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Abstract— Knowledge graph (KG) question generation (QG)
aims to generate natural language questions from KGs and target
answers. Previous works mostly focus on a simple setting that is to
generate questions from a single KG triple. In this work, we focus
on a more realistic setting where we aim to generate questions
from a KG subgraph and target answers. In addition, most pre-
vious works built on either RNN- or Transformer-based models
to encode a linearized KG subgraph, which totally discards the
explicit structure information of a KG subgraph. To address
this issue, we propose to apply a bidirectional Graph2Seq model
to encode the KG subgraph. Furthermore, we enhance our
RNN decoder with a node-level copying mechanism to allow
direct copying of node attributes from the KG subgraph to the
output question. Both automatic and human evaluation results
demonstrate that our model achieves new state-of-the-art scores,
outperforming existing methods by a significant margin on two
QG benchmarks. Experimental results also show that our QG
model can consistently benefit the question-answering (QA) task
as a means of data augmentation.

Index Terms— Deep learning, graph neural networks (GNNs),
knowledge graphs (KGs), natural language (NL) processing,
question generation (QG).

I. INTRODUCTION

RECENT years have seen a surge of interest in question
generation (QG) in machine learning and natural lan-

guage (NL) processing. The goal of QG is to generate an NL
question for a given form of data such as text [1], [2], [3],
[4], images [5], tables [6], and knowledge graphs (KGs) [7].
In this work, we focus on QG from KGs.

One of the biggest applications of QG is to provide training
data for question-answering (QA) systems [8]. KGs have
drawn a large amount of research attention in recent years,
partially due to their huge potential for an accessible, natural
way of retrieving information without a need for learning
complex query languages such as SPARQL. In order to train
a large knowledge base QA (KBQA) system [9], [10], a large
number of labeled question–answer pairs are often needed,
which can be a severe bottleneck in practice because human
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annotation is usually expensive and time-consuming. Devel-
oping effective approaches to generate high-quality QA pairs
can significantly address the data scarcity issue for KBQA.
In addition, QG can be applied for educational purposes by
producing practice assessments [11]. Moreover, QG can help
dialogue systems have more engaging conversations [12].

In the past decade, the research on QG from KGs has
gained increasing interest and can be categorized into two
classes. The first line of research heavily relies on handcrafted
question templates [7], [13], [14]. They typically first construct
a structured query (e.g., SPARQL query) and then apply a
template-based method to verbalize it to an NL question. Using
a set of predesigned templates not only requires a significant
amount of human effort, thus leading to low generalizability
and scalability, but also limits the diversity and fluency of the
generated questions. The other line of research adopts a purely
data-driven end-to-end approach without resorting to any
handcrafted templates. Those are mostly neural network-based
approaches that employ an RNN or Transformer [15] decoder
to generate an NL question as a sequence of tokens. How-
ever, most of them [16], [17], [18], [19], [20] focus only
on generating simple questions, which limits their usage in
benefiting complex KBQA systems often requiring multihop
reasoning. The main reason why they can only generate
simple questions is due to their incapability of encoding a KG
subgraph containing a rich set of interlinked triples. Instead,
they can only take a keyword list or a single KG triple (i.e.,
subject–predicate–object) as the input because they adopt a
sequence-to-sequence (Seq2Seq) [21], [22] architecture which
can only encode sequential data via a sequence encoder.

More recently, [23] presented a Transformer-based Seq2Seq
model named MHQG + AE for generating multihop complex
questions from a KG subgraph. To the best of our knowledge,
MHQG + AE was the first neural network-based model
focusing on QG from a KG subgraph. Because a Transformer
cannot admit graph-structured input data like a KG subgraph,
they proposed to represent a KG subgraph as a set of triples
where the triple embeddings were computed based on the
embeddings of the subject, predicate, and object contained
in the triple. They also removed the positional encoding
in a regular Transformer in order to discard the position
information of triples in a KG subgraph. Even though their
approach was able to directly work on a KG subgraph for
generating more complex questions compared to previous
approaches, they failed to effectively utilize the rich struc-
ture information of a KG subgraph because they completely
ignored the rich interactions among triples in a KG subgraph.
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Fig. 1. Various QG from KG learning paradigms. Left: template-based
approaches. Middle: Seq2Seq-based approaches for simple QG from a
single KG triple or multihop QG from a KG subgraph. Right (ours):
Graph2Seq-based approaches for multihop QG from a KG subgraph.

In follow-up work, Bi et al. [24] proposed to augment the
input KG subgraph with external knowledge such as entity
descriptions/domains, question word types, and answer entity
types. However, they still failed to respect the rich structure
information of the KG subgraph as they simply regarded
a KG subgraph as a sequence of subject, predicate, and
object embeddings and applied a bidirectional LSTM [25]
to learn its representations. We believe capturing fine-grained
structure information is critical for generating high-quality
questions.

We summarize the three challenges of the task of multihop
QG from KGs (denoted as KG–QG) as follows. The first one
is how to learn a good representation of a KG subgraph.
A KG subgraph has complex underlying structures such as
node attributes and multirelational edges. Each node and edge
could have (long) associated text comprising multiple words.
Previous approaches either only considered a keyword list
or single triple for simple QG or simply regarded the KG
subgraph as a set of triples without fully utilizing its rich
structure information when generating multihop questions. The
second challenge is how to automatically learn a good map-
ping between a subgraph and an NL question. For instance,
it is common for a question to directly mention an entity name
from the input KG subgraph. However, it is challenging for
previous approaches to precisely generate such an entity name
which often contains multiple tokens. The third challenge is
how to effectively leverage the answer information. Given a
KG subgraph containing many triples, one can generate com-
pletely different questions without knowing the exact target
answer. Therefore, effectively utilizing the answer information
is crucial for generating more relevant questions.

