Mobile Robotics 1994

Graduate Students: O. Fuentes, J. Karlsson, W. Meira, R. Rao
T. Riopka, J. Rosca, R. Sarukkai
M. Van Wie, M. Zaki
Staff: T. Becker, R. Frank, B. Miller
Prof. C. M. Brown

The University of Rochester
Computer Science Department

Rochester, New York 14627
Technical Report 588
June 1995

Abstract

On 7 December 1994, four student-built autonomous robots demonstrated various strategic, tac-
tical, and mechanical approaches to a delivery task. That event was preceded by approximately two
years of history and two days of frenzied preparation. Our robotics efforts were based on materials
from MIT’s well-known 6.270 course. This report summarizes our experiences, from pedagogical
goals and organizational matters through mechanical and electronic techniques. Our intended audi-
ence is future robot-builders, and organizers of robot-building courses. We assume familiarity with
material in Jones and Flynn’s Mobile Robotics text, and with the various materials available from
MIT over the internet.

Keywords: Mobile Robotics;, LEGO, Interactive C, MIT 6.270, Sensors.

This material is based on work generously supported by the Department of Computer Science (Tom LeBlanc,
Chair) and NSF IIP grant CDA-94-01142. Wagner Meira Jr. is supported by CNPq-Brazil Grant 200.862/93-6

Contents

Prehistory
Getting Started
The Competition

Map-Maker (Sarukkai, Meira, Zaki)

4.1 Map-maker: General description
4.2 Beacons and Triangulation. oL
4.3 Localization Tower Design Lo
4.4 Photoresistor Mounting L
4.5 Beacon Tracking
4.6 Line Following e
4.7 Steering oL
4.8 Map-Maker: Gearing
4.9 Map-Maker: Lego Experience o
4.10 Map Algorithms
4.11 Actions algorithm
4.12 Position Finding

Line-Follower (Miller, Becker)

Cyclops (Riopka, Rosca)

6.1 Cyclops functionality

6.2 Cyclops sensors L

6.3 The Cyclops Artificial Eye System
Linear Scanner L
Scanner Calibration and Thresholds
The Vision Algorithmo . 0
Image Analysis
Vision as a Behavior

6.4 Skill Learning L
Skill Acquisition L
Manoever Reversal
Photoresistor Response Time
Servo-multiplexing Circuit oL
Behavior as a Hierarchy of Goals

6.5 Cyclops actuators

0 00 =~ =~ =~ =~ =1 o ot >

—_ = =
W = O

16

7 Meccano Monster (Fuentes, Rao, Van Wie)

7.1 Why Meccano?
7.2 Disaster!
7.3 Building the Board o
7.4 Designing the Body with Meccano
7.5 Software for Compulsory Floor Exercises
7.6 The Competition
7.7 Beyond the Minibot

A Parts Lists and Information
A.1 Rug Warrior: Jones and Flynn Book 00000
A.2 From Randy Sargent at MIT o
A3 Work Area L

B Supplemental Sensors

B.1 Parts List
B.2 Break Beam Sensors
B.3 TR LED Pairs
B.4 Microphone e
B.5 Miniature IR, Reflectance Sensors
B.6 Ultrasound
B.7 Further Ideas

C Course Details
C.1 Goals and Organization L
C.2 Compulsory Floor Exercises

C.3 The Robot Competition

27
27
28
28
29
30
31
32

33
33
34
34

35
35
36
36
36
36
36
39

1 Prehistory

In 1992 — 1993, Lambert Wixson, Jonas Karlsson (Grad students in thesis mode) and Ray Frank
ordered some “miniboard” kits through connections discovered on the comp.robotics newsgroup.
Miniboards are scaled-down versions of the microcontroller boards ultimately used in the robotics
work described here. Wixson and Karlsson produce a successful autonomous LEGO corridor-running
robot, and the miniboard was used later in real-time applications (sensing for digital closed-loop
control).

Thanks as usual to student enthusiasm and agitation, Brown volunteered in the Spring of 1994
to be the statutory organizer and titular head of a robot-building seminar to be held in the Fall
semester of 1994. One constraint was that if the necessary parts could not be ordered in kit (one
call does all) form, it was not deemed practical to pursue the idea. For the more hardy, parts lists
are available in the very helpful documentation available at MIT in support of their 6.270 course.
Luckily, Randy Sargent of MIT had gone into the business of selling these kits, and so we proceeded.
Over the summer an organizing committee (Brown, Karlsson, Frank, Brad Miller and Tim Becker)
dealt with the kit-ordering process, wrote a proposal for an Undergraduate version of the course,
made up lists of tools and other support material deemed needed to get started (some details are in
Section 2).

The organizers undertook to assemble robot during the summer and assess the difficulties, and
to design a graduate-level seminar based on the robot-building and -competition conception (details
in Section C).

2 Getting Started

A good place to get general information is:
http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/
project/ai-repository/ai/html/faqs/ai/robotics/top.html

Of course the newsgroup comp.robotics is still the standard place read and keep current, or to
post specific inquiries.

The “consumables” in our work were almost entirely the electronics parts to assemble the micro-
controller computer. Appendix A gives parts lists and two different alternatives for robot kits. The
LEGO kits used for mechanical robot construction can be recycled. The $500/group cost comes to
$167 per student. Students might decide to buy their robot or microcontroller once assembled, we
might charge a lab fee of $180/student. As of now we don’t have a fixed plan for how to finance this
significant ongoing cost.

Aside from the above consumable items, ideally the rest of the course equipment is “permanent”,
meaning that students take responsibility for returning it with only reasonable wear and tear.

3 The Competition

The stars of this report are the four robots that were built during the course. The robot descriptions
follow, along with algorithms, assumptions, associated team goals, successful and less successful
ideas, and so on. It is interesting to note how the individual mechanical and software designs
interact to produce coherent component capabilities and integrated systems.

First, however, to understand some of the design decisions, 1t helps to know the history of the
course assignments and the rules governing the final competition. More course details are presented
in Appendix C. The course had three phases: construction, robot olympics and compulsory exercises,

and the competition. To provide context for the reports on individual robots, the competition rules
are presented here.

On 7 December 1994 a “robot Federal Express” competition was held with four contestants.
There was an enthusiastic turnout of locals; the press was not notified until after the event. We had
a re-run for the press a week later, attended by two television stations, the local paper, and a radio
station. The resulting coverage was responsible and good-natured and more than likely good for
business. Following are the rules and a diagram of the arena as it was set up for the competition.
In fact one team (MAP-MAKER) did use a 3rd IR beacon for ego-location.

e The spirit of the competition i1s to investigate trades-off between the following capabilities
— line following — beacon following — obstacle avoidance — memory (learning) and geometric
representations — other ingenious ideas invented by contestents

e Competition takes place on the 8 by 8” white sheet, with walls, markings, and obstacles added.
Walls are sturdy and 6” high, made of 1/2” or 5/8” plywood. Interior of walls painted white.
There will up to a maximum of eight physical obstacles, 3-4 inches high and a foot square, at
unannounced positions on a 1-foot square grid. The sides of obstacles will be painted grey.
See Fig. 1.

e Robot must not be tethered to receive either power or digital information; it must be completely
autonomous.

e Robot begins or arrives at a Pickup Area, marked by an IR beacon at height of 12 inches
above floor. Robot requests (via its beeper) and within 3 seconds is given, in its ball-carrying
hopper, a ping-pong ball.

e Obstacles and Pickup and Delivery areas are one foot square, placed on one foot grid squares.
These areas will be in a fixed position on the arena, KNOWN in advance, to be fixed and
painted black soon.

e Between the pickup and delivery areas will be a path marked in eletrical tape. This path is
UNKNOWN in advance.

e There will be not more than eight obstacles in the arena, whose location, like the path, is
variable and UNKNOWN in advance.

e Over the pickup area will be 100Hz IR, beacon at the height of 12”.
o Over the delivery area will be 125Hz IR beacon at the height of 127.
e A team can design and deploy more beacons:

— prior to the competition a single IR, or visible-light beacon can be set up. These beacons’
location must be communicated to the organizer (CB) before the arena is set up for the
competition: their position cannot depend on the location of obstacles, for instance.

— during the competition the robot can drop beacons or other navigational aids freely.

e Both pickup and delivery areas are black areas on floor. Pickup and Delivery areas may or
may not be against walls. We shall use black electrical tape to darken these areas (as soon as
we determine that it will work). THUS if you are over a big black area (bigger than the tape)
and you can sense an IR beacon in the direction you’ve been heading. there’s a good chance
you're in the desired area.

e Robot 1s to deliver the package to the delivery area: take it there and dump it. There will be
separate style points and perhaps a separate award for the elegance or distance or accuracy of
ejecting the pingpong ball but as long as it gets “off the truck” somehow while the robot is
positioned (at least partly) over the drop-off area, full credit results.

e The robot makes its way back to pickup area and repeats (only we hope with improved per-
formance).

e There will be a tape path, guaranteed unobstructed, between the pickup and delivery areas.
It is guaranteed not to be the shortest path. It will have no radius of curvature less than one
foot. We'll try to be nice and not put minimum clearances near maxima of curvature. We
guarantee 6” of clearance on either side of the tape.

e We guarantee at least a 12”7-wide path between any separated obstacles.

e There will be partial scores for partial performance, to be determined. But the main score is
how many packages can be delivered in four minutes. If robot functions perfectly, four minutes
should be enough to show it off. If it malfunctions, four minutes is an eternity.

e A human may intervene in the contest to rotate (not translate) or to repair (replace bits that
have fallen off) the robot. The clock runs during interventions and each separate intervention
costs one ping-pong ball. Any number of repairs, but only one rotation, are allowed per
intervention. The intent here is to minimize robot and team and audience frustration caused
by simple mechanical or logical failures.

e In the spirit of minimally changing the rules; if robots A and B have each delivered N balls
at the end of four minutes, then that robot farthest along its way to delivering N+1 balls is
the winner. This criterion should apply pairwise to all robots, and should order the set. The
judge’s (or judging panel’s) opinion will be final. Videotape replays may be needed but we
have the technology.

