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Abstract—Mining frequent trees is very useful in domains like bioinformatics, Web mining, mining semistructured data, etc. We

formulate the problem of mining (embedded) subtrees in a forest of rooted, labeled, and ordered trees. We present TREEMINER, a

novel algorithm to discover all frequent subtrees in a forest, using a new data structure called scope-list. We contrast TREEMINER with

a pattern matching tree mining algorithm (PATTERNMATCHER), and we also compare it with TREEMINERD, which counts only distinct

occurrences of a pattern. We conduct detailed experiments to test the performance and scalability of these methods. We also use tree

mining to analyze RNA structure and phylogenetics data sets from bioinformatics domain.

Index Terms—Frequent tree mining, rooted, ordered, labeled trees, subtree enumeration, pattern matching, RNA structure,

phylogenetic trees, data mining.
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1 INTRODUCTION

FREQUENT Structure Mining (FSM) refers to an important
class of exploratory mining tasks, namely, those dealing

with extracting patterns in massive databases representing
complex interactions between entities. FSM not only
encompasses mining techniques like associations [3] and
sequences [4], but it also generalizes to more complex
patterns like frequent trees and graphs [18], [21]. Such
patterns typically arise in applications like bioinformatics,
Web mining, mining semistructured documents, etc. As one
increases the complexity of the structures to be discovered,
one extracts more informative patterns; we are specifically
interested in mining tree-like patterns.

As a motivating example for tree mining, consider the

problem of mining structural patterns in a data set of

Ribonucleic acid (RNA) molecules, which can be repre-

sented as trees. To get information about a newly

sequenced RNA, researchers may compare it with known

RNA structures, looking for common topological patterns,

which provide important clues to the function of the RNA

[30]. As another example, given several phylogenies (i.e.,

evolutionary trees) from the Tree of Life [23], indicating

evolutionary history of several organisms, one might be

interested in discovering if there are common subtree

patterns.
In this paper, we introduce TREEMINER, an efficient

algorithm for the problem of mining frequent subtrees in a

forest (the database). The key contributions of our work are

as follows:

1. We introduce the problem of mining embedded
subtrees in a collection of rooted, ordered, and
labeled trees.

2. We use the notion of a scope for a node in a tree. We
show how any tree can be represented as a list of its
node scopes in a novel vertical format called scope-list.

3. We develop a framework for nonredundant candi-
date subtree generation, i.e., we propose a systematic
search of the possibly frequent subtrees, such that no
pattern is generated more than once.

4. We show how one can efficiently compute the
frequency of a candidate tree by joining the scope-
lists of its subtrees.

5. Our formulation allows one to discover all subtrees
in a forest, as well as all subtrees in a single large
tree.

Furthermore, simple modifications also allow us to mine

unlabeled subtrees, unordered subtrees, and also frequent

subforests (i.e., disconnected subtrees). We also present

TREEMINERD, a method that, instead of counting all

embeddings, only counts distinct occurrences of a pattern

and might be more suitable than TREEMINER for certain

data sets. We also contrast TREEMINER with another tree

mining algorithm based on pattern matching, PATTERN-

MATCHER. We present applications of tree mining in

bioinformatics, such as mining frequent RNA structures

and common phylogenetic tree patterns.

2 PROBLEM STATEMENT

A rooted, labeled, tree, T ¼ ðV ;EÞ is a directed, acyclic,
connected graph with V ¼ f0; 1; � � � ; ng as the set of vertices
and E ¼ fðx; yÞjx; y 2 V g as the set of edges. One distin-
guished vertex r 2 V is designated the root, and for all
x 2 V , there is a unique path from r to x. Further, l : V ! L
is a labeling function mapping vertices to a set of labels
L ¼ f‘1; ‘2; � � �g. In an ordered tree, the children of each
vertex are ordered (i.e., if a vertex has k children, then we
can designate them as the first child, second child, and so
on, up to the kth child), otherwise, the tree is unordered. In
this paper, all trees we consider are ordered, labeled, and
rooted trees.
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If x; y 2 V and there is a path from x to y, then x is called
an ancestor of y (and y a descendant of x), denoted as x �p y,
where p is the length of the path from x to y. If x �1 y (i.e., x
is an immediate ancestor), then x is called the parent of y,
and y the child of x. If x and y have the same parent, x and y

are called siblings, and if they have a common ancestor, they
are called cousins.

We assume that vertex x 2 V is synonymous with (or
numbered according to) its position nx in the depth-first
(preorder) traversal of the tree T (for example, the root r is
vertex n0). Let T ðxÞ denote the subtree rooted at x, and let y
be the rightmost leaf (or highest numbered descendant)
under x. Then, the scope of x is given as sðxÞ ¼ ½x; y� (or
½nx; ny�). Intuitively, sðxÞ demarcates the range of vertices
under x.

Subtrees. Given a tree S ¼ ðVs; EsÞ and tree T ¼ ðVt; EtÞ,
we say that S is an isomorphic subtree of T iff 1 there exists a
one-to-one mapping ’ : Vs ! Vt, such that ðx; yÞ 2 Es iff
ð’ðxÞ; ’ðyÞÞ 2 Et. If ’ is onto, then S and T are called
isomorphic. S is called an induced subtree of T ¼ ðVt; EtÞ,
denoted S �i T , iff S is an isomorphic subtree of T and ’

preserves labels, i.e., lðxÞ ¼ lð’ðxÞÞ; 8x 2 Vs. That is, for
induced subtrees, ’ preserves the parent-child relation-
ships, as well as vertex labels. The induced subtree obtained
by deleting the rightmost leaf in T is called an immediate
prefix of T . The induced tree obtained from T by a series of
rightmost node deletions is called a prefix of T .

S ¼ ðVs; EsÞ is called an embedded subtree of T ¼ ðVt; EtÞ,
denoted as S �e T iff there exists a 1-to-1 mapping ’ :
Vs ! Vt that satisfies: 1) ðx; yÞ 2 Es iff ’ðxÞ �p ’ðyÞ and
2) lðxÞ ¼ lð’ðxÞÞ. That is, for embedded subtrees, ’

preserves ancestor-descendant relationships and labels.
Embedded subtrees are thus a generalization of induced
subtrees; they allow not only direct parent-child branches,
but also ancestor-descendant branches. As such, embedded
subtrees are able to extract patterns “hidden” (or em-
bedded) deep within large trees which might be missed by
the traditional definition.

As an example, consider Fig. 1, which shows three trees.
Let’s assume we want to mine subtrees that are common to
all three trees (i.e., 100 percent frequency). If we mine
induced trees only, then there are no frequent trees of size
more than one. On the other hand, if we mine embedded
subtrees, then the tree shown in the box is a frequent
pattern appearing in all three trees; it is obtained by
skipping the “middle” node in each tree. This example
shows why embedded trees are of interest. Henceforth, a
reference to subtree should be taken to mean an embedded
subtree, unless indicated otherwise.

Support. If S �fi;eg T , we also say that T contains S or S
occurs in T . Note that each occurrence of S in T can be
identified by its unique match label, given by the sequence
’ðx0Þ’ðx1Þ � � �’ðxjSjÞ, where xi 2 Vs. That is, a match label of
S is given as the set of matching positions in T . Let �T ðSÞ
denote the number of occurrences of the subtree S in a tree
T . Let dT be an indicator variable, with dT ðSÞ ¼ 1 if �T ðSÞ >
0 and dT ðSÞ ¼ 0 if �T ðSÞ ¼ 0. Let D denote a database (a
forest) of trees. The support of a subtree S in the database is
defined as �ðSÞ ¼

P
T2D dT ðSÞ, i.e., the number of trees in D

that contain at least one occurrence of S. The weighted
support of S is defined as �wðSÞ ¼

P
T2D �T ðSÞ, i.e., total

number of occurrences of S over all trees in D. Typically,
support is given as a percentage of the total number of trees
in D. A subtree S is frequent if its support is more than or
equal to a user-specified minimum support (minsup) value.
We denote by Fk the set of all frequent subtrees of size k

(also called a k-ðsubÞtree). In some domains, one might be
interested in using weighted support, instead of support.
Both of them are allowed in our mining approach, but we
focus mainly on support.