In order to address the above challenges, we present a
subgraph-guided KG–QG approach with graph neural net-
works (GNNs). To this end, we introduce, for the first time,
the Graph-to-Sequence (Graph2Seq) architecture with a novel
node-level copying mechanism for the KG–QG task to address
the second challenge. We extend the regular GNN-based
encoder to allow processing directed and multirelational KG
subgraphs to solve the first challenge. In addition, we propose
a simple, yet elegant way to leverage the context information
from the answers to effectively handle the third challenge.
Extensive experimental results demonstrate that our model
significantly outperforms the state-of-the-art baselines by a
large margin on two benchmarks and consistently benefits the
KBQA task. Fig. 1 illustrates the main ideas of various QG
from KG learning paradigms.

We highlight our main contributions as follows.
1) We propose a novel Graph2Seq model for subgraph-

guided KG–QG. The proposed Graph2Seq model
employs bidirectional graph embedding and we design
two different GNN encoders to effectively encode KG
subgraphs with directed and multirelational edges.

2) We extend the RNN decoder with a novel copying
mechanism that allows the entire node attribute to be
borrowed from the input KG subgraph when generating
NL questions.

3) We investigate two different ways of initializing
node/edge embeddings when applying a GNN encoder
to process KG subgraphs. In addition, we study the
impact of edge direction on the GNN encoder.

4) Experimental results show that our model improves the
state-of-the-art BLEU-4 score from 11.57 to 29.40 and
from 25.99 to 59.59 on WebQuestions (WQ) and
PathQuestions (PQ) benchmarks, respectively. A human
evaluation study corroborates that the questions gener-
ated by our model are more natural (semantically and
syntactically) and relevant compared to other baselines.
Experiments also show that our QG model can con-
sistently benefit the KBQA task as a means of data
augmentation.

II. RELATED WORK

A. QG From KGs
Early works [7], [13], [14] on QG from KGs are mostly

template-based approaches heavily relying on a set of prede-
fined question templates to verbalize a structured query to an
NL question. However, they usually have low generalizability
and scalability, and the diversity and fluency of the generated
questions are limited due to the nature of template-based
approaches. Recently, Seq2Seq-based neural architectures
have been applied to this task without resorting to manually
designed templates and are end-to-end trainable. However,
these approaches [16], [17], [18], [19], [20] only focus on
generating simple questions from a keyword list or single
triple as they typically employ an RNN- or Transformer-based
encoder that cannot handle graph-structured data like a KG
subgraph. Very recently, Seq2Seq-based approaches were also
applied for generating a multihop complex question from a
KG subgraph instead of just a single triple. However, they
still failed to effectively utilize the rich structure information
of the KG subgraph by simply regarding a KG subgraph as
a set of triples [23] or a sequence of subject, predicate, and
object embeddings [24]. Unlike all previous approaches, in this
work, we focus on generating multihop complex questions by
effectively modeling the rich structures (e.g., edge directions
and edge types) of KG subgraphs via a novel GNN-based
graph encoder. To the best of our knowledge, we are the first
to introduce the Graph2Seq architecture to the KG–QG task.

There was related work focusing on QG from the text.
In [3], we proposed a reinforcement learning (RL)-based
Graph2Seq model for the task of QG from the text. Besides
the difference in terms of problem settings, the major technical
difference between this work and our previous work includes,
in this work: 1) we extend the GNN encoder to handle mul-
tirelational graphs where in [3] edge-type information was not
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Fig. 2. Overall architecture of our proposed model. Best viewed in color.

modeled and 2) we extend the word-level copying mechanism
in [3] to the node-level copying mechanism. Some recent QG
from text works explored leveraging external knowledge for
better performance. For instance, Shen et al. [26] proposed
to augment the raw text with auxiliary knowledge retrieved
from a KG using entities and keywords mentioned in the input
text. Their approach then applies three different GNN-based
encoders to encode three types of graphs constructed based
on text and knowledge retrieved from a KG. Even though we
both adopt a Graph2Seq architecture, we tackle very different
problems and they utilize KG as external knowledge for better
QG from text performance.

Our work is also related to recent research efforts on
pretrained models for KG-to-text generation [27], [28] which
used KG-to-text generation as one of the pretraining tasks.
These large-scale pretrained models could be used for many
downstream KG-to-text applications (including QG from KGs)
by finetuning them for a particular downstream task.

B. Graph Neural Networks
Traditional deep-learning approaches like convolutional

neural networks and recurrent neural networks are designed
for Euclidean data like images and text and thus cannot
directly handle non-Euclidean data like graphs. Over the
past few years, GNNs [29], [30], [31], [32], [33], [34] have
drawn increasing attention due to their ability to model
graph-structured data and have successfully been applied in
the NLP field [35], [36], [37], [38], [39]. Recently, in order to
address the limitations of the widely used Seq2Seq architec-
tures [21], [22] on encoding rich and complex graph-structured
data, a number of works have applied the Graph2Seq archi-
tectures for various NLP tasks including machine translation
[35], [40], semantic parsing [41], code summarization [42],
and graph-to-text generation (e.g., AMR, SQL, and KG to
text) [43], [44], [45], [46]. Compared to existing Graph2Seq
models, our proposed Graph2Seq model can better handle
multirelational graphs and employ a node-level copying mech-
anism to enable generating more faithful text.

