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Abstract—The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders of

magnitude smaller than the set of all frequent itemsets. In this paper, we present CHARM, an efficient algorithm for mining all frequent

closed itemsets. It enumerates closed sets using a dual itemset-tidset search tree, using an efficient hybrid search that skips many

levels. It also uses a technique called diffsets to reduce the memory footprint of intermediate computations. Finally, it uses a fast hash-

based approach to remove any “nonclosed” sets found during computation. We also present CHARM-L, an algorithm that outputs the

closed itemset lattice, which is very useful for rule generation and visualization. An extensive experimental evaluation on a number of

real and synthetic databases shows that CHARM is a state-of-the-art algorithm that outperforms previous methods. Further, CHARM-L

explicitly generates the frequent closed itemset lattice.

Index Terms—Closed itemsets, frequent itemsets, closed itemset lattice, association rules, data mining.
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1 INTRODUCTION

MINING frequent patterns or itemsets is a fundamental
and essential problem in many data mining applica-

tions. These applications include the discovery of association
rules, strong rules, correlations, sequential rules, episodes,
multidimensional patterns, and many other important
discovery tasks [11]. The problem is formulated as follows:
Given a large database of item transactions, find all frequent
itemsets, where a frequent itemset is one that occurs in at
least a user-specified percentage of the database.

Most of the proposed pattern-mining algorithms are a
variant of Apriori [1]. Apriori employs a breadth-first
search (BFS) that enumerates every single frequent itemset.
Apriori uses the downward closure property of itemset
support to prune the search space—the property that all
subsets of a frequent itemset must be frequent. Thus, only
the known frequent itemsets at one level are extended by
one more item to yield potentially frequent “candidate”
itemsets at the next level in the BFS. A pass over the
database is made at each level to find the true frequent
itemsets among the candidates. Apriori-inspired algorithms
[5], [15], [18] show good performance with sparse data sets
such as market-basket data, where the frequent patterns are
very short. However, with dense data sets such as
telecommunications and census data, where there are
many, long frequent patterns, the performance of these
algorithms degrades incredibly. A frequent pattern of
length l implies the presence of 2l � 2 additional frequent
patterns as well, each of which is explicitly examined by
such algorithms. It is practically unfeasible to mine the set
of all frequent patterns for other than small l. On the other
hand, in many real-world problems (e.g., patterns in

biosequences, census data, etc.), finding long itemsets of
length 30 or 40 is not uncommon [4].

There are two current solutions to the long pattern
mining problem. The first one is to mine only the maximal
frequent itemsets [2], [4], [6], [10], [13], which are typically
orders of magnitude fewer than all frequent patterns. While
mining maximal sets help understand the long patterns in
dense domains, they lead to a loss of information; since
subset frequency is not available, maximal sets are not
suitable for generating rules. The second is to mine only the
frequent closed sets [3], [16], [17], [20], [21]. Closed sets are
lossless in the sense that they can be used to uniquely
determine the set of all frequent itemsets and their exact
frequency. At the same time, closed sets can themselves be
orders of magnitude smaller than all frequent sets, espe-
cially on dense databases.

1.1 Contributions

We introduce CHARM,1 an efficient algorithm for enumer-
ating the set of all frequent closed itemsets, and CHARM-L,
an efficient algorithm for generating the closed itemset
lattice. There are a number of innovative ideas employed in
the development of CHARM(-L); these include:

1. They simultaneously explore both the itemset space
and transaction space over a novel IT-tree (itemset-
tidset tree) search space. In contrast, most previous
methods exploit only the itemset search space.

2. They use a highly efficient hybrid search method
that skips many levels of the IT-tree to quickly
identify the frequent closed itemsets, instead of
having to enumerate many possible subsets.

3. CHARM uses a fast hash-based approach and
CHARM-L uses an intersection-based approach to
eliminate nonclosed itemsets during subsumption
checking. Both algorithms utilize the novel vertical
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data representation called diffsets [23], recently
proposed by us, for fast frequency computations.
Diffsets keep track of differences in the tids of a
candidate pattern from its prefix pattern. Diffsets
drastically cut down (by orders of magnitude) the
size of memory required to store intermediate
results. Thus, the entire working set of patterns
can fit entirely in main-memory, even for large
databases.

4. CHARM-L explicitly outputs the frequent itemset
lattice, which is useful for rule generation and
visualization.

We assume in this paper that the initial database is
disk-resident, but that the intermediate results fit entirely
in memory. Several factors make this a realistic assump-
tion. First, CHARM(-L) breaks the search space into
small independent chunks (based on prefix equivalence
classes [22]). Second, diffsets lead to extremely small
memory footprint (this is experimentally verified). Final-
ly, CHARM(-L) uses simple set difference (or intersec-
tion) operations and requires no complex internal data
structures (candidate generation and counting happens in
a single step). The current trend toward large (gigabyte-
sized) main memories, combined with the above features,
makes CHARM and CHARM-L practical and efficient
algorithms for reasonably large databases.

We compare CHARM against previous methods for
mining closed sets such as Close [16], Closet [17], Closet+
[20], Mafia [6], and Pascal [3]. Extensive experiments
confirm that CHARM provides significant improvement
over existing methods for mining closed itemsets, for both
dense as well as sparse data sets. We also compare and
show that CHARM-L outperforms an approach that
generates the itemset lattice in a postprocessing step.

2 FREQUENT PATTERN MINING

Let I be a set of items andD a database of transactions, where
each transaction has a unique identifier (tid) and contains a
set of items. The set of all tids is denoted as T . A setX � I is
also called an itemset and a set Y � T is called a tidset. An

itemsetwith k items is called a k-itemset. For convenience,we
write an itemset fA;C;Wg as ACW and a tidset f2; 4; 5g as
245. For an itemset X, we denote its corresponding tidset as
tðXÞ, i.e., the set of all tids of transactions that containX as a
subset. For a tidset Y , we denote its corresponding itemset as
iðY Þ, i.e., the set of items common to all the transactions with
tids in Y . Note that tðXÞ ¼

T
x2X tðxÞ, and iðY Þ ¼

T
y2Y iðyÞ.

For example, in Fig. 1,

tðACWÞ ¼ tðAÞ \ tðCÞ \ tðW Þ
¼ 1345 \ 123456 \ 12345

¼ 1345

and ið12Þ ¼ ið1Þ \ ið2Þ ¼ ACTW \ CDW ¼ CW . We use the
notation X � tðXÞ to refer to an itemset-tidset pair and call
it an IT-pair.