Given a database D of trees, our goal is to mine all
frequent, labeled, ordered, and embedded subtrees. Con-
sider Fig. 2, which shows an example tree T with node
labels drawn from the set L ¼ f0; 1; 2; 3g. The figure shows,
for each node, its label (circled), its depth-first number, and
its scope. For example, the root occurs at position n ¼ 0, its
label lðn0Þ ¼ 0, and, since the right-most leaf under the root
occurs at position 6, the scope of the root is s ¼ ½0; 6�. Tree S1
is a subtree of T ; it has a support of 1, but its weighted
support is 2, since node n2 in S1 occurs at positions 4 and 5
in T , both of which support S1, i.e., there are two match
labels for S1, namely, 134 and 135 (we omit set notation for
convenience). S2 is also a valid subtree. S3 is not a (sub)tree
since it is disconnected; it is a subforest.

3 GENERATING CANDIDATE TREES

There are two mains steps for enumerating frequent
subtrees in D. First, we need a systematic way of generating
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candidate subtrees whose frequency is to be computed. The
candidate set should be nonredundant, i.e., each subtree
should be generated as most once. Second, we need efficient
ways of counting the number of occurrences of each
candidate in the database D and to determine which
candidates pass the minsup threshold. The latter step is
data structure dependent and will be treated later. Here, we
are concerned with the problem of nonredundant pattern
generation. We describe our tree representation and
candidate generation procedure below.

Representing Trees as Strings. As described in [40], we
represent a tree T by its string encoding, denoted T ,
generated as follows: Add vertex labels to T in a depth-
first preorder traversal of T and add a unique symbol
�1 =2 L whenever we backtrack from a child to its parent.
This format allows us to conveniently represent trees with
an arbitrary number of children for each node. Since each
branch must be traversed in both forward and backward
direction, the space usage to store a tree as a string is
exactly 2mþ 1 ¼ 2n� 1 (where m is the number of edges
and n is the number of nodes in T ). We use the notation
lðT Þ to refer to the label sequence of T , which consists of the
node labels of T in depth-first ordering (without backtrack
symbol �1), i.e., label sequence ignores tree topology. In
Fig. 2, we show the string encodings for the tree T as well
as each of its subtrees. For example, subtree S1 is encoded
by the string 1 1 � 1 2 � 1. That is, we start at the root of
S1 and add 1 to the string. The next node in preorder
traversal is labeled 1, which is added to the encoding. We
then backtrack to the root (adding �1) and follow down to
the next node, adding 2 to the encoding. Finally, we
backtrack to the root, adding �1 to the string. Note that the
label sequence of S1 is given as 112.

3.1 Candidate Subtree Generation

We use the antimonotone property of frequent patterns for
efficient candidate generation, namely, that the frequency of
a superpattern is less than or equal to the frequency of a
subpattern. Thus, we consider only a known frequent
pattern for extension. Past experience also suggests that an
extension by a single item at a time is likely to be more
efficient. Thus, we use information from frequent k-subtrees
to generate candidate ðkþ 1Þ-subtrees.

Equivalence Classes. We say that two k-subtreesX;Y are
in the same prefix equivalence class iff they share a common
prefix up to the ðk� 1Þth node. Formally, let X ;Y be the

string encodings of two trees and let function pðX ; iÞ return
the prefix up to the ith node. X;Y are in the same class iff
pðX ; k� 1Þ ¼ pðY; k� 1Þ. Thus, any two members of an
equivalence class differ only in the position of the last node.

Consider Fig. 3, which shows a class template for
subtrees of size 5 with the same prefix subtree P of size 4,
with string encoding P ¼ 3 4 2 � 1 1. Here, x denotes an
arbitrary label from L. The valid positions where the last
node with label x may be attached to the prefix are n0, n1,
and n3, since, in each of these cases, the subtree obtained by
adding x to P has the same prefix. Note that a node
attached to position n2 cannot be a valid member of class P,
since it would yield a different prefix, given as 3 4 2 x. The
figure also shows the actual format we use to store an
equivalence class; it consists of the class prefix string and a
list of elements. Each element is given as an ðx; pÞ pair,
where x is the label of the last node and p specifies the
depth-first position of the node in P to which x is attached.
For example, ðx; 1Þ refers to the case where x is attached to
node n1 at position 1. The figure shows the encoding of the
subtrees corresponding to each class element. Note how
each of them shares the same prefix up to the ðk� 1Þth node.
These subtrees are shown only for illustration purposes; we
only store the element list in a class.

Let P be prefix subtree of size k� 1; we use the notation
½P �k�1 to refer to its class (we omit the subscript when there
is no ambiguity). If ðx; iÞ is an element of the class, we write
it as ðx; iÞ 2 ½P �. Each ðx; iÞ pair corresponds to a subtree of
size k, sharing P as the prefix, with the last node labeled x,
attached to node ni in P . We use the notation Pi

x to refer to
the new prefix subtree formed by adding ðx; iÞ to P ; Pi

x is
also called an extension of P .

Lemma 1. Let P be a class prefix subtree with root n0 and with
rightmost leaf nr. Let RðP Þ be the rightmost path from the root
to nr, given as RðP Þ ¼ fni : ni has scope ½i; r�g. Then,
ðx; iÞ 2 ½P � iff ni 2 RðP Þ.

This lemma states that the valid extensions (Pi
x) of P are

obtained only by attaching label x to nodes that lie on the
path from the root to the rightmost leaf in P . It is easy to see
that, if x is attached to any other position, the resulting
prefix would be different since x would then be before nr in
depth-first numbering.

Candidate Generation. Given an equivalence class of
k-subtrees, how do we obtain candidate ðkþ 1Þ-subtrees?
First, we assume (without loss of generality) that the
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elements, ðx; pÞ, in each class are kept sorted by node label
as the primary key and position as the secondary key. Given
a sorted element list, the candidate generation procedure
we describe below outputs a new class list that respects that
order, without explicit sorting. The main idea is to consider
each ordered pair of elements in the class for extension,
including self-extension. There can be up to two candidates
from each pair of elements to be joined. The next theorem
formalizes this notion.

Theorem 1 (Class Extension). Let the k� 1 subtree P be a
prefix class with encoding P, and let ðx; iÞ and ðy; jÞ denote
any two elements in the class. Let the k-subtree P i

x be the
extension of P with element ðx; iÞ. Let ½Pi

x� denote the class
representing possible extensions of Pi

x. Define a join
operator � on the two elements, denoted ðx; iÞ � ðy; jÞ, as
follows: Case 1—ði ¼ jÞ: a) If P 6¼ ;, add ðy; jÞ and ðy; niÞ to
class ½Pi

x�, where ni is the depth-first number for node ðx; iÞ in
tree Pi

x. b) If P 6¼ ;, add ðy; jþ 1Þ to ½Pi
x�. Case 2—ði > jÞ:

Add ðy; jÞ to class ½Pi
x�. Case 3— ði < jÞ: No new candidate is

possible in this case. Then, all possible ðkþ 1Þ-subtrees with
the common prefix P will be enumerated by applying the join
operator to each ordered pair of elements ðx; iÞ and ðy; jÞ.