III. APPROACH

A. Problem Formulation
Our focus is on natural QG from a KG subgraph, along

with potential target answers; the overall architecture of our

approach is shown in Fig. 2. We assume that a KG subgraph
is a collection of triples (i.e., subject–predicate–object) that
can also be represented as a graph G = (V, E), where V ⊆ V
denotes a set of entities (i.e., subjects or objects) and E ⊆ E
denotes all the predicates connecting these entities. We denote
by V and E the complete entity set and predicate set of the
KG, respectively. We also assume that all the answers from
the target answer set V a are from the entity set V , which
is the normal setting of the task of KBQA [9]. The task of
KG–QG is to generate the best NL question consisting of a
sequence of word tokens Ŷ = {y1, y2, . . . , yT } that maximizes
the conditional likelihood Ŷ = arg maxY P(Y |G, V a), where
T is the length of the question. We focus on the problem
setting where we have a set of KG subgraphs (and answers)
and target questions pairs, to learn the mapping; existing
QG approaches [16], [18], [23] make a similar assumption.
Although the three main challenges we have discussed before
are based on QG from KGs, other QG tasks from other data
sources also share some or most of the issues when dealing
with these tasks. Therefore, our model could be generalized
to cope with these tasks as well.

B. Encoding Layer
Let us denote V as a set of nodes (i.e., entities)

{v1, v2, . . . , vn} in a KG subgraph G, where each node is
associated with some attributes such as text or ID. Similarly, let
us denote E as a set of edges (i.e., predicates) {e1, e2, . . . , em}

in G, where each edge has some attributes such as text or ID.
1) Encoding Nodes and Edges: Before applying the GNN

encoder to process a KG subgraph, we need to map nodes
and edges to an initial embedding space that encodes their
attributes. There are two common ways of encoding nodes
and edges in a KG. One solution is based on global KG
embeddings that are pretrained on the whole KG by some
KG representation learning algorithm such as TransE [47],
while the other one is based on pretrained embeddings (e.g.,
GloVe [48]) of the words making up the textual attributes.
In this work, we choose to encode nodes and edges based on
word embeddings of their textual attributes in our main model.
We posit that it is relatively easier for a model to learn the map-
ping from the input KG subgraph to the output NL question
with both sides based on word embeddings. We empirically
compare and analyze the two encoding strategies in our
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experiments. In order to encode the nodes and edges in a
KG subgraph, we apply two bidirectional LSTMs [25] for
nodes (i.e., one for nodes and one for edges) to encode their
associated text. The concatenation of the last forward and
backward hidden states of the BiLSTM is used as the initial
embeddings for nodes and edges.

2) Utilizing Target Answers: In the setting of KBQA
[9], [49], it is usually assumed that the answers to a question
are entities in a KG subgraph. As a dual task of KBQA,
in this QG work, we assume that utilizing the target answers
along with the KG subgraph can help generate more relevant
questions. To this end, we apply a simple, yet effective strategy
where we introduce an additional learnable markup vector
associated with each node/edge to indicate whether it is an
answer or not. Therefore, the initial vector representation of a
node/edge will be the concatenation of the BiLSTM output and
the answer markup vector. We denote Xe

= {xe
1, xe

2, . . . , xe
n}

and Xp
= {xp

1 , xp
2 , . . . , xp

m} as the embeddings of the entity
nodes and predicate edges, respectively. Both Xe and Xp have
the same embedding dimension d .

C. Bidirectional Graph2Seq Generator With Copying
While RNNs are good at modeling sequential data, they

cannot naturally handle graph-structured data. One might need
to linearize a graph to a sequence to apply an RNN-based
encoder, which will lose the rich structure information in the
graph. Many previous works [35], [40] showed the superiority
of GNNs compared to RNNs in modeling graph-structured
data. Kumar et al. [23] proposed to encode a set of triples via
a Transformer by removing positional encoding in the original
architecture. Even though a Transformer-based encoder could
learn the semantic relations among the triples through all-to-
all attention, the explicit graph structure is totally discarded.
In this work, we introduce a bidirectional GNN-based encoder
to encode the KG subgraph and decode the output question
via an RNN-based decoder equipped with a node-level copying
mechanism.

1) Bidirectional Graph Encoder: Many existing
GNNs [29], [31], [50] were not designed to process directed
graphs such as a KG. Even though some GNN variants such
as GGSNN [32] and MPNN [30] are able to handle directed
graphs via message passing across graphs, they do not model
the bidirectional information when aggregating information
from neighboring nodes for each node. As a result, messages
can only be passed across graphs in a unidirectional way.

In this work, we introduce the bidirectional gated GNN
(BiGGNN) which extends GGSNN by learning node embed-
dings from both incoming and outgoing directions in an inter-
leaved fashion when processing a directed graph. A similar
bidirectional approach has been exploited in [43] and [51]
to extend other GNN variants. While their methods simply
learn the node embeddings of each direction independently
and concatenate them at the last step, BiGGNN fuses the
intermediate node embeddings from both directions at every
iteration.

The embedding h0
v for node v is initialized to xv , namely,

a concatenation of the BiLSTM output and the answer markup
vector. BiGGNN then performs message passing across the
graph for a fixed number of hops, with the same set of network

parameters shared at each hop. At each hop of computation,
for every node in the graph, we apply an aggregation function
that takes as input a set of incoming (or outgoing) neighboring
node vectors and outputs a backward (or forward) aggregation
vector. In principle, many order-invariant operators such as
max or attention [50] can be employed to aggregate neighbor-
hood information. Here, we use a simple average aggregator

hk
N⊣(v)

= AVG
({

hk−1
v

}
∪

{
hk−1

u ∀u ∈ N⊣(v)

})
hk

N⊢(v)
= AVG

({
hk−1

v

}
∪

{
hk−1

u ∀u ∈ N⊢(v)

})
(1)

where N⊣(v) and N⊢(v) denote the incoming and outgoing
neighbors of node v. We then fuse the node embeddings
aggregated from both directions

hk
N(v)

= Fuse
(

hk
N⊣(v)

, hk
N⊢(v)

)
. (2)

The fusion function is computed as a gated sum of two
information sources

Fuse(a, b) = z ⊙ a + (1 − z) ⊙ b
z = σ(Wz[a; b; a ⊙ b; a − b] + bz) (3)

where ⊙ is the componentwise multiplication, σ is a sigmoid
function, and z is a gating vector. The gate helps the model
determine how much of the information needs to be reserved
from the two aggregated node embeddings.