The support [1] of an itemset X, denoted �ðXÞ, is the
number of transactions in which it occurs as a subset, i.e.,
�ðXÞ ¼ jtðXÞj. An itemset is frequent if its support is greater
than or equal to a user-specified minimum support (min_sup)
value, i.e., if �ðXÞ � min sup. A frequent itemset is called
maximal if it is not a subset of any other frequent itemset. Let
c : P ðIÞ ! P ðIÞ be the closure operator, defined as
cðXÞ ¼ iðtðXÞÞ, where X � I . An frequent itemset X is
called closed if and only if cðXÞ ¼ X [9]. Alternatively, a
frequent itemset X is closed if there exists no proper
superset Y � X with �ðXÞ ¼ �ðY Þ. For instance, in Fig. 1,

cðAW Þ ¼ iðtðAW ÞÞ ¼ ið1345Þ ¼ ACW:

Thus, AW is not closed. On the other hand,

cðACW Þ ¼ iðtðACWÞÞ ¼ ið1345Þ ¼ ACW;

thus ACW is closed.
As a running example, consider the database shown in

Fig. 1. There are five different items, I ¼ fA;C;D; T ;Wg,
and six transactions, T ¼ f1; 2; 3; 4; 5; 6g. The table on the
right shows all 19 frequent itemsets contained in at least
three transactions, i.e., min sup ¼ 50%. Fig. 2 shows the
19 frequent itemsets organized as a subset lattice; their
corresponding tidsets have also been shown. In contrast to
the 19 frequent itemsets, there are only 7 closed itemsets,
obtained by collapsing all the itemsets that have the same
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Fig. 1. Example DB.

Fig. 2. Frequent, closed, and maximal itemsets.



tidset, shown in the figure by the enclosed regions. Looking
at the closed itemset lattice, we find that there are 2
maximal frequent itemsets (marked with a circle), ACTW
and CDW .

Let F denote the set of frequent itemsets, C the set of

closed itemsets, and M the set of maximal itemsets. By

definition, a frequent closed set is a frequent itemset and a

maximal frequent itemset is closed, giving us the fact that

M � C � F . Fig. 1 depicts this relationship on our example

database. Theoretically, in the worst case, there can be 2jI j

frequent and closed frequent itemsets (i.e., every frequent

set can also be closed) and jI j
jI j=2

� �
¼ 2jI j=2 maximal frequent

itemsets. In practice, however, C can be orders of magnitude

smaller than F (especially for dense data sets), while M can

itself be orders of magnitude smaller than C. The closed sets

are also lossless in the sense that the exact frequency of all

frequent sets can be determined from C, while M leads to a

loss of information (since subset frequency is not kept).

2.1 Related Work

Our past work [21], [25] addressed the problem of
nonredundant rule generation, provided that closed sets
are available; an algorithm to efficiently mine the closed sets
was not described in that paper. There have been several
algorithms proposed for this task.

Close [16] is an Apriori-like algorithm that directly mines
frequent closed itemsets. There are two main steps in Close.
The first is to use bottom-up search to identify generators,
the smallest frequent itemsets that determines a closed
itemset. For example, consider the frequent itemset lattice in
Fig. 2. The item A is a generator for the closed set ACW
since it is the smallest itemset with the same tidset as ACW .
All generators are found using a simple modification of
Apriori. After finding the frequent sets at level k, Close
compares the support of each set with its subsets at the
previous level. If the support of an itemset matches the
support of any of its subsets, the itemset cannot be a
generator and is thus pruned. The second step in Close is to
compute the closure of all the generators found in the first
step. To compute the closure of an itemset, we have to
perform an intersection of all transactions where it occurs as
a subset. The closures for all generators can be computed in
just one database scan, provided all generators fit in
memory. Nevertheless, computing closures this way is an
expensive operation.

The authors of Close recently developed Pascal [3], an
improved algorithm for mining closed and frequent sets.
They introduce the notion of key patterns and show that other
frequent patterns can be inferred from the key patterns
without access to the database. They show that Pascal, even
though it finds both frequent and closed sets, is typically
twice as fast as Close, and 10 times as fast as Apriori. Since
Pascal enumerates all patterns, it is only practical when
pattern length is short (as we shall see in the experimental
section). The Closure algorithm [7] is also based on a bottom-
up search. It performs only marginally better than Apriori,
thus CHARM should outperform it easily.

Recently, two new algorithms for finding frequent closed
itemsets have been proposed. Closet [17] uses a novel
frequent pattern tree (FP-tree [12]) structure, which is a
compressed representation of all the transactions in the

database. It uses a recursive divide-and-conquer and
database projection approach to mine long patterns. Closet+
[20] is an enhancement of Closet with various new and
previously known search and closure testing strategies. We
will show later that CHARM outperforms Closet and
Closet+ by orders of magnitude as support is lowered.
Mafia [6] is primarily intended for maximal pattern mining,
but has an option to mine the closed sets as well. Mafia
relies on efficient compressed and projected vertical bitmap
based frequency computation. At higher supports, both
Mafia and CHARM exhibit similar performance, but, as one
lowers the support, the gap widens exponentially. CHARM
can deliver over a factor of 10 improvements over Mafia for
low supports.

There have been several efficient algorithms for mining
maximal frequent itemsets, such as MaxMiner [4], Depth-
Project [2], Mafia [6], and GenMax [10]. It is not practical to
first mine maximal patterns and then to check if each subset
is closed since we would have to check 2l subsets, where l is
the length of the longest pattern (we can easily have
patterns of length 30 to 40 or more; see Section 6). In [24], we
tested a modified version of MaxMiner to discover closed
sets in a postprocessing step and found it to be too slow for
all except short patterns.

3 ITEMSET-TIDSET SEARCH TREE AND

EQUIVALENCE CLASSES

Let I be the set of items. Define a function pðX; kÞ ¼ X½1 : k�
as the k length prefix of X and a prefix-based equivalence
relation �k [22] on itemsets as follows: 8X, Y � I ,
X ��k Y , pðX; kÞ ¼ pðY ; kÞ. That is, two itemsets are in
the same class if they share a common k length prefix.

CHARM performs a search for closed frequent sets over
a novel IT-tree search space, shown in Fig. 3. Each node in
the IT-tree, represented by an itemset-tidset pair, X � tðXÞ,
is in fact a prefix-based class. All the children of a given
node X belong to its equivalence class since they all share
the same prefix X. We denote an equivalence class as
½P � ¼ fl1; l2; � � � ; lng, where P is the parent node (the prefix),
and each li is a single item, representing the node
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Pli � tðPliÞ. For example, the root of the tree corresponds to
the class ½� ¼ fA;C;D; T ;Wg. The leftmost child of the root
consists of the class ½A� of all itemsets containing A as the
prefix, i.e., the set fC;D; T ;Wg. As can be discerned, each
class member represents one child of the parent node. A
class represents items that the prefix can be extended with
to obtain a new frequent node. Clearly, no subtree of an
infrequent prefix has to be examined. The power of the
equivalence class approach is that it breaks the original
search space into independent subproblems. For any subtree
rooted at node X, one can treat it as a completely new
problem; one can enumerate the patterns under it and
simply prefix them with the item X and so on.

