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In the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual
disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities
and Exchange Commission. These documents are typically very long and tend to contain valuable soft infor-
mation about a company’s performance that is not present in quantitative predictors. It is therefore of great
interest to learn predictive models from these long textual documents, especially for forecasting numerical
key performance indicators. In recent years, there has been great progress in natural language processing via
pre-trained language models (LMs) learned from large corpora of textual data. This prompts the important
question of whether they can be used effectively to produce representations for long documents, as well as
how we can evaluate the effectiveness of representations produced by various LMs. Our work focuses on
answering this critical question, namely, the evaluation of the efficacy of various LMs in extracting useful
soft information from long textual documents for prediction tasks. In this article, we propose and implement
a deep learning evaluation framework that utilizes a sequential chunking approach combined with an
attention mechanism. We perform an extensive set of experiments on a collection of 10-K reports submitted
annually by U.S. banks, and another dataset of reports submitted by U.S. companies, to investigate thoroughly
the performance of different types of language models. Overall, our framework using LMs outperforms
strong baseline methods for textual modeling as well as for numerical regression. Our work provides better
insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs for representing
long documents can improve the quality of representation of textual data and, therefore, help in improving
predictive analyses.
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1 INTRODUCTION

Unstructured data such as text is growing very fast in different domains. Especially, textual data
from financial documents has been found to be beneficial in making predictions [8]. Utilizing
such large volumes of textual data requires natural language processing (NLP) and machine

learning (ML) techniques. These techniques summarize the text as (a set of) numeric feature
vectors, which are called representations or embeddings, and which can in turn serve as inputs to
machine learning models to predict some target variables.

The traditional approach for text-based learning is via the Term Frequency-Inverse Docu-

ment Frequency (TF-IDF) method [17], which can represent the document as a long numeric
vector of TF-IDF scores for each word. However, TF-IDF does not attempt to directly extract the
latent semantic information within the text. The current progress in text representations was
initiated by word embedding methods, such as word2vec [25] and GloVe [28], which capture both
the lexical and semantic information of a document to some extent. The main idea is to learn word
representations based on the context of each word. However, these methods learn only a single,
static representation for each word, and do not take into consideration the phenomenon of poly-
semy, where a word can change its meaning depending on the context (for example, the the word
“bank” in the financial context has a very different meaning compared to the “bank” of a river).
The state-of-the-art (SOTA) pre-trained language models, such as GPT [29] and BERT [10]
are built on top of the very effective Transformer-based attention model [41], which can learn
contextual word embeddings. These embeddings are dynamic in terms of the surrounding block or
context of the word, so that the same word can get different representations that are most effective
in capturing the lexical and semantic information. These models have shown SOTA performance
on a variety of downstream tasks such as question answering, text classification, and regression.
However, extracting “good” representations for such long documents remains a challenging task:
the length of the 10-K documents poses both a methodological and ontological burden. Method-
ologically, financial reports are significantly longer, compared to the maximum length of a textual
sequence that BERT [10]-based models can handle. For instance, the Management Discussion

and Analysis (MD&A) section of the 10-K reports that companies publish annually is usually
around 12,000 word-tokens. BERT-based models have a restriction on the maximum number of
tokens, around 512, with some newer models, such as Longformer [4] and BigBird [48], reaching
up to 4,096 tokens. Hence, to use these language models (LMs) on long documents directly
would require significant truncations of the texts, leading to information loss. Ontologically, the
challenge is the classic machine learning task of extracting or learning informative features that
can represent the input well. This question becomes quite complex in the context of representing
a long document. Contextual word embeddings are well suited for this given their ability to
“understand” different meanings for a word in different contexts. However, it remains an open
question as to how to combine the various contextual word embeddings into an effective document
level embedding.

An additional challenge is that the SOTA language models are pre-trained on massive and
generic corpuses, e.g., from web crawls, Wikimedia, and so on. However, to be effective for
the financial context, it is important for LMs to learn domain-adapted and task-specific rep-
resentations of long documents to meaningfully support predictive analyses. This can usually
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be achieved either by pre-training (from scratch) a domain-specific language model on a huge
financial corpus to adapt to its particular domain, or by fine-tuning a pre-trained LM on a specific
financial dataset for the downstream tasks, or by combining the two approaches of adapting
the LM to a particular financial domain followed by fine-tuning on downstream tasks. Recently
there have been several attempts at pre-training BERT on large financial corpuses to adapt it for
tasks in the financial domain. Liu et al. [23], Huang et al. [16], Araci [3], and DeSola et al. [9],
each pre-trained the BERT model from scratch on financial corpora, such as financial news,
corporate reports, financial websites, and so on. Incidentally, all four approaches are called
FinBERT!

To address the long document representation challenge within the context of financial
disclosure documents, we propose our evaluation framework called Fine-tuned Embeddings

of Texts in Long Document Analysis (FETILDA). Our approach is particularly designed
for downstream predictive or regression tasks, where the input document representations are
combined with other numeric attributes (if available) to predict a target response variable of
interest, such as key performance indicators (e.g., return on assets, earnings per share), stock
volatility, and so on. FETILDA comprises a chunk-based deep learning framework, where a long
document is split into several smaller chunks and then each chunk is processed using an specific
language model (e.g., BERT [10], FinBERT [16], Longformer [4], Nystromformer [44], etc.). The
layers of the LM can remain frozen, or they may be unfrozen for fine-tuning, or only the last layer
can be frozen. The chunk level representations are then pooled together using a Bidirectional

Long Short-term Memory (Bi-LSTM) model equipped with self-attention mechanism. The
pooled chunks are then aggregated into a document level representation, which serves as input to
fully connected layers for target variable prediction. This way, long documents can be represented
by various LMs without significant information loss due to truncation.

We experiment our evaluation framework using different corpora: (i) FIN10K (All Public

Companies): 10-K reports for all US companies from 1996 to 2013 [22], and (ii) U.S. Banks:

10-K reports submitted annually to the Securities and Exchange Commission (SEC) by U.S.
banks for the period from 2006 to 2016. We have conducted extensive experiments using these
datasets and applied our evaluation framework to different predictive analysis regression tasks:
(i) analysis of a company’s stock market volatility on the FIN10K dataset, and (ii) predicting key

performance indicators (KPIs) of a bank’s financial performance on the U.S. Banks dataset: the
indicators include Return on Assets (ROA), Earnings Per Share (EPS), Return on Equity

(ROE), Tobin’s Q Ratio (TQR), Leverage Ratio (LR), Tier 1 Capital Ratio (T1CR), Z-Score

(Z), and Market to Book Ratio (MBR). Our results compared against the different baseline
methods show that our approach is significantly better and yields SOTA results for long financial
text regression tasks. In summary, our main contributions are:

— We propose an evaluation framework of language models for long document regression tasks
in the financial domain. Our FETILDA approach is designed to learn effective document level
representations via a sequential chunking approach combined with an attention mechanism.
As such, our approach combines the best of both the attention-based Transformer model and
Bi-LSTM recurrent networks.

— We conduct an extensive set of experiments to quantitatively examine the efficacy of
language models in long financial document representation. We applied the framework
on two different 10-K datasets, and on 9 different regression tasks (in terms of the target
variable). We show that through our evaluation framework, pre-trained domain specific
LMs outperforms several different baseline methods, and achieves SOTA results on long
financial documents.
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2 RELATED WORK

Machine learning plays an important role in financial analytics. One of the important areas of
finance is investment stock return forecasting, as well as fundamentals forecasting and risk mod-
eling, that mainly employ quantitative or numeric data [12]. Different ML models such as Support

Vector Machines (SVMs), single hidden layer Feed-forward Neural Networks and Multi-layer

Perceptrons (MLPs) were used for the prediction of future price movements in Reference [27].
They mainly used two sets of features for their ML classifiers: (1) handcrafted features formed on
the raw order book data and (2) features extracted using ML algorithms. Some other models such
as Random Forest [19], XGBoost [42], Bi-LSTM, and stacked LSTMs [33] were also implemented
to predict business risk and stock volatility. The main limitation of these works is that they ignore
valuable textual data that can provide more insight into the intangible features such as sentiment,
knowledge capital, risk culture, and so on.

2.1 Textual Data: Sentiment Analysis

An approach to predict financial quantitative variables is using financial textual sources such as
news reports, analyst assessments, earnings call transcripts, and company filing reports. And much
work has been done in analyzing the value of the soft information that financial reports contain
over the years, such as in Reference [11]. In Reference [35], textual features were created by us-
ing the negative words in the Harvard-IV-4 TagNeg dictionary and constructing a document-term
matrix from the news stories. These features were used to predict firms’ earnings and stock re-
turns. A novel tree-structured LSTM was proposed to automatically measure the usefulness of
financial news using both text and cumulative abnormal returns [6]. A dual-layer attention-based
neural network model was developed to predict stock price movement using the text in finan-
cial news [47]. Estimating the value of text in financial news is important, because it drives the
investment decision making process.