4 Map-Maker (Sarukkai, Meira, Zaki)

With this section we commence descriptions of individual robots.

Map-maker is an ambitious robot with complex internal representations and sensing capabilities.
The MAP-Making robot is uniquely distinguished by the ability to plan paths, determine present
location, and accomodate sensor errors during position determination. Given a grid model of the
world, positional information of the robot is sufficient to build the world representation. For instance,
if an obstacle is detected by the robots front switches, then the position determining routine is
executed, followed by marking the appropriate location of the world as an obstacle.

4.1 Map-maker: General description

We can divide our robot into the following functional parts:

Traction: the traction includes the two back wheels and the gear train (including one motor)
associated with them. We used the “differential” provided with the lego set, distributing the
power between the wheels.

Figure 1: The eight-foot-square arena. Black line marks black tape path. IR beacons of different
frequencies hang 1 foot over start and finish squares and also over the south-east corner. Shaded
squares show obstacles.

Steering: Our steering is provided by one wheel that is controlled by a motorized gear train. There
are two lateral sensors that prevent excessive steering. To determine if the robot is going
straight, we used an optical solution with photodiodes: we attached the emitter to the robot
body and the receiver to the steering wheel in such a way that, when they are aligned (i.e. the
receiver is receiving the emitter’s signal), the wheel is in a straight direction.

Bumper system: We have four bumpers, two frontal and one in each side. There is a digital
switch associated with each of them.

Localization System: The mechanics involved in the localization system consists of the servo
motor that drives three IR receivers and is mounted on a tower.

Ball holder: The ball holder consists of lego-built box with a motor included. The motor has a
stick attached to its axle. When the motor is activated for 0.5 seconds, the stick throws out

the ball.

4.2 Beacons and Triangulation

In order to detect our exact position in the board, we needed three referencial points. It is known
that the IR receiving task is CPU intensive, so in order to take advantage of the special sensor
electronics of the board, we decided to use only the two standard frequencies; thus two of the three
transmitters were constrained to use the same frequency.

This caused two problems:

Bimodality detection: Detecting two emitters of the same frequency causes two peaks at the
end of the scanning information. Sorting them out and dealing with them required context-
dependent information such as knowledge about the minimum angle between beacons (see
later).

Proximity effect: if we are really near one beacon, usually we are not able to detect the other,
not only because of the intensity of the nearest that is bigger, but also because the minimum
angle is not effective in this case.

4.3 Localization Tower Design

One of the problems we realized when using the servo motor is that it does not cover the nominal
range of 180°. We guess that it does not reach the final 5° in each side. In order to be able to
perform the localization, we attached three IR receivers with the same angular distance between
consecutive ones (120°).

We had various problems with interference due to reflections of the IR signals transmited from
the reference points. To avoid such problems, we used aluminum foil around the receiver “collector”.
Another detail is that the “collector” is taller than it is wide, being able to detect transmitters sited
at various heights without horizontal accuracy loss.

4.4 Photoresistor Mounting

The photoresistors were used to implement line following. Each of them was mounted in a black
paper cylinder. The purpose of this tube 1s to avoid external light interference. These tubes are
mounted in the front wheel structure, with their entrance standing 2mm over the floor.

The calibration was done manually, checking the readings for black and white areas. Despite
this, we found that light variations (like a person’s shadow) are enough alter the thresholds that
distinguish the regions.

4.5 Beacon Tracking

We used our servo motor to perform beacon tracking. We attached three IR receivers to the servo
motor in order to cover all the 360° around the robot. We detect the position of a beacon by
positioning the servo motor in different angles and checking the IR receivers.

The scanning procedure has two steps: coarse scan and fine scan.

In the coarse scan we check angles spaced by 5 degrees to detect the regions where the beacons
could be. After this procedure we perform the fine scan, where we check a 10 degrees angle with
increments of 1 degree.

4.6 Line Following

Our line following strategy is simple but efficient.

We attached two photoresistors to our front wheel in such way that if we are following the line,
the photoresistors will sense the black region. If one of them loses the line then we know that we
are not only going out of the desired direction but also to which side of the line, allowing us to take
the correct recovery action.

4.7 Steering

We used the motors supplied with the kits to implement our steering mechanism. These are high
speed motors, and we needed a gear train with a reduction factor of about 3600:1 that is attached
to the front wheel.

To avoid damage to the steering and robot, we put two touch sensors in the front of the robot
that deactivate the steering motor when it tries to turn more than allowed.

The main problem with this approach is the inaccuracy of the turns. Gor reactive tasks like line
following it works satisfactorily, but things become really hard when we talk about spacially exact
actions like the ones required in a mapped environment. It is hard to measure progress by timing
the activation/deactivation of motors since their performance is influenced by the (variable) state
of battery charge.

Another problem is that the gear train is not accurate enough to avoid some slippage when the
motor direction is reversed. Another precision - related problem is the speed: reducing it to allow
adequate control had the effect of slowing down steering appreciably.

4.8 Map-Maker: Gearing

Map-maker has two gear trains, one for steering and other for traction. Both use the same motor and
have reductions of 3600:1 and 243:1 respectively. The gear train building should be done carefully,
not only to avoid friction in the axles (that can cause the train to block), but also to save space in
the robot.

4.9 Map-Maker: Lego Experience

The main lesson from our lego adventures is that we should be conservative. We tried to build some
structures and had a lot of problems:

IR receivers

Servo
Motor

Ball
Holder

Front Bumpers Side Bumpers

Figure 2: The MAP-Maker

Steering: one of the big problems with our steering mechanism is gear slippage. Due to the fact
that the plastic gears have sloppy tolerances, high precision constructions like the steering have
low accuracy.

Skirt: We designed a bumper system that uses a skirt around the robot. The main feature of the
skirt is free movement in the horizontal plane. Properly attached to four touch sensors (front,
left, right and back), it allows easy handling of all possible bumping situations.

Grasp and Lift: We tried to devise a pretty complicated “grasp and lift” device for the robot. The
idea 1s using only one motor, perform two tasks. The motor power is shared via a differential.
We start grasping, when this operation is complete, the differential transmits the power to the
lift mechanism. The reverse operation is similar, as the force to unlift is bigger than the one
to ungrasp, we first put the device down and then ungrasp. The problem in this case was gear
slippage also; they are not strong enough to hold while the differential is transferring power to
the other task.

Robot Traction

Figure 3: The MAP-Maker

Algorithm MAIN

1. Start at Starting point START.

2. Determine ORIENTATION.

3. Take Commands returned by function FindActions();
4. If Obstacle,

then SCAN to find present LOCATION.
Find ORIENTATION.

Mark MAP with OBSTACLE.
Recompute PATH to goal.

5. goto step 3 until GOAL REACHED.
6. Throw BALL.

The main algorithm is pretty straightforward. The starting point for the task is fixed. Our
position determining mechanism is based on the angular locations of three IR transmitters that had
to be placed in an appropriate geometric configuration, so as to enable unique position detection,
and is detailed later. Based on the “quadrant locations” of the IR transmitters, the head-on direction
or orientation of the robot with respect to the three IR transmitters, and thus the board can be
determined robustly.

The action sequence is constrained to one of the following: STRAIGHT, RIGHT, LEFT, BACK.
The actual path planning algorithm (shown in a later section) is basically a dynamic programming
search from the goal location to the start location of the map using the avaiable action sequences.
In our preliminary experiments, the map grid locations were filled with distance (to the goal) values,
and actions required to go from the START position to the GOAL position were then determined.
However, this need not be the best possible action sequence: an alternate would be to use a dynamic
programming approach and accumulating the penalties of each reverse action from the GOAL state
to the START state. During a final run, due to the very low 16K (including system stack) onboard
memory, the actual exhaustive dynamic programming search had to be abandoned in place of a local
greedy action selection mechanism. Thus, the procedure was to determine the present location, find
path and take the appropriate action. If an unexpected event such as the detection of an obstacle
occurs, mark appropriate cell in the map as an obstacle, and recompute an alternative path.

The 1dea behind fast, robust determination of the location of the robot was twofold: use a
table-lookup (angular information from the real world worked better than geometrically computed
values for some “ill-posed” locations) to match sensor angles with stored angles to get the k nearest
neighbours (locations); the important second aspect was to cross-validate the K-NN locations with
the neighbourhood of the expected location. At locations more than a square away from the IR
transmitters, the cross-validation scheme enabled recovery from positional errors accumulated due
to friction, wheel slippage etc. Finding the angles accurately could be expensive; however, we reduced
the cost of scanning by doing two passes. The first pass is a coarse scan, and the second pass is of
fine resolution in a 10 degree range of the maxima detected during the first pass.