Frequent pattern enumeration is straightforward in the
IT-tree framework. For a given node or prefix class, one can
perform intersections of the tidsets of all pairs of elements
in a class and check if min sup is met; support counting is
simultaneous with generation. Each resulting frequent
itemset is a class unto itself, with its own elements, that
will be recursively expanded. That is to say, for a given
class of itemsets with prefix P , ½P � ¼ fl1; l2; � � � ; lng, one can
perform the intersection of tðliÞ with all tðljÞ with j > i to
obtain a new class of frequent extensions, ½Pli� ¼ flj j j > i

and �ðPliljÞ � min supg. For example, from the null root
½� ¼ fA;C;D; T ;Wg, with min sup ¼ 50%, we obtain the
classes ½A� ¼ fC; T ;Wg, ½C� ¼ fD;T;Wg, and ½D� ¼ fWg,
and ½W � ¼ fg. Note that class ½A� does not contain D since
AD is not frequent. Fig. 4 gives a pseudocode description of
a depth first (DFS) exploration of the IT-tree for all frequent
patterns. CHARM improves upon this basic enumeration
scheme, using the conceptual framework provided by the
IT-tree; it is not assumed that all the tidsets will fit in
memory, rather CHARM materializes only a small portion
of the tree in memory at any given time.

3.1 Basic Properties of Itemset-Tidset Pairs

For any two nodes in the IT-tree, Xi � tðXiÞ and Xj � tðXjÞ,
ifXi � Xj then it is the case that tðXjÞ � tðXiÞ. For example,
for ACW � ACTW , tðACWÞ ¼ 1345 	 135 ¼ tðACTWÞ.
Let us define f : PðIÞ 7! N to be a one-to-one mapping
from itemsets to integers. For any two itemsets Xi and Xj,
we say Xi 
f Xj iff fðXiÞ 
 fðXjÞ. The function f defines a
total order over the set of all itemsets. For example, if f
denotes the lexicographic ordering, then itemset AC 
 AD,
but if f sorts itemsets in increasing order of their support,
then AD 
 AC if �ðADÞ 
 �ðACÞ. There are four basic
properties of IT-pairs (pictorially depicted in Fig. 5) that
CHARM leverages for fast exploration of closed sets.
Assume that we are currently processing a node P � tðP Þ,
where ½P � ¼ fl1; l2; � � � ; lng is the prefix class. Let Xi denote
the itemset Pli, then each member of ½P � is an IT-pair
Xi � tðXiÞ.
Theorem 1. Let Xi � tðXiÞ and Xj � tðXjÞ be any two members

of a class ½P �. The following four properties hold:

1. If tðXiÞ ¼ tðXjÞ, then cðXiÞ ¼ cðXjÞ ¼ cðXi [XjÞ.
2. If tðXiÞ � tðXjÞ, then cðXiÞ 6¼ cðXjÞ, but

cðXiÞ ¼ cðXi [XjÞ:

3. If tðXiÞ � tðXjÞ, then cðXiÞ 6¼ cðXjÞ, but

cðXjÞ ¼ cðXi [XjÞ:
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4. If tðXiÞ 6� tðXjÞ and tðXiÞ 6	 tðXjÞ, then

cðXiÞ 6¼ cðXjÞ 6¼ cðXi [XjÞ:

Proof and Discussion.

1. If tðXiÞ ¼ tðXjÞ, then, obviously, iðtðXiÞÞ ¼ iðtðXjÞ,
i.e., cðXiÞ ¼ cðXjÞ. Further, tðXiÞ ¼ tðXjÞ implies
that tðXi [XjÞ ¼ tðXiÞ \ tðXjÞ ¼ tðXiÞ. Thus,

iðtðXi [XjÞÞ ¼ iðtðXiÞÞ;

giving us cðXi [XjÞ ¼ cðXiÞ. This property im-
plies that we can replace every occurrence of Xi

with Xi [Xj and we can remove the element Xj

from further consideration since its closure is
identical to the closure of Xi [Xj.

2. If tðXiÞ � tðXjÞ, then

tðXi [XjÞ ¼ tðXiÞ \ tðXjÞ ¼ tðXiÞ 6¼ tðXjÞ;

giving us cðXi [XjÞ ¼ cðXiÞ 6¼ cðXjÞ. Thus, we
can replace every occurrence of Xi with Xi [Xj

since they have identical closures. But, since
cðXiÞ 6¼ cðXjÞ, we cannot remove element Xj

from class ½P �; it generates a different closure.
3. Similar to Case 2 above.
4. If tðXiÞ 6� tðXjÞ and tðXiÞ 6	 tðXjÞ, then clearly

tðXi [XjÞ ¼ tðXiÞ \ tðXjÞ 6¼ tðXiÞ 6¼ tðXjÞ, giving
us cðXi [XjÞ 6¼ cðXiÞ 6¼ cðXjÞ. No element of the
class can be eliminated; both Xi and Xj lead to
different closures (neither is a subset of the
other). tu

4 CHARM: ALGORITHM DESIGN AND

IMPLEMENTATION

We now present CHARM, an efficient algorithm for mining
all the closed frequent itemsets. We will first describe the
algorithm in general terms, independent of the implemen-
tation details. We then show how the algorithm can be
implemented efficiently. CHARM simultaneously explores
both the itemset space and tidset space using the IT-tree,
unlike previous methods which typically exploit only the

itemset space. CHARM uses a novel search method, based
on the IT-pair properties, that skips many levels in the
IT-tree to quickly converge on the itemset closures, rather
than having to enumerate many possible subsets.

The pseudocode for CHARM appears in Fig. 6. The
algorithm starts by initializing the prefix class ½P �, of nodes
to be examined to the frequent single items and their tidsets
(li � tðliÞ; li 2 I ) in Line 1. We assume that the elements in
½P � are ordered according to a suitable total order f . The
main computation is performed in CHARM-EXTEND which
returns the set of closed frequent itemsets C.

CHARM-EXTEND is responsible for considering each
combination of IT-pairs appearing in the prefix class ½P �. For
each IT-pair li � tðliÞ (Line 4), it combines it with the other
IT-pairs lj � tðljÞ that come after it (Line 6) according to the
total order f . Each li generates a new prefix, Pi ¼ P [ li, with
class ½Pi�, which is initially empty (Line 5). At line 7, the two
IT-pairs are combined to produce a new pair X � Y , where
X ¼ lj and Y ¼ tðliÞ \ tðljÞ. Line 8 tests which of the four
IT-pair properties can be applied by calling CHARM-
PROPERTY. Note that this routine may modify the current
class ½P � by deleting IT-pairs that are already subsumed by
other pairs. It also inserts the newly generated IT-pairs in the
new class ½Pi�. It can also modify the prefix Pi in case
Properties 1 and 2 hold. We then insert the itemset Pi in the
set of closed itemsets C (Line 9), provided that Pi is not
subsumed by a previously found closed set (we later
describe how to perform fast subsumption checking). Once
all lj have been processed, we recursively explore the new
class ½Pi� in a depth-first manner (Line 10). After we return,
any closed itemset containing Pi has already been generated.
We then return to Line 4 to process the next (unpruned)
IT-pair in ½P �.