Finally, a gated recurrent unit (GRU) [22] is used to
update the node embeddings by incorporating the aggregation
information

hk
v = GRU

(
hk−1

v , hk
N(v)

)
. (4)

After n hops of GNN computation where n is a hyperpa-
rameter, we obtain the final state embedding hn

v for node v.
To compute the graph-level embedding, we first apply a linear
projection to the node embeddings and then apply max-pooling
over all node embeddings to get a d-dim vector hG .

2) Handling Multirelational Graphs: KGs are typically
heterogeneous networks that contain a large number of edge
types. However, many existing GNNs [29], [31], [32], [50]
are not directly applicable to multirelational graphs. In order to
model both node and edge information with GNNs, researchers
have extended them by either having separate learnable
weights for different edge types or having explicit edge embed-
dings when performing message passing [30], [52]. While
the former solution may have severe scalability issues when
handling graphs with a large number of edge types, the latter
requires major modifications to existing GNNs. In this work,
we explore two solutions to adapt GNNs to multirelational
graphs.

a) Levi graph transformation: We can directly apply
regular GNNs to a multirelational KG subgraph by converting
it to a Levi graph [53]. Specifically, we treat all edges in
the original graph as new nodes and add new edges con-
necting the original nodes and new nodes, which results in
a bipartite graph. For instance, in a KG subgraph, a triple
(Mario_Siciliano, place_of_birth, Rome) will be converted
to “Mario_Siciliano → place_of_birth → Rome,” where
“place_of_birth” becomes a new node, and → indicates a new
edge connecting an entity and a predicate. Note that since most
KG subgraphs are sparse, the number of newly added nodes
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(and edges as well) will at most be linear to the number of
original nodes.

b) Gated message passing with edge information: We
also extend BiGGNN to explicitly incorporate edge embed-
dings when conducting message passing, calling the resultant
variant as BiGGNNedge. Specifically, we rewrite the node
aggregation function (1) as follows:

hk
N⊣(v)

= AVG
({

hk−1
v

}
∪

{
f
([

hk−1
u ; euv

])
∀u ∈ N⊣(v)

})
hk

N⊢(v)
= AVG

({
hk−1

v

}
∪

{
f
([

hk−1
u ; euv

])
∀u ∈ N⊢(v)

})
(5)

where f is a nonlinear function (i.e., linear projection +

ReLU [54]) applied to the concatenation of hk−1
u and euv which

is the embedding of the edge connecting node u and v.
3) RNN Decoder With Node-Level Copying: We adopt an

attention-based [55], [56] LSTM decoder that generates the
output sequence one word at a time. The decoder takes
the graph-level embedding hG followed by two separate
fully-connected layers as initial hidden states (i.e., c0 and
s0) and the node embeddings {hn

v, ∀v ∈ G} as the attention
memory. The particular attention mechanism used in our
decoder closely follows [57]. Basically, at each decoding step
t , an attention mechanism learns to attend to the most relevant
nodes in the input graph and computes a context vector
h∗

t based on the current decoding state st and the attention
memory.

We hypothesize that when generating NL questions from
a KG subgraph, it is very likely to directly mention (i.e.,
copy) entity names that are from the input KG subgraph
even without rephrasing them. When augmented with copy-
ing mechanism [58], [59], most RNN decoders are typically
allowed to copy words from the input sequence. We extend
the regular word-level copying mechanism to the node-level
copying mechanism that allows copying node attributes (i.e.,
node text) from the input graph. The copying mechanism was
used in some previous Graph2Seq articles [45], [60]. The most
similar work is [60] which proposed to copy both entities
and predicates from the input graph. Unlike [60], we use a
masked copying mechanism to only copy entity nodes in the
transformed Levy graph and do not copy predicate nodes. This
is because we assume that for the KG-QG task, it is very
likely for humans to directly mention entity names but not
necessarily for predicate names that are from the KG.

At each decoding step, the generation probability pgen ∈

[0, 1] is calculated from the context vector h∗
t , the decoder

state st and the decoder input yt−1. Next, pgen is used as a
soft switch to choose between generating a word from the
vocabulary or copying a node attribute from the input graph.
We dynamically maintain an extended vocabulary which is the
union of the usual vocabulary and all node names appearing
in a batch of source examples (i.e., KG subgraphs).

D. Training and Testing

As customary for training sequential models, we minimize
the following cross-entropy loss:

L =

∑
t

− log P
(
y∗

t |X, y∗

<t

)
(6)

where y∗
t is the word at the t th position of the gold output

sequence. Scheduled teacher forcing [61] is adopted to allevi-
ate the exposure bias problem. During the testing phase, beam
search is applied to generate the output.

Two-Stage Training Strategy: Most prior works on QG
employ cross-entropy-based training objectives, which is also
a de facto choice for training sequential models in many other
NLP tasks. However, cross-entropy-based training strategy
has some known limitations including exposure bias and
evaluation discrepancy between training and testing [62], [63],
[64]. That is to say, during training, a model has access to the
ground-truth previous token when decoding and is optimized
toward cross-entropy loss, while during testing, no ground-
truth previous token is provided and cross-entropy loss is not
used for evaluation.