Financial sentiment analysis is challenging because of lack of labeled data specific to this do-
main. Moreover, the general-purpose pre-trained language models fail to capture the financial
context. Reference [3] proposed the FinBERT model, which can be fine-tuned on the financial

sentiment analysis dataset (FiQA) to outperform the general BERT model. Besides financial
news, in Reference [21], the authors constructed textual features from 10-K reports. They used
these features to predict the future stock volatility indicating the effectiveness of text. A deep
learning model trained on the SEC filings was used to improve the prediction of company’s stock
price over the traditional ML models [32].

The authors of References [38, 39] extracted additional textual features by expanding the L&M
sentiment word list [24] semantically and syntactically, using word2vec [25]. Similarly, the uncer-
tainty word list in L&M dictionary was expanded using word2vec to predict stock volatility [36].
The authors in Reference [37] expanded the L&M dictionary by training industry-specific word
embedding models using word2vec to predict volatility, analyst forecast error and analyst disper-
sion. Reference [34] showed how automatic domain adaption of the L&M sentiment list using
word2vec [25] improved the prediction of excess return and volatility. The aforementioned dictio-
nary expansion approaches used word2vec model to select the top k closest words to the words
existing in the L&M dictionary. Since word2vec is a model based on static word embeddings, it
fails to capture the dynamic context of the words.

2.2 Language Models in Finance

In terms of domain-adapted pre-trained LMs, in the English-speaking Finance sphere, four mod-
els have been proposed and implemented, all named FinBERT: Liu et al. [23], Huang et al. [16],
Araci [3], and DeSola et al. [9], all of which are pre-trained to adapt to different financial domains.
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Originally, in the general domain, BERT [10] was pre-trained on two corpora: BooksCorpus (0.8
billion words), and English Wikipedia (2.5 billion words), forming a total of 3.3 billion words, so
the idea of these financial language models is to take the original model, and pre-train it on their
respective financial corpora.

Araci [3] was the first to propose FinBERT as a pre-trained domain-adapted BERT [10] on a
corpus called TRC2-financial, which includes 46,143 documents with more than 29M words and
nearly 400K sentences, from a set of Reuters news stories. In experimentation, they saw a 15%
increase in accuracy for classification tasks, a significant margin. Liu et al. [23] focused on financial
news and dialogues present on websites, and collected three financial corpora: 13 million financial
news (15 GB) and financial articles (9 GB) from Financial Web, totaling 24 GB and 6.38 billion words;
financial articles from Yahoo! Finance, totaling 19 GB and 4.71 billion words; and question-answer
pairs about financial issues from Reddit, totaling 5 GB and 1.62 billion words. They pre-trained their
model on these corpora to adapt it to the financial news and dialogues domain. In experimentation,
they saw their model outperform BERT [10] on all the financial tasks in their experiments, in
terms of accuracy, precision, and recall [23]. Huang et al. [16] focused on financial and business
communications that companies produce, and collected a corpus of three types of data: 10-K and
10-Q reports, totaling 2.5 billion word tokens; earnings call transcripts, totaling 1.3 billion word
tokens; and analyst reports, totaling 1.1 billion word tokens [16]. They report that their model
outperforms BERT [10] in three sentiment analysis tasks, all by significant margins [16]. DeSola
et al. [9] introduced another domain-specific pre-trained language model, also named FinBERT,
for financial NLP applications. This model was trained on the 10-K filings from 1998 to 1999 and
from 2017 to 2019, totaling 497 million words, and it showed better performance than BERT on
the masked LM and next sequence prediction tasks.

2.3 Long Document Language Models

Apart from LMs adapted to specialized domains, there has been a slew of papers on state-of-the-
art pre-trained LMs in the general domain, such as GPT-1 [29], GPT-2 [30], GPT-3 [5], T-5 [31],
ELECTRA [7], and so on. These are massive models trained on enormous corpora, but the chal-
lenge of representing long documents persists, in that these models still cannot handle long textual
sequences, due to the quadratic computational complexity that they usually entail.

To tackle this challenge head-on, several recent works, such as Longformer [4], Extended

Transformer Construction (ETC) [1], and BigBird [48], have been proposed, all of which
innovate on the self-attention mechanism to reduce the computational complexity from quadratic
to linear, which then enables it to process longer sequences of text. In addition, more recent works
on transformer models with linear attention, such as Reformer [20] and Nystromformer [44],
innovate on how to mathematically approximate the self-attention matrix calculations with less
time and space complexity, instead of changing the self-attention mechanism.

Longformer [4] replaces the full self-attention matrix, which scales quadratically with the length
of the input sequence, with three types of sparse attention schemes: sliding window attention,
which selects only the entries on the descending diagonal line of the self-attention matrix, with
the “thickness” of the line being a certain size; dilated window attention, which adds gaps of a
certain size in between the sliding window, making the descending diagonal line dilated; global
attention, which has certain specific tokens attend to all the tokens across the sequence, both hor-
izontally and vertically, thereby enabling global contextual representation of the sequence. Long-
former was shown to outperform baseline methods consistently, and particularly, its results were
more apparent where the experiment required long contextual information.

ETC [1] is very similar to Longformer, with nuanced variations. ETC replaces the full self-
attention matrix with global-local attention, which splits the self-attention matrix into four parts:

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 182. Publication date: June 2024.



182:6 B. (Namir) Xia et al.

global-to-global, which is a small square on the top left of the matrix, where certain special global
tokens attend to each other; global-to-long, which is a horizontal rectangle on the top right of the
matrix, where global tokens attend to regular tokens; long-to-global, which is a vertical rectangle
on the bottom left of the matrix, where regular tokens attend to global tokens; long-to-long, which
is a compressed version of the descending diagonal line in the large square on the bottom right
of the matrix, essentially a sliding window attention compressed into a rectangular matrix, where
regular tokens attend to other regular tokens in its window. In experimentation, ETC yielded state-
of-the-art results, especially in question answering scenarios.

BigBird [48] extends further on ETC [1], adding random sparse attention into the mix, building
on top of the global-local attention mechanism of ETC. Random entries in the self-attention
matrix are selected to generalize over the full matrix. From a graph theory perspective, this means
a shorter average path between any two nodes, making it a better approximation of the full graph.
And from a NLP perspective, in most texts, there tends to be locality of reference, where a word
relates closely with words around it, so BigBird tries to account for this with their particular
random sparse attention scheme.

2.4 Chunking-based Representation Schemes

Several papers proposed chunking-based approaches to enable representations of documents
longer than the maximum length of word-tokens that LMs can take, for various different down-
stream tasks. Yang et al. [46] proposed a Siamese hierarchical matching model, using sentence
blocks to construct representations for twin documents at the same time, for the purpose of
document matching. In their approach, the sentence block representations are passed through a
transformer model and the first token of the resulting output is used as the document representa-
tion. With this framework, they are able to handle maximum document lengths up to 2,048 word
tokens, being able to take a maximum of 64 sentences, with the maximum length of each sentence
being 32. Since their downstream task was document matching, they chose the Siamese design for
their model, which takes in two document inputs simultaneously to compare their similarity, while
our evaluation framework is oriented towards document regression, which utilizes a document to
predict quantitative metrics. In terms of the underlying architecture, they employ a sentence-level
block merging mechanism that can take in “long form” documents not exceeding 2,048 word
tokens, while our framework utilizes a paragraph-level chunking and merging mechanism that
can actually analyze real-world long documents in the financial domain. For example, even just
one section of the 10-K reports that we learn on, namely, Item 7, averages around 12,000 words,
and can be more than 24,000 tokens after tokenization. Therefore, instead of sentence-level blocks,
we use (paragraph-level) chunks, and we weigh these chunks using their respective attention
scores obtained by a self-attention mechanism. Finally, we pool the weighted chunks together
into a document representation, using a bi-LSTM network. In our experiments, we utilize different
models that can enable us to have the maximum chunk length range from 512 up to 8,192 word
tokens, which then enables us to generate representations for documents that average 24,000 word
tokens.

Gong et al. [14] proposed a recurrent chunking mechanism for the purpose of machine reading
comprehension, where the machine is given a long document and a question, and is required
to extract a piece of text from the document as the answer to the questions. Towards that end,
they needed the chunking mechanism to be such that the separation point of various chunks
would not cut the correct answer in half, nor prevent surrounding contexts from being retained.
Therefore, their main innovation is in enabling a more flexible chunking policy, and in a recurrent
chunking mechanism that can provide context surrounding a chunk segment. In experimentation,
they use BERT, which enables maximum sequence lengths ranging from 192 to 512 word tokens.
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Fig. 1. FETILDA: Overall framework.

Our framework takes a different approach to the chunking policy, since our goal is the extraction
of predictive financial text features from the document. Moreover, we also try to increase the
maximum sequence length of a chunk up to 8,192 word tokens, which then allows us to take in
more information in one chunk in an organic way.

In more recent work, Grail et al. [15] use a bi-GRU network to pool the chunks together, in-
stead of a bi-LSTM network. But the purpose of their framework is long document summarization,
instead of extracting predictive text features. In their approach, they use BERT as the LM, and
therefore, can only process up to 512 word tokens for a chunk. Further, they consider their ap-
proach to be an alternative to long sequence LMs such as Longformer. Instead of considering long
sequence LMs as alternatives, we incorporated them into our FETILDA framework. Therefore, in
our approach, we experiment with various underlying LMs for FETILDA, be it BERT-based models,
or long sequence LMs, or linear attention transformer LMs, enabling us to have different maximum
sequence lengths ranging from 512 to 8,192 tokens.