Proof. Omitted due to lack of space. tu

Consider Fig. 4, showing the prefix class P ¼ ð1 2Þ,
which contains two elements, ð3; 1Þ and ð4; 0Þ. The first step
is to perform a self-join ð3; 1Þ � ð3; 1Þ. By Case 1 a), this
produces candidate elements ð3; 1Þ and ð3; 2Þ for the new
class P1

3 ¼ ð1 2 3Þ. That is, a self-join on ð3; 1Þ produces
two possible candidate subtrees, one where the last node is
a sibling of ð3; 1Þ and another where it is a child of ð3; 1Þ.
The leftmost two subtrees in the figure illustrate these cases.
When we join ð3; 1Þ � ð4; 0Þ, Case 2 applies, i.e., the second
element is joined to some ancestor of the first one, thus,
i > j. The only possible candidate element is ð4; 0Þ, since 4
remains attached to node n0 even after the join (see the third
subtree in the left-hand class in Fig. 4).

We thus add ð4; 0Þ to class ½P 1
3 �. We now move to the

class on the right with prefix P0
4 ¼ ð1 2 � 1 4Þ. When we try

to join ð4; 0Þ � ð3; 1Þ, Case 3 applies and no new candidate is
generated. Actually, if we do merge these two subtrees, we

obtain the new subtree 1 2 3 � 1 � 1 4, which has a
different prefix and was already added to the class ½P 1

3 �.
Finally, we perform a self-join ð4; 0Þ � ð4; 0Þ adding ele-
ments ð4; 0Þ and ð4; 2Þ to the class ½P 0

4 � shown on the right-
hand side.

Case 1 b) applies only when we join single items to
produce candidate 2-subtrees, i.e., we are given a prefix
class ½;� ¼ fðxi;�1Þ; i ¼ 1; . . . ;mg, where each xi is a label
and �1 indicates that it is not attached to any node. If
we join ðxi;�1Þ � ðxj;�1Þ, since we want only (connected)
2-subtrees, we insert the element ðxj; 0Þ to the class of xi.
This corresponds to the case where xj is a child of xi. If we
want to generate subforests as well, all we have to do is to
insert ðxj;�1Þ in the class of xi. In this case, xj would be a
sibling of xi, but since they are not connected, they would
be roots of two trees in a subforest. If we allow such class
elements, then one can show that the class extension
theorem would produce all possible candidate subforests.
However, in this paper, we will focus only on subtrees.

Corollary 1 (Automatic Ordering). Let ½P �k�1 be a prefix
class with elements sorted according to the total ordering <
given as follows: ðx; iÞ < ðy; jÞ if and only if x < y or
ðx ¼ y and i < jÞ. Then, the class extension method gen-
erates candidate classes ½P �k with sorted elements.

Corollary 2 (Correctness). The class extension method correctly
generates all possible candidate subtrees and each candidate is
generated at most once.

4 TREEMINER ALGORITHM

TREEMINER performs depth-first search (DFS) for frequent
subtrees, using a novel tree representation called scope-list
for fast support counting, as discussed below.

Scope-List Representation. Let X be a k-subtree of a tree
T . Let xk refer to the last node of X. We use the notation
LðXÞ to refer to the scope-list of X. Each element of the
scope-list is a triple ðt;m; sÞ, where t is a tree id (tid) in
which X occurs, m is a match label of the ðk� 1Þ length
prefix of X, and s is the scope of the last item xk. Recall that
the prefix match label gives the positions of nodes in T that
match the prefix. Since a given prefix can occur multiple
times in a tree, X can be associated with multiple match
labels as well as multiple scopes. The initial scope-lists are
created for single items (i.e., labels) i that occur in a tree T .
Since a single item has an empty prefix, we don’t have to
store the prefix match label m for single items. We will
show later how to compute pattern frequency via joins on
scope-lists. Fig. 5 shows a database of three trees, along with
the horizontal format for each tree and the vertical scope-
lists format for each item. Consider Item 1; since it occurs at
node position 0 with scope ½0; 3� in tree T0, we add ð0; ½0; 3�Þ
to its scope list. Item 1 also occurs in T1 at position n1 with
scope ½1; 3�, so we add ð1; ½1; 3�Þ to Lð1Þ. Finally, 1 occurs
with scope ½0; 7� and ½4; 7� in tree T2, so we add ð2; ½0; 7�Þ and
ð2; ½4; 7�Þ to its scope-list. In a similar manner, the scope lists
for other items are created.

4.1 Frequent Subtree Enumeration

Fig. 6 shows the high-level structure of TREEMINER. The
main steps include the computation of the frequent items
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and 2-subtrees and the enumeration of all other frequent
subtrees via DFS search within each class ½P �1 2 F2. We will
now describe each step in some more detail.

Computing F1 and F2.We assume that the input database
is in horizontal string encoded format. To compute F1, for
each item i 2 T , the string encoding of tree T , we increment
i0s count in an 1D array. This step also computes other
database statistics such as the number of trees, maximum
number of labels, and so on.All labels inF1 belong to the class
with empty prefix, given as ½P �0 ¼ ½;� ¼ fði;�1Þ; i 2 F1g,
and the position �1 indicates that i is not attached to any
node. Total time for this step is OðnÞ per tree, where n ¼ jT j.

By Theorem 1, each candidate class ½P �1 ¼ ½i� (with
i 2 F1) consists of elements of the form ðj; 0Þ, where j � i.
For efficient F2 counting we compute the supports of each
candidate by using a 2D integer array of size F1 � F1, where
cnt½i�½j� gives the count of candidate subtree with encoding
ði j � 1Þ. Total time for this step is Oðn2Þ per tree. While
computing F2 we also create the vertical scope-list
representation for each frequent item i 2 F1.

Computing Fkðk � 3Þ. Fig. 6 shows the pseudocode for
the depth-first search for frequent subtrees (ENUMERATE-
FREQUENT-SUBTREES). The input to the procedure is a set
of elements of a class ½P �, along with their scope-lists.
Frequent subtrees are generated by joining the scope-lists of
all pairs of elements (including self-joins). Before joining the
scope-lists, a pruning step can be inserted to ensure that
subtrees of the resulting tree are frequent. If this is true,
then we can go ahead with the scope-list join, otherwise, we
can avoid the join. For convenience, we use the set R to
denote the up to two possible candidate subtrees that may
result from ðx; iÞ � ðy; jÞ, according to the class extension
theorem, and we use LðRÞ to denote their respective scope-
lists. The subtrees found to be frequent at the current level
form the elements of classes for the next level. This
recursive process is repeated until all frequent subtrees
have been enumerated. If ½P � has n elements, the total cost is
given as Oðln2Þ, where l is the cost of a scope-list join (given
later). In terms of memory management, it is easy to see that
we need memory to store classes along a path in DFS search.

At the very least, we need to store intermediate scope-lists
for two classes, i.e., the current class ½P � and a new
candidate class ½Pi

x�.

4.2 Scope-List Joins (LðxÞ \� LðyÞ)
Scope-list join for any two subtrees in a class ½P � is based
on interval algebra on their scope lists. Let sx ¼ ½lx; ux� and
sy ¼ ½ly; uy� be scopes for nodes x and y. We say that sx is
strictly less than sy, denoted sx < sy, if and only if ux < ly, i.e.,
the interval sx has no overlap with sy and it occurs before sy.
We say that sx contains sy, denoted sx 	 sy, if and only if
lx � ly and ux � uy, i.e., the sy is a proper subset of sx. The
use of scopes allows us to compute in constant time whether
y is a descendant of x or y is an embedded sibling of x. Recall
from the candidate extension theorem (Theorem 1) that
when we join elements ðx; iÞ � ðy; jÞ, there can be at most
two possible outcomes, i.e., we either add ðy; jþ 1Þ or ðy; jÞ
to the class ½Pi

x�.
In-Scope Test. The first candidate ðy; jþ 1Þ is added to

½Pi
x� only when i ¼ j and, thus, refers to the candidate

subtree with y as a child of node x. In other words, ðy; jþ 1Þ
represents the subtree with encoding ðPx yÞ. To check if this
subtree occurs in an input tree T with tid t, we search if
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there exists triples ðty;my; syÞ 2 LðyÞ and ðtx;mx; sxÞ 2 LðxÞ,
such that: 1) ty ¼ tx ¼ t, i.e., the triples both occur in the
same tree, with tid t. 2) my ¼ mx ¼ m, i.e., x and y are both
extensions of the same prefix occurrence, with match label
m. 3) sy 
 sx, i.e., y lies within the scope of x.