4.10 Map Algorithms

Algorithm FindPath

/** The map is represented by a 8 = 8 table.
1. Clear MAP at all points, leaving the obstacle locations unchanged.
2. Mark START and END locations.

3. Starting at the END location, apply recursively the following step:
e Depth at END =0;

e Let current location be z,y, and depth of recursion=DEPTH.

o Let 2,y be a neighbor of z,y.

o MAP[z’,y']= min(MAP[z', y'], DEPTH+1);

k|

10

4.11 Actions algorithm

Algorithm FindActions

1. Find (using the 3 IR beacons) the initial ORIENTATION of the robot.

2. Assign ORIENTATION.

3. X=STARTx ; Y = STARTYy;

4. For each of the following moves determine the value entered in the MAP, and choose
the action wth the minimum value.

LEFT : RIGHT : BACK : STRAIGHT : STRAIGHT2MOVES

5. Assign X=ActionX; Y=ActionY; ORIENTATION=ActionORIENTATION;

6. If not reached END then goto step 4.

EXAMPLE

Initial configuration of MAP

[....%...] S= START
[.*S.# I

[t | E= END
[|

|....*...| #*= Obstacle
[k, ... |

[..*x. .E..|

Filling the MAP with path information by using dynamic programming

Algorithm FindPath applied.
Note that the path is given by following the sequence abc...S in reverse.

|1kjihghil
[kjih*fgh| a= 1 step away from END. b= 2steps and so omn...
| j¥Sgxefgl
|ihgfedef |
[hgfedcdel
[gfed*bed|
[h*dcbabel|
[ij*baEab|

Finding Action Sequences after applying Algorithm FindActions.
Initial ORIENTATION is to the RIGHT ---->

Action Sequence generated:
RIGHT STRAIGHT2 STRAIGHT LEFT STRAIGHT

Position of Robot after each ACTION:

1. INITIAL

11

© position of ROBOT

ORIENTATION Facing Right

ORIENTATION Facing down

ORIENTATION Facing down

ORIENTATION Facing down

12

[| ORIENTATION Facing Right

[| ORIENTATION Facing Right

REACHED GOAL

4.12 Position Finding

We use three infra-red transmitters to determine the robot position anywhere on the grid uniquely.

Refer to figure 4. We use the servo motor to scan and get the three angles A; B and C. We
next find the centers of the three circles passing through the points : ROBOT, GOAL, THIRD IR;
ROBOT, START, THIRD-IR; and ROBOT, START, GOAL. These centers are denoted as P, Q,
and S respectively. Let Rx, Ry denote the x and y co-ordinates of the Robot. Let a similar notation
denote the co-ordinates of the three centers. We can now find the Robot position by the following
set of equations:-

(Rx — Pz)’ + (Ry— Py)* = Pr? (1)
(Re — Qar:)2 + (Ry — Qy)2 = Qr? (2)
(Rz — Sz)* + (Ry — Sy)* = Sr? (3)

Now from equation 1 and 2 we get the following:-
2Rx(Qx — Px) + 2Ry(Qy — Py) = (Pr? — Qr?) + (Qz* — Pz?) + (Qy* — Py*) (4)
And similarly from equation 2 and 3 we have the following:-

2Rz (Sx — Qx) + 2Ry(Sy — Qy) = (Qr2 — Srz) + (sz — sz) + (Sy2 — Qyz) (5)

From these two equations we can easily compute the two unknowns, namely Rx and Ry. However
there is still the matter of computing the radius and the centers co-ordinates of the three circles.

We’ll show how to do this for the circle passing through ROBOT, START and THIRD-IR, i.e., the

one centered at Q.

13

Figure 4: Position Finding

There are two cases to be dealt with here. In the first case the angle between the THIRD IR,
ROBOT and START, namely the angle B, is less then 90 degrees, which is shown in figure 5. Recall
the fact that the angle made by the chord THIRD IR—START at the center of the circle is twice B.
Therefore, when we drop a perpendicular from the center onto the chord we get two right triangles
with B as one of the angles. We already know the length of the chord, lets call it AB, and we know
the angle D. We first find the radius od the circle, Qr, as follows:-

Qr = AB/2sin(B) (6)
Now that we know Qr, and know the angle D+90-B, we know the hypotenuse and one acute
angle of the right triangle with thick lines. We can easily find Qx and Qy relative to the co-ordinates

of the THIRD IR, say Tx and Ty. We can then find the real co-ordinates of the center by adding or
subtracting Tx and Ty appropriately. The following equations achieve that:

Qr = QrxSin(D+90— B) (7)

Qy = VQr’—Qu? (8)

The second case 1s shown in figure 6, where the angle B is greater than 90 degrees. In this case
we use the angle 180-B which must be less then 90 degrees. Then the angle made by the chord

14

THIRD IR

ROBOT

Lo ___>

START

Figure 5: Case I :B < 90.0

at the center of the circle is twice 180-B, and dropping the perpendicular from the center onto the
chord we get a right triangle with 180-B as one of the angles. From this information we can easily
get the angle B-90-D of the thick right triangle. The radius Qr is calculated as before and we can
easily obtain Qx and Qy as follows:

Qr = QrxSin(B-90- D) (9)

Qy = /Qr?2—Qx? (10)

In the beginning we were planning to do this at run time, but we soon ran into memory problems.
We then decided to make a table of positions along with the angles at that position. We decided
to keep a minimal sized tables with 64 entries corresponding to the positions of the centers of the
squares in the 8x8 grid. To find our position the robot would scan the grid and obtain the three
angles. We could then simply search through the table and output the closest match. However, there
was one additional problem with this approach. The IR transmitters at the GOAL and THIRD IR-T
both transmitted at 100Hz, while the START was at 125Hz. When the robot is close to the GOAL,
and especially in the top right squares, it becomes difficult to distinguish the two transmitters, since
the GOAL IR obscures the THIRD IR-T. We got around this problem by measuring the angles
returned by the servo at the trouble spots, and storing these values in the table instead of the actual
values we should have obtained.

This difficulty could be solved if the THIRD IR-T were at a different frequency. But we didn’t
have time to hack the assembly code to achieve this. A good feature of our approach is that due
to the palcement of the transmitters we could uniqgely identify which region we were in, and that
helped us in calculating the exact position of the robot. There are four regions.

Having found the robot position correctly, we can also find the robot orientation. So far we
had been using the angle differences, i.e., we actually measure the absolute angles to the three
transmitters, but our position finding algorithm uses the differences between these. We can get our

15

THIRD IR

ROBOT

START

Figure 6: Case II :B > 90.0

orientation by taking the absolute angle we get, and comparing it to a fixed reference point. For
example we can say that facing the THIRD-IR and GOAL line means that we are North. So if the
absolute angle differs by 45 degrees then we can say that we are facing north-west.

5 Line-Follower (Miller, Becker)

Line-Follower pursued the strategy of following the black line on the floor from start to finish,
dropping the ball, doing an open-loop 180 degree turn, and returning to the start. Five reflectance
sensors across the front gave the control a startling robustness, and the final robot was very small
and compact. It used a gear-head drive motor and thus was very quiet. It was rather slow, but its
no-nonsense attitude let it deliver three balls in the alloted four minutes. This robot’s design is an
example of retrograde evolution, starting from a highly original design that involved new sensors
and the goal of measuring absolute 2-D location.

One of the ways to solve the problem in maze-walking was to develop an absolute positioning
system. Unfortunately, monies not being available for a geostationary sattelite, or even for a gyro-
scope (inertial guidance), and having no expertise in vision, Miller leveraged his prior work on IR
communication for the minibot with some knowledge of history. (This team had given some thought
to how two robots might use the TR detectors to communicate information between themselves).

At one point in history, navigation was done by the stars, specifically, the angle of the north
star was used to calculate the latitude, while a compass and the position of the star with respect to
the time of day was used to fix the longitude. Unfortunately, electronic compasses being off budget
expenditures, Miller investigated the notion of using a pair of stars for calculating absolute position,
with the possibility of using dead reckoning and tracking of a single star to update it as the robot
moved.

16

To do this, the team built a primitive astrolabe out of lego. A servo moter was used to adjust
the azimuth which would give the distance to the star. A normal motor and break-beam sensor
was used, suitably geared, to adjust the angle of the astrolabe (henceforth referred to as #) to the
mounting. Two Sharp IR sensors were used, each with a different length brass tube attached. These
were used to limit the angle of sensitivity of the sensors to the emitters (stars). Each star was
modulated at a different frequency, and primitive PLLs (new sensor hardware developed by Miller
and Ray Frank for this project) were used to register the frequency being detected by the wide-angle
Sensor.

The basic idea was that with the robot stationary, the astrolabe would be swept until the wide
angle sensor found the appropriate signal to be in view (thresholded to eliminate reflections), and
then the narrow-angle sensor would hillclimb until the star position was fixed. From the azimuth
we then knew the distance to the beacon, as well as the angle to the robot. Now we fix on the other
star, and simple geometry gives us an absolute position, given the fixed nature of the stars (one was
the starting beacon, the other was a separate beacon we erected at a sufficient distance off the floor
to give reliable azimuth information, as well as reduce the possibility that both might be seen by
the ’bot at the same @ in a portion of the maze).