3 FETILDA: LONG DOCUMENT REPRESENTATION

Figure 1 shows the FETILDA framework. FETILDA first splits a long document into smaller frag-
ments or chunks, then processes each chunk using a language model, all of whose layers are
fully unfrozen for fine-tuning, then pools the chunks together using a Bi-LSTM layer endowed
with a self-attention mechanism into an aggregate vector representation of the entire document.
The chunk representations are extracted from the underlying language model (BERT [10], Fin-
BERT [16], Longformer [4], or Nystromformer [44]) using several different pooling strategies in-
cluding using the default pooler output and combining the features from the last few layers. These
chunk sequences are passed onto a Bi-LSTM model whose hidden context states and outputs are
used to learn chunk-level attention scores to extract the final document embedding. Finally, the
document embedding is passed through the linear layers to obtain the final target prediction. In
addition, we perform task-specific fine-tuning on our entire model, including BERT, FinBERT, or
Longformer, whose layers are fully unfrozen (or can be kept frozen if only pre-trained inputs are
to be used), using mean-squared error (MSE) as the loss function. Overall, as shown in Figure 1,
our methodology consists of four stages: (1) Chunk Generation, (2) Chunk-Level LM Pooling, (3)
Document-Level Attention Pooling, and (4) Model Training and Fine-Tuning. We shall describe
each of these next.

3.1 Chunk Generation

Let L = {d1,d2, . . . ,dN } denote a text corpus containing N long documents, where di de-
notes the ith document in the corpus. We tokenize each document di into a sequence of tokens
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Fig. 2. Chunk generation.

{t1, t2, . . . , tni
}, whereni is the number of tokens for documentdi . The document token sequence is

divided into chunks of length b, where b is the block or chunk size. Thus, each document di can be
represented as a sequence of chunks {c1, c2, . . . , cmi

}, withmi chunks of length b. We also prepend
and append <CLS> and <SEP> tokens to each chunk, respectively, resulting in chunks of size b + 2.
The chunk size dictates a maximum of b + 2 tokens for each chunk ci = {t0, t1, . . . , tb , tb+1}, with
t0 = <CLS> and tb+1 = <SEP>. We experiment with b + 2 = 512, b + 2 = 4096 and b + 2 = 8192,
depending on the underlying language model used. For document where the last chunk has k < b
tokens, we pad the last chunk by appending the padding token (<PAD>) (b − k) times to keep the
chunk length intact. For each chunk, we also create an attention mask with [0] for padding to-
kens and [1] for non-padding tokens, which helps in attending only to the valid tokens and not
the <PAD> tokens. Figure 2 shows an excerpt from Item 1 from a company’s 10-K report, and the
tokenization and chunking process with four resulting chunks.

3.2 Chunk-level Language Model Pooling

Given the sequence of chunks for a document, {c1, c2, . . . , cmi
}, we need to convert these into

features vectors {c1, c2, . . . , cmi
}, that represent the token sequence in each respective chunk as

a whole. We use SOTA language models like BERT [10], Longformer [4], and FinBERT [16] to
generate contextual token and chunk embeddings. We thus input each chunk into the underlying
language model, which typically outputs 12 hidden state layers {l1, l2, . . . , l12}, where li denotes
layer i . The output of each of these layers contains b + 2 hidden state vectors {zl

0, z
l
1, . . . , z

l
b+1
}, for

b+2 tokens in the chunk, each of which has a size of 768, which is the dimensionality of the hidden
states. The language model also yields a default pooler output, which is the embedding vector for
the <CLS> token, the first token, of the last hidden state layer after processing and activation,
denoted by z

12
0 . Figure 3 shows the schematic of how we use the underlying language model to

generate the hidden state layers, as well as the default pooler output, which are then combined
using various strategies outlined below to yield the chunk embedding vector ci for each chunk ci

within each document.
Creating contextual embeddings is challenging, since a word can have different meanings in

different contexts. So it is important to first create contextual token embeddings and then exper-
iment with different strategies to generate different chunk representations from these contextual
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Fig. 3. Chunk level language model pooling for chunk embeddings.

embeddings. We therefore studied several approaches for creating the final chunk embedding
vectors ci :

— Default pooler output: Since the <CLS> token embedding is an attention-weighted aggrega-
tion of all the tokens in a given chunk, each chunk ci can therefore be represented by the
default pooling output vector z

12
0 as the chunk embedding vector ci . The size of ci is equal

to the default hidden layer size of 768.
— Pooled hidden layers: The empirical evaluation conducted in BERT-as-a-Service [43] shows

that using the last hidden layer gives the highest accuracy, but they also observed that it
could also be more biased, since it is the closest layer to the output layer. Hence, it is advis-
able to select the second-to-last hidden layer or a combination of different layers. In imple-
menting this idea in practice, we take the set of all b+2 hidden state vectors from the penulti-
mate layer, namely, {z11

0 , z
11
1 , . . . , z

11
b+1} and mean/max pool them into one vector of size 768,

which, after some non-linear activation, can be used as the chunk embedding vector ci . In ad-
dition, we can also follow a similar approach by selecting the last four hidden layers, namely,
{z9

0, z
9
1, . . . , z

9
b+1
}, {z10

0 , z
10
1 , . . . , z

10
b+1
}, {z11

0 , z
11
1 , . . . , z

11
b+1}, and {z12

0 , z
12
1 , . . . , z

12
b+1}, and pro-

duce four mean/max pooled vectors in the same way. These four vectors and mean/max are
pooled into one vector, which on activation can be used as the chunk embedding vector ci .

3.3 Document-Level Attention Pooling

Given the chunk embedding vectors {c1, c2, . . . , cmi
}, we need to aggregate them into an effective

document vector di for document di . Since the chunks are sequential in nature, we can accomplish
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Fig. 4. Attention pooling via Bi-LSTM for document embeddings.

this using a recurrent Bi-LSTM model. However, not all chunks in a long document are equally
important. It is crucial to score the chunks based on their importance in the document. For this, we
introduce chunk-level attention within the Bi-LSTM model. Given a document, we input its chunk
feature vectors {c1, c2, . . . , cmi

} into the Bi-LSTM model. The output and hidden state vectors of
the Bi-LSTM for chunk i are then obtained by concatenating the outputs and the hidden states in
forward and backward pass, respectively. Formally,

oi =
−→
oi ⊕
←−
oi , hi =

−→
hi ⊕
←−
hi ,

where ⊕ denotes concatenation, −→ denotes forward and←− denotes backward models, and the hi

and oi denote the hidden and output state vectors for chunk ci , respectively (i also denotes the
ith element of the chunk sequence). The attention score αi for each chunk is calculated by taking
softmax over the product of outputs with the hidden state context vector. The document feature
vector di (of size 768) is obtained by taking the weighted sum of the chunks according to their
attention scores, normalized by the number of chunks for that document. Formally,

αi = softmax
({

o
T
1 hi , o

T
2 hi , . . . , o

T
mi

hi

})
,

di =

∑mi

j=1 α j · cj

mi

.

Figure 4 shows an illustration of the document level attention pooling step. At the bottom are
the chunk embedding vectors ci as inputs, which are passed to the Bi-LSTM and attention modules
to create the document embedding di .

3.4 Model Training

In the final stage of training, we feed each 768-dimensional document feature vector di to two
additional fully connected linear layers FC1 and FC2 (see Figure 1), with size 601 and 1, respectively,
with a leaky ReLU activation and a dropout layer applied to FC1. The last layer FC2 represents the
output neuron to predict a target numeric variable. In other words, we concatenate the historic
score yhist (e.g., the previous year’s value for stock volatility or return on assets, etc.) with the
document vector di to use both the numerical and textual features. Formally,

di = oFC1 ⊕ y
hist ,

where oFC1 denotes the output features vector from FC1. Hence, FC1 has 601 neurons, the first
600 of which are textual features, and the last one is the historical numeric value, all of which are
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input to FC2 to predict the target numeric score ŷ. The loss function is MSE or mean-squared error
between the predicted and true target value.

4 EXPERIMENTS

We now showcase the effectiveness of our FETILDA framework on text regression tasks on very
long financial documents. All of our experiments were conducted on a machine with 2.5 Ghz Intel
Xeon Gold 6248 CPU, 768 GB memory, and a NVIDIA Tesla V100 GPU with 32 GB memory. The
neural network models are implemented using PyTorch v1.10 (pytorch.org) and the HuggingFace
library (huggingface.co). Our code and datasets are publicly available on github via https://github.
com/Namir0806/FETILDA.

4.1 Data Description: 10-K Reports

A 10-K is a comprehensive report filed annually by a publicly traded company about its financial
performance and is required by the U.S. SEC [18]. The SEC requires this report to keep investors
aware of a company’s financial condition and to allow them to have enough information before
they buy or sell shares in the corporation, or before investing in the firm’s corporate bonds.

