid mostly to neutral sentences that are classified to be neutral with
a very high score, and to just two negative sentences with a medium score, and to one positive sentence with a low
score. Thus, for better performance, it is important for the attention in the framework to focus on the key parts of the
document that are indicative of future trends.

We further analyze the sentiment of all the sentences in both documents, as well as the document lengths and how
that affects the entropy of the chunk attention weights produced in the document-level attention pooling stage. Tables

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Xia, et al.

Table 13. A sentiment analysis of top 30 key sentences generated by FETILDA w/FinBERT from the 10-K reports of Microtune Inc.
in 2006 and Federal Screw Works in 2003, for the FIN10K dataset.

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 19 27
Neutral average score 0.957843 0.983552
Number of positive sentences 3 1
Positive average score 0.858830 0.618559
Number of negative sentences 8 2
Negative average score 0.935866 0.863191

14 and 15 show the results of our analyses. Overall, the good performance document is about 10 times the length as
the bad performance document, and contains more sentiment-bearing sentences both in terms of sentence count and
percentage, which resulted in a big discrepancy in the entropies of their respective chunk attention weights. This means
that the model focused on just select parts of the bad performance document that were mostly neutral, while focusing
on each part of the good performance document more evenly. As a result, the testing loss was much higher in the
shorter document than the longer one.

Table 14. A sentiment analysis of all the sentences from the 10-K reports of Microtune Inc. in 2006 and Federal Screw Works in
2003, from the FIN10K dataset.

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 540 75

Percentage of neutral sentences 70.6% 79.8%
Neutral average score 0.957420 0.976197

Number of positive sentences 47 7
Percentage of positive sentences 6.1% 7.4%

Positive average score 0.914375 0.977220
Number of negative sentences 178 12

Percentage of negative sentences 23.3% 12.8%
Negative average score 0.932533 0.921442

Table 15. An entropy analysis of the chunk attention weights generated by FETILDA w/FinBERT from the 10-K reports of Micro-
tune Inc. in 2006 and Federal Screw Works in 2003, from the FIN10K dataset.

Document length Entropy of chunk attention weights Testing loss (squared error)
Microtune Inc., 2006 24172 3.094900 0.029381

Federal Screw Works, 2003 2587 0.495800 0.441628

5 CONCLUSIONS

In this paper, we examined the efficacy of various different types of language models using the FETILDA framework in
generating effective document embeddings for very long financial text documents, such as 10-K public disclosures to
the SEC, for which just one section, such as Item 7/7A, contains over 12000 words on average. In our extensive set of
experiments, we applied FETILDA with various different language models to the task of predicting eight different KPIs
for US Bank performance, as well as stock volatility prediction for US companies from FIN10K. Our approach is shown
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 25

to outperform previous baselines, yielding SOTA results on the various regression tasks for the two datasets used,
thus testifying to the efficacy of language models in representing long financial documents. With the FIN10K dataset
especially, we demonstrated quite evidently the significance of the improvement we get from taking a domain-specific
LM such as FinBERT and fine-tuning it on our particular downstream task. We show this not only by how much
FETILDA with fully unfrozen FinBERT outperforms the baseline methods, but also by how fine-tuning FinBERT through
unfreezing all its layers during training yields better performance than using the frozen pretrained embeddings that
the LM produces. Our work also shows that using the whole document via chunk attention outperforms the standard
approach that truncates the document to only one chunk, even over LMs that have large context windows.

Our work opens avenues for follow-on research. For example, while the contextual models in FETILDA can learn
more effective document representations compared to baselines like TF-IDF, there is still scope for more improvement.
One could consider learning even larger domain-specific pre-trained models for financial text, with larger blocks (e.g.,
using Longformer or Nystromformer instead of BERT for pre-training). We also plan to explore alternative approaches to
learn better document representations. For example, instead of using the entire text, we can focus on the most important
words, phrases, and sentences (e.g., sentiment bearing elements within the text). We can derive better chunk-level
and document-level embeddings in this manner. How to select these informative elements from text remains an open
challenge. Another promising avenue is to leverage domain-specific generative models in finance, such as FinGPT [45],
and study how we can utilize generative approaches for textual regression tasks.