Once the position was fixed, the robot could then use sensors on its motors to judge the delta in
a particular angle, and errors tracking the star could be correlated into a guess of a new position.
From this we hoped (with our knowledge of the basic map layout), we could map the maze.

While preliminary results were encouraging, the following problems ensued: The line following
strategy of the robot was very robust, but caused a large amount of angle change to occur as it
tracked the line, far greater than the slew rate of the § moter on the astrolabe. To increase the slew
rate, however, would drastically decrease its accuracy (currently to 1 degree, but another 2 degree
error from the narrow aperture sensor meant we were pretty much at the limits of sensitivity when
far from the star). To compensate for this we should have to refix our position on the two stars
more frequently, and this was seen as slowing down line following enough that unless the maze was
particularly tilted against simple obstacle avoidance strategies (unfortunately, it wasn’t), the cost
of absolute positioning swamped performance. Additionally, it was unclear the software needed to
reason about position while tracking the star, in addition to the line following code and basic beacon
and astrolabe code would all fit into the limited memory of the robot.

Additionally, the feedback from the motors needed the two ports for break-beam sensors, yet, the
astrolabe itself used one. The board we were using had no provision for counting a third break-beam,
so dead reckoning would have been difficult without additional sensors.

There are a number of possible solutions to this dilemma given funds:

1. Fix the astrolabe position, put the star on the robot, and relay information (using the IR
transmission scheme perhaps) between the fixed astrolabe and the robot. This would have
avoided slew rate and tracking problems, but would have violated tournament rules since the
robot would not have been autonomous, and we would have needed an additional cpu board.

2. Add a compass to the robot. This would have meant only one star would have been needed to
fix position. This would not have solved the problem of dead reckoning, we still would need a
third break-beam port.

3. Use inertial guidance for dead reckoning. Presumably this can be done without a break-beam
or equivalent. Since we don’t know initial 8, but do know the angle of the start position to our
star, we could dispense with the compass (since the inertial system should give us any §6 as
well as offset from our starting point). An accurate enough system might be able to dispense
with the external reference point as well, e.g. that used for cruise missiles.

17

4. Use a different approach, e.g. embedding wires into the arena and checking flux changes as the
robot passes over them. Modulating each wire with different current, or amplitude changes,
means we can either read absolute position more or less directly, or at least can distinguish
horizontal from vertical grid lines and count as in a very accurate dead reckoning system.

6 Cyclops (Riopka, Rosca)

Cyclops is a LEGO mobile mini-robot that is capable of exploring a planar world by combining several
high-level behaviors such as line following, beacon following, horizon scanning, obstacle detection
and avoidance; wall following and map construction. Cyclops can be taught a set of micro-skills
which can be used in writing its higher-level behaviors. Cyclops has the capability of building a map
of a grid-world. Such a map can be used as a starting basis in implementing a simple task planner
for task optimization.

The high level design decisions that guided the implementation of Cyclops were:

1. Support a software architecture that can implement well the tradeoff between reactive and
reasoning capabilities

2. Learn a map of the competition environment by creating, updating and using the necessary
information opportunistically

3. Keep track of the vehicle orientation or reinitialize it and be able to realize if the orientation
is lost.

We intensively experimented with various design decisions influencing the first major goal above.
The second and third goals are inherently very difficult to implement. Although we made advances
in this direction, any map construction facilities were infeasible given the specific delivery task
and the amount of time allowed to compete. However, we experimented and equipped our robot
with various sensors that support the creation and interpretation of a higher level representation
of the environment. We outline here that competition rules, and most importantly the given world
configuration and the time allowed for each robot may rule out capabilities that make a robot more
intelligent. This would be the case with a very simple world which implicitly favors very simple
architectures. Our robot has been designed to cope with a more complex world.

6.1 Cyclops functionality

Cyclops is equipped with a variety of sensors and actuators. Each of them will be shortly described
at two abstraction levels. First we refer to the devices used. Secondly we mention the desired
functionality which is reflected in the software.

The desired functionality influences every aspect of the device: the mechanical, and electrical
component choices, the sensor or actuator mechanical assembly, the way sensors are interfaced to a
microprocessor board and the driver routines used.

We start our description with the desired functionality and the goals pursued. Then we describe
the sensors and actuators used and the way they are interfaced to the controller board.

Given the objectives mentioned before, we defined a set of necessary functions our design has to
support. Most of these impose constraints on the sensors and actuators that will endow our robot.
The discussion on sensors and actuators will follow these more detailed goals.

e Drive forwards and backwards.

18

e Perform turns with a very low steering radius.
e Control the steering angle with a very high precision.

e Estimate the distance traversed by the vehicle regardless of speed or steering, in any given
time interval.

e Detect obstacles bumped into when driving forwards or backwards. Detect if an obstacle is
positioned to the left, right, front, or rear of the vehicle.

e Detect obstacles touched by the sides of the vehicle

e Detect obstacles that appear at a given distance in front of the vehicle before bumping into
them.

o Detect a nearby infrared beacon emitting a modulated IR signal of a given frequency.
e Detect side obstacles without touching them.

e Follow a black winding stripe on a lightly colored floor (e.g white floor) regardless of illumi-
nation conditions.

6.2 Cyclops sensors

Cyclops is equipped with the following sensors:

1. Four bumping sensors. All are simple microswitches attached to the vehicle in appropriate
mountings.

(a) Two front sensors. They are mounted on a common bumper. They can be switched on
either independently or together if the vehicle bumps frontally into an obstacle.

(b) Two rear sensors made of roller microswitches. They are mounted at the rear left and
right corners of the vehicle.

2. Two touch sensors or side bumpers made of ALPS switches. They are mounted on the left
and right sides respectively, close to the front corners of the vehicle, and carry side wings of
the length of the vehicle, so that whenever a side of the vehicle is pressed against an obstacle
or a wall, at any angle, the sensor becomes switched on.

3. IR beacon detector. It is made out of four Sharp detector packages GP1UbH2X which can detect
IR light of 100 or 125 MHz and are mounted at 0, 60, 180 and 300 degrees. 0 degrees corre-
sponds to the direction of the vehicle axis and a forward orientation. We have experimented,
with equally good results, with a simpler design in which only two IR, detectors are used. They
are mounted at £15 degrees.

4. Two IR side reflectance sensors. Each is a Sharp detector package similar to the ones used in
the TR beacon detector.

5. Four IR reflectance sensors. They are made out of pairs of an IR LED and an ultrasensitive
IR phototransistor (Sec. B.1).

6. One breakbeam sensor. It is mounted above a LEGO pulley wheel attached to the direction
axle carrying the front wheels of the vehicle.

19

7. One photoresistor. It is mounted in a black-covered drinking straw tilted forwards in order
to offer an analog signal on white/grey/black objects a given distance away in front of the
vehicle. The photoresistor is part of an artificial eye system used for obstacle avoidance. The
entire system will be described in more detail below.

Interfacing sensors to the microprocessor board

1. Bumping sensors. The left front and rear microswitches are mounted in parallel and connected
to an analog port. However they are used as digital devices (on/off). The one corresponding
to the direction of movement (front for forward movement and rear for backward movement
respectively) offers information about obstacles the vehicle has bumped into.

2. Touch sensors are also connected to an analog port, although they have a digital function.

3. IR beacon detector. Each detector package is connected to a high digital port. The Interactive
C software only supports ports 4-7 for reading the modulated IR light signal.

4. IR side reflectance sensors. Each is connected to a high digital port.
5. IR reflectance sensors. Each is connected to an analog port.

6. Breakbeam sensor. It is connected to a low digital port. This makes possible to use the
fast, assembly language shaft-encoder routines from Interactive C. Although this alternative
offers more accurate information in case high sampling speeds are needed (determined by high
rotation rates of the pulley wheel), our robot did not travel at high speeds.

7. The photoresistor is connected to an analog port. It offers an analog signal that is decoded
into information on the grey level of the point viewed.

6.3 The Cyclops Artificial Eye System
Linear Scanner

A line scan “camera” was constructed using a single photoresistor mounted on a servo. A single
photoresistor was used in order to simplify calibration and photosensitivity problems that might arise
using multiple detectors. Early measurements showed that the sensitivity of any one photoresistor
not only varied considerably from one to the next, but was also non-linear over its range. Using
only one photoresistor alleviated many of these potential difficulties.

The detector for the linear scanner consisted of a photoresistor mounted in one end of a 10cm
long straw. The straw was covered with electrical tape with a black ”cone” on the end opposite the
photoresistor to insure no reflections from the straw opening. The tube was then encased in a lego
structure which was centered on an axle whose axis was perpendicular to the tube but parallel (and
connected) to the shaft of the servo.