10-Ks thus give a clearer picture of everything a company does and what kinds of risks it
faces [18]. However, the length of 10-K reports has generally increased dramatically in recent years.
According to a Wall Street Journal article [26], the average 10-K report is getting longer, from about
30,000 words in 2000 to about 42,000 words in 2013. In the article, GE finance chief Jeffrey Born-
stein is reported to have said that not a retail investor on planet earth could get through it, let alone
understand it. Our goal, therefore, is to extract the soft information contained in the textual data
of these extremely lengthy 10-K reports, to better our predictions of forward-looking KPIs.

While the entire 10-K report is a very long disclosure document, Items 7/7A and 1A are
considered as the important subsections in a 10-K report [2]. Item 7 (MD&A) gives the company’s
perspective on the business results of the past financial year. It is meant for the management
to relate in its own words the analysis of their financial condition. Item 7A (Quantitative and
Qualitative Disclosures about Market Risk) provides information about the company’s exposure
to market risk, such as interest rate risk, foreign currency exchange risk, commodity price risk, or
equity price risk. Item 1A (Risk Factors) includes information about the most significant risks for
a company or its securities. The risk factors are typically reported in order of their importance.
However, it focuses on the risks themselves, and not necessarily on how the company addresses
those risks. Some risks apply to the entire economy, some only to the specific industry sector or
region, and some are directly related to the company.

We thus focus on Item 7/7A and Item 1A of the 10-K reports, which contain a treasure trove of
soft information that can be leveraged for predictive analytics tasks. Since the industry standard
is to only use quantitative data to predict future KPIs, we want to add the qualitative data coming
from text into the mix, to achieve better predictions.

4.2 Datasets and Target Metrics

4.2.1 FIN10K Dataset [22]. The FIN10K dataset [22], contains Item 7 of 10-K reports of U.S.
companies from 1996 to 2013, and the stock return volatilities 12 months before and after each
report. Table 1 shows the statistics for this dataset. Following earlier work [38], we use the reports
from 1996 to 2000 as training and validation data, and reports for each year from 2001 to 2006 as
separate testing data. Further, we choose the first 80% of the reports from 1996 to 2000 as training
data, and the remaining 20% as validation data. In the testing data, from 2001 to 2006, the number of
documents is generally increasing, as well as the average document length, which almost doubles
from 2001 to 2006.
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Table 1. FIN10K Dataset [22] Statistics

Year 1996–2000 2001 2002 2003 2004 2005 2006
Number of total documents 8,703 1,825 2,023 2,866 2,861 2,698 2,564
Average document length 5,079.4 6,245.6 8,414.3 10,324.7 11,499.6 12,528.1 12,198.1

Table 2. U.S. Bank Dataset Statistics

Item 7/7A Item 1A
Number of total documents 5,321
After extracting items 3,396
Target data available 2,500 2,479
Average document length 12,589.75 4,435.69

Prediction Task: Volatility. The regression task is to predict the stock return volatilities, based on
data from 12 months before and after each report. Volatility [38] is a common risk metric defined as
the standard deviation of a stock’s returns over a period of time. Historical volatilities are derived
from time series of past stock market prices as a proxy for financial risk. Let St be the price of a
stock at time t . Holding the stock for one period from time t − 1 to time t results in a simple net
return of Rt =

St

St−1
− 1 [40]. Therefore, the volatility of returns for a stock from time t − n to t is

defined as

v[t−n,t ] =

√∑t
i=t−n(Ri − R̄)2

n
, (1)

where R̄ =
∑t

i=t−n Ri/(n + 1).

4.2.2 U.S. Banks Dataset. We collected the 10-K filings for all U.S. banks for the period be-
tween 2006 and 2016 (from the SEC EDGAR website: www.sec.gov/edgar), as well as the corre-
sponding quantitative target data from the WRDS Center for Research in Security Prices (wrds-
www.wharton.upenn.edu). While the entire 10-K report is a very long disclosure document, as
noted above, Items 7/7A and 1A are considered as the important subsections in a 10-K report [2].
These subsections are themselves also quite long. The dataset statistics for the 10-K reports for all
U.S. Banks for the period of 2006–2016 are reported in Table 2.

The 10-K reports for U.S. Banks (2006–2016) total 5,321 documents, but not all reports have
both the Item 7/7A subsection. Of the total, 3,396 10-K reports have this important subsection.
Furthermore, we found that not all banks have all the eight target KPI values that we need for
regression. Of the 3,396 documents, we have 2,500 Item 7/7A and 2,479 Item 1A, with their eight
metrics in full as target data, which makes up the final document set used in our experiments.
The average document length (in terms of the number of words) is 12,590 for Item 7/7A, though
the average length of 4437 is considerably shorter for Item 1, as noted in Table 2. We sort the
documents chronologically from 2006 to 2016, and choose the first 80% of the data for training,
and the remaining 20% as validation and testing data, with a 50/50 split between the latter two. In
terms of target data normalization, for each of the eight target metrics, we performed min-max
scaling to normalize the data for training.

Prediction Task: Bank KPIs. For U.S. banks our goal is to predict several KPI metrics using the
10-K reports. In particular, we focus on eight metrics that indicate either the performance or risk
of a given bank: ROA, EPS, ROE, Tobin’s Q Ratio, Tier 1 Capital Ratio, Leverage Ratio, Z-Score,
and Market-to-Book Ratio. The target metrics are defined below.
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— Return on Assets (ROA): ROA is calculated by dividing a company’s net income by total
assets:

ROA =
Net Income

Total Assets
. (2)

Higher ROA shows more asset efficiency and productivity.
— Return on Equity (ROE): According to Reference [13], ROE is a measure of financial per-

formance calculated by dividing net income by shareholders’ equity:

ROE =
Net Income

Total Equity
. (3)

— Earning per share (EPS): EPS is an indicator of a company’s profitability. It is calculated
as a company’s profit divided by the outstanding shares of its common stock:

EPS =
Net Income − Preferred Dividends

End-of-Period Common Shares Outstanding
. (4)

The higher a company’s EPS, the more profitable per share it is.
— Tobin’s Q Ratio (TQR): TQR represents the ratio of the market value of a firm’s assets to

the replacement cost of the firm’s assets:

TQR =
Equity Market Value + Liabilities Book Value

Equity Book Value + Liabilities Book Value
. (5)

This ratio indicates how the market views the managers’ prospects of using firm’s asset to
generate future value for investors of the firm.

— Leverage Ratio (LR): The Leverage Ratio measures the extent of debt financing for a firm,
therefore assesses the ability of a company to meet its financial obligations. It is given as

LR =
Average Total Assets

Average Equity
. (6)

— Tier 1 Capital Ratio (T1CR): The Tier 1 capital ratio is the ratio of a bank’s core Tier 1
capital to its total risk-weighted assets:

T1CR =
Tier 1 Capital

Total Risk-Weighted Assets
. (7)

These risk-weighted assets include all assets that are systematically weighted for credit risk.
— Z-score (Z): The Z-score links a bank’s capitalization with its return (ROA) and risk (volatil-

ity of returns).

Z-Score =
ROA + CAR

σ (ROA)
, (8)

where σ (ROA) is the standard deviation of ROA for a specific time period, and CAR is the
capital-to-assets ratio.

— Market-to-Book Ratio (MBR): The Market-to-Book Ratio is used to evaluate a company’s
current market value relative to its book value, and is calculated by dividing the current
stock price of all outstanding shares by the book value:

MBR =
Market Capitalization

Total Book Value
. (9)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 182. Publication date: June 2024.



182:14 B. (Namir) Xia et al.

4.3 Methods

We now outline the results of our framework on both the FIN10K and U.S. Banks datasets.
Overall, we experiment with four different types of methods, three of which being baseline
methods with which we compare the FETILDA framework to evaluate the performance of our
approach. To effectively compare different methods, all results report the MSE. The methods are as
follows:

— Numeric Regression [49]: We compare with linear regression (LR) and support vector
regression (SVR) models. These baselines methods take the historical score yhist and run
(bivariate) regression model on it to predict the target variable. These method therefore
utilize only numerical data. The SVR method (from Reference [38]) uses the logarithm of
the historic volatility for the prior 12 months.

— Word Feature Vector Models: These are traditional but still quite effective baseline meth-
ods, based on the TF-IDF or LOG1P word vector representations, as given below:

TF-IDF [17]: In this baseline method, we use the term frequency–inverse document fre-
quency features, as the input document embeddings, which help in scoring important
words.

— LOG1P+ [38]: This is the method used in the volatility regression task proposed by Tsai
and Wang [38]. The word features are formed using LOG1P, calculated as LOG1P =
loд(1 +TC(t , d)), where TC(t , d) denotes the term count of a word t in a given document
d. Furthermore, the logarithm of the stock return volatility 12 months before each report
is used as an additional numeric feature, and together, the word features and numeric
features are input into a Support Vector Regression model.

— FETILDA Framework: Here, we use our framework, detailed in Section 3, with different
large language models, including domain specific ones, as listed below. All methods use the
default pooling strategy.
– FETILDA w/BERT: We use [10] as the underlying language model, setting the chunk size

to 512 tokens.
– FETILDA w/FinBERT: Here, we use FinBERT [16] as the LM, which was pre-trained on

10-K, 10-Q, and analyst reports, with chunk size of 512 tokens.
– FETILDA w/Longformer: To test the effectiveness of a bigger block size with a pre-

trained model, we use our approach with Longformer [4] as the underlying language
model, setting the chunk size to 4,096 tokens.