Dynamic element reordering. We purposely let the
IT-pair ordering function in Line 6 remain unspecified. The
usual manner of processing is in lexicographic order, but
we can specify any other total order we want. The most
promising approach is to sort the itemsets based on their
support. The motivation is to increase opportunity for
pruning elements from a class ½P �. A quick look at
Properties 1 and 2 tells us that these two cases are preferable
over the other two. For Property 1, the closure of the two
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itemsets is equal and, thus, we can discard lj from ½Pi� and
replace Pi with Pi [ lj. For Property 2, we can still replace Pi

with Pi [ lj. Note that in both of these cases, we do not
insert anything in the new class ½Pi�! Thus, the more the
occurrence of Cases 1 and 2, the fewer levels of search we
perform. In contrast, the occurrence of Cases 3 and 4 results
in additions to the set of new nodes, requiring additional
levels of processing.

Since we want tðliÞ ¼ tðljÞ (Property 1) or tðliÞ � tðljÞ
(Property 2), it follows that we should sort the itemsets
in increasing order of their support. At the root level of
the IT-Tree, CHARM uses a slightly different node
ordering. Let x; y 2 I , define the weight of an item x

as wðxÞ ¼
P

xy2F2
�ðxyÞ, i.e., the sum of the support of

frequent 2-itemsets that contain the item x. At the root
level, we sort the items in increasing order of their
weights. For the remaining levels, elements are added in
sorted order of support to each new class ½Pi� (lines 20
and 22). Thus, the reordering is applied recursively at
each node in the tree.

Example. Fig. 7 shows how CHARM works on our example
database. If we look at the support of 2-itemsets
containing A, we find that AC and AW have support
4, while AT has support 3, thus, wðAÞ ¼ 4þ 4þ 3 ¼ 11.
The final sorted order of items is then D;T;A;W , and C

(their weights are 7, 10, 11, 15, and 17, respectively).
We initialize the root class as ½;� ¼ fD� 2; 456; T �

1; 356; A� 1; 345;W � 12; 345; C � 123; 456g in Line 1. At
Line 4 we first process the node D� 2456 (we set X ¼ D
in Line 5); it will be combined with the remaining
elements in Line 6. DT and DA are not frequent and are
pruned. We next look at D and W ; since tðDÞ 6¼ tðW Þ,
Property 4 applies and we simply insert W in ½D�
(line 22). We next find that tðDÞ � tðCÞ. Since Property 2
applies, we replace all occurrences of D with DC, which
means that we also change ½D� to ½DC� and the element
DW to DWC. We next make a recursive call to CHARM-
EXTEND with class ½DC�. Since there is only one element,
we jump to line 9, where DWC is added to the frequent
closed set C after subsumption checking, i.e., checking if
there exists a closed superset with the same support as
DWC (see Section 4.1). When we return the D (now DC)
branch is complete, thus DC itself is added to C.

When we process T , we find that tðT Þ 6¼ tðAÞ, thus we
insert A in the new class ½T � (Property 4). Next, we find
that tðT Þ 6¼ tðW Þ and we get ½T � ¼ fA;Wg. When we find
tðT Þ � tðCÞ, we update all occurrences of T with TC (by
Property 2). We thus get the class ½TC� ¼ fA;Wg.
CHARM then makes a recursive call on Line 10 to
process ½TC�. We try to combine TAC with TWC to find
tðTACÞ ¼ tðTWCÞ. Since Property 1 is satisfied, we
replace TAC with TACW , deleting TWC at the same
time. Since TACW cannot be extended further, we insert
it in C and, when we are done processing branch TC, it
too is added to C. All other branches satisfy Property 2
and no new recursion is made; the final C consists of the
uncrossed IT-pairs shown in Fig. 7.

4.1 Fast Subsumption Checking

Let Xi and Xj be two itemsets, we say that an itemset Xi

subsumes another itemset Xj if and only if Xj � Xi and
�ðXjÞ ¼ �ðXiÞ. Recall that, before adding a set Pi to the
current set of closed patterns C, CHARM makes a check in
Line 9 (see Fig. 6) to see if Pi is subsumed by some closed set
in C. In other words, it may happen that, after adding a
closed set Y to C, when we explore subsequent branches, we
may generate another set X, which cannot be extended
further, withX � Y and with �ðY Þ ¼ �ðXÞ. In this case,X is
a nonclosed set subsumed by Y and it should not be added
to C. Since C dynamically expands during enumeration of
closed patterns, we need a very fast approach to perform
such subsumption checks.

Clearly, we want to avoid comparing Pi with all existing
elements in C for this would lead to a OðjCj2Þ complexity. To
quickly retrieve relevant closed sets, the obvious solution is
to store C in a hash table. But, what hash function to use?
Since we want to perform subset checking, we cannot hash
on the itemset. We could use the support of the itemsets for
the hash function. But, many unrelated itemsets may have
the same support. Since CHARM uses IT-pairs throughout
its search, it seems reasonable to use the information from
the tidsets to help identify if Pi is subsumed. Note that, if
tðXjÞ ¼ tðXiÞ, then, obviously, �ðXjÞ ¼ �ðXiÞ. Thus, to
check if Pi is subsumed, we can check if tðPiÞ ¼ tðCÞ for
some C 2 C. This check can be performed in Oð1Þ time using
a hash table. But, obviously, we cannot afford to store the
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actual tidset with each closed set in C; the space require-
ments would be prohibitive.

CHARM adopts a compromise solution, as shown in
Fig. 8. It computes a hash function on the tidset and stores
in the hash table a closed set along with its support (in our
implementation, we used the C++ STL—standard template
library—hash_multimap container for the hash table). Let
hðXiÞ denote a suitable chosen hash function on the tidset
tðXiÞ. Before adding Pi to C, we retrieve from the hash table
all entries with the hash key hðPiÞ. For each matching,
closed set C is then checked if �ðPiÞ ¼ �ðCÞ. If yes, we next
check if Pi � C. If yes, then Pi is subsumed and we do not
add it to hash table C.

What is a good hash function on a tidset? CHARM uses
the sum of the tids in the tidset as the hash function, i.e.,
hðPiÞ ¼

P
T2tðPiÞ T (note, this is not the same as support,

which is the cardinality of tðPiÞ). We tried several other
variations and found there to be no performance difference.
This hash function is likely to be as good as any other due to
several reasons. First, by definition, a closed set is one that
does not have a superset with the same support; it follows
that it must have some tids that do not appear in any other
closed set. Thus, the hash keys of different closed sets will
tend to be different. Second, even if there are several closed
sets with the same hash key, the support check we perform
(i.e., if �ðPiÞ ¼ �ðCÞ) will eliminate many closed sets whose
keys are the same, but they, in fact, have different supports.
Third, this hash function is easy to compute and it can
easily be used with the diffset format we introduce next.