ACKNOWLEDGMENTS

This work was supported in part by an industry funded award from the RPI-Stevens NSF IUCRC Center for Research
toward Advancing Financial Technologies (CRAFT; NSF Award #: 2113850).

REFERENCES
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li

Yang. 2020. ETC: Encoding Long and Structured Inputs in Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics, Online, 268–284. https://doi.org/10.18653/v1/2020.emnlp-main.19

[2] Amir Amel-Zadeh and Jonathan Faasse. Nov. 2016. The information content of 10-K narratives: comparing MD&A and footnotes disclosures.
Accessed: Nov, 02 2019. [Online]. Available: https://dx.doi.org/10.2139/ssrn.2807546.

[3] Dogu Araci. 2019. FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. Master’s thesis. University of Amsterdam.
[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-Document Transformer. arXiv:2004.05150 (2020).
[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901.
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[6] Ching Yun Chang, Yue Zhang, Zhiyang Teng, Zahn Bozanic, and Bin Ke. Dec. 2016. Measuring the information content of financial news. In Proc. of
COLING 2016, the 26th Int. Conf. on Comput. Linguistics: Tech. Papers. 3216–3225.

[7] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather
Than Generators. In ICLR. https://openreview.net/pdf?id=r1xMH1BtvB

[8] Sanjiv Ranjan Das et al. Nov. 2014. Text and context: Language analytics in finance. Found. and Trends® in Finance 8, 3 (Nov. 2014), 145–261.
[9] Vinicio Desola, Kevin Hanna, and Pri Nonis. 2019. FinBERT: pre-trained model on SEC filings for financial natural language tasks. ResearhGate

(2019). https://doi.org/10.13140/RG.2.2.19153.89442
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. https:
//doi.org/10.18653/v1/N19-1423

Manuscript submitted to ACM

https://doi.org/10.18653/v1/2020.emnlp-main.19
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.13140/RG.2.2.19153.89442
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Xia, et al.

[11] Travis Dyer, Mark Lang, and Lorien Stice-Lawrence. 2017. The evolution of 10-K textual disclosure: Evidence from Latent Dirichlet Allocation.
Journal of Accounting and Economics 64, 2 (2017), 221–245. https://doi.org/10.1016/j.jacceco.2017.07.002

[12] Sophie Emerson, Ruairí Kennedy, Luke O’Shea, and John O’Brien. May 2019. Trends and applications of machine learning in quantitative finance.
In 8th Int. Conf. on Econ. and Finance Res. (ICEFR 2019).

[13] Jason Fernando. 2021. How return on equity (ROE) works. https://www.investopedia.com/terms/r/returnonequity.asp
[14] Hongyu Gong, Yelong Shen, Dian Yu, Jianshu Chen, and Dong Yu. 2020. Recurrent Chunking Mechanisms for Long-Text Machine Reading

Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 6751–6761. https://doi.org/10.18653/v1/2020.acl-main.603

[15] Quentin Grail, Julien Perez, and Eric Gaussier. 2021. Globalizing BERT-based Transformer Architectures for Long Document Summarization.
In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Association for
Computational Linguistics, Online, 1792–1810. https://doi.org/10.18653/v1/2021.eacl-main.154

[16] Allen H. Huang, Hui Wang, and Yi Yang. 2023. FinBERT: A Large Language Model for Extracting Information from Financial Text*. Contemporary
Accounting Research 40, 2 (2023), 806–841. https://doi.org/10.1111/1911-3846.12832 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1911-
3846.12832

[17] Dan Jurafsky and James H. Martin. 2021. Speech and Language Processing (3 (draft) ed.). https://web.stanford.edu/~jurafsky/slp3/
[18] Will Kenton. 2021. What you should know About 10-KS. https://www.investopedia.com/terms/1/10-k.asp
[19] Luckyson Khaidem, Snehanshu Saha, and Sudeepa Roy Dey. Apr. 2016. Predicting the direction of stock market prices using random forest. (Apr.