– FETILDA w/Nystromformer: For an even bigger block size, but without a pretrained
model (that is, training from scratch), we use our approach with Nystromformer [44] as
the underlying language model, setting the chunk size to 8,192 tokens, the number of
layers to one, and the number of attention heads to eight.

— Truncated LMs: Here, we experiment with truncated LM baselines, where the each model
uses only the first chunk of each document and discards the rest of the document. The rest
of the model training is identical to the process detailed in Section 3.4. These baselines thus
serve as ablated versions of our chunking approach for each of the corresponding LMs.
– BERT Truncate: Here, we simply use the pretrained BERT [10] model with chunk size

of 512.
– FinBERT Truncate: Here, we use the financial domain pretrained FinBERT model [16]

as the underlying language model to learn on the first chunk of the document, with chunk
size of 512 tokens.

– Longformer Truncate: This baseline uses pretrained Longformer [4], with 4,096 as the
chuck size, which is considerably larger than the BERT/FinBERT baselines.
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– Nystromformer Truncate: For Nystromformer [44], we set the chuck size as 8,192,
which is double that for Longformer, so that we can evaluate the effect of truncating on
with a very large context or chunk size. We further use eight attention heads, and one
tranformer layer.

– BigBird Truncate: Here, we use the large context BigBird [48] model, with a chunk size
of 4,096. This also shows the comparison with a sparse-attention-based approach.

With all four versions of FETILDA, namely, using BERT, FinBERT, Longformer, and Nystrom-
former, and baseline numerical regressions, word feature vector models, and truncated LMs,
namely, BERT, FinBERT, Longformer, Nystromformer, and BigBird, we performed an extensive
set of experiments, evaluating our approach in predicting stock return volatility for the FIN10K
dataset [22], and all eight different KPI metrics for the U.S. banks dataset. For the U.S. banks
dataset, the historical scores are numeric values of each of the eight metrics in the previous year
of the report. For the FIN10K dataset, they are the stock return volatilities 12 months before each
report. In addition to applying our approach as described in Section 3.2 with fully unfrozen LM
layers, enabling model fine-tuning, we also report the effect of freezing all the LM layers and
freezing only the last layer in FETILDA when we apply it on both the U.S. banks dataset and
the FIN10K dataset [22]. This allows us to compare the effect of fine-tuning versus the default
pre-training approach.

4.4 Comparative Performance Results

In all four versions of FETILDA and truncated LMs, we train the model with varying learning
rates from 10−1 to 10−8, and pick the epoch and parameters with the best validation loss. Due to
the memory constraint of 32 GB, for a given document, the GPU can only process up to around
20,480 tokens at a time, so we truncate the rest if a document goes beyond that length. However,
this only happens for a minority of cases in our experiments, and we do not truncate at all in our
experiments with fully frozen language models. As mentioned above, we use the default pooling
strategy to extract chunk embedding vectors, and among the various FinBERT alternatives, we
use the Huang et al. FinBERT [16] model. We empirically show below that both these choices are
in fact the best ones among the different pooling and FinBERT variants, respectively. Finally, for
both FETILDA (w/BERT, w/FinBERT, w/LongFormer, and w/Nystromformer), all truncated LMs,
and TF-IDF we select the best among the following regression models based on the validation
data: (1) Linear Regression, (2) Support Vector Regression, using a RBF Kernel with C = 0.1 and
ϵ = 0.0001, and (3) Kernel Ridge Regression, using a RBF Kernel with α = 0.1 and γ = 0.1, in
addition to the variant based on the predicted output (from FC2) with MSE loss.

4.4.1 FIN10K Dataset. Table 3 compares the performance of FETILDA variants with the other
baseline methods listed above. Note that LOG1P+:ALL refers to the model trained on the entire
original text using the LOG1P features, and LOG1P+:SEN refers to the model trained on only the
sentiment bearing words taken from the L&M dictionary [24]. For LOG1P+:ALL and LOG1P+:SEN,
we report the results for these methods directly from their paper [38]. We also include the results
for the TF-IDF baseline. Among their methods, LOG1P+:SEN performs the best for all years, ex-
cept 2001. For the average over all test years, LOG1P+:SEN performs better than TF-IDF, even
though TF-IDF performs better than LOG1P+:SEN for 2001, 2002, and 2006. However, as we can
observe, with the exception of 2003, FETILDA outperforms LOG1P+:SEN by a large margin. Inter-
estingly, FETILDA w/FinBERT outperforms both BERT and Longformer on all the metrics. It is the
best performing model over all the years, with the exception of 2003. Looking at the last column,

which shows the average performance across the years 2001–2006, FETILDA w/FinBERT is the best; it

outperforms all previous baselines by a significant margin, establishing new SOTA results.
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Table 3. MSE Results on FIN10K

Model\Year 2001 2002 2003 2004 2005 2006 Average

SVR 0.174700 0.160020 0.187340 0.144210 0.136470 0.146380 0.150860

LOG1P+:ALL 0.180820 0.171750 0.171570 0.128790 0.130380 0.142870 0.154360

LOG1P+:SEN 0.185060 0.163670 0.157950 0.128220 0.130290 0.139980 0.150860

TF-IDF 0.123816 0.121450 0.218520 0.176087 0.148645 0.138113 0.154438

Truncated LMs

BERT Truncate (Fully Unfrozen) 0.123519 0.109091 0.188643 0.117910 0.099342 0.094656 0.122193

FinBERT Truncate (Fully Unfrozen) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701

Longformer Truncate (Fully Unfrozen) 0.123086 0.108659 0.187317 0.116490 0.097997 0.093773 0.121220

BigBird Truncate (Fully Unfrozen) 0.124220 0.108205 0.185940 0.115778 0.097545 0.092892 0.120763

Nystromformer Truncate (Fully Unfrozen) 0.123561 0.108854 0.187848 0.116714 0.098098 0.093215 0.121382

FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.128406 0.111145 0.180670 0.111339 0.094401 0.091456 0.119569

FETILDA w/FinBERT (Fully Unfrozen) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885

FETILDA w/Longformer (Fully Unfrozen) 0.124797 0.109595 0.183509 0.113019 0.094623 0.090408 0.119325

FETILDA w/Nystromformer (Fully Unfrozen) 0.120945 0.108224 0.174019 0.109716 0.095050 0.093098 0.116842

FETILDA w/BERT (Last Layer Frozen) 0.129132 0.111559 0.181691 0.110962 0.093300 0.089595 0.119373

FETILDA w/FinBERT (Last Layer Frozen) 0.125969 0.109420 0.176483 0.108349 0.092103 0.089228 0.116925

FETILDA w/Longformer (Last Layer Frozen) 0.135215 0.114627 0.193750 0.117404 0.096162 0.089970 0.124521

FETILDA w/BERT (Fully Frozen) 0.121354 0.108529 0.175446 0.108837 0.093004 0.090500 0.116278

FETILDA w/FinBERT (Fully Frozen) 0.118620 0.113750 0.159487 0.108527 0.097878 0.095545 0.115635

FETILDA w/Longformer (Fully Frozen) 0.126380 0.109627 0.169686 0.108116 0.091884 0.089902 0.115932

Best results in bold.

Table 3 also shows what happens to the FETILDA variants if we freeze the layers of the language
model and use only the pre-trained embeddings, compared to fine-tuning through unfreezing all
the layers or only freezing the last layer. Interestingly, for the larger FIN10K dataset, fine-tuning
results in a much better model for FinBERT, although fully frozen FinBERT does well for 2001
and 2003, but not so much for BERT and Longformer. As such, the domain-specific pre-training in
FinBERT followed by fine-tuning results in the best overall model.

Comparing with Truncated Models. Table 3 also shows how our evaluation framework compares
with LMs in Finance and Long Document LMs. Since these models have a fixed context/chuck
size and do not create document level representations, we truncate the models to use only the
first chunk from each document. However, we study the effect of models with larger chuck sizes,
ranging from 512 used for BERT/FinBERT, to 4,096 used in Longformer and BigBird (which also
uses sparse attention), to 8,192 used in Nystromformer. As we can see, none of the truncated LM
baselines methods outperform FETILDA w/FinBERT. Thus, truncating the documents is not an
effective strategy. This provides strong evidence on the advantage of our framework that consid-
ers all the chunks so that long documents can be processed without significant information loss,
and that further allows fair comparisons between different underlying LMs. For example, FinBERT
Truncate achieves almost the same performance as Longformer Truncate, which may lead one to
prematurely conclude the futility of pre-trained domain-specific models such as FinBERT. How-
ever, truncated FinBERT can only “see” the first 512 tokens of the document, whereas truncated
Longformer uses the first 4,096 tokens. However, when utilizing our chunking framework, we
observe that FinBERT can unleash its full potential and outperform Longformer, showcasing the
effectiveness of pre-trained domain-specific LMs in finance. This due to the fact that now FinBERT
and Longformer, when used through FETILDA, can exploit the full text from the long document.