The entire scanner was tilted at an angle of approximately 29 degrees to the horizontal resulting
in a “view” approximately 38 cm or 1 1/4 feet in front of the vehicle. A fixed angle provided a way
for the robot to measure object distance and also simplified the vision algorithm (see below). In the
final implementation, 16 sample points were used, each point separated from the next by an angle
of 5 degrees resulting in a scan angle of 75 degrees centered about the robot and looking forward.
Experiments with a visual test display indicated that the field of view (i.e. the angle subtended by
the area from which light was detected by the photoresistor through the tube) was approximately 7
degrees. This provided significant directionality and sufficient resolution to enable accurate enough
edge detection for object avoidance. The location of the object edge was used as a parameter to

20

the general “skill” learned by the robot for object avoidance (see Skill Learning). Scan time was
approximately 8 seconds per line acquisition requiring 200ms rise time for the photoresistor, 200 ms
per sample to reduce scanner vibration, and 1-2 seconds for servo-switching. This was considered to
be a reasonable time, but one which did not encourage indiscriminate scanner use.

Scanner Calibration and Thresholds

One of the main advantages of using a single photoresistor for line acquisition was the very simple
calibration procedure. To calibrate the line scanner, two readings were required: one with the
photoresistor tube aimed at an area that corresponded to the darkest scene possible under ambient
light and one with the tube aimed at the lightest scene possible. The difference between these two
readings is the dynamic range of the photoresistor. Because the analog value was small for “light”
scenes and large for “black” scenes, the following formula was used to obtain a ”graylevel” value:
graylevel — 255(1 _ measuredvalue).

dynamicrange

Graylevel measurements after calibration were very reasonable. The single photoresistor was
calibrated on the objects for ”black” and on the floor for “white”. This calibration resulted in a
dynamic range (as measured by the analog output of the photoresistor) of up to 60 levels (or 1.2
volts assuming a full 5 volts for logic) in the ambient light of the playing field. This enabled the
scanner to tell reliably the difference between an object, the floor and even the walls of the playing
field, throughout the playing field. However, shadows cast by the objects themselves resulted in
similar readings for both the walls of the playing field and the floor (in certain shadowed areas). A
similar observation was made in regards to the colors on top of the objects. That is, although the
scanner could theoretically tell the difference between the floor, walls and even colors on top of the
objects, shadows prevented the robot from taking full advantage of this potential capability.

After several experiments, it was determined that a proper gradient threshold (or more accurately,
the difference in gradient value required between two points such that an object/floor transition can
be considered to be very likely) could be obtained by subtracting 10 from the dynamic range. An
automated vision calibration could have been developed by using the loading area for black and the
floor for white. Since the starting position of the robot was known, the entire procedure could have
been automated. In our implementation, the calibration constants were determined ahead of time
and hard-coded into the application. (Note that this did result in problems when the television crew
lights were on to film the arena, but in general, under ambient light conditions, the calibration was
fairly stable.)

The Vision Algorithm

The vision “behavior” was implemented as follows. During regular robot movement, the scanner is
active (i.e. the photoresistor output is monitored) and the scanner is positioned directly forward.
The angle for the scanner is such that a black object is detected (i.e. light detected falls below a
specific threshold) at an approximate distance of about 1 “grid” square (or about 30 cm) in front of
the robot. The threshold for this initial object detection was selected empirically in such a way as
to ensure that a horizontal scan line at that point intersects the approximate center of the object.
Object detection causes the robot to stop and initiate a single line scan as described above. The robot
then uses the edge information from the line scan to parameterize an object avoidance manoever
implemented as a skill (described below).

In all the scenarios, the general strategy was to determine where the “floor” is and to move the
robot in that direction, avoiding object edges. Because of the constraints on object location, shape
and size, only three image scenarios are possible:

21

1. No floor/object transitions - only objects in front. This suggests that the robot is oriented
almost perpendicular to a set of at least two and probably three adjacent objects. The reaction
in this case i1s to initiate either a “left turn” or “right turn” skill depending on higher level
information.

2. One object transition - two cases are possible, object to the left, floor to the right OR floor
to the left, object to the right. In either case the robot is again almost perpendicular to an
object wall. The location of the single edge is used to determine whether an “avoid object -
go left” skill or an “avoid object - go right” skill is initiated. In either case, the exact location
of the edge is used to parameterize the skill by varying how much the robot needs to shift its
position to the left or to the right to avoid the object.

3. Two object transitions - two cases are possible, floor on either side of an object OR floor
between two objects. In these two cases, the orientation of the robot is no longer clear (although
due to the constraints on the robot world, it could probably be calculated). The goal of the
image analysis here was to determine where a large enough floor area for the robot was in
relation to the robot, and to determine which of the “avoid object - go left” or “avoid object -
go right” skills was appropriate and lastly, parameterize the appropriate skill using the relevant
object edge.

Image Analysis

One dimensional zero crossings were used to localize the position of the edges to eliminate edge
ambiguities and to simplify the vision algorithm. Although a simple thresholding approach with
an ad hoc search algorithm could have been implemented, the zero-crossing approach seemed more
elegant algorithmically and resulted in a straightforward algorithm implementation. The algorithm
proceeds as follows. First, first derivative (gradient) and second derivative images temporary images
are formed from “padded” versions of the original input. Zero crossings in the second derivative
image are used to locate possible edges. Gradient values at these locations are used to determine the
validity of the edge transition using an empirically determined gradient threshold. A thresholded
version of the original input as well as a holding array for the object edge locations are then generated
and used by the knowledge source associated with robot avoidance strategies to implement the
appropriate robot action (as described above).

Vision as a Behavior

The general idea behind the vision behavior was to treat it as a “reactive behavior” on an analogous
level with lower level reactive behaviors but with the following qualifications. Because of the method
used to trigger the vision capability, 1.e. real-time monitoring of the center pixel for object detection,
the time required for scanning can be considered to be irrelevant, as long as all other behaviors are
temporarily “suspended” during line acquisition and analysis. (The vision system could easily be
replaced by a real time system capable of visual analysis in a time frame compatible with the time
frame of other reactive behaviors.) The execution of an “avoid object” skill can be viewed in two
ways. First, one could argue that the proper way to perform a reactive behavior to avoid an object
would be to “visually servo” the object edge as the robot moves around it, similar to the strategy
used by truck drivers manoevering their vehicle in reverse. On the other hand, truck drivers are also
capable of performing rather complicated turns without visually servoing, by noting the location of
an obstacle and relying on experience to enable them to manoever around it. And, analogously, just
as the poor execution of a truck turn can be interrupted by a vehicle collision, so can skill execution
be interrupted by lower level higher priority behaviors such as bump sensors. It is this capability
that we intended to capture in our “skills” implementation (as described in Section 6.4).

22

6.4 Skill Learning
Skill Acquisition

The development of control software for actuators is often a time consuming, trial and error pro-
cess due to the inherent error between specified actions and their real world execution. Unforseen
externalities and robot hardware deficiencies often conspire to hinder accurate execution of prepro-
grammed actions.

To facilitate “skill” learning and alleviate these difficulties, we incorporated a joystick interface
into our robot and implemented a method of actuator learning similar to that used for programming
some industrial robots. The joystick control enabled us to move the robot interactively. “Teaching”
the robot a skill involved moving the robot interactively to execute the desired action while at
the same time storing the associated motor and steering commands and odometric readings between
consecutively different commands. By using the operator in the feedback loop, a skill can be precisely
learned and reproduced each and every time, since the actuator commands stored are exactly those
executed during operator control. The accuracy of the reproduction is limited only by the sampling
error associated with the encoder used to measure distance and of course, relies on consistent contact
between the odometric wheel and the floor. To execute such an action in normal operation, each
set of actuator commands in the stored sequence is simply “replayed” for a duration determined
by the corresponding odometric reading, in essence, executing a specific trajectory fragment. The
execution of trajectory fragments continues until the entire set is either completed or interrupted as
a result of a change another part of the system. For example, one such action could be a precise “left
turn”. A lower level, higher priority process monitoring wheel rotations might determine that the
robot has stalled and consequently will never complete the specified action. Such a fact would be
communicated through common data structures causing the execution of the skill to be suspended,
perhaps only temporarily, enabling another, lower level, reactive behavior to take over to try and
correct the impasse and possibly resume the skill execution.

Time was not considered in the implementation of skills for a number of reasons. First, the
type of skills we considered did not have a dynamic element to them, that is, the speed of the
skill implementation was not a relevant factor. This may or may not be true in general and hence
our particular representation may not be optimal for all applications (but was for ours). In our
case, the most important requirement was that the robot move in a particular trajectory for given
distance. Second, using time to control the duration of motor and steer commands had negative
practical ramifications for accurate replay of learned skills. This was primarily due to the fact that
the instantaneous power level of the robot directly affected the speed of the robot at any given
command setting for motor control, and hence the time spent in that state. For example, assume
that during learning, a motor command is stored while the robot power level is high. Later, the
command is replayed when the power level of the robot i1s low. The time stored during learning
will be shorter because the robot speed will have been greater and will be too short when the
robot “replays” the command later on. The use of odometry to monitor the progress of the action
therefore ensures that power fluctuations and furthermore, mechanical irregularities do not impede
action execution, since physical movement of the robot 1s required to complete it.

Skills are implemented using one array to store encoded motor and steer commands (both com-
mands are stored using a single integer) and another array storing the distance traversed between
changes in commands. The possible commands are also discretized and referred to by array index
to reduce the number of command permutations, and hence reduce the size of the command array.
Distance is measured using a single wheel encoder on the front wheel. Advantages of using distance
traversed over time passed are:

1. “Duration” of commands does NOT depend on power level since the robot must physically
move to complete a command.