To tackle these issues, besides training our proposed
model with the regular cross-entropy loss, we also explore
a two-stage training strategy where we first train the model
with cross-entropy loss and then finetune the model with
a hybrid loss combining both the cross-entropy loss and
RL [65] loss. The RL loss is defined based on evaluation
metrics, enabling us to directly optimize the model toward
the evaluation metrics.

The reason we need the first-stage training is that training
models from scratch using RL is often challenging. The regular
cross-entropy training can help us obtain a reasonably good
performing model, and the RL-based finetuning can further
improve the model performance.

In the first stage, regular cross-entropy loss is used

Llm =

∑
t

− log P
(
y∗

t |X, y∗

<t

)
(7)

as in (6). In the second stage, we further finetune the model
by optimizing a hybrid objective function combining both
cross-entropy loss and RL loss, defined as

L = γLrl + (1 − γ )Llm (8)

where γ is a scaling factor controlling the tradeoff between
the two losses.

While our architecture is agnostic to the specific RL algo-
rithm, in this work, we employ an efficient, yet effective RL
approach called self-critical sequence training (SCST) [66] to
directly optimize the discrete evaluation metrics. SCST is an
efficient REINFORCE algorithm that utilizes the output of its
own test-time inference algorithm to normalize the rewards it
experiences. At each training iteration, the RL loss is defined
by comparing the reward of the sampled output Y s with the
reward of the baseline output Ŷ

Lrl =
(
r
(
Ŷ

)
− r

(
Y s)) ∑

t

log P
(
ys

t |X, ys
<t

)
(9)

where Y s is produced by multinomial sampling, that is, each
word ys

t is sampled according to the likelihood P(yt |X, y<t )

predicted by the generator, and Ŷ is obtained by greedy search,
that is, by maximizing the output probability distribution at
each decoding step. As we can see, minimizing the above
loss is equivalent to maximizing the likelihood of some
sampled output that has a higher reward than the corresponding
baseline.
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One of the key factors for RL is to pick the proper
reward function. We define r(Y ) as the reward of an output
sequence Y , computed by comparing it to the corresponding
ground-truth sequence Y ∗ with some reward metric which is a
combination of our evaluation metrics (i.e., we used BLEU-4
and ROUGE-L scores in our experiments). This lets us directly
optimize the model toward the evaluation metrics.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness of our proposed model for the QG task.
We also conduct experiments to examine whether our QG
model can help the QA task by providing more training
data. Besides, we want to examine whether the introduced
GNN-based encoder works better than an RNN-based or
transformer-based encoder when encoding a KG subgraph for
the QG task. In addition, we explore and analyze two different
ways of handling multirelational graphs with GNNs. More-
over, we empirically compare two different ways of initializing
node and edge embeddings before feeding them into a GNN-
based encoder. An experimental comparison between a bidi-
rectional GNN-based encoder and a unidirectional GNN-based
encoder is also provided. The code and data will be released
upon this article’s acceptance.

A. Baseline Methods
We compare our model against the following baselines:

1) L2A [1]; 2) transformer (w/copy) [15]; 3) MHQG +

AE [23]; 4) JointGT (T5) [28]; and 5) JointGT (BART) [28].
To the best of our knowledge, MHQG + AE was probably the
first neural network-based model that focused on QG from a
KG subgraph. Their proposed model, called MHQG + AE,
employs a Transformer-based encoder [15] to encode a KG
subgraph (i.e., a set of triples) and generates an output question
with a Transformer-based decoder. L2A is an LSTM-based
Seq2Seq model equipped with an attention mechanism, which
takes as input a linearized KG subgraph. It was included
in [23] as a baseline. The results of L2A reported here
are taken from [23]. We also include a Transformer-based
encoder–decoder model [67] with a copying mechanism that
takes as input a linearized KG subgraph, that is, a sequence of
triples where each triple is represented as a sequence of tokens
containing the subject name, predicate name, and object name.
Hence, after the transformation, a KG subgraph becomes
a sequence of tokens. Note that the Transformer baseline
included in our experiments encodes the word sequence that
is linearized from a KG subgraph, while the MHQG + AE
model encodes the triple set contained in a KG subgraph by
removing the positional encoding in a regular Transformer
architecture. Unlike MHQG + AE that takes as input a set of
triple embeddings that are pretrained by a knowledge-based
representation learning framework called TransE [47], the
Transformer baseline takes a sequence of word embeddings
as input. We used the open-source implementation [67] of the
Transformer-based encoder–decoder model that is equipped
with a copying mechanism. Lastly, we also include two
large-scale pretrained KG-to-text models JointGT (T5) and
JointGT (BART) [28] which were finetuned for the task of
QG from KGs. We do not include [24] as our baseline

TABLE I
DATA STATISTICS. THE MIN/MAX/AVG STATISTICS ARE REPORTED ON

THE QUERIES AND KG SUBGRAPH TRIPLES

because their approach augmented the input KG subgraph
with various types of external knowledge such as entity
descriptions, entity domains, question word types, and answer
entity types, which makes it unfair to directly compare the
performance of their approach with our approach. In their
original article, the authors reported that their ablated system
without using auxiliary knowledge (i.e., it still utilized the
additional question word type information, see the results
in [24, Table 3]) significantly underperformed our approach
(denoted as BiGraph2Seq in [24, Table 2]) on two benchmarks
(i.e., 3.11 absolute BLEU-4 gap and 0.64 absolute BLEU-4
gap).