4.2 Diffsets for Fast Frequency Computations

Given that we are manipulating itemset-tidset pairs,
CHARM uses a vertical data format, where we maintain a
disk-based tidset for each item in the database. Mining
algorithms using the vertical format have been shown to be
very effective and usually outperform horizontal ap-
proaches [8], [18], [19], [22]. The main benefits of using a
vertical format are: 1) Computing the supports is simpler
and faster. Only intersections on tidsets are required, which
are also well-supported by current databases. The horizon-
tal approach, on the other hand, requires complex hash
trees. 2) There is automatic pruning of irrelevant informa-
tion as the intersections proceed; only tids relevant for
frequency determination remain after each intersection. For
databases with long transactions, it has been shown, using a
simple cost model, that the vertical approach reduces the
number of I/O operations [8]. Further, vertical bitmaps
offer scope for compression [19].

Despite the many advantages of the vertical format,
when the tidset cardinality gets very large (e.g., for very
frequent items), the methods start to suffer since the
intersection time starts to become inordinately large.
Furthermore, the size of intermediate tidsets generated for
frequent patterns can also become very large, requiring data

compression and writing of temporary results to disk. Thus,
(especially) in dense data sets, which are characterized by
high item frequency and many patterns, the vertical
approaches may quickly lose their advantages. In this
paper, we utilize a vertical data representation, called
diffsets, that we recently proposed [23]. Diffsets keep track of
differences in the tids of a candidate pattern from its parent
frequent pattern. These differences are propagated all the
way from one node to its children starting from the root. We
showed in [23] that diffsets drastically cut down (by orders
of magnitude) the size of memory required to store
intermediate results. Thus, even in dense domains, the
entire working set of patterns of several vertical mining
algorithms can fit entirely in main-memory. Since the
diffsets are a small fraction of the size of tidsets, intersection
operations are performed very efficiently.

More formally, consider a class with prefix P . Let dðXÞ
denote the diffset ofX, with respect to a prefix tidset, which
is the current universe of tids. In normal vertical methods,
one has available for a given class the tidset for the prefix
tðP Þ as well as the tidsets of all class members tðPXiÞ.
Assume that PX and PY are any two class members of P .
By the definition of support, it is true that tðPXÞ � tðP Þ and
tðPY Þ � tðP Þ. Furthermore, one obtains the support of
PXY by checking the cardinality of

tðPXÞ \ tðPY Þ ¼ tðPXY Þ:

Now, suppose instead that we have available to us not
tðPXÞ but rather dðPXÞ, which is given as tðP Þ � tðXÞ, i.e.,
the differences in the tids of X from P . Similarly, we have
available dðPY Þ. The first thing to note is that the support of
an itemset is no longer the cardinality of the diffset, but
rather it must be stored separately and is given as follows:
�ðPXÞ ¼ �ðP Þ � jdðPXÞj. So, given dðPXÞ and dðPY Þ, how
can we compute if PXY is frequent? We use the diffsets
recursively as we mentioned above, i.e.,

�ðPXY Þ ¼ �ðPXÞ � jdðPXY Þj:

So, we have to compute dðPXY Þ. By our definition,
dðPXY Þ ¼ tðPXÞ � tðPY Þ. But, we only have diffsets and
not tidsets as the expression requires. This is easy to fix
since

dðPXY Þ ¼ tðPXÞ � tðPY Þ ¼ tðPXÞ � tðPY Þ þ tðP Þ � tðP Þ
¼ ðtðP Þ � tðPY ÞÞ � ðtðP Þ � tðPXÞÞ
¼ dðPY Þ � dðPXÞ:

In other words, instead of computing dðXY Þ as a difference
of tidsets tðPXÞ � tðPY Þ, we compute it as the difference of
the diffsets dðPY Þ � dðPXÞ. Fig. 9 shows the different
regions for the tidsets and diffsets of a given prefix class
and any two of its members. The tidset of P , the triangle
marked tðP Þ, is the universe of relevant tids. The gray
region denotes dðPXÞ, while the region with the solid black
line denotes dðPY Þ. Note also that both tðPXY Þ and
dðPXY Þ are subsets of the tidset of the new prefix PX.
Diffsets are typically much smaller than storing the tidsets
with each child since only the essential changes are
propagated from a node to its children. Diffsets also shrink
as longer itemsets are found.
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Diffsets and subsumption checking. Notice that diffsets
cannot be used directly for generating a hash key as was
possible with tidsets. The reason is that, depending on the
class prefix, nodes in different branches will have different
diffsets, even though one is subsumed by the other. The
solution is to keep track of the hash key hðPXY Þ for PXY in
the same way as we store �ðPXY Þ. In other words, assume
that we have available hðPXÞ, then we can compute
hðPXY Þ ¼ hðPXÞ �

P
T2dðPXY Þ T . Of course, this is only

possible because of our choice of hash function described in
Section 4.1. Thus, we associate with each member of a class
its hash key and the subsumption checking proceeds
exactly as for tidsets.

Differences and subset testing. We assume that the
initial database is stored in tidset format, but we use diffsets
thereafter. Given the availability of diffsets for each itemset,
the computation of the difference for a new combination is
straightforward. All it takes is a linear scan through the two
diffsets, storing tids in one but not the other. The main
question is how to efficiently compute the subset informa-
tion, while computing differences, required for applying the
four IT-pair properties. At first, this might appear like an
expensive operation, but, in fact, it comes for free as an
outcome of the set difference operation. While taking the
difference of two sets, we keep track of the number of
mismatches in both the diffsets, i.e., the cases when a tid
occurs in one list but not in the other. Let mðXiÞ and mðXjÞ
denote the number of mismatches in the diffsets dðXiÞ and
dðXjÞ. There are four cases to consider:

1. Property 1. mðXiÞ ¼ 0 and mðXjÞ ¼ 0, then dðXiÞ ¼
dðXjÞ or tðXiÞ ¼ tðXjÞ.

2. Property 2. mðXiÞ > 0 and mðXjÞ ¼ 0, then dðXiÞ �
dðXjÞ or tðXiÞ � tðXjÞ.

3. Property 3. mðXiÞ ¼ 0 and mðXjÞ > 0, then dðXiÞ �
dðXjÞ or tðXiÞ � tðXjÞ.

4. Property 4. mðXiÞ > 0 and mðXjÞ > 0, then dðXiÞ 6¼
dðXjÞ or tðXiÞ 6¼ tðXjÞ.

Thus, CHARM performs support, subset, equality, and
inequality testing simultaneously while computing the
difference itself. Fig. 10 shows the search for closed sets
using diffsets instead of tidsets. The exploration proceeds in
exactly the same way as described in Example 1. However,
this time we perform difference operations on diffsets
(except for the root class, which uses tidsets). Consider an

IT-pair like TAWC � 6. Since this indicates that TAWC
differs from its parent TC � 1356 only in the tid 6, we can
infer that the real IT-pair should be TAWC � 135.