23

2. Repeatibility during manoever reversal (see below) is improved.

3. The algorithm for manoever reversal is easy because both steering and motor commands are
available at each step.

4. Skill array simplification is more straightforward because distances in the array can simply be
added for identical steering commands. For example, if over some distance interval the same
steering command is used, but the speed varied for some reason during learning, the distances
traversed can be added and all commands with the same steering in the interval compressed
into one steering command at a some fixed speed. This simplification not only reduces the size
of the arrays needed to store the manoevers but allows efficient, automatic array simplification.

Primitive manoevers left-turn(), right-turn(), straight(), avoid-go-left() (a jog to the left) and
avoid-go-right() (a jog to the right) were all “learned” and stored. The manoevers avoid-go-right()
and avoid-go-left() were parameterized to allow edge location from visual input to affect the amount
that the robot shifted to the right or to the left.

Manoever Reversal

Manoever reversal refers to replaying a set of trajectory fragments backwards in order to reset the
robot to its starting position. This was found to be useful for small reversals but results varied in
accuracy for more complicated trajectories. More experimentation with this type of manoever might
prove very interesting. The idea of being able to “take back” a given robot move precisely might be
extremely useful in many situations. For example, if a robot were to enter a trap and recognize it
as such, manoever reversal might be able to take it out. A “left turn” into an object could simply
be aborted and the robot returned to its original location, giving it a chance to try something new.

Photoresistor Response Time

A set of tests was made to measure the approximate rise time of the photoresistors we had available.
Photoresistor rise time had ramifications for the speed of the linear scan and hence the time required
for “image” acquisition. Each photoresistor was tested mounted inside a scanner tube as described
in the section on the linear scanner. Before testing, the photoresistor was calibrated using black
and white fields under the same lighting conditions as the test. Note that a linear response was
assumed even though there was evidence that the response of some (or all) of the photoresistors was
not. A simple subroutine was written to monitor the derivative of the calibrated graylevel change
over time. A timer was started as soon as a “sudden” rate of change was detected. The time taken
from this point to the time that the derivative became zero (i.e. no further change in graylevel) was
considered to be the time to steady state. This method was used for two reasons. First, using a
“sudden” rate of change in the derivative (where value of the derivative corresponding to “sudden”
was determined experimentally) to start the timer allowed the measurement to be started simply by
turning on (or off) a light. Second, going from total dark to bright light (under calibrated conditions
of course) resulted in the largest possible dynamic range, presumably giving an upper bound on the
rise time measurement. Measurements indicated a maximum rate of change ranging between 1.0 and
6.5 calibrated graylevels per ms (or if a full 5 volts can be assumed for logic, 0.02 to 0.13 volts per
ms) with a rise time ranging between 24 and 197 ms. Various combinations of lighting and dynamic
range were experimented with to obtain a full range of values for most possible field conditions.

Servo-multiplexing Circuit

Ray Frank designed a servo-multiplexing circuit to enable us to use the same circuit for controlling
two servos, one for the steering and one for the linear scanner. In normal, free-floating mode, both

24

servos are active, i.e. a signal to any one servo causes both to respond. A logical one on either
control line suppresses the operation of the corresponding servo. Both control lines for the servos
were connected to the output of one of the motor ports. A signal corresponding to a motor command
instructing the motor to turn one direction selects one servo while a command to turn the other
way selects the other servo. This also resulted in a different color LED being turned on whenever
one servo was active. Capacitors were added in various locations to reduce noise in the circuit, since
interference from motor operation caused both servos to “twitch” periodically. A circuit diagram is
shown in Fig. 7.

SERVO-SWITCHING CIRCUIT
RAY FRANK 1DEC94

Servo
in from
Microcontroller

|

) Servo
+

Servo In

from
Controller

|

2
Control I@ Servo

Figure 7: Servo Multiplexing Circuit.

Behavior as a Hierarchy of Goals

Goal-driven actions and “behaviors” are usually considered separately. From one perspective, one
could think of a behavior as differing from the execution of some high level goal only in the scope
of the resulting action. For example, in line-following, the robot generates steering and motor
commands whenever a line transition alarm is indicated. Due to the swiftness of the action and the
nature of the trigger, this type of action is typically called a “reactive behavior”. The commands
generated compete in priority with other commands to finally execute a command which essentially
results in a circular trajectory of an arc-length determined by the time required to move the robot
to a position straddling the opposite side of the line. One could interpret this trajectory as being
the fulfillment of a minor “goal” of the system, that is, to move the robot from one side of the line
to the other. This “micro-goal” is simply triggered by sensor input instead of a higher reasoning
faculty.

25

Now, take as a second example, the action initiated by our robot upon seeing an object in its path.
The robot stops, does a linear scan to acquire the location of the object edges, and then generates
a move to avoid the object. In this case, the assocated logic uses the object edge location to derive
motor and steer commands from the stored skill (see Skill Learning). The action corresponds again
to a trajectory, albeit a more complicated one, and can also be interpreted as the fulfillment of a
goal, in this case, to avoid the object. As before, this set of commands also competes with other
commands for control. For example, actions initiated by “bump” sensors may temporarily interrupt
execution of the skill. In this sense, there is a layering of control similar to the layering postulated
by K.L. Doty, based on temporal considerations. However, the use of execution time to discriminate
between levels of control does not seem very intuitive since the time taken to execute various actions
depends more on hardware and the computational resources of the robot than on absolute necessity.
The time taken to execute a particular action is very different from the timeliness of a particular
action. The way in which we ensure that a timely scheduling of the lower level task processes is
done is by statically describing the “lazy” or “eager” type of process to be created. This is similar in
function to the types of sensed feature refreshing in [3]. One might be able to postulate a distinction
between layers that is based on scale of action, that is, the resolution of the goal. In the case of line
following or bump behaviors, the robot response (or goal) is rather subtle. In the case of skills, the
robot response typically has greater scope, involving complicated movement trajectories.

An even more ambitious goal such as map building for improved navigation could be incorporated
by treating exploratory behavior as a low priority process. That is, when no other higher priority
processes are active, an exploratory behavior initiates skills such as “turn left” or “turn right” to
examine an area of interest. The exact nature of the exploratory behavior could be determined by
a combination of sensor information (e.g., the current location of the beacon) and memory (e.g. the
expected location of known objects). The result of the exploration would then be used to update
the map.

6.5 Cyclops actuators

1. Driving motor. It transmits power to the rear wheels through an 81:1 gear reduced box.

2. Direction servomotor. It drives directly the steering axle that carries the two front wheels. The
overall steering capability is 174 degrees. The front wheel module is mounted so that steering
is straight for a servo control value half way between the maximum and minimum possible
values. The steering values practically used are bounded by the £70 degrees representing
minimum /maximum values.

3. Scanning servomotor. The commands to this servomotor are obtained by multiplexing the drive
signal taken from the servomotor output of the controller board to both servomotors using a
control signal taken from a free DC motor. It orients the artificial eye to a set of fixed front
directions in order to scan a horizontal set of equidistant points. The reflection information
obtained during a scan is used to generate high level information about the existence of objects
(obstacles) in front of the vehicle.

4. Ball eject motor. This DC motor is used to drive the ball eject mechanism used in the delivery
competition.

5. TR emitter. It 1s activated in order to detect side obstacles close to the vehicle. It can emit
light on one of two frequencies 100 or 125 MHz. The IR side reflectance sensors can be tested
to detect if a side obstacle reflects IR light.

26

Infrared Detectors

Microcontroller
Board

@ (b)

Figure 8: (a) The “Meccano Monster” mobile robot (b) The robot in action.

7 Meccano Monster (Fuentes, Rao, Van Wie)

The winner of the competition incorporated physical and algorithmic robustness. Physical strength
came from Meccano construction, which though less suited for rapid prototyping has definite advan-
tages of durability and dependability in the field. This robot was also extremely fast. The strategy
employed by this team was to use the IR beacons for guidance and to head toward them, with
reactive obstacle-avoidance to get around barriers. The unit had no memory of where the obstacles
were.

The Meccano Monster (Figure 8) is a purely reactive mobile robot built with parts from the
MIT 6.270 kit and two store-bought Meccano erector sets. It rests on a three wheel base, with a
servo motor controlling the angle of the front (steering) wheel. In its present incarnation, its sensors
include four TR sensors wrapped in tinfoil for directionality; two front, two side and one back bump
sensor; three forward-looking light detectors; and two downward-looking light detectors. At the time
of the UR minibot competition, a mechanical arm was attached in the place of the forward-looking
light sensors.

7.1 Why Meccano?

Originally, we wanted to build a walking robot and do research into techniques for learning to walk.
Thinking that it would be easier to build a bipedal body from erector set pieces than from LEGO,
we volunteered to give up our LEGO pieces and instead buy a Meccano kit from the local toy store.
Though we eventually gave up on the walking robot idea, using Meccano for the robot body turned
out to be a good idea: in the end our robot was faster and more solid than comparable LEGO-built
robots.

Meccano motors seem more easily adapted to running a robot than LEGO gears. Our motors
were slower but more powerful, which meant our gear train could be relatively simple. Instead of a
long 243-1 gear train, we built a simple two-gear chain that sufficed for our drive motor.