If the three conditions are satisfied, we have found an
instance where y is a descendant of x in some input tree T .
We next extend the match labelmy of the old prefix P , to get
the match label for the new prefix Pi

x (given as my [ lx) and
add the triple ðty; fmy [ lxg; syÞ to the scope-list of ðy; jþ 1Þ
in ½Pi

x�. We refer to this case as an in-scope test.
Out-Scope Test. The second candidate ðy; jÞ represents

the case when y is an embedded sibling of x, i.e., both x and y
are descendants of somenode at position j in the prefixP and
the scope of x is strictly less than the scope of y. The
element ðy; jÞ, when added to ½Pi

x�, represents the pattern
ðPx � 1 . . . � 1 yÞ with the number of �1s depending on
path length from j to x. To check if ðy; jÞ occurs in some tree T
with tid t, we need to check if there exist triples ðty;my; syÞ 2
LðyÞ and ðtx;mx; sxÞ 2 LðxÞ, such that: 1) ty ¼ tx ¼ t, i.e., the
triples both occur in the same tree,with tid t. 2)my ¼ mx ¼ m,
i.e., x and y are both extensions of the sameprefix occurrence,
with match labelm. 3) sx < sy, i.e., x comes before y in depth-
first ordering, and their scopes do not overlap.

If these conditions are satisfied, we add the triple
ðty; fmy [ lxg; syÞ to the scope-list of ðy; jÞ in ½Pi

x�. We refer
to this case as an out-scope test. Note that if we just check
whether sx and sy are disjoint (with identical tids and prefix
match labels), i.e., either sx < sy or sx > sy, then the support
can be counted for unordered subtrees!

Each application of in-scope or out-scope test takes Oð1Þ
time. Let a and b be the number of distinct ðt;mÞ pairs in
Lðx; iÞ and Lðy; jÞ, respectively. Let � denote the average
number of scopes with a match label. Then, the time to
perform scope-list joins is given as Oð�2ðaþ bÞÞ, which
reduces to Oðaþ bÞ if � is a small constant.

Fig. 7 shows an example of how scope-list joins work,
using the databaseD from Fig. 5, withminsup ¼ 100 percent,
i.e., wewant tomine subtrees that occur in all three trees inD.
The initial class with empty prefix consists of four frequent
items (1, 2, 3, and 4), with their scope-lists. All pairs of
elements are considered for extension, including self-join.
Consider the extensions from Item1,whichproduces thenew
class ½1�with two frequent subtrees: ð1 2 � 1Þ and ð1 4 � 1Þ.

The infrequent subtrees are listed at the bottom of the
class. While computing the new scope-list for the subtree

ð1 2 � 1Þ from Lð1Þ \� Lð2Þ, we have to perform only in-

scope tests, since we want to find those occurrences of 2
that are within some scope of 1 (i.e., under a subtree

rooted at 1). Let si denote a scope for item i. For tree T0,

we find that s2 ¼ ½1; 1� 
 s1 ¼ ½0; 3�. Thus, we add the triple

ð0; 0; ½1; 1�Þ to the new scope list. In like manner, we test
the other occurrences of 2 under 1 in trees T1 and T2. Note

that for T2, there are three instances of the candidate

pattern: s2 ¼ ½2; 2� 
 s1 ¼ ½0; 7�, s2 ¼ ½5; 5� 
 s1 ¼ ½0; 7�, and
s2 ¼ ½5; 5� 
 s1 ¼ ½4; 7�. If a new scope-list occurs in at least

minsup tids, the pattern is considered frequent.
Consider the result of extending class ½1�. The only

frequent pattern is ð1 2 � 1 4 � 1Þ, whose scope-list is

obtained from Lð2; 0Þ \� Lð4; 0Þ, by applications of out-
scope test. We need to test for disjoint scopes, with s2 < s4,

which have the same match label. For example, we find that

s2 ¼ ½1; 1� and s4 ¼ ½3; 3� satisfy these conditions. Thus, we
add the triple ð0; 01; ½1; 1�Þ to Lð4; 0Þ in class ½1 2�. Notice that

the new prefix match label (01) is obtained by adding to the

old prefix match label (0), the position where 2 occurs (1).
The final scope list for the new candidate has three distinct

tids and is thus frequent. There are no more frequent

patterns at minsup ¼ 100 percent.
Reducing Space Requirements. Generally speaking, the

most important elements of the in-scope and out-scope tests
are to make sure that sy 
 sx and sx < sy, respectively.

Whenever the test is true, we add ðt; fmy [ lxg; syÞ to the

candidate’s scope-list. However, the match labels are only
useful for resolving the prefix context when an item occurs

more than once in a tree. Using this observation, it is

possible to reduce the space requirements for the scope-

lists. We add lx to the match label my if and only if x occurs
more than once in a subtree with tid t. Thus, if most items

occur only once in the same tree, this optimization

drastically cuts down the match label size, since the only
match labels kept refer to items with more than one

occurrence. In the special case that all items in a tree are

distinct, the match label is always empty, and each element
of a scope-list reduces to a ðtid; scopeÞ pair. Consider the

scope-list of ð4; 0Þ in class ½12� in Fig. 7. Since 4 occurs only

once in T0 and T1, we can omit the match label from the first
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two entries altogether, i.e., the triple ð0; 01; ½3; 3�Þ becomes a
pair ð0; ½3; 3�Þ, and the triple ð1; 12; ½3; 3�Þ becomes ð1; ½3; 3�Þ.

Opportunistic Candidate Pruning.We mentioned above
that, before generating a candidate k-subtree, S, we perform
a pruning test to check if its ðk� 1Þ-subtrees are frequent.
While this is easily done in a BFS pattern search method like
PATTERNMATCHER (see Section 6), in a DFS search, we
may not have all the information available for pruning,
since some classes at level ðk� 1Þ would not have been
counted yet. TREEMINER uses an opportunistic pruning
scheme whereby it first determines if a ðk� 1Þ-subtree
would already have been counted. If it has been counted
but is not found in Fk�1, we can safely prune S. How do we
know if a subtree was counted? For this, we need to impose
an ordering on the candidate generation, so that we can
efficiently perform the subtree pruning test. Fortunately,
our candidate extension method has the automatic ordering
property (see Corollary 1). Thus, we know the exact order in
which patterns will be enumerated. To apply a pruning test
for a candidate S, we generate each subtree X and test if
X < S according to the candidate ordering property. If yes,
we can apply the pruning test; if not, we test the next
subtree. If S is not pruned, we perform scope-list join to get
its exact frequency.