4.3 Other Optimizations and Correctness

Optimized initialization. There is only one significant
departure from the pseudocode in Fig. 6. Note that if we
initialize the ½P � set in Line 1 with all frequent items and
invoke CHARM-EXTEND, then, in the worst case, we might
perform nðn� 1Þ=2 difference operations, where n is the
number of frequent items. It is well known that many
itemsets of length 2 turn out to be infrequent, thus it is clearly
wasteful to perform Oðn2Þ operations. To solve this
performance problem, we first compute the set of frequent
itemsets of length 2 and then we add a simple check in Line 6
(not shown for clarity; it only applies to 2-itemsets) so that
we combine two itemsXi andXj only ifXi [Xj is known to
be frequent. The number of operations performed after this
check is equal to the number of frequent pairs, which in
practice is closer to OðnÞ rather than Oðn2Þ. To compute the
frequent itemsets of length 2 using the vertical format, we
perform a multistage vertical-to-horizontal transformation
on-the-fly, as described in [22], over distinct ranges of tids.
Given a recovered horizontal database chunk, it is straight-
forward to update the count of pairs of items using an upper
triangular 2D array. We then process the next chunk. The
horizontal chunks are thus temporarily materialized in
memory and then discarded after processing [22].

Memory management. Since CHARM processes
branches in a depth-first fashion, its memory requirements
are not substantial. It has to retain all the itemset-diffsets
pairs on the levels of the current left most branches in the
search space. The use of diffsets also drastically reduces the
memory consumption. For cases where even the memory
requirement of depth-first search and diffsets exceed
available memory, it is straightforward to modify CHARM
to write/read temporary diffsets to/from disk, as in [19].

Theorem 2 (correctness). CHARM enumerates all frequent
closed itemsets.

Proof. CHARM correctly identifies all and only the closed
frequent itemsets since its search is based on a complete
IT-tree search space. The only branches that are pruned
are those that either do not have sufficient support or
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those that are subsumed by another closed set based on
the properties of itemset-tidset pairs as outlined in
Theorem 1. Finally, CHARM eliminates any nonclosed
itemset that might be generated by performing sub-
sumption checking before inserting anything in the set of
all frequent closed itemsets C. tu

5 CHARM-L: GENERATING CLOSED ITEMSET

LATTICE

Consider the closed itemset lattice for our example
database, shown in Fig. 2. All of the current closed set
mining algorithms such as Close [16], Pascal [3], Closet [17],
Closet+ [20], Mafia [6], as well as CHARM, do not output
the lattice explicitly. Their output is simply a list of all the
closed sets found. On the other hand, for efficient rule
generation from the mined patterns, it is essential to know
the lattice, i.e., the subset-superset relationship between the
closed sets [26]. One approach to generate the lattice is to
first mine the closed sets, C, and to then construct the lattice
for C. Unfortunately, lattice construction has time complex-
ity OðjCj2Þ [14], which is too slow for a large number of
closed itemsets, as we shall see in the experimental section.

We therefore decided to extend CHARM to directly
compute the lattice while it generates the closed itemsets.
The basic idea is that, when a new closed set X is found, we
efficiently determine all its possible closed supersets,
S ¼ fY jY 2 C ^X � Y g. The minimal elements in S form
the “immediate” supersets or children of X in the closed
itemset lattice. This approach leads to a very efficient
algorithm, which we call CHARM-L.

Fig. 11 gives the pseudocode for CHARM-L. Let L
denote the closed itemset lattice and Lr the root node of the
lattice; we assume that Lr ¼ ;. CHARM-L starts in the same
manner as CHARM by initializing the parent class with the
frequent items. It then makes a call to the extension
subroutine, passing it the parent equivalence class and the
lattice root as the current lattice node.

CHARM-L-EXTEND takes as input the current lattice
node Lc (initially, the root node) and an equivalence class of
IT-pairs. Whenever CHARM-L generates a new closed
itemset, it assigns it a unique closed itemset identifier,
called cid. In CHARM-L, each element li � tðliÞ 2 ½P � has

associated with it a cidset, denoted CC, which is the set of all
cids of closed itemsets that are supersets of Pli. Given CCðliÞ
and CCðljÞ, one can obtain the set of closed itemsets that
contain both Pli and Plj by simply intersecting the two
cidsets, i.e., CCðXÞ ¼ CCðliÞ \ CCðljÞ, as done in Line 8.
CHARM-L enumerates all closed sets which are not
subsumed (Line 10), but, in addition, it also generates a
new lattice node Ln for the new closed set and inserts it in
the appropriate place in the closed itemset lattice L. This
new lattice node Ln becomes the current node in the next
recursive call of the extension subroutine (Line 11). Since
the list of closed supersets of li may change whenever a new
closed itemset is added to the lattice, a check is made in
Line 6 to update CCðliÞ for each remaining element in the
class. Note that CHARM-L shares the optimizations for
computing length 2 itemsets mentioned in Section 4.3.

Subsumption check and lattice generation. To check if a
new itemset Pi is closed (Fig. 11, Line 10), we apply
SUBSUMPTION-CHECK-LATTICE-GEN, shown in Fig. 12.
This routine takes as input the current lattice node, the
new itemset X, and the cidset CCðXÞ. The first task is to
check if X is subsumed. For this, we consider all closed
itemsets S that are supersets ofX (Line 1). IfX has the same
support as any superset Z 2 S (Line 2), then X is subsumed
and we return (Line 3). Otherwise, the new lattice node is
initialized as Ln ¼ X (Line 4). Each node in the lattice
maintains a list of parents (immediate subsets) and children
(immediate supersets). We add the new node Ln as a child
of the current node Lc and Lc as the parent of Ln (Line 5).
Out of all the closed supersets of Ln (i.e., X), the minimal
supersets are found Smin (Line 6). Each minimal superset
Z 2 Smin becomes a child of Ln (and Ln a parent of Z)
(Line 8). Finally, for every parent Zp of Z, if Zp � Ln, then its
children pointers have to be adjusted; we remove Z from
Zp’s children (and Zp from Z’s parents) (Lines 9-10). Finally,
we return the new lattice node Ln (Line 12).

Note that CHARM-L differs from CHARM in the way
it does subsumption checking. In CHARM, we use the
fast hash-based subsumption check. The hash-based
approach hashes on the sum of tids for an itemset,
locates closed sets having the same support, and then we
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can use subset tests to check subsumption. On the other
hand, for lattice generation, we need to know all the
closed supersets (and the minimal elements among them)
for a new closed set, and, since all of these will, by
definition, have different supports, they will be in
different hash cells. Thus, the hash-based approach is
not suitable for lattice generation. CHARM-L thus uses
the cidset intersection based subsumption checking,
which is also used for lattice generation.

Updating CC. Consider the UPDATE-CC routine in
CHARM-L (Fig. 11, Line 6). After the recursive call to
CHARM-L-EXTEND (Fig. 11, Line 11), new closed sets may
have been generated, so we need to update the cidsets for
all remaining IT-pairs in class ½P �. That is, for all IT-pairs
lj � tðljÞ 2 ½P �, with lj �f li, UPDATE-CC adds the cids of all
newly generated closed sets to CCðljÞ.
Example. Fig. 13 shows how CHARM-L works; we only

consider the SUBSUMPTION-CHECK-LATTICE-GEN rou-
tine since the rest of the algorithm is similar to CHARM.
As each closed set is found, it is assigned a new cid and
inserted into a lookup table, as shown on the left most
box. Initially, the lattice only has the root Lr ¼ ; and the
cidsets of all items are empty. The first closed itemset to
be added is Pi ¼ DC, with the current node as Lc ¼ Lr, so
we add Ln ¼ DC as a new child and update the cidsets of
C and D, as shown (with CCðCÞ ¼ fc1g;CCðDÞ ¼ fc1g).
Next, we add Pi ¼ DWC, with Lc ¼ DC. DWC is added
as the new nodeLn and becomes a child ofDC; the cidsets
are also updated. The process continues and each new
node becomes a child of the current node.