B. Data and Metrics
Following [23], we used WQ and PQ1 as our benchmarks

where both of them use Freebase [68] as the underlying
KG. The WQ dataset combines examples from WebQues-
tionsSP [69] and ComplexWebQuestions [70] where both
of them are KBQA benchmarks that contain NL questions,
corresponding SPARQL queries and answer entities. For each
instance in WQ, in order to construct the KG subgraph, [23]
converted its SPARQL query to return a subgraph instead
of the answer entity, by changing it from a SELECT query
to a CONSTRUCT query. The WQ dataset [23] contains
18 989/2 000/2 000 (train/development/test) examples. The PQ
dataset [71] is similar to WQ except that the KG sub-
graph in PQ is a path between two entities that span two
or three hops. The PQ dataset contains 9 793/1 000/1 000
(train/development/test) examples. Brief statistics of the two
datasets are provided in Table I.

Following previous works, we use BLEU-4 [72],
METEOR [73], and ROUGE-L [74] as automatic evaluation
metrics. Initially, BLEU-4 and METEOR were designed
for evaluating machine translation systems and ROUGE-L
was designed for evaluating text summarization systems.
We also conduct a human evaluation study on WQ. Generated
questions are rated (i.e., range 1–5) based on whether they
are syntactically correct, semantically correct, and relevant to
the KG subgraph. More specially, we conducted a small-scale
(i.e., 50 random examples per system) human evaluation
study on the WQ test set. We asked six human evaluators
to give feedback on the quality of questions generated by
a set of anonymized competing systems. In each example,
given a KG subgraph, target answers, and anonymized system
output, they were asked to rate the quality of the output by
answering the following three questions: 1) is this generated
question syntactically correct? 2) is this generated question
semantically correct? and 3) is this generated question
relevant to the KG subgraph and target answers? For each
evaluation question, the rating scale is from 1 to 5 where a
higher score means better quality (i.e., 1: poor, 2: marginal,

1https://github.com/liyuanfang/mhqg

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on August 24,2023 at 14:28:28 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: TOWARD SUBGRAPH-GUIDED KG QG WITH GNNs 7

3: acceptable, 4: good, 5: excellent). Responses from all
evaluators were collected and averaged.

C. Model Settings

We keep and fix the 300-dim GloVe [48] vectors for those
words that occur more than twice in the training set. The
dimensions of answer markup embeddings are set to 32 and
24 for WQ and PQ, respectively. We set the hidden state size
of BiLSTM to 150 so that the concatenated state size for both
directions is 300. The size of all other hidden layers is set
to 300. We apply a variational dropout [75] rate of 0.4 after
word embedding layers and 0.3 after RNN layers. The label
smoothing ratio is set to 0.2. The number of GNN hops is
set to 4. During training, in each epoch, we set the initial
teacher forcing probability to 0.8 and exponentially increase
it to 0.8 ∗ 0.9999i where i is the training step. In addition,
partial teacher forcing is adopted, which means that when
generating a sequence, some steps can be teacher forced and
some not. We use Adam [76] as the optimizer. The learning
rate is set to 0.001. We reduce the learning rate by a factor
of 0.5 if the validation BLEU-4 score stops improving for
three epochs. We stop the training when no improvement
is seen for ten epochs. We clip the gradient at length 10.
The batch size is set to 30. The beam search width is set
to 5. In the RL fine-tuning experiments, we set γ in the
mixed loss function (8) to 0.02 for WQ and 0.07 for PQ.
And the ratios of the BLEU-4 score and ROUGE-L score
for computing the reward are set to 1 and 0.02, respectively.
We set the learning rate to 0.00001 and 0.00002 for WQ
and PQ, respectively. All hyperparameters are tuned on the
development set. Experiments were conducted on a machine
that has an Intel i7-2700K CPU and an Nvidia Titan Xp GPU
with 16 GB RAM.

D. Experimental Results

1) Automatic Evaluation Results: Table II shows the eval-
uation results comparing our proposed models against other
state-of-the-art baseline methods on WQ and PQ test sets.
As we can see, our models outperform all QG baselines by
a large margin on both benchmarks. This verifies the effec-
tiveness of the proposed model. Besides, we can clearly see
the advantages of GNN-based encoders for modeling KG sub-
graphs, by comparing our model with RNN-based (i.e., L2A)
and Transformer-based (i.e., Transformer, MHQG + AE)
baselines. Compared to our Graph2Seq model, both RNN- and
Transformer-based baselines ignore the explicit graph structure
of a KG subgraph, which leads to degraded performance.
Although RNNs are suitable for processing sequential data
such as text, they are incapable of modeling graph-structured
data such as a KG subgraph. To apply the RNN-based L2A
model to a KG subgraph, Kumar et al. [23] linearized the
graph to a sequence during preprocessing. However, this
inevitably ignores the rich structure information in the graph.
Recently, the Transformer [15] has become a good alternative
to the RNN when processing sequential data. Even though
a transformer might be able to learn the semantic relations
among the sequence elements through all-to-all attention, the
explicit graph structure of a KG subgraph is totally discarded

by the model. Given these limitations, as shown in our exper-
iments, both of the two Transformer-based Seq2Seq baselines
significantly underperform our GNN-based Graph2Seq model.
Interestingly, the Transformer baseline performs reasonably
well on PQ, but dramatically fails on WQ. We speculate this
is because PQ is more friendly to sequential models such as
Transformer as the KG subgraph in PQ is more like path
structure while the one in WQ is more like tree structure.