5 TREEMINERD: COUNTING DISTINCT

OCCURRENCES

TREEMINER counts all embeddings of a frequent pattern
within each database tree using the scope-list joins. The
method is thus inherently efficient for counting weighted
support, i.e., all possible occurrences over all possible trees
in the database. Many applications, however, are only
interested in counting the support, that is, instead of finding
all embeddings of a subtree in the entire database, we may
simply want to know the number of database trees that
contain at least one embedding of a subtree. If there are
relatively few embeddings per tree, TREEMINER continues
to be very effective. On the other hand, if there are many
duplicate labels and if the tree is highly branched, the
number of embeddings can get very large and, conse-
quently, the scope-lists can become very long, resulting in
increased running time. If the application calls for the use of
weighted support, the increased cost is acceptable, but if we
want only support, it is possible to optimize TREEMINER to
count only distinct occurrences of each pattern. We have
thus devised a new method called TREEMINERD, which
counts only the support rather than all embeddings. The
overall algorithmic structure and candidate generation
process of TREEMINERD remains the same as in TREEMI-

NER, shown in Fig. 6, but TREEMINERD uses a different
scope-list representation and scope-list joins for computing
pattern frequency.

The main change in the scope-lists is that TREEMINERD
does not maintain the match-labels, which keep track of all
embeddings. Instead, TREEMINERD stores the scopes for all
nodes on the right-most path within a tree; we call the new
scope-lists as scope-vector-lists or SV-lists for short. Thus,
each element of the new list is a pair of the form ðt; sÞ, where
t is a tree id and s ¼ fs1; s2; � � � ; smg is the scope-vector of

matching node scopes si on the rightmost path. Further-
more, s represents a minimal occurrence of the pattern
within a database tree, i.e., there does not exist another
scope-vector s0 strictly contained in s,2 such that the pattern
also occurs at nodes with scopes given by s0. The in-scope
and out-scope tests are then performed on these SV-lists.

5.1 SV-List Joins

Given two trees within the same equivalence class, we
perform SV-list joins by looking at an SV-list element ðtx; sxÞ
for node x and an element ðty; syÞ for node y. Let sx ¼
fs1x; s2x; � � � ; smx g and sy ¼ fs1y; s2y; � � � ; snyg.

In-Scope Test. For the in-scope test, we first make sure
that tx ¼ ty, i.e., both nodes x and y occur in the same
database tree. Next, we look at the last node-scope of scope-
vectors sx and sy, namely, smx and sny . If s

n
y 
 smx and there

does not exist another last node-scope, say slx, in another
element of x0s SV-list, such that sny 
 slx 
 smx (i.e., this is a
minimal occurrence of the pattern), then we add the pair
ðtx; s0 ¼ fs1x; � � � ; skx; � � � ; snygÞ to the SV-list of the subtree with
encoding ðPxyÞ (where, s0 represents the scope-vector for
only those nodes on the rightmost path of the pattern).

Out-Scope Test. Given a pair of SV-list elements, one
from x and one from y, namely, ðtx; sxÞ and ðty; syÞ, for the
out-scope test, we begin by ensuring that tx ¼ ty. Second,
we make sure that smx < sny , i.e., the last nodes of each
element are disjoint and y node happens after x. Note that
the equivalence class member ðy; jÞ denotes that fact that the
new candidate has prefix Px and has rightmost node y
attached to node j in the prefix. The final step in the out-
scope test is to compare the scopes at position j in both x
and y, i.e., sjx and sjy, and sny . There are two cases when the
out-scope test is satisfied: 1) if sny 
 sjx and sny > sjþ1

x , i.e., the
last node of y is contained in the jth node of x (with label z),
whereas it is not contained in, but rather after, the
ðjþ 1Þth node of x, or 2) if sny > sjx and sjx 
 sjy, i.e., the
last node of y is after the jth node of x (which has label z)
and the jth node of x is contained in the jth node of y
(which also has label z). If 1) is true, then we add the pair
ðtx; fs1x; � � � ; sjx; snygÞ to the SV-list of the new candidate, or if
2) is true, we add ðtx; fs1y; � � � ; sjy; snygÞ. To maintain minim-
ality, we store the pair only for the nearest jth node to y in a
database tree.

Fig. 8 shows an example of how SV-list joins work, using
the database D from Fig. 5, with minsup ¼ 100 percent. The
initial SV-lists are the same as the item scope-lists in Fig. 7.

While computing the new SV-lists for the subtrees ð1 2 �
1Þ and ð1 4 � 1Þ, we have to perform only in-scope tests,
since we want to find those occurrences of 2 (or 4) that are
within some scope of 1 (i.e., under a subtree rooted at 1).
The key is to keep only minimal occurrences. For example,
in tree id 2, the node scopes ½0; 7� and ½4; 7� for label 1 both
contain the scope ½5; 5� for label 2. In this case, the SV-list for
ð1 2 � 1Þ contains only the pair ð2; ½4; 7�; ½5; 5�Þ. The SV-lists
for both patterns are shown in the figure. Using these two,
to compute the frequency of pattern ð1 2 � 1 4 � 1Þ, we
need to perform out-scope test. In our example, all tree ids
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belong to case 1) of the out-scope test. For example, for tree
id 2, node label 4 has scope ½7; 7�, whereas node label 2 has
occurrences at scopes ½2; 2� and ½5; 5�. Here, j ¼ 0 and, thus,
4’s scope ½7; 7� is contained in 2’s jth node’s scope ½0; 7� and,
also, it is after 2’s ðjþ 1Þth node’s scope ½2; 2�. The out-scope
test is true, but it is not minimal, since the test is also
satisfied for 2’s scope ½4; 7� and, thus, we add ð2; ½4; 7�; ½7; 7�Þ
to the new candidate’s SV-list.

6 PATTERNMATCHER ALGORITHM

PATTERNMATCHER serves as a base pattern matching
algorithm to compare TREEMINER against. PATTERN-

MATCHER employs a breadth-first iterative search for
frequent subtrees. Its high-level structure, as shown in
Fig. 9, is similar to Apriori [3]. However, there are
significant differences in how we count the number of
subtree matches against an input tree T . For instance, we
make use of equivalence classes throughout, and we use a
prefix-tree data structure to index them, as opposed to
hash-trees. The details of pattern matching are also
completely different.

Due to lack of space, we describe only the main features
of PATTERNMATCHER; see [39] for details. PATTERN-

MATCHER assumes that each tree T in D is stored in its
string encoding (horizontal) format (see Fig. 5). The initial
steps of the algorithm involve finding F1 and F2, which are
computed as in TREEMINER.

Pattern Pruning. Before adding each candidate k-subtree
to a class in Ck, we make sure that all its ðk� 1Þ-subtrees are
also frequent. To efficiently perform this step, during
creation of Fk�1 (line 8), we add each individual frequent
subtree into a hash table. Thus, it takes Oð1Þ time to check
each subtree of a candidate and, since there can be k subtrees
of length k� 1, it takes OðkÞ time to perform the pruning
check for each candidate.

Prefix Tree Data Structure.Once a new candidate set has
been generated, for each tree inD, we need to efficiently find
matching candidates. We use a prefix tree data structure to
index the candidates (Ck) to facilitate fast support counting.
Furthermore, instead of adding individual subtrees to the
prefix tree, we index an entire class using the class prefix.

Thus, if the prefix does not match the input tree T , then none
of the class elements would match either. This allows us to
rapidly focus on the candidates that are likely to be
contained in T . Let ½P � be a class in Ck. An internal node of
the prefix tree at depth d refers to the dth node in P 0s label
sequence. An internal node at depth d points to a leaf node or
an internal node at depth dþ 1. A leaf node of the prefix tree
consists of a list of classes with the same label sequence, thus,
a leaf can contain multiple classes. For example, classes with
prefix encodings ð1 2 � 1 4 3Þ, ð1 2 4 3Þ, ð1 2 4 � 1 � 1 3Þ,
etc., all have the same label sequence 1243 and, thus, belong
to the same leaf.