One interesting case is when we add Pi ¼ WC, which
requires adjusting the parent pointers of existing lattice
nodes. We have

CCðWCÞ ¼ CCðCÞ \ CCðWÞ ¼ fc1; c2; c3; c4; c5g \ fc2; c4; c5g
¼ fc2; c4; c5g:

Note that the figure shows the cidsets only for the single
items, but CHARM-L actually computes the cidsets of all

itemsets via intersections (Fig. 11, Line 8). Thus,
S ¼ fDWC; TAWC;AWCg. We find that WC is not
subsumed since �ðWCÞ ¼ 5 does not match the support
of any closed superset. We then add Ln ¼ WC as a child
of Lc ¼ Lr and we compute the minimal elements,
Smin ¼ fDWC;AWCg. Each of these minimal elements
becomes a child of WC. Next, we check if any parent of a
set in Smin is a subset of WC, in which case, we need to
adjust the lattice. We do not have such a case with DWC
since its only parent is DC (before adding WC), which is
not a subset ofWC. However, Lr ¼ ;, the parent of AWC
(before addingWC), is a subset ofWC, so we remove the
parent-child link between Lr and AWC. Finally, the last
closed set to be added is C and we obtain the full closed
itemset lattice as shown (bottom, right most box).

6 EXPERIMENTAL EVALUATION

Experiments were performed on a 400MHz Pentium PC
with 256MB of memory, running RedHat Linux 6.0.
Algorithms were coded in C++. For performance compar-
ison, we used the original source or object code for Close
[16], Pascal [3], Closet [17], and Mafia [6], all provided to us
by their authors. The original Closet code had a subtle bug,
which affected the performance, but not the correctness.
Our comparison below uses the new bug-free, optimized
version of Closet obtained from its authors. Mafia has an
option to mine only closed sets instead of maximal sets. We
refer to this version of Mafia below. We also include a
comparison with the base Apriori algorithm [1] for mining
all itemsets. Timings in the figures below are based on total
wall-clock time and include all preprocessing costs (such as
vertical database creation in CHARM and Mafia).

Benchmark data sets. We chose several real and
synthetic database benchmarks [1], [4], publicly available
from IBM Almaden (www.almaden.ibm.com/cs/quest/
demos.html), for the performance tests. The PUMS data
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sets (pumsb and pumsb*) contain census data. pumsb* is

the same as pumsb without items with 80 percent or more

support. The mushroom database contains characteristics of

various species of mushrooms. The connect and chess data

sets are derived from their respective game steps. The latter

three data sets were originally taken from the UC Irvine

Machine Learning Database Repository. The synthetic data

sets (T10 and T40), using the IBM generator, mimic the

transactions in a retailing environment.
The gazelle data set comes from click-stream data from a

small dot-com company called Gazelle.com, a legware and
legcare retailer, which no longer exists. A portion of this
data set was used in the KDD-Cup 2000 competition. This
data set was recently made publicly available by Blue
Martini Software (download it from www.ecn.purdue.edu/
KDDCUP).

Typically, the real data sets are very dense, i.e., they
produce many long frequent itemsets even for very high
values of support. The synthetic data sets mimic the
transactions in a retailing environment. Usually, the

synthetic data sets are sparser when compared to the
real sets.

Table 1 shows the characteristics of the real and synthetic
data sets used in our evaluation. It shows the number of
items, the average transaction length, the standard devia-
tion of transaction lengths, and the number of records in
each database. The table additionally shows the length of
the longest maximal pattern (at the lowest minimum
support used in our experiments) for the different data
sets, as well as the maximum level of search that CHARM
performed to discover the longest pattern. For example, on
gazelle, the longest closed pattern was of length 154 (any
method that mines all frequent patterns will be impractical
for such long patterns), yet the maximum recursion depth
in CHARM was only 11! The number of levels skipped is
also considerable for other real data sets. The synthetic data
set T10 is extremely sparse and no levels are skipped, but
for T40 six levels were skipped. These results give an
indication of the effectiveness of CHARM in mining closed
patterns, and are mainly due to repeated applications of
Properties 1 and 2 in Theorem 1.
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Fig. 14 shows the total number of frequent, closed, and
maximal itemsets found for various support values. The
maximal frequent itemsets are a subset of the frequent
closed itemsets (the maximal frequent itemsets must be
closed, since, by definition, they cannot be extended by
another item to yield a frequent itemset). The frequent
closed itemsets are, of course, a subset of all frequent
itemsets. Depending on the support value used, for the real
data sets, the set of maximal itemsets is about an order of
magnitude smaller than the set of closed itemsets, which, in
turn, is an order of magnitude smaller than the set of all
frequent itemsets. Even for very low support values we find
that the difference between maximal and closed remains
around a factor of 10. However, the gap between closed and
all frequent itemsets grows more rapidly. On the other
hand, in sparse data sets, the number of closed sets is only
marginally smaller than the number of frequent sets; the
number of maximal sets is still smaller, though the
differences can narrow down for low support values.

Before we discuss the performance results of different
algorithms, it is instructive to look at the total number of
frequent closed itemsets and distribution of closed patterns
by length for the various data sets, as shown in Fig. 15. We
have grouped the data sets according to the type of
distribution. chess, pumsb*, pumsb, and connect all display
an almost symmetric distribution of the closed frequent
patterns with different means. T40 and mushroom display
an interesting bimodal distribution of closed sets. T40, like
T10, has a many short patterns of length 2, but it also has
another peak at length 6. mushroom has considerably
longer patterns; its second peak occurs at 19. Finally, gazelle
and T10 have a right-skewed distribution. gazelle tends to
have many small patterns, with a very long right tail. T10

exhibits a similar distribution, with the majority of the
closed patterns begin of length 2! The type of distribution
tends to influence the behavior of different algorithms, as
we will see below.

6.1 Performance Testing

We compare the performance of CHARM against Apriori,
Close, Pascal, Mafia, Closet, and Closet+ in Fig. 16, Fig. 17,
and Fig. 18. Since Closet and Closet+ were provided as a
Windows executable by its authors, we compared them
separately on a 3.06 MHz Pentium 4 processor with 1GB
memory, running Windows XP. In [24], we tested a
modified version of a maximal pattern finding algorithm
(MaxMiner [4]) to discover closed sets in a postprocessing
step and found it to be too slow for all except short patterns.