With a stronger chassis, we could affix more sensors to the robot than other teams. Having the
extra sensors helped our line-following and wall-following behaviors, and improved the fault-tolerance
of our algorithms.

Unfortunately, working with Meccano was not always pleasant. Our original design was a long,
thin robot that would never have navigated the course we saw in the competition, and we spent
many hours reworking the design to shorten and strengthen our robot.

27

One would think that with all that metal in the chassis, and all those sensitive electronic parts
on the board, we might have problems with short-circuits. And indeed, at one point shorts became
a problem.

7.2 Disaster!

We almost had a major disaster when we tried to turn the board on after mounting the IR detectors
- first, the board didn’t enter download mode, then, some components near the switch began getting
hot and pretty soon we even saw a swirl of smoke rising majestically from one of the components.

This of course meant a short somewhere in our circuit and since things were fine until IR detectors
came into the picture, we unplugged these, and it was one tense moment when we turned the board
on again: much to our relief, a miracle seemed to have occured and, lo and behold - the board
signaled its willingness to accept code again.

The problem turned out to be a short in one of the IR detectors, caused by the aluminum foil
that had been wrapped around it for directionality. We fixed the problem by insulating the detectors
with masking tape and carefully re-wrapping the foil covers.

The problem of shorts is indeed a serious hazard to the board and some of the places these are
most likely to occur include:

e Connectors plugged into the board that are close to each other may have excess solder sticking
to the pins and these may come in contact. Removing excess solder/plugging sensors into the
board at alternating ports/using tape for insulation alleviates this problem a good deal.

e All sensor connections should be thoroughly checked and properly insulated using tape.
e The underside of the board may cause problems if not shielded (we used a cardboard sheet).

o Battery/sensor connections may be reversed.

7.3 Building the Board

A greater part of the first week was spent in reading relevant parts of the manual and reviving faded
memories of diodes, transistors, resistor packs and inductances (chapter 2 was very useful). While
some teams decided to sort out the various components before beginning assembly, we decided on
a more direct approach considering the fact that we had three team members: two team members
worked on soldering boards in parallel while one was in charge of selecting and directing the “where
and what” of soldering. This gameplan speeded up the process considerably and we were able to
get all boards soldered within six hours including a 45 minute break.

Lessons learned:

1. The instructions may not always be right - for example, when assembling the infrared transmit-
ter board, if you try to solder the LED’s after you've soldered the resistor packs (as instructed
in the manual), then good luck! We ended up breaking on the leads of a high-power red LED.
It pays to use common sense and think about the end result before jumping in to assemble
things.

2. Another case in point: the cable wiring instructions for the download link - we faithfully
followed the instructions step by step until we realized that we had cut the cable in vain -
the phone cable could directly be plugged into the connector with no need for soldering. The
instructions turned out to be outdated. Luckily, the damage was undone without much effort.

28

3. Piggybacking two chips was tricky - our problem was that there was a little too much solder
on the connectors, making it hard for the chip on the bottom to slide into the socket. A little
desoldering did the trick.

4. It helps to have a multimeter at your side to check the values of resistors, check connectivity,
polarity etc. just to make sure things are going where and how they should be. Chapter 2 has
some helpful diagrams for visual identification of parts.

5. Some components may have gotten damaged in transit or during soldering. One of the con-
nectors on one of our photoresistors was broken when examined. The battery plug connector
stopped functioning after soldering (probably due to overheating) - luckily, there was another
one.

Apart from testing individual parts before soldering, the main assembly consisting of the micro-
processor board, the expansion board and the LCD display were tested as given in the instructions.
Everything went fine until we came to the part where we needed to check if the download mode was
working correctly. Upon pressing the escape button and turning on the board, we were supposed to
see a flickering of the yellow LED after which it would turn off. However, in our case, it still stayed
on. The required behavior was however obtained when pressing the choose button. We decided to
proceed with tests anyway, and it turned out that everything worked as described - we were able to
download the pcode, use IC, load the program testbrd.c which checked various board components.
The escape and choose buttons functioned normally. While we are not totally sure why the choose
button and not escape button worked to get the board into downloading mode, one guess is that
the results of pressing the two were flipped in our case due to the initial state.

7.4 Designing the Body with Meccano

Meccano design was an iterative process: we kept finding new and better ways of shortening our
wheel-base, attaching sensors, and affixing the steering mechanism to the body. At least three times
we completely disassembled our robot, each time cutting the length of the body significantly. Our
guiding principle was to keep the robot as compact as possible, and in the end it had just enough
room for 1ts own sensors, effectors, batteries and CPU.

For steering, we mounted a single wheel on an assembly that was mounted on our servo. The
CPU signaled the servo with the absolute angle it wanted (45 degrees for straight ahead) and the
servo responded by turning the assembly to that angle.

Because the assembly occasionally slipped while the robot was in motion, we had to recalibrate
the facing of the front wheel continually. To recalibrate, we set the servo angle to 45 degrees and
manually rotated the steering assembly until it was pointed as close as possible to straight ahead.

Meccano motors are slower and more powerful than LEGO motors, which meant that our gear
train could be simpler and more efficient that comparable LEGO models. In our case, a worm gear
on the motor output shaft directly turned the gear on the drive-axle. Note that, while the lego-robot
manual claims that using the worm-gear as part of a gear train is inefficient, we found that it worked
quite well.

Sensors for the robot included five bump sensors, four IR detectors, and two light sensors.

The bump sensors were constructed from microswitches, to which we attached long, flexible
meccano sheets as feelers. We tied the microswitches to the robot with twists of wire.

The IR, detectors were attached to a sensor tower that rose over the center of the robot. Neither
the tower nor the sensors were mobile; however, the TR detectors were omni-directional enough that
even with fixed placements they covered the robot’s entire range of vision. In fact, unshielded TR

29

detectors turned out to be too omni-directional — when approaching the beacon, all of them could
sense IR, regardless of the direction they were pointed! We solved this problem by wrapping the IR,
detectors in aluminum foil (taking care to insulate them with tape first — see above).

Originally, we planned to use an electromagnet-driven gate to drop the ball at the destination
square. Unfortunately, our experiments with electromagnets showed that anything with enough
power to open a metal gate would draw far too much power from our board.

Our first attempt to build an electromagnet was the naive method of wrapping a wire around
a iron nail - a test of the mechanism showed that it indeed opened the “door” for the ball to slide
through, except for the problem that the electromagnet was drawing current close to 6 Amps, enough
to burn the board many times over.

Later attempts proved somewhat more successful, but eventually we abandoned that design for
something more striking: the mechanical arm. The arm was a catapult-like ball-throwing device,
designed to throw the ball straight down, like a football player spiking the ball after scoring a
touchdown or a slam dunk in basketball. A simple 90 degree rotation of the whole thing enabled
it to throw the ball forward. We used a second motor to control rotation of the arm, with various
physical hacks to keep the arm from damaging other parts of the robot. After several more rounds
of design and construction, we had a working (and crowd-pleasing) model.

7.5 Software for Compulsory Floor Exercises

Before the robot competition came the Robot Olympics Compulsory Floor Exercises , where each
team had to show a working robot running three different behaviors: line following, wall following
and beacon following. For the Olympics, we stripped down to the barest essentials in sensors. Which
sensors we used are listed at the head of each subsection.

For line following we used four photoresistors as sensors. The photoresistors are located about
an inch deep inside paper tubes that point directly to the floor. The tubes increased reliability by
minimizing the amount of ambient light that the sensors received. Preliminary tests showed that
such an arrangement gave analog measurements roughly below 75 for white and above 75 for black
at distances of approximately one inch.

To obtain a composite of the sensory input, we used the weighted sum of the individual sensor
readings. The inside sensors were weighted by a small constant, and the outside sensors by a larger
constant. The sensors to the left were weighted positively and the sensors to the right were weighted
negatively. The composite reading was given by:

C=Cp * (Leftoutside - Rightoutside) + ¢; * (Leftinside - Rightinside) (11)

where ¢, > ¢;.

This way ¢ was proportional to the change in steering angle needed to drive ¢ to zero, which
corresponded to the black line being at the center.

Finally we obtained the change in steering at time ¢ using a PD controller as follows:
Asteering(t) = kic(t) + ka(c(t) —c(t — 1)) (12)

After tweaking the constants and adding a few hacks, we obtained a reasonably good behavior. By
making the robot move as slowly as possible, we reduced the possibility of crossing the line without
seeing it.

Other interesting aspects of line following included: normalizations for DC (additive) illumination
changes and a proportional power control which supplied more power when negotiating sharper turns.

30

Our idea for the wall-following exercise was quite simple: try to keep the front sensor always off
but keep the (relatively longer) side sensor always on (i.e. touching the wall). We also decided to
use a controller that caused the robot’s steering angle to increase in proportion with the amount of
time the robot was off course — the longer the robot went without touching the wall, the sharper the
correction to the steering. The implementation took less than half an hour but considerable amount
of time was spent fine tuning the various parameters, such as when and how much to back-up in
case of collision, rate of increase in the steering angle, and so forth.