Storing equivalence classes in the prefix tree as opposed
to individual patterns results in considerable efficiency
improvements while pattern matching. For a tree T , we can
ignore all classes ½P �k�1 where P 6� T . Only when the prefix
has a match in T do we look at individual elements.
Support counting consists of three main steps: 1) to find a
leaf containing classes that may potentially match T , 2) to
check if a given class prefix P exactly matches T , and 3) to
check which elements of ½P � are contained in T .

Finding Potential Matching Leafs. Let lðT Þ be the label
sequence for a tree T in the database. To locate matching
leafs, we traverse the prefix tree from the root, following
child pointers based on the different items in lðT Þ, until we
reach a leaf. This identifies classes whose prefixes have the
same label sequence as a subsequence of lðT Þ. This process
focuses the search to some leafs of Ck, but the subtree
topology for the leaf classes may be completely different.
We now have to perform an exact prefix match. In the worst
case, there may be n

k

� �
� nk subsequences of lðT Þ that lead to

different leafs. However, in practice, it is much smaller,
since only a small fraction of the leafs match the label
sequences, especially as pattern length increases. The time
to traverse from the root to a leaf is Oðk logmÞ, where m is
the average number of distinct labels at an internal node.
The total cost of this step is thus Oðknk logmÞ.

Prefix Matching.Matching the prefix P of a class in a leaf
against the tree T is the main step in support counting. Let
X½i� denote the ith node of subtree X and let X½i; . . . ; j�
denote the nodes from positions i to j, with j � i. We use a
recursive routine to test prefix matching. At the rth recursive
call, we maintain the invariant that all nodes in P ½0; 1; . . . ; r�
have been matched by nodes in T ½i0; i1; . . . ; ir�, i.e., prefix
node P ½0�matches T ½i0�, P ½1�matches T ½i1�, etc., and, finally,
P ½r� matches T ½ir�. Note that while nodes in P are traversed
consecutively, the matching nodes in T can be far apart. We
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thus have to maintain a stack of node scopes, consisting of
the scope of all nodes from the root i0 to the current
rightmost leaf ir in T . If ir occurs at depth d, then the scope
stack has size dþ 1.

Assume that we have matched all nodes up to the
rth node in P . If the next node P ½rþ 1� to be matched is the
child of P ½r�, we likewise search for P ½rþ 1� under the
subtree rooted at T ½ir�. If a match is found at position irþ1 in
T , we push irþ1 onto the scope stack. On the other hand, if
the next node P ½rþ 1� is outside the scope of P ½r� and is
instead attached to position l (where 0 � l < r), then we pop
from the scope stack all nodes ik, where l < k � r, and
search for P ½rþ 1� under the subtree rooted at T ½il�. This
process is repeated until all nodes in P have been matched.
This step takes OðknÞ time in the worst case. If each item
occurs once, it takes Oðkþ nÞ time.

ElementMatching. IfP � T ,we search for amatch inT for

each element ðx; kÞ 2 ½P � by searching for x starting at the

subtree T ½ik�1�. ðx; kÞ is either a descendant or embedded

sibling of P ½k� 1�. Either check takes Oð1Þ time. If a match is

found, the support of the element ðx; kÞ is incrementedbyone.

For counting support (at least one occurrence in T ), the count

is incremented only once per tree, or else, for weighted

support (all occurrences in T ), we continue the recursive

process until all matches have been found.

7 PERFORMANCE RESULTS

Before looking at some application of tree mining in
bioinformatics, we first compare TREEMINER versus PAT-

TERNMATCHER and study their properties. All these
experiments were performed on a 3.2GHz Pentium PC
with 1GB memory running RedHat Linux 6.0. Timings are
based on total wall-clock time and include preprocessing
costs (such as creating scope-lists for TREEMINER).

Synthetic Data Sets. We wrote a synthetic data genera-
tion program to create a forest of trees. The program first
constructs a master tree, W, based on parameters supplied
by the user. These parameters include the maximum fanout
F of a node, the maximum depth D of the tree, the total
number of nodes M in the tree, and the number of node
labelsN . We allow multiple nodes in the master tree to have
the same label. The master tree is generated using the
following recursive process. At a given node in the tree W,
we decide how many children to generate. The number of
children is sampled uniformly at random from the range 0

to F . Before processing children nodes, we assign random
probabilities to each branch, including an option of back-
tracking to the node’s parent. The sum of all the
probabilities for a given node is 1. The probability
associated with a branch b ¼ ðx; yÞ indicates the likelihood
of going to child y from node x. As long as tree depth is less
than or equal to maximum depth D, this process continues
recursively. Once the master tree has been created we create
as many subtrees of W as specified by the parameter T . To
generate a subtree, we repeat the following recursive
process starting at the root: Generate a random number
between 0 and 1 to decide which child to follow or to
backtrack. If a branch has already been visited, we select
one of the other unvisited branches or backtrack. We used
the following default values for the parameters: the number
of labels N ¼ 100, the number of nodes in the master tree
M ¼ 10; 000, the maximum depth D ¼ 10, the maximum
fanout F ¼ 10, and total number of subtrees T ¼ 100; 000.
We use three synthetic data sets: The D10 data set had all
default values, F5 had all values set to default except for
fanout F ¼ 5, and, for T1M, we set T ¼ 1; 000; 000, with
remaining default values.

CSLOGS Data Set. This data set consists of Web logs
files collected over one month at the CS department. The
logs touched 13,361 unique Web pages within our depart-
ment’s Web site. After processing the raw logs, we obtained
59,691 user browsing subtrees of the CS department
website. The average string encoding length for a user
subtree was 23:3.

Fig. 10 shows the distribution of the frequent subtrees by

length for the different data sets used in our experiments;

all of them exhibit a symmetric distribution. For the lowest

minimum support used, the longest frequent subtree in F5

and T1M had 12 and 11 nodes, respectively. For cslogs and

D10 data sets, the longest subtree had 18 and 19 nodes.

Performance Comparison. Fig. 11 shows the perfor-

mance of PATTERNMATCHER versus TREEMINER and

TREEMINERD. On the real cslogs data set, we find that

TREEMINER and TREEMINERD are about two times faster
than PATTERNMATCHER until support 2 percent. After

that, the number of embeddings becomes very large and

TREEMINERD outperforms TREEMINER. For T1M, TREE-

MINER is faster than PATTERNMATCHER by a factor of 4

and better than TREEMINERD. For D10, TREEMINER is

10 times faster than PATTERNMATCHER and about 1.5 times

better than TREEMINERD. A similar trend is observed for
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F5. These experiments clearly indicate the superiority of

scope-list based-method over the pattern matching method.

Furthermore, TREEMINERD has clearly superior perfor-

mance if there are many tree embeddings.
Scaleup Comparison. Fig. 12 shows how the algorithms

scale with increasing number of trees in the database D,
from 10,000 to one million trees. At a given level of support,
we find a linear increase in the running time with increasing
number of transactions for all algorithms; TREEMINER is
6 times faster than PATTERNMATCHER and 3 times faster
than TREEMINERD.

Effect of Pruning. In Fig. 13, we evaluated the effect of
candidate pruning on the performance of PATTERN-

MATCHER and TREEMINER. We find that PATTERN-

MATCHER (denoted PM in the graph) always benefits
from pruning, since the fewer the number of candidates, the
lesser the cost of support counting via pattern matching. On
the other hand, TREEMINER (labeled TM in the graph) does
not always benefit from its opportunistic pruning scheme.