The comparisons with large-scale pretrained KG-to-text
models further demonstrated the superiority of our models.
Without access to a large amount of pretraining data, our
best-performing model clearly outperforms the large-scale
model JointGT (T5) and achieves competitive results com-
pared to JointGT (BART). We also compare two variants of
our model (i.e., G2S vs. G2Sedge) for handling multirelational
graphs. As shown in Table II, directly applying the BiGGNN
encoder to a Levi graph converted from a KG subgraph works
quite well. The proposed BiGGNNedge model can directly
handle multirelational graphs without modifying the input
graph. However, it performs slightly worse than the Levi graph
solution. Future directions of improving BiGGNNedge include
updating edge embeddings in the message-passing process and
attending to edges in the attention mechanism.

2) Human Evaluation Results: We conduct a human eval-
uation study to assess the quality of the questions generated
by our model, the Transformer baseline, and the ground-truth
data in terms of syntax, semantics, and relevance metrics.
In addition, an overall score is computed for each exam-
ple by taking the average of the three scores. As shown
in Table III, overall, we can see that our model achieves good
results even compared to the ground truth and outperforms
the Transformer baseline. Interestingly, we observe that the
Transformer baseline gets high syntactic and semantic scores,
but very poor relevant scores. After manually examining some
generated questions, we noticed that it generates many fluent
and meaningful questions that are by no means relevant to the
given KG subgraph. However, our model is able to generate
more relevant questions possibly by better capturing the KG
semantics and the answer.

E. Ablation Study

As shown in Table IV, we perform an ablation study to
assess the performance impacts of different model compo-
nents. First of all, the node-level copying mechanism con-
tributes a lot to the overall model performance. By turning
it off, we observe significant performance drops on both
benchmarks. This verifies our assumption that when generating
questions from a KG subgraph, one usually directly copies
named entities from the input KG subgraph to the output
question. Besides, the answer information is also important
for generating relevant questions. Even with the simple answer
markup technique, we can see the performance boost on both
benchmarks.

F. Model Analysis

1) Effect of Node/Edge Embedding Initialization: We
empirically compare two different ways of initializing
node/edge embeddings when applying the Graph2Seq model.
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TABLE II

AUTOMATIC EVALUATION RESULTS ON WQ AND PQ. THE METHODS MARKED WITH † ARE LARGE-SCALE PRETRAINED KG-TO-TEXT MODELS
FINETUNED ON QG DATA WHILE OTHER METHODS DO NOT HAVE ACCESS TO SUCH PRETRAINING DATA. THE RESULTS MARKED IN BOLD

AND WITH ∗ INDICATE THE BEST AND SECOND BEST RESULTS, RESPECTIVELY

TABLE III
HUMAN EVALUATION RESULTS (±STANDARD DEVIATION) ON THE WQ

TEST SET. THE RATING SCALE IS FROM 1 TO 5 (HIGHER SCORES
INDICATE BETTER RESULTS)

Fig. 3. Effect of RL ratio for G2S + AE + RL on WQ.

Fig. 4. Effect of number of GNN hops for G2S + AE on WQ.

As shown in Table V, encoding nodes and edges based on
word embeddings of their textual attributes works better than
based on their KG embeddings. This might be because it is
difficult for an NN-based model to learn the gap between KG
embeddings on the encoder side and word embeddings on
the decoder side. With the word embedding-based encoding
strategy, it is relatively easier for a model to learn the mapping
from the input KG subgraph to the output NL question. It also
seems that modeling local dependency within the subgraph
without utilizing the global KG information is enough for
generating meaningful questions from a KG subgraph.

2) Impact of Directionality on GNN Encoders: As shown
in Table VI, we compare the performance of bidirectional
Graph2Seq with unidirectional (i.e., forward and backward)
Graph2Seq. We observe that utilizing the edge direction

Fig. 5. Effect of beam search size for G2S + AE on PQ.

Fig. 6. Convergence analysis for G2S + AE on PQ.

information in the KG subgraph via bidirectional GNNs can
significantly improve the model performance.

3) Results on the Two-Stage Training Strategy: Tables VII
and VIII show the results of training our proposed G2S + AE
model with a hybrid objective combining both cross-entropy
loss and RL loss following the two-stage training strategy.
We denote this variant as G2S + AE + RL. While the
RL-based training strategy boosts the model performance on
WQ, it does not help the model training on PQ. We suspect
this is because the PQ dataset is easier compared to the WQ
dataset, and therefore the benefit of RL-based finetuning on PQ
is less significant. In order to study how the RL ratio γ affects
the model performance, we report the test BLEU-4 scores on
WQ corresponding to different values of γ , as shown in Fig. 3.
As we can see, compared to γ = 0 which means no RL-based
finetuning is applied, increasing the value of γ can help the
model performance until a certain point.

4) Effect of the Number of GNN Hops: Fig. 4 shows
the impact of the number of GNN hops when applying a
GNN-based encoder to encode the KG subgraph in WQ.
It indicates that increasing the number of GNN hops can boost
the model performance until some optimal value.

5) Effect of the Beam Search Size: Fig. 5 shows the impact
of the beam size when applying beam search decoding during
the testing phase on PQ. It indicates that beam search decoding
significantly outperforms greedy search decoding (i.e., beam
size = 1) and increasing the beam size can boost the model
performance until some optimal value.
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TABLE IV
ABLATION STUDY ON WQ AND PQ

TABLE V
EFFECT OF NODE/EDGE INIT. EMBEDDINGS ON WQ

TABLE VI
IMPACT OF DIRECTIONALITY FOR G2S + AE ON PQ

TABLE VII
RESULTS OF RL-BASED G2S + AE ON WQ

TABLE VIII
RESULTS OF RL-BASED G2S + AE ON PQ

TABLE IX
GENERATED QUESTIONS ON WQ TEST SET. TARGET ANSWERS ARE

UNDERLINED. FOR THE SAKE OF BREVITY, WE ONLY DISPLAY THE
LOWEST LEVEL OF THE PREDICATE HIERARCHY

6) Convergence Analysis: Fig. 6 shows the changes in
validation BLEU-4 scores over training epochs on PQ. As we
can see, the model was able to converge quickly and achieved
the best validation BLEU-4 score after epoch 7.