4.4.2 U.S. Banks Dataset: Item 7/7A. Table 4 shows the performance comparison between the
four versions of our approach on Item 7/7A and baseline methods: truncated versions of all BERT,
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Table 4. MSE Results on Item 7/7A

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR

TF-IDF 0.000879 0.010422 0.001022 0.022000 0.000767 0.002594 0.028926 0.005765

Linear Regression 0.001432 0.010096 0.001564 0.022587 0.000306 0.002441 0.030760 0.005757

Truncated LMs

BERT Truncate (Fully Unfrozen) 0.000769 0.007790 0.000873 0.020440 0.000396 0.002607 0.029508 0.005641

FinBERT Truncate (Fully Unfrozen) 0.000827 0.007458 0.000855 0.016940 0.000308 0.002599 0.028715 0.005655

Longformer Truncate (Fully Unfrozen) 0.000817 0.007462 0.001056 0.020103 0.000272 0.002446 0.033579 0.005889

BigBird Truncate (Fully Unfrozen) 0.000781 0.007422 0.000909 0.017403 0.000240 0.002576 0.029046 0.005617

Nystromformer Truncate (Fully Unfrozen) 0.000879 0.008459 0.000853 0.016444 0.000239 0.002596 0.027976 0.005591

FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.000796 0.009227 0.000897 0.021409 0.000325 0.002502 0.029505 0.005651

FETILDA w/FinBERT (Fully Unfrozen) 0.000746 0.008901 0.000932 0.019150 0.000317 0.002535 0.029516 0.005657

FETILDA w/Longformer (Fully Unfrozen) 0.000813 0.008507 0.000858 0.017358 0.000296 0.002467 0.028697 0.005683

FETILDA w/Nystromformer (Fully Unfrozen) 0.000788 0.007338 0.000835 0.016862 0.000310 0.002503 0.029397 0.005735

FETILDA w/BERT (Last Layer Frozen) 0.000850 0.009903 0.000960 0.021728 0.000306 0.002469 0.029203 0.005798

FETILDA w/FinBERT (Last Layer Frozen) 0.000844 0.008543 0.000988 0.021425 0.000304 0.002445 0.029637 0.005678

FETILDA w/Longformer (Last Layer Frozen) 0.000849 0.008356 0.000851 0.016436 0.000291 0.002419 0.029011 0.005481

FETILDA w/BERT (Fully Frozen) 0.000890 0.010052 0.001109 0.022748 0.000328 0.002581 0.028966 0.005950

FETILDA w/FinBERT (Fully Frozen) 0.001093 0.009401 0.001906 0.021882 0.000447 0.002514 0.030094 0.005695

FETILDA w/Longformer (Fully Frozen) 0.000801 0.008501 0.000876 0.019053 0.000308 0.002436 0.028965 0.005957

Best results in bold per KPI.

FinBERT, Longformer, Nystromformer, and BigBird, TF-IDF for textual modeling with historic
scores, and linear regression for numerical modeling. For most metrics, our method outperforms

the baseline methods (TF-IDF and linear regression), with FETILDA w/Longformer and FETILDA

w/Nystromformer performing the best in a majority of cases. As such, FETILDA variants using all
of the chunks outperform all other baselines on six of the eight metrics. In addition, we also see a
significant edge in the performance of FETILDA w/FinBERT in the prediction of ROA target values.

Table 4 also shows the comparisons between applying FETILDA w/ LMs, and using LMs directly
in truncated mode. As we can see, the shorter window size models, namely, BERT and FinBERT,
when using all chunks, performed better in some metrics and worse in some metrics compared
to their truncated counterparts. This may be due to the chunk attention weights not being well
assigned in the document-level attention pooling phase in a portion of shorter documents, as we
examine in Section 4.6.1. As for longer window size LMs, namely, Longformer and Nystromformer,
we can observe that for the majority of the metrics, our framework is able to further improve the
performance of longer window LMs for long documents on six of the eight metrics. On the two
metrics where Nystromformer truncate performs best, it demonstrates the benefit of having a
larger window size, as the window size in this case is 8,196.

4.4.3 U.S. Banks: Item 1A Section. Next, we report results on Item 1A. Table 5 shows the per-
formance comparison between our approach and baseline methods, namely, truncated versions
of BERT, FinBERT, Longformer, Nystromformer, and BigBird; TF-IDF for textual modeling with
historic scores, and linear regression for numerical modeling. In five of eight metrics, FETILDA w/
LMs with our framework outperform other methods, with FETIDA w/Longformer [4] performing
the best in two metrics, and FETILDA w/BERT and FinBERT performing the best in the other three
metrics. Longformer truncate and BigBird truncate, both with a window size of 4,096, performed
best on two of the metrics, demonstrating the benefits of a larger context size. The Item 1A section
is generally a shorter document, as shown in Table 2, and FETILDA is designed for long documents,
so when our framework trains on this corpus, it may suffer from the uneven spread of attention
due to the document-level attention pooling focusing on a few select chunks while ignoring the
rest, as demonstrated in the case study analysis below (see Section 4.6.2).
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Table 5. MSE Results on Item 1A

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR

TF-IDF 0.001153 0.009350 0.000970 0.018660 0.000322 0.003117 0.029103 0.005922

Linear Regression 0.001407 0.010174 0.001577 0.022500 0.000299 0.002534 0.032102 0.005802

Truncated LMs

BERT Truncate (Fully Unfrozen) 0.000783 0.009169 0.000955 0.019806 0.000324 0.002655 0.031074 0.005991

FinBERT Truncate (Fully Unfrozen) 0.000774 0.007453 0.000861 0.017555 0.000290 0.002597 0.031737 0.005979

Longformer Truncate (Fully Unfrozen) 0.000925 0.008200 0.001645 0.017472 0.000221 0.002553 0.034199 0.005923

BigBird Truncate (Fully Unfrozen) 0.000816 0.006908 0.000963 0.015997 0.000318 0.002632 0.031801 0.006205

Nystromformer Truncate (Fully Unfrozen) 0.000790 0.007385 0.000882 0.017392 0.000275 0.002614 0.030956 0.006388

FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.000811 0.008520 0.000820 0.019151 0.001353 0.002559 0.029614 0.004944

FETILDA w/FinBERT (Fully Unfrozen) 0.000867 0.008671 0.001171 0.017383 0.000385 0.002560 0.030583 0.004937

FETILDA w/Longformer (Fully Unfrozen) 0.000790 0.007940 0.000826 0.015620 0.000937 0.002527 0.030130 0.004555

FETILDA w/Nystromformer (Fully Unfrozen) 0.000780 0.007659 0.000925 0.016263 0.000226 0.002831 0.029426 0.005640

FETILDA w/BERT (Last Layer Frozen) 0.000774 0.007803 0.000824 0.017883 0.000726 0.002751 0.029729 0.004943

FETILDA w/FinBERT (Last Layer Frozen) 0.000850 0.008814 0.000834 0.018282 0.000485 0.002612 0.030115 0.004967

FETILDA w/Longformer (Last Layer Frozen) 0.000795 0.007409 0.000821 0.018100 0.000242 0.002715 0.030415 0.004894

FETILDA w/BERT (Fully Frozen) 0.000856 0.008788 0.001076 0.018572 0.000315 0.010919 0.030225 0.004908

FETILDA w/FinBERT (Fully Frozen) 0.000976 0.008626 0.001274 0.018254 0.000428 0.002471 0.032155 0.004911

FETILDA w/Longformer (Fully Frozen) 0.000811 0.008053 0.000854 0.018429 0.000930 0.002619 0.034284 0.004955

Best results in bold per KPI.

Table 5 also shows the comparisons between applying FETILDA with LMs and using LMs di-
rectly in truncate mode. As for the shorter window size models, namely, BERT and FinBERT, when
applied in FETILDA, these LMs performed better in a majority of metrics compared to using the it
directly in truncate mode, with BERT performing better in FETILDA for all metrics compared to
BERT in truncate mode. As for longer window size LMs, namely, Longformer and Nystromformer,
we can observe that for the majority of the metrics, our framework is again able to deliver extra
performance on longer window LMs for long documents. Finally, even for these shorter documents,
using all of the chunks via the FETILDA approach results in the best performing model on five of
eight metrics, and a second best on the remaining three metrics.

4.5 Algorithmic Choices

Having shown the effectiveness of our FETILDA framework, we now present some results to justify
some of the algorithmic choices, such as which document-level pooling strategy and which chunk-
level pooling strategy does the best, and which FinBERT model performs the best.