While pruning tends to benefit it at higher supports, for

lower supports, its performance actually degrades by using

candidate pruning. TREEMINER with pruning at 0.1 percent

support on D10 is 2 times slower than TREEMINER with no

pruning. There are two main reasons for this: First, to

perform pruning, we need to store Fk in a hash table, and

we need to pay the cost of generating the ðk� 1Þ subtrees of
each new k-pattern. This adds significant overhead, espe-

cially for lower supports when there are many frequent

patterns. Second, the vertical representation is extremely

efficient; it is actually faster to perform scope-list joins than

to perform pruning test.
Fig. 14 shows the number of candidates generated on

the D10 data set with no pruning, full pruning (in
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PATTERNMATCHER), and with opportunistic pruning (in
TREEMINER). Both full pruning and opportunistic pruning
are extremely effective in reducing the number of candidate
patterns, and opportunistic pruning is almost as good as
full pruning (within a factor of 1.3). Full pruning cuts down
the number of candidates by a factor of 5 to 7! Pruning is
thus essential for pattern matching methods and may
benefit scope-list method in some cases (for high support).

8 TREE MINING APPLICATIONS IN BIOINFORMATICS

In this section, we look at two applications of tree mining
within bioinformatics domain: RNA structure and phylo-
genetic tree analysis.

8.1 RNA Structure

RNA molecules perform a variety of important biochemical

functions, including translation, RNA splicing and editing,

and cellular localization. Predicting RNA structure is thus an

important problem; if a significantmatch to anRNAmolecule

of known structure and function is found, then a query

molecule may have similar role. Here, we are interested in

finding commonmotifs in a database of RNA structures [16].

Whereas RNA has a three-dimensional (3D) shape, it can

be viewed in terms of its secondary structure, which is

composed mainly of double-stranded regions formed by

folding the single-stranded RNA molecule back on itself.

To produce these double-stranded regions, a subsequence

of bases (made up of four letters: A, C, G, U) must be

complementary to another subsequence so that base-

pairing can occur (G-C and A-U). It is these pairings that

contribute to the energetic stability of the RNA molecule.

Moreover, bulges may also form, for example, when the

middle portion of a complementary subsequence doesn’t

participate in the base-pairing. Thus, there are different

RNA secondary structures that are possible, such as: single-

stranded RNA, double-stranded RNA helix, stem and loop

or hairpin loop, bulge loop, interior loop, junction andmulti-

loops, etc. [24]. In addition, there may be tertiary interactions

between RNA secondary structures, e.g., pseudo-knots,

kissing hair-pins, hairpin-bulge contacts, etc. Fig. 15 shows

a two-dimensional (2D) representation of a (transfer)

RNA secondary structure. There are five loops (as num-

bered in the center); loop 1 is a bulge loop, 3, 4, and 5 are

hairpin loops, and 2 is a multijunction loop.
To mine common RNA motifs or patterns, we use a tree

representation of RNA secondary structure obtained from
the RNA Matrix method used in the RAG (RNA-as-graph)
database [15]. In the RNA tree, a nucleotide bulge, hairpin
loop, or internal loop is considered a vertex if there is more
than one unmatched nucleotide or noncomplementary base
pair. The 3’ and 5’ ends of a helical stem are considered
vertices, and so is a junction. An RNA stem with
complementary base pairs (more than one) is considered
an edge. The resulting free tree captures the topological
aspects of RNA structure. To turn the free tree into a rooted
labeled tree, we label each vertex from 1 to n, numbered
sequentially from the 5’ to the 3’ end of the RNA strand. We
choose the root to be vertex 1 and children of a node are
ordered by their label number. For example, Fig. 15 shows
the RNA free tree representing the RNA secondary
structure and its rooted version.

We took 34 Eukarya RNA structures from the Ribonu-
clease P (Rnase P) database [7]. Rnase P is the ribonucleo-
protein endonuclease that cleaves transfer (and other)
RNA precursors. Rnase P is generally made up of two
subunits, an RNA and a protein, and it is the RNA subunit
that acts as the catalytic unit of the enzyme. The RNase P
database is a compilation of currently available RNase P
sequences and structures. For a given RNase P RNA subunit,
we obtained a free tree using the RNAMatrix program3 and
then converted it into a rooted ordered tree. The resulting
RNA tree data set has 34 trees, with the smallest having
two vertices and the largest having 12 vertices. We then ran
TREEMINER on this RNA tree data set. Fig. 16 shows the
total time taken to mine the data set and the number of
patterns found at different values of minimum support. We
observe that mining at minimum support of one occurrence
took less than 0.1 seconds and found 5,593 total patterns. An
example of a common topological RNA pattern is also
shown (rightmost figure); this pattern appears in at least 10
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Fig. 15. An example RNA structure and its tree representation.



of the 34 Eukarya RNA. By applying tree mining, it is thus

possible to analyze RNA structures to enumerate all the

frequent topologies. Such information can be a useful step in

characterizing existing RNA structures and may help in

structure prediction tasks [16]. Enumerating frequent

RNA trees also helps in cataloging the kinds of RNA struc-

tures seen in nature [15].

8.2 Phylogenetic Trees

Given several phylogenies (i.e., evolutionary trees) from the
Tree of Life [23], indicating evolutionary history of several
organisms, one might be interested in discovering if there
are common subtree patterns. This is an important task,
since there are many algorithms for inferring phylogenies,
and biologists are often interested in finding consensus
subtrees (those shared by many trees) [27]. Tree mining can
also be used to mine cousin pairs in phylogenetic trees [31].
A cousin pair is essentially a pair of siblings, and mining
pairs that share common ancestors gives important clues
about the evolutionary divergence between two organisms
or species.

TreeBASE is a relational database designed to manage
and explore information on phylogenetic relationships.4 It
stores phylogenetic trees and data matrices used to generate
them from published research papers. It includes biblio-
graphic information on phylogenetic studies, as well as
details on taxa, methods, and analyses performed; it
contains all types of phylogenetic data (e.g., trees of species,
trees of populations, trees of genes) representing all biotic
taxa. The database is ideally suited to allow retrieval and
recombination of trees and data from different studies; it
thus provides a means of assessing and synthesizing
phylogenetic knowledge.

Fig. 17 shows part of the evolutionary relationship
between organisms of the plylum Nematoda taken from the
TreeBase site. This tree was produced using a parsimony-
based phylogenetic tree construction method [24]; using
different algorithms may produce several variants of the
evolutionary relationships. Tree mining can help infer the
parts of the phylogeny that are common among many
alternate evolutionary trees.
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Fig. 16. RNase P database: (a) time, (b) num. patterns, and (c) example pattern.

Fig. 17. (a) Part of the phylogenetic tree of phylum Nematoda. (b) Tree for mining.

4. http://www.treebase.org/.



We took 1,974 trees from the TreeBase data set and
converted them into a format suitable for mining. We give
each organism a unique label (e.g., C. elegans has label 2),
and we give each internal node the same label (e.g., 0).
Given the resulting database of 1,974 trees, we mine for
frequent patterns. To prevent combinatorial effects, we also
impose a constrain on the number of internal nodes allowed
in the mined patterns; this constraint is incorporated during
mining for efficiency reasons (as opposed to postproces-
sing). Fig. 18 shows the running time and number of
patterns found for an absolute support value of 40, as the
number of internal nodes increase from 1 to 12. As we allow
more internal nodes, more patterns are found. Since there
are many internal nodes with label 0, we used TREEMI-

NERD for fast mining. An example of a mined frequent
pattern (with frequency 42) is also shown; this pattern
shows the evolutionary relationship between members of
the Circaea plant family. Notice how the most closely
related organisms, e.g., Circaea Alpina (C.A.), group
together (right branch under the root).