2016). arXiv:1605.00003.
[20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Jan. 2020. Reformer: The efficient transformer. (Jan. 2020). arXiv:2001.04451.
[21] Shimon Kogan, Dimitry Levin, Bryan R Routledge, Jacob S Sagi, and Noah A Smith. Jun. 2009. Predicting risk from financial reports with regression.

In Proc. of Human Lang. Technol.: The 2009 Annu. Conf. of the North Amer. Chapter of the Assoc. for Comput. Linguistics. 272–280.
[22] Yu-Wen Liu, Liang-Chih Liu, Chuan-Ju Wang, and Ming-Feng Tsai. 2016. FIN10K: A Web-Based Information System for Financial Report Analysis

and Visualization. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (Indianapolis, Indiana,
USA) (CIKM ’16). Association for Computing Machinery, New York, NY, USA, 2441–2444. https://doi.org/10.1145/2983323.2983328

[23] Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li, and Jun Zhao. 2020. FinBERT: A Pre-trained Financial Language Representation Model for
Financial Text Mining. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Christian Bessiere (Ed.).
International Joint Conferences on Artificial Intelligence Organization, 4513–4519. https://doi.org/10.24963/ijcai.2020/622 Special Track on AI in
FinTech.

[24] Tim Loughran and Bill McDonald. Feb. 2011. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. The J. of Finance 66, 1 (Feb.
2011), 35–65.

[25] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. In 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.).

[26] Vipal Monga and Emily Chasan. 2015. The 109,894-word annual report. https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762
[27] Paraskevi Nousi, Avraam Tsantekidis, Nikolaos Passalis, Adamantios Ntakaris, Juho Kanniainen, Anastasios Tefas, Moncef Gabbouj, and Alexandros

Iosifidis. May 2019. Machine learning for forecasting mid-price movements using limit order book data. IEEE Access 7 (May 2019), 64722–64736.
[28] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Oct. 2014. Glove: Global vectors for word representation. In Proc. of the 2014 Conf.

on Empirical Methods in Natural Lang. Process. (EMNLP). 1532–1543.
[29] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding by Generative Pre-Training. OpenAI Blog (June 11) (2018).
[30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are Unsupervised Multitask Learners.

OpenAI Blog (Feb 14) (2019).
[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring

the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67. http:
//jmlr.org/papers/v21/20-074.html

[32] Mustafa A Sakarwala and Anthony Tanaydin. 2019. Use Advances in Data Science and Computing Power to Invest in Stock Market. SMU Data Sci.
Rev. 2, 1 (2019), 17.

[33] Marcelo Sardelich and Suresh Manandhar. Dec. 2018. Multimodal deep learning for short-term stock volatility prediction. (Dec. 2018).
arXiv:1812.10479.

[34] Marina Sedinkina, Nikolas Breitkopf, and Hinrich Schütze. Jun. 2019. Automatic Domain Adaptation Outperforms Manual Domain Adaptation for
Predicting Financial Outcomes. In Proc. of the 57th Annu. Meeting of the Assoc. for Comput. Linguistics. 346–359.

[35] Paul C Tetlock, Maytal Saar-Tsechansky, and Sofus Macskassy. Jun. 2008. More than words: Quantifying language to measure firms’ fundamentals.
The J. of Finance 63, 3 (Jun. 2008), 1437–1467.

[36] Christoph Kilian Theil, Sanja Štajner, and Heiner Stuckenschmidt. Jul. 2018. Word embeddings-based uncertainty detection in financial disclosures.
In Proc. of the 1st Workshop on Econ. and Natural Lang. Process. 32–37.

[37] Christoph Kilian Theil, Sanja Štajner, and Heiner Stuckenschmidt. Mar. 2020. Explaining financial uncertainty through specialized word embeddings.
ACM Trans. on Data Sci. 1, 1 (Mar. 2020), 1–19.