4.5.1 Effectiveness of Document-level Attention Pooling. As elaborated in Section 3.3, in the
FETILDA framework, our approach to generating a document-level embedding from chunk-level
embeddings is to pool them together using a Bi-LSTM layer with self attention. In this way, each
chunk is weighted by its importance and aggregated together. To showcase the effectiveness of this
approach on a large corpus of long documents, we performed three sets of additional experiments
on the FIN10K dataset: (i) truncating the document, so that we use only the first chunk of every
document, (ii) mean-pooling, and (iii) max-pooling the chunks together into one document-level
embedding. As we can see in Table 6, compared to these three simpler approaches, the advantage
and gains in using our document-level attention pooling approach are evident. Moreover, we can
observe that mean-pooling all the chunks together even performs slightly worse than just using
the first chunk of every document. This means that our attention-based pooling approach effec-
tively captures information from all the chunks, whereas simpler pooling methods are not able to
do so.
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Table 6. Document Level Attention Pooling: MSE Results on FETILDA w/FinBERT (Fully Unfrozen)

Variants

Model\Year 2001 2002 2003 2004 2005 2006 Average

FETILDA w/FinBERT (Bi-LSTM + Self Attention) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885

FETILDA w/FinBERT (Only Using First Chunk) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701

FETILDA w/FinBERT (Mean-Pooling Chunks) 0.122950 0.108655 0.187268 0.116554 0.098074 0.093308 0.121135

FETILDA w/FinBERT (Max-Pooling Chunks) 0.122072 0.108241 0.186018 0.115826 0.097591 0.092913 0.120444

Best results in bold.

Table 7. Comparison of Different Chunk-level Pooling Methods

Results\Methods Mean pooling Max pooling Default pooling
Second-to-last layer Last four layers Second-to-last layer Last four layers Last layer

Validation MSE 0.0011465 0.0012064 0.0011102 0.0011188 0.0010205

Testing MSE 0.0008547 0.0008221 0.0007686 0.0008820 0.0007458

Table 8. Comparison of Three Different Models of FinBERT

Results\Models Araci [3] DeSola et al. [9] Huang et al. [16]
Validation loss 0.0011482 0.0010539 0.0010205

Testing error 0.0007781 0.0008682 0.0007458

4.5.2 Chunk-level Pooling Strategy. Recall that in Section 3.2, we outlined several chunk-level
pooling strategies to create the final chunk embeddings. These include: (1) the default pooling
method (default pooler output) using the hidden state of the first token of the last layer, (2) mean
pooling method using the hidden states of the second-to-last layer, (3) mean pooling method using
the hidden states of the last four layers, (4) max pooling method using the hidden states of the
second-to-last layer, and (5) max pooling method using the hidden states of the last four layers. In
Table 7, we present the comparative MSE results for these alternatives on Item 7/7A for predicting
ROA. We observe that the default pooler output yields the best results for both validation and
testing datasets. We thus chose the default pooling method using the hidden state of first token of
the last layer, and this is used for the different versions of FETILDA in our experiments above.

4.5.3 FinBERT Variants. As discussed in related work, there are four different FinBERT ap-
proaches proposed recently. Out these, the implementation for Liu et al. FinBERT [23] is not
publicly available. We therefore compare the three FinBERT implementations that are available:
Araci [3], DeSola [9], and Huang et al. [16]. Table 8 shows the MSE results when predicting ROA
using both textual data from Item 7/7A and numeric historic data (using a learning rate of 0.001)
for the U.S. Banks dataset. The results show that Huang et al. implementation results in the best
performance. We thus choose the Huang et. al FinBERT [16] as the underlying FinBERT model
for FETILDA. Recall that this FinBERT model was pre-trained on a very huge financial corpus
containing 10-K and 10-Q reports, earnings call transcripts, and analyst reports.

4.6 Qualitative Analysis and Case Study

4.6.1 Sentence Sentiment and Document-level Attention Pooling. To discover insights into the
nature of the contents in the 10-K reports we have trained on, we first performed a sentiment
analysis of the the sentences contained in these documents, both in the FIN10K dataset and U.S.
Banks dataset, using the finbert-tone model developed by Huang et al. [16]. This model was fine-
tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst reports,
and classifies a given sentence with one of these three labels with a score between 0 and 1. Tables 9
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Table 9. Sentiment Analysis of Documents from the FIN10K Dataset

1996–2000 2001 2002 2003 2004 2005 2006

Number of neutral sentences 969,556 252,398 396,105 691,779 734,407 752,487 701,754

Percentage of neutral sentences 75.1% 75.5% 76.7% 78.0% 76.7% 77.3% 79.4%

Neutral average score 0.969249 0.967979 0.969975 0.971859 0.970663 0.971246 0.973817

Number of positive sentences 155,546 34,816 41,887 68,310 88,937 94,444 91,481

Percentage of positive sentences 12.0% 10.4% 8.1% 7.7% 9.3% 9.7% 10.3%

Positive average score 0.931751 0.928670 0.927051 0.927983 0.935404 0.937857 0.940044

Number of negative sentences 166,200 46,983 78,609 127,057 133,900 126,587 90,814

Percentage of negative sentences 12.9% 14.1% 15.2% 14.3% 14.0% 13.0% 10.3%

Negative average score 0.924655 0.920516 0.921983 0.921626 0.919780 0.917041 0.913382

Table 10. Sentiment Analysis of Documents from the U.S.

Banks Dataset

Item 7 Item 1A
Number of neutral sentences 977.863 216.876

Percentage of neutral sentences 79.9% 52.6%
Neutral average score 0.971906 0.945267

Number of positive sentences 129.278 14.170
Percentage of positive sentences 10.6% 3.4%

Positive average score 0.923350 0.892079
Number of negative sentences 116.839 181.097

Percentage of negative sentences 9.5% 43.9%
Negative average score 0.909770 0.944259

and 10 show the results of this analysis. As we can see, in the Item 7 section of 10-K reports, which
forms the entirety of the training data for the FIN10K experiments and one portion of the training
data for the U.S. Banks experiments, the majority of sentences, around 70% to 75%, are all neutral
sentences, with over 90% confidence (i.e., the average score value) from the classifier. This indicates
that the majority of the textual content that we are training on is neutral content. Only around 10%
to 15% of the sentences are negative, and a smaller percentage of sentences are positive. And in
the Item 1A section of 10-K reports in the U.S. Banks dataset, which is a shorter type of document
focusing on risk factors, over half of the sentences are neutral, with around 40% of the sentences
negative and a small percentage of sentences positive. This brings up the question of what the
model will decide to focus on when making quantitative predictions, that is, whether attention will
be paid mostly to neutral sentences, or sentences that indicate some sort of positive or negative
sentiment. We explore this more in Section 4.6.2.

We also examined the chunk attention weights in the document-level attention pooling phase
(see Section 3.3). Since this phase evaluates different chunks based on their importance and weighs
the tokens in each chunk accordingly, the process can affect which parts of the document the
model ends up focusing on to capture signals from, to make predictions. We decided to focus on
the FIN10K dataset for this analysis as it is a larger dataset, which can produce more representa-
tive conclusions. In examining documents where FETILDA w/FinBERT did not perform well, we
discovered that on account of the shortness of the document, the chunk attention weights focused
on one of the chunks with a very high weight, and on others with very low weights, and some
chunks even had zero weight. This was due to the fact that some chunks had mundane regulatory
content or padding at the end, but they also contained sentences that could be of importance to
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Fig. 5. Entropies of chunk attention weights produced by FETILDA w/FinBERT after training on the FIN10K

dataset.

volatility change. It was evident in this case that much of the information contained in the less
weighed chunks was lost.

This led us to further investigate the relationship between the length of the document and the
entropy of the chunk attention weights, and how much this factor leads to information loss that
affects performance. We therefore calculated the entropy of all the chunk attention weights pro-
duced after training. Given a list of chunk attention weights {α1,α2, . . . ,αm} (see Section 3.3) for
document d , which all sum up to 1, since they are the result of a softmax function, the chunk
entropy is given as

H = −
m∑

i=1

αi log(αi ). (10)

Higher entropy would mean that the weights are more spread out, giving attention to each chunk
more evenly, and lower entropy would mean that the weights are skewed, giving attention to few
chunks while ignoring the rest.

Figure 5 shows a histogram of the results. Overall, the entropies ranged between 0 and 3.5, and
though we see a rough normal distribution for the majority of documents, a significant portion
of the documents had low entropies between 0 and 0.5. For these documents, the chunk attention
focuses only on a single or a few chunks. To examine the implications of this further, we divided the
training set into seven buckets based on the chunk entropy value, and calculated their respective
average document lengths and the mean training losses (in terms of MSE), as shown in Table 11.
As we can observe, the length of the document has a proportional relationship with the entropy
of the chunk attention weights, which in turn has an inverse relationship with the MSE loss (or
proportional relationship with model performance). The longer documents have higher entropies,
and the shorter documents have lower entropies. In turn, lower entropy documents have worse
performance, producing higher losses, and higher entropy documents have better performance,
producing lower losses.

From this analysis, we conclude that our approach performs better on longer documents than
on shorter documents, because its document-level attention pooling weighs chunks more evenly
in longer documents than in shorter documents. This makes sense, as our approach is designed for
long documents, and in the training process, documents of varying lengths are fed to the frame-
work, resulting in a generalized model that performs well on long documents. Therefore, to handle
shorter documents, a corpus could be divided into several buckets based on document length, and
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Table 11. Analysis of Chunk Entropies Produced by FETILDA w/FinBERT on the FIN10K

Number of documents Average document length Mean training loss (MSE)
Entropy within [0.0, 0.5] 1,343 1,893.3 0.281587
Entropy within [0.5, 1.0] 1,116 2,792.5 0.247949
Entropy within [1.0, 1.5] 1,273 3,594.5 0.221757
Entropy within [1.5, 2.0] 1,299 4,746.3 0.177632
Entropy within [2.0, 2.5] 991 6,478.5 0.171708
Entropy within [2.5, 3.0] 566 9,187.0 0.181916
Entropy within [3.0, 3.5] 374 14,200.0 0.148555

separate models can be trained on different buckets of documents, which can fine-tune each model
more specifically tailored to the document length. This is part of future investigation.