9 RELATED WORK

Tree mining, being an instance of frequent structure mining,
has obvious relation to association [3] and sequence [4]
mining. Frequent tree mining is also related to tree
isomorphism [29] and tree pattern matching [11]. Given a
pattern tree P and a target tree T , with jP j � jT j, the subtree
isomorphism problem is to decide whether P is isomorphic
to any subtree of T , i.e., there is a one-to-one mapping from
P to a subtree of T , that preserves the node adjacency
relations. In tree pattern matching, the pattern and target
trees are labeled and ordered. We say that P matches T at
node v if there exists a one-to-one mapping from nodes of P
to nodes of T such that: 1) the root of P maps to v, 2) if x
maps to y, then x and y have the same labels, and 3) if x
maps to y and x is not a leaf, then the ith child of x maps to
the ith child of y. Both subtree isomorphism and pattern
matching deal with induced subtrees, while we mine
embedded subtrees. Further, we are interested in enumer-
ating all common subtrees in a collection of trees. The tree
inclusion problem was studied in [19], i.e., given labeled

trees P and T , can P be obtained from T by deleting nodes?
This problem is equivalent to checking if P is embedded in
T . The paper presents a dynamic programming algorithm
for solving ordered tree inclusion, which could potentially
be substituted for the pattern matching step in PATTERN-

MATCHER. However, PATTERNMATCHER utilizes prefix
information for fast subtree checking, and its three step
pattern matching is very efficient over a sequence of such
operations.

Recently, tree mining has attracted a lot of attention. We
developed TREEMINER [39], [40] to mine labeled, em-
bedded, and ordered subtrees. The notions of scope-lists
and rightmost extension were introduced in that work.
TREEMINER was also used in building a structural classifier
for XML data [41]. This current paper focuses on bioinfor-
matics applications and presents a new algorithm called
TREEMINERD to mine distinct occurrences of trees. Asai
et al. [5] presented FreqT, an apriori-like algorithm for
mining labeled ordered trees; they independently proposed
the rightmost candidate generation scheme. Wang and Liu
[34] developed an algorithm to mine frequently occurring
subtrees in XML documents. Their algorithm is also
reminiscent of the level-wise Apriori [3] approach, and
they mine induced subtrees only. There are several other
recent algorithms that mine different types of tree patterns,
which include FreeTreeMiner [9] which mines induced,
unordered, free trees (i.e., there is no distinct root);
FreeTreeMiner for graphs [28] for extracting free trees in a
graph database; and PathJoin [35], uFreqt [26], uNot [6], and
HybridTreeMiner [10], which mine induced, unordered
trees. TreeFinder [32] uses an Inductive Logic Programming
approach to mine unordered, embedded subtrees, but it is
not a complete method, i.e, it can miss many frequent
subtrees, especially as support is lowered or when the
different trees in the database have common node labels.
SingleTreeMining [31] is another algorithm for mining
rooted, unordered trees, with application to phylogenetic
tree pattern mining. Recently, XSpanner [33], a pattern-
growth-based method, has been proposed for mining
embedded ordered subtrees. They report that XSpanner
outperforms TREEMINER, however, note that TREEMINER

mines all embeddings, whereas XSpanner counts only the
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Fig. 18. Phylogenetic data: (a) runtime and num. patterns and (b) example pattern.



distinct trees. Therefore, we plan to compare TREEMINERD
with XSpanner in the future.

There has been active work in indexing and querying
XMLdocuments [2], [14], [22], [42], which aremainly tree (or
graph) structured. To efficiently answer ancestor-descen-
dant queries various node numbering schemes similar to
ours have been proposed [1], [22], [42]. Other work has
looked at path query evaluation that uses local knowledge
within data graph based on path constraints [2] or graph
schemas [14]. The major difference between these works and
ours is that instead of answering user-specified queries
based on regular path expressions, we are interested in
finding all frequent tree patterns among the documents. A
related problem of accurately estimating the number of
matches of a small node-labeled tree in a large labeled tree
was presented in [8]. They compute a summary data
structure and then give frequency estimates based on this
summary, rather than using the database for exact answers.
In contrast, we are interested in the exact frequency of
subtrees. Furthermore, their work deals with traditional
(induced) subtrees, while we mine embedded subtrees.

There has also been recent work in mining frequent
graph patterns. The AGM algorithm [18] discovers induced
(possibly disconnected) subgraphs. The FSG algorithm [21]
improves upon AGM and mines only the connected
subgraphs. Both methods follow an Apriori-style level-wise
approach. Recent methods to mine graphs using a depth-
first tree-based extension have been proposed in [36], [37].
Another method uses a candidate generation approach
based on Canonical Adjacency Matrices [17]. The GASTON
method [25] adopts an interesting step-wise approach using
a combination of path, free tree, and, finally, graph mining
to discover all frequent subgraphs. There are important
differences in graph mining and tree mining. Our trees are
rooted and, thus, have a unique ordering of the nodes based
on depth-first traversal. In contrast, graphs do not have a
root and allow cycles. For mining graphs, the methods
above first apply an expensive canonization step to trans-
form graphs into a uniform representation. This step is
unnecessary for tree mining. Graph mining algorithms are
likely to be overly general (thus, not efficient) for tree
mining. Our approach utilizes the tree structure for efficient
enumeration.

The work by Dehaspe et al. [13] describes a level-wise
Inductive Logic Programming-based technique to mine
frequent substructures (subgraphs) describing the carcino-
genesis of chemical compounds. Work on molecular feature
mining has appeared in [20]. The SUBDUE system [12] also
discovers graph patterns using the Minimum Description
Length principle. An approach termed Graph-Based Induc-
tion (GBI) was proposed in [38], which uses beam search for
mining subgraphs. However, both SUBDUE and GBI may
miss some significant patterns, since they perform a
heuristic search. In contrast to these approaches, we are
interested in developing efficient algorithms for tree
patterns.

10 CONCLUSIONS

In this paper, we introduced the notion of mining
embedded subtrees in a (forest) database of trees. Among

our novel contributions is the procedure for systematic
candidate subtree generation, i.e., no subtree is generated
more than once. We utilized a string encoding of the tree

that is space-efficient to store the horizontal data set and we
use the notion of a node’s scope to develop a novel vertical
representation of a tree called scope-lists. Our formalization
of the problem is flexible enough to handle several
variations. For instance, if we assume the label on each

node to be the same, our approach mines all unlabeled
trees. A simple change in the candidate tree extension
procedure allows us to discover subforests (disconnected
patterns). Our formulation can find frequent trees in a forest

of many trees or all the frequent subtrees in a single large
tree. Finally, it is relatively easy to extend our techniques to
find unordered trees (by modifying the out-scope test) or to
use the traditional definition of a subtree. To summarize,

this paper proposes a framework for tree mining which can
easily encompass most variants of the problem that may
arise in different domains.

We introduced a novel algorithm, TREEMINER, for tree

mining. TREEMINER uses depth-first search; it also uses the
novel scope-list vertical representation of trees to quickly
compute the candidate tree frequencies via scope-list joins
based on interval algebra. We extended the approach to
TREEMINERD, an algorithm that counts only distinct occur-

rences using the notion of scope-vector lists. We compared
their performance against a base algorithm, PATTERN-

MATCHER. Experiments on real and synthetic data con-
firmed that TREEMINER outperforms PATTERNMATCHER

from a factor of 2 to 10 and scales linearly in the number of
trees in the forest.We studied twoapplications of treemining:
finding common RNA structures and mining common
phylogenetic subtrees.

For future work, we plan to extend our tree mining
framework to incorporate user-specified constraints. Given
that tree mining, though able to extract informative
patterns, is an expensive task, performing general uncon-

strained mining can be too expensive and is also likely to
produce many patterns that may not be relevant to a given
user. Incorporating constraints is one way to focus the
search and to allow interactivity. We also plan to develop

efficient algorithms to mine maximal frequent subtrees
from dense data sets which may have very large subtrees.
Finally, we plan to apply our tree mining techniques to
other compelling applications, such as the extraction of
structure from XML documents and their use in classifica-

tion, clustering, etc.
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