Manuscript submitted to ACM

https://doi.org/10.1016/j.jacceco.2017.07.002
https://www.investopedia.com/terms/r/returnonequity.asp
https://doi.org/10.18653/v1/2020.acl-main.603
https://doi.org/10.18653/v1/2021.eacl-main.154
https://doi.org/10.1111/1911-3846.12832
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1911-3846.12832
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1911-3846.12832
https://web.stanford.edu/~jurafsky/slp3/
https://www.investopedia.com/terms/1/10-k.asp
https://doi.org/10.1145/2983323.2983328
https://doi.org/10.24963/ijcai.2020/622
https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

FETILDA: An Evaluation Framework for Effective Representations of Long Financial Documents 27

[38] Ming-Feng Tsai and Chuan-Ju Wang. Feb. 2017. On the risk prediction and analysis of soft information in finance reports. Eur. J. of Oper. Res. 257, 1
(Feb. 2017), 243–250.

[39] Ming-Feng Tsai, Chuan-Ju Wang, and Po-Chuan Chien. Aug. 2016. Discovering finance keywords via continuous-space language models. ACM
Trans. on Manage. Inf. Syst. (TMIS) 7, 3 (Aug. 2016), 1–17.

[40] Ruey S Tsay. 2005. Analysis of financial time series. Vol. 543. John wiley & sons.
[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Jun. 2017. Attention

is all you need. In Advances in Neural Inf. Process. Syst. 5998–6008.
[42] Yan Wang and Xuelei Sherry Ni. Jan. 2019. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. (Jan. 2019).

arXiv:1901.08433.
[43] Han Xiao. 2018. bert-as-service. https://github.com/hanxiao/bert-as-service (accessed Mar 03, 2020).
[44] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh. 2021. Nyströmformer: A Nyström-based

Algorithm for Approximating Self-Attention. In Proceedings of the AAAI Conference on Artificial Intelligence.
[45] Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. 2023. FinGPT: Open-Source Financial Large Language Models. FinLLM Symposium at

IJCAI 2023 (2023).
[46] Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc Najork. 2020. Beyond 512 Tokens: Siamese Multi-Depth Transformer-

Based Hierarchical Encoder for Long-Form Document Matching. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management (Virtual Event, Ireland) (CIKM ’20). Association for Computing Machinery, New York, NY, USA, 1725–1734. https:
//doi.org/10.1145/3340531.3411908

[47] Linyi Yang, Zheng Zhang, Su Xiong, Lirui Wei, James Ng, Lina Xu, and Ruihai Dong. Nov. 2018. Explainable text-driven neural network for stock
prediction. In 2018 5th IEEE Int. Conf. on Cloud Comput. and Intell. Syst. (CCIS). 441–445.

[48] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 17283–17297. https://proceedings.neurips.cc/
paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

[49] Mohammed J Zaki and Wagner Meira Jr. 2020. Data Mining and Machine Learning: Fundamental Concepts and Algorithms (2 ed.). Cambridge
University Press.

Manuscript submitted to ACM

https://github.com/hanxiao/bert-as-service
https://doi.org/10.1145/3340531.3411908
https://doi.org/10.1145/3340531.3411908
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Textual Data: Sentiment Analysis
	2.2 Language Models in Finance
	2.3 Long Document Language Models
	2.4 Chunking-based Representation Schemes

	3 FETILDA: Long Document Representation
	3.1 Chunk Generation
	3.2 Chunk-Level Language Model Pooling
	3.3 Document-Level Attention Pooling
	3.4 Model Training

	4 Experiments
	4.1 Data Description: 10-K Reports
	4.2 Datasets and Target Metrics
	4.3 Methods
	4.4 Comparative Performance Results
	4.5 Algorithmic Choices
	4.6 Qualitative Analysis and Case Study

	5 Conclusions
	Acknowledgments
	References