4.6.2 Case Study Analysis. To gain insights into what our most effective model, FETILDA
w/FinBERT, learned from the FIN10K dataset, we designed a method to extract the “important”
sentences learned from the data. For a given document, we rated the “importance” of each unique
word in the following way. For a given word-token ti that appears in chunk k of size b, we sum
up the attention scores it gets from all other words in the chunk, that is, how much attention it
was paid to when querying each word in the chunk. Thereafter, we take the weight αk that has
been given to chunk k by the self-attention mechanism detailed in Section 3.3, which determines
how “important” each chunk is, and multiply it with the sum above to get the final score for this
instance of ti , given as follows:

s(ti ) = αk

b∑
j=1

aji ,

where aji is the attention that ti gets from token tj (in the given chuck k). Next, for each sentence,
we aggregate the scores of each word together into a sentence attention score by averaging them
over the length of the sentence.

Using this approach, we generated the top 30 sentences based on their attention score, from a
document that our method performed well on in the year that it performed best on, namely, the
10-K report of Microtune Inc. in 2006, and a document that it performed poorly on in the year that
it performed worst on, namely, the 10-K report of Federal Screw Works in 2003, in terms of squared
error when predicting price log volatility. Some example sentences are shown in Table 12. Looking
at these sentences, we can see a clear difference. For the good performance case, the top sentences
were more informative to the company’s future prospects, whereas for the bad performance case,
the top sentences were more mundane accounting-related sentences.

To analyze these sentences more objectively, we applied sentiment analysis using the finbert-
tone model developed by Huang et al. [16]. Table 13 shows the general statistics from the result of
this sentiment analysis. In both cases, as a matter of course, a good number of neutral sentences
garnered attention, since most of the 10-K reports are neutral sentences that are part of mundane
regulatory filings. In the case of good performance for Microtune, Inc., 2006, attention was paid
more to negative sentences that are classified to be negative with a high score, and some attention
was paid to positive sentences that are classified to be positive with a medium score, but in the
case of bad performance for Federal Screw Works, 2003, we see that attention was paid mostly to
neutral sentences that are classified to be neutral with a very high score, and to just two negative
sentences with a medium score, and to one positive sentence with a low score. Thus, for better
performance, it is important for the attention in the framework to focus on the key parts of the
document that are indicative of future trends.
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Table 12. Examples of Top Attention Sentences from the 10-K Report of Microtune Inc. in 2006 (Good

Performance) and Federal Screw Works in 2003 (Poor Performance), from the FIN10K Dataset, Using

FETILDA w/FinBERT

Microtune Inc., 2006: Good Performance Federal Screw Works, 2003: Poor Perfor-
mance

“Further, several existing and potential customers
have substantial internal technological capabilities
and could develop products internally that compete
with or replace our products.”

“The decrease resulted primarily from a decrease
in inventories.”

“A decision by any of our significant customers to
internally design and manufacture products that
compete with our products could have a material
adverse effect on our business and results of opera-
tions.”

“Sales price increases in each of these years were
insignificant.”

“We believe that our future results of operations
will continue to depend on the success of our
largest customers, on our ability to sell existing
and new products to these customers in significant
quantities.”

“Critical accounting policies the accompanying fi-
nancial statements have been prepared in confor-
mity with accounting principles.”

“We compete with, or may in the future compete
with, a number of major domestic and international
suppliers of integrated circuit and system modules
in the cable, digital TV and automotive markets.”

“In an effort to increase the plan assets of the
qualified pension plans, the company contributed
$2,850,000 to the plans’ funding in the fourth quar-
ter of fiscal 2003.”

“Our international operations, including our oper-
ations in Germany, Taiwan, Japan, China and Ko-
rea, the operations of our international suppliers
and our overall financial results may be adversely
affected by events that occur in or otherwise affect
these countries.”

“Accordingly, in the fourth quarter of fiscal 2003,
the company recorded a non-cash charge of
$5,080,000, after-tax, related to the additional min-
imum liability for certain underfunded pension
plans which increased accumulated other compre-
hensive loss in shareholders’ equity.”

“We cannot assure you that any acquisition or joint
venture will be successfully integrated with our op-
erations and the failure to avoid these or other risks
associated with such acquisitions or investments
could have a material adverse effect on our busi-
ness, financial condition and results of operations.”

“Inventories were reduced to reflect lower demand
from our automotive customers and also to reflect
the elimination of strike banks required earlier but
no longer necessary with the signing of a new four
year contract with the employees of our Romulus
division effective February 1, 2003.”

“Many of these technologies compete effectively
with cable modem and cable telephony services and
do not require RF tuners like the ones that we sell.”

“Further, the charge did not impact net income,
and will reverse should the fair value of the pen-
sion plans’ assets again exceed the accumulated
benefit obligations at March 31, 2004.”

Table 13. Sentiment Analysis of Top 30 Key Sentences Generated by FETILDA w/FinBERT

from the 10-K Reports of Microtune Inc. in 2006 and Federal Screw Works in 2003, for the

FIN10K Dataset

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 19 27
Neutral average score 0.957843 0.983552
Number of positive sentences 3 1
Positive average score 0.858830 0.618559
Number of negative sentences 8 2
Negative average score 0.935866 0.863191
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Table 14. Sentiment Analysis of all the Sentences from the 10-K Reports of Microtune Inc. in 2006

and Federal Screw Works in 2003, from the FIN10K Dataset

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 540 75

Percentage of neutral sentences 70.6% 79.8%
Neutral average score 0.957420 0.976197

Number of positive sentences 47 7
Percentage of positive sentences 6.1% 7.4%

Positive average score 0.914375 0.977220
Number of negative sentences 178 12

Percentage of negative sentences 23.3% 12.8%
Negative average score 0.932533 0.921442

Table 15. Entropy Analysis of the Chunk Attention Weights Generated by FETILDA w/FinBERT from the

10-K Reports of Microtune Inc. in 2006 and Federal Screw Works in 2003, from the FIN10K Dataset

Document length Entropy of chunk attention weights Testing loss (squared error)
Microtune Inc., 2006 24,172 3.094900 0.029381

Federal Screw Works, 2003 2,587 0.495800 0.441628

We further analyze the sentiment of all the sentences in both documents, as well as the doc-
ument lengths and how that affects the entropy of the chunk attention weights produced in the
document-level attention pooling stage. Tables 14 and 15 show the results of our analyses. Overall,
the good performance document is about 10 times the length as the bad performance document,
and contains more sentiment-bearing sentences both in terms of sentence count and percentage,
which resulted in a big discrepancy in the entropies of their respective chunk attention weights.
This means that the model focused on just select parts of the bad performance document that were
mostly neutral, while focusing on each part of the good performance document more evenly. As a
result, the testing loss was much higher in the shorter document than the longer one.

5 CONCLUSIONS

In this article, we examined the efficacy of various different types of language models using the
FETILDA framework in generating effective document embeddings for very long financial text
documents, such as 10-K public disclosures to the SEC, for which just one section, such as Item
7/7A, contains over 12,000 words on average. In our extensive set of experiments, we applied
FETILDA with various different language models to the task of predicting eight different KPIs
for U.S. Bank performance, as well as stock volatility prediction for U.S. companies from FIN10K.
Our approach is shown to outperform previous baselines, yielding SOTA results on the various
regression tasks for the two datasets used, thus testifying to the efficacy of language models in
representing long financial documents. With the FIN10K dataset especially, we demonstrated
quite evidently the significance of the improvement we get from taking a domain-specific
LM such as FinBERT and fine-tuning it on our particular downstream task. We show this not
only by how much FETILDA with fully unfrozen FinBERT outperforms the baseline methods
but also by how fine-tuning FinBERT through unfreezing all its layers during training yields
better performance than using the frozen pretrained embeddings that the LM produces. Our
work also shows that using the whole document via chunk attention outperforms the standard
approach that truncates the document to only one chunk, even over LMs that have large context
windows.
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Our work opens avenues for follow-on research. For example, while the contextual models in
FETILDA can learn more effective document representations compared to baselines like TF-IDF,
there is still scope for more improvement. One could consider learning even larger domain-specific
pre-trained models for financial text, with larger blocks (e.g., using Longformer or Nystromformer
instead of BERT for pre-training). We also plan to explore alternative approaches to learn better
document representations. For example, instead of using the entire text, we can focus on the most
important words, phrases, and sentences (e.g., sentiment bearing elements within the text). We can
derive better chunk-level and document-level embeddings in this manner. How to select these in-
formative elements from text remains an open challenge. Another promising avenue is to leverage
domain-specific generative models in finance, such as FinGPT [45], and study how we can utilize
generative approaches for textual regression tasks.
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