Symmetric data sets. Let us first compare how the
methods perform on data sets which exhibit a symmetric
distribution of closed itemsets, namely, chess, pumsb,
connect, and pumsb*, as shown in Fig. 16. We observe that
Apriori, Close, and Pascal work only for very high values of
support on these data sets. The best among the three is
Pascal, which can be twice as fast as Close and up to 4 times
better than Apriori. On the other hand, CHARM is several
orders of magnitude better than Pascal and it can be run on
very low support values, where none of the former three
methods can be run. Comparing with Mafia, we find that
both CHARM and Mafia have a similar performance for
higher support values. However, as we lower the minimum
support, the performance gap between CHARM and Mafia
widens. For example, at the lowest support value plotted,
CHARM is about 30 times faster than Mafia on Chess, about
three times faster on connect and pumsb, and four times
faster on pumsb*. CHARM outperforms both Closet and
Closet+ by an order of magnitude or more, especially as
support is lowered (except for connect). Closet is always
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slower than Closet+. On chess, CHARM is 30 times faster

than Closet+ and, on pumsb and pumsb*, it is over 10 times

faster than Closet+. On connect, Closet performs better, but

both seem to become comparable at low support. The

reason is that connect has transactions with a lot of overlap

among items, leading to a compact FP-tree and to faster

performance.

Bimodal Data Sets. On the two data sets with a bimodal

distribution of frequent closed patterns, namely, mushroom

and T40 (as shown in Fig. 17), we find that Pascal fares

better than for symmetric distributions. For higher values of

support, the maximum closed pattern length is relatively

short and the distribution is dominated by the first mode.

Apriori, Close, and Pascal can handle this case. However,
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Fig. 16. Performance of CHARM on symmetric data sets.



as one lowers the minimum support, the second mode
starts to dominate, with longer patterns. These methods

thus quickly lose steam and become uncompetitive.
Between CHARM and Mafia, up to 1 percent minimum

support, there is negligible difference, however, when the
support is lowered, there is a huge difference in perfor-
mance. CHARM is about 20 times faster on mushroom and

10 times faster on T40 for the lowest support shown. The
gap continues to widen sharply. Closet is slower than

Closet+, for all except very high supports. We find that

CHARM outperforms Closet+ by a factor of 2 for mush-

room and 5 for T40.
Right-skewed data sets. On gazelle and T10, which have

a large number of very short closed patterns, followed by a

sharp drop (as shown in Fig. 18), we find that Apriori,

Close, and Pascal remain competitive even for relatively

low supports. The reason is that T10 had a maximum

pattern length of 11 at the lowest support shown. Also,
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Fig. 17. Performance of CHARM on bimodal data sets.

Fig. 18. Performance of CHARM on right-skewed data sets.



gazelle at 0.06 percent support also had a maximum pattern
length of 11. The level-wise search of these three methods is
able to easily handle such short patterns. However, for
gazelle, we found that, at 0.05 percent support, the
maximum pattern length suddenly jumped to 45 and none
of these three methods could be run.

T10, though a sparse data set, is problematic for Mafia.
The reason is that T10 produces long sparse bitvectors for
each item and offers little scope for bit-vector compression
and projection that Mafia relies on for efficiency. This
causes Mafia to be uncompetitive for such data sets.
Similarly, Mafia fails to do well on gazelle. However, it is
able to run on the lowest support value. The diffset format
of CHARM is resilient to sparsity (as shown in [23]) and it
continues to outperform other methods. For the lowest
support, on T10, it is twice as fast as Pascal and 15 times
better than Mafia and it is about 70 times faster than Mafia
on gazelle. CHARM is about two times slower than Closet/
Closet+ on T10. The reason is that the majority of closed
sets are of length 2 and the tidset/diffsets operations in
CHARM are relatively expensive compared to the compact
FP-tree for short patterns (max length is only 11). However,
for gazelle, which has much longer closed patterns,
CHARM outperforms Closet+ by a factor of 5 and Closet
by a factor of 40!

Scaleup experiments. Fig. 19 shows how CHARM scales
with an increasing number of transactions. For this study,
we kept all database parameters constant and replicated the
transactions from 2 to 16 times. Thus, for example, for T40,
which has 100K transactions initially, at a replication factor
of 16, it will have 1.6 million transactions. At a given level of
support, we find a linear increase in the running time with
increasing number of transactions.

Memory usage. Fig. 20 shows how the memory usage for
storing the tidsets and diffsets changes as computation
progresses. The total usage for tidsets is generally under
10MB, but, for diffsets, it is under 0.2MB, a reduction by a
factor of 50! The sharp drop to 0 (the vertical lines) indicates

the beginning of a new prefix class. Table 2 shows the
maximum memory usage for three data sets for different
values of support. Here, we also see that the memory
footprint using diffsets is extremely small even for low
values of support. These results confirm that, for many data
sets, the intermediate diffsets can easily fit in memory.
However, as observed in [20], while CHARM outperforms
Closet+ on most data sets, its memory consumption could
still be high; this is mainly due to the tidsets of 2-itemsets,
which do not benefit from diffsets.

6.2 CHARM-L Performance

Fig. 21 shows the performance of CHARM-L on different
data sets for various support values. We compare its
performance with an approach that first mines the closed
sets and then constructs the lattice in a postprocessing step,
labeled as POST-LAT in the figure. We also compare
CHARM-L with CHARM to see how much more expensive
lattice generation is versus just listing all closed itemsets.
We find that CHARM-L is over 100 times faster than Post-
Lat over the support values tested (except for very high
support values). It is clear that this difference will only
increase as support is lowered and more closed itemsets are
found. We also find that CHARM-L compares favorably
with CHARM, but the extra overhead in generating the
lattice makes it slower than CHARM (the gap will widen for
lower support values).

7 CONCLUSIONS

We presented and evaluated CHARM, an efficient algo-
rithm for mining closed frequent itemsets, and CHARM-L,
an efficient algorithm to generate the closed itemset lattice.
These algorithms simultaneously explore both the itemset
space and tidset space using the new IT-tree framework,
which allows a novel search method that skips many levels
to quickly identify the closed frequent itemsets, instead of
having to enumerate many nonclosed subsets. We utilized a
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Fig. 19. Size scaleup on different data sets.

Fig. 20. Memory Usage (80 percent minsup).

TABLE 2
Maximum Memory Usage (Using Diffsets)



new vertical format based on diffsets, i.e., storing the

differences in the tids as the computation progresses. An

extensive set of experiments confirm that CHARM and

CHARM-L can provide orders of magnitude improvement

over existing methods for mining closed itemsets.

CHARM-L is a state-of-the-art algorithm that generates

the frequent closed itemset lattice.
It has been shown in recent studies that closed itemsets

can help in generating nonredundant rules sets, which are
typically a lot smaller than the set of all association rules
[21]. An interesting direction of future work is to develop
efficient methods to mine closed patterns for other mining
problems like sequences, episodes, multidimensional pat-
terns, etc., and to study how much reduction in their
respective rule sets is possible. It also seems worthwhile to
explore if the concept of “closure” extends to metrics other
than support. For example, for confidence, correlation, etc.
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