G. Case Study

As shown in Table IX, we conducted a case study to exam-
ine the quality of generated questions using different ablated
systems. First of all, by initializing node/edge embeddings
with KG embeddings, the model fails to generate reasonable

TABLE X
ERROR ANALYSIS ON GENERATED QUESTIONS ON WQ TEST SET. TARGET

ANSWERS ARE UNDERLINED. FOR THE SAKE OF BREVITY, WE ONLY
DISPLAY THE LOWEST LEVEL OF THE PREDICATE HIERARCHY

questions. As we discussed in Section IV-F1, this might be
because of the semantic gap between KG embeddings on
the encoder side and word embeddings on the decoder side.
Besides, with the node-level copying mechanism, the model
was able to directly copy the entity name “giza necropolis”
from the input KG subgraph into the output question. Last,
incorporating the answer information helps generate more
relevant and specific questions. For instance, given the target
answer “Egypt,” the model was able to produce a more specific
question which is specifically asking for “what country”
instead of “where.”

H. Error Analysis

Table X shows some failure cases of our proposed
G2S + AE model on the WQ test set. One common syntactic
error pattern we observed is repeated words (e.g., repeated
“the voice of” in the second example) in generated questions.
Another error pattern is missing important pieces of informa-
tion. For instance, in the second example,2 our model failed to
utilize the tuple (/m/02ntr0s, character, lois griffin) when gen-
erating the question. The coverage mechanism [77] is widely
used in Seq2Seq models to encourage the full utilization
of different tokens in the input text and penalize generating
repetitive text. However, in our experiments, we found that
applying the coverage mechanism did not help improve the
overall evaluation scores. We conjecture that this might be

2In this example, the ground-truth question refers to the entity “stewie
griffin” which is not included in the given input KG subgraph.
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Fig. 7. Distribution of trigram prefixes of questions generated by G2S +

AE on the WQ test set.

Fig. 8. Distribution of trigram prefixes of golden questions in the WQ test
set.

Fig. 9. Performance of QG-driven KBQA baseline under different propor-
tions of training data.

because the coverage mechanism can also be too aggressive
by encouraging the model to utilize irrelevant tuples in the
input KG subgraph.

I. Visualization of the Generated Questions

Figs. 7 and 8 show the distributions of frequent trigram
prefixes (i.e., frequency less than 5 not included) of the
generated questions and golden questions on the WQ test set.
As we can see, our G2S + AE model was able to generate
diverse questions which have a similar distribution of trigram
prefixes in comparison with the golden questions.

J. QG-Driven Data Augmentation for QA

One of the most important applications of QG is to generate
more training data for QA tasks. In this section, we use our
proposed QG model to generate more questions for training
KBQA methods. We use WQ as our KBQA benchmark and
randomly split it into 40%/20%/40% (train/dev/test) examples.
As for the KBQA baseline, we use the state-of-the-art KBQA

model called BAMnet [9] which directly retrieves answers
from a KG by mapping questions and candidate answers into
a joint embedding space. In order to examine the effect of
QG-driven data augmentation on the KBQA task, we compare
the BAMnet baseline with its two data augmentation variants,
namely, BAMnet w/Transformer and BAMnet w/G2S + AE.
More specifically, the BAMnet baseline is trained only on
the part (i.e., x% of the whole training data) where gold
questions are available, while the other two variants are trained
on the combination of the gold questions and the questions
are automatically generated by two QG models. Each x%
corresponds to a data point in Fig. 9. We vary the value of
x% from 5% all the way to 100% to examine the effectiveness
of the QG-based data augmentation for KBQA with different
training sizes. Note that given the x% training data, we further
randomly split it to 80%/20% (train/dev) for training a QG
model.

As shown in Fig. 9, we gradually increase the proportion
(i.e., x%) of the training data and report the F1 score per-
formance of the above three KBQA model variants. Here,
the F1 score measures the overlap between the predicted and
ground-truth answer sets. The results show that both QG
models consistently help improve the KBQA performance
when varying x% training data, and the performance boost
is the most significant when training data is scarce (i.e.,
5%, 10%). Notably, our G2S + AE model consistently out-
performs the Transformer model in improving the KBQA
performance.

V. CONCLUSION

In this article, we introduced a novel bidirectional
Graph2Seq model for the KG-QG task. A novel node-level
copying mechanism was proposed to allow the directly copy-
ing of node attributes from the KG subgraph to the output
question. We explored different ways of initializing node/edge
embeddings and handling multirelational graphs. Our model
outperforms existing methods by a significant margin on two
benchmarks.

In our experiments, we observed that node/edge embedding
initialization has a big impact on the overall model perfor-
mance. We would like to explore more effective ways of
initializing node/edge embeddings in the future. Besides, how
to effectively utilize the answer information is critical for
generating relevant and meaningful questions. In this work,
we introduced simple markup vectors to indicate whether an
entity is a target answer or not. We leave more effective
ways of answer utilization as future work. It is also beneficial
to design more effective mechanisms to penalize generating
repetitive text and encourage fully utilizing important informa-
tion in the input KG subgraph. Another interesting direction
is to integrate the QG model with KG completion systems.
We expect this can be extremely beneficial when the input
KG is incomplete and can potentially lead to generating more
interesting and diverse questions.
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