We only used three switches for wall following, which appeared to be enough for a robust wall
following behavior. The robot had two switches at the front, connected in parallel. When either of
them was pressed, the robot stopped, backed up for a short time (about .8 seconds), steered to the
left by a small amount (about 15 degrees) and started forward again. At the time of the Olympics,
we had just one side sensor, so our robot could only follow walls on one side. When the side sensor
was pressed it meant that the robot was successfully following the wall (provided the front switches
weren’t pressed), so it continued forward in a straight line.

When none of the sensors were pressed, the robot turns to the right, increasing the steering angle
by a small amount each time though the loop until it found a wall.

With this simple strategy we obtained a surprisingly robust behavior. Before the competition
the robot managed to circle the sixth floor hallway several times without human assistance.

The third compulsory exercise was beacon following. Preliminary tests revealed that the sensors
were quite sensitive to IR radiation even when turned in the opposite direction.

We used cones of aluminum foil to shield IR radiation from all directions except the front, and
then arranged the IR sensors in a cross, each at a ninety-degree angle from the two closest to it.
The readings from these were then used to turn in the direction of the strongest response.

When no IR was received by any of the detectors, the robot continued in the direction it was
originally going. This of course meant that it soon ended up bumping into obstacles, so we activated
the bump sensors also during beacon following, so that the robot would back up in case of collision,
hopefully getting back reception of the lost IR.

7.6 The Competition

Hardware for the competition was somewhat more sophisticated than for the Olympics: we had a
full complement of bump sensors, the arm, and two downward-looking light sensors to identify the
destination square. We kept the beacon-sensors as they were during the beacon- following test.

Our priority in designing an algorithm for the competition was to keep our code as simple as
possible. To that end, we decided on a purely reactive, subsumption-style program. When none of
the bump- sensors was active, the robot followed the beacon-following behavior from above. When
the robot hit an obstacle, however, beacon-following was turned off for a short time (about a second)
to allow the robot to back away from the obstacle and move away from the problem spot.

Unfortunately, the final algorithm wasn’t quite that simple. The fact that we had to find the
destination square complicated matters, as did the introduction of several programming hacks that
were supposed to avoid certain kinds of traps.

To recognize the destination square, we used the two downward-looking light sensors. They
scanned the floor for dark tape and, when either of them got three consecutive “black” readings,
signaled to stop the robot. The algorithm took three readings before reporting that it had found
the destination square in order to avoid incorrectly identifying the tape path as the goal.

Though this technique worked well in most cases, the algorithm often still incorrectly identified
the source square as the destination square. To avoid this behavior, we added a simple test: if the

31

robot had seen the destination beacon in its front IR, detector since the last time it had touched a wall,
it assumed that any black square it found was the destination. If it hadn’t, it continued looking. This
approach resulted in the robot occasionally passing over the destination square without stopping,
but in most cases it found it on the second try.

7.7 Beyond the Minibot

After the competition, having replaced the robot arm with an array of forward-looking light sensors,
we developed a streamlined version of our algorithm. Three arrays are kept mapping sensor inputs
to motor outputs: one for the various combinations of bump sensor readings, one for the various
combinations of light sensor readings, and one for the various combinations of beacon sensor readings.
If any bump sensor is active, we use the corresponding bump motor code; otherwise, if any light
sensor 1s active, we use the corresponding light motor code; otherwise, if any beacon sensor 1s active,
we use the corresponding beacon motor code. The codes are translated into steering and drive-motor
outputs, which are used to drive the robot. If no sensor readings are reported, the robot continues
with its last action.

The streamlined algorithm was invented for a research project we started after the course. The
idea was to learn the motor codes by driving around a course at random, and our attempt at solving
it involved a combination of stochastic hill-climbing and reinforcement learning. The space of motor
codes was searched via stochastic hill-climbing, and the resultant motor codes were scored on their
fitness through a reinforcement learning type algorithm. We refer the interested reader to [1] for
more details.

In addition, we have also been working on methods for perception-based navigation using self-
organizing sensory-motor networks [4].

The Cyclops robot has a complex control structure that is reported in the Spring AAAI Sympo-
sium on Instantiated Agents. The Meccano Monster was re-programmed and re-instrumented to do
obstacle recognition with a triad of photo-resistors, each looking down a tube. This gave a (very)
low-resolution view of the area in front of the robot. The robot used these inputs and a form of
reinforcement learning to learn how to avoid obstacles [1]. Later, a simulator for the robot world
was built and a simulated version of the robot learned to find its way home from any position on
the arena [4].

32

A Parts Lists and Information

The following is to set up the lab with two workstations and to get four kits, one for assembly over
summer by the course organizers, three for Fall 1994 Grad course.

The first issue 1s board kits.

A.1 Rug Warrior: Jones and Flynn Book

One choice: Rug Warrior kits from AK Peters (publisher of [2]).

Rug Warrior is a robot board designed to support the examples in [2]. The kit supplies all the
control and sensor circuitry needed to construct a custom designed, fully autonomous mobile robot.
The microprocessor, memory, and interface circuits are assembled and tested at the factory so that
kits arrive ready to connect to the user’s computer.

The assembly manual provides detailed instructions for installing the standard sensors and sup-
port circuitry included with the kit. Alternately, users can customize the board as desired. Diagnos-
tic software, included with the kit, helps builders discover any errors they might make as subsystems
are added. Library functions simplify access to all sensors and actuators. The self test code provides
examples of how to use the library functions.

Interactive C (IC) is supplied with the kit as the suggested programming environment. Both
Macintosh and PC versions are available. For those who have already built Rug Warriors on their
own, the new software for Rug Warrior is now available via ftp on cherupakha.media.mit.edu. Look
for:

/pub/interactive-c/ms-dos/ic2853rw.zip
/pub/interactive-c/macintosh/ic-2.853-RW.sea.hqx

Kit features include the following:

Motorola MC68HC11A1 microcontroller

LCD display (32 alphanumeric characters)

32K of battery backed RAM

RS-232 serial port

Three bump switches (for 6-direction collision detection)

Two photoresistors for light detection

Two infrared emitters

One Sharp GP1U52X infrared detector

Microphone for sound detection

Piezoelectric buzzer generates tones of arbitrary frequency

Motor driver chip (SN754410) for control of two DC motors

Dual shaft encoders allow velocity/position control

Four user controllable LEDs

Battery holder, hookup wire, heat shrink tubing, and extra connector sockets
Digital and analog inputs (two each) are available for user assignment
Access to MC68HC11 bus allows construction of memory mapped devices

The kit is available direct from the publisher, they are charging $289.95:

A. K. Peters, Ltd. kpeters@math.harvard.edu
289 Linden St. (617) 235-2210
Wellesley, MA 02181 Fax: (617) 235-2404

33

A portion of the income generated by sales of the kits will be used to provide free kits to high
schools that would otherwise not be able to purchase robots. (You can thank Anita Flynn for this

policy.)

A.2 From Randy Sargent at MIT

6270KIT —- Complete 6.270 Kit
A complete kit that includes:
1. Robot Board kit (assembled or Unassembled)
6.270 Notes
Motor Batteries (2 sets)
Sharp IR Sensors
Touch Sensors
LEGO Resources Kit
Light Sensors
Serial Cable
Copy of IC

© 0 N 0Ok WN

Cost: $500 (unassembled)

ACTAS -- Actuator Assortment

(1) Solenoid, (4) 3-5V Mabuchi DC Motors, (1) Futaba Servo
Cost: $55

Misc: sensors and actuators: $45.

A.3 Work Area

Another issue i1s a work area for electronic and mechanical assembly. We felt we needed the following
items:

drill 30.00
drill bits 13.00
hack saw 12.95
crescent wrench 7.50
box wrenches 23.70
hex wrenches 15.00
Phillips screwdrivers 10.00
slotted screwdrivers 10.00
hammer 4.00
champ crimper 10.40
nut drivers 50.00
tin snips 18.10
groove pliers 9.00
slip joint pliers 5.70
multimeter 20.00
DC power supplies 50.00
tool box 15.00
2 power strips 20.00

34

2 work benches 164.00

2 vises 30.00
wire cutters 6.00
needle-nose pliers 6.00
wire stripper 9.00
utility knife 1.50
2 soldering iron 30.00
2 holders 5.00
solder 10.00
desolderer 15.00
safety goggles 3.00
(misc: nuts,bolts,glue,etc)
100.00

B Supplemental Sensors

As was mentioned in the previous sections, some of the robots had some interesting hardware that
was not included in the original parts list. Since our exercise was meant to encourage independent
thought and to lead on to research, the organizers were not comfortable with enforcing uniformity
on the projects. Thus no reasonable request for unique hardware was refused (including the whole
Meccano kit, for instance). Also, Brown ordered several useful-looking sensors during the semester,
which Ray Frank then had to get working.

B.1 Parts List

We ordered and received the following:

1. 4-wire flat cable. VERY FINE wires, too small for our stripper, thus very hard to work with.
Might be worth getting smaller stripper, since the wires are more supple than the round 3-wire
cables.

2. 10 Slotted optical switches (2-connectors for emitter, 3 connectors for detector). This is an
analog device. As far as we can tell these devices are worse than the ones that came with the
kit, but still usable. The 242 connector parts have a 4.5V difference between on and off, the
243 have 1.5V difference at best. See Section B.2.

3. 10 “reflective optical sensors”. These are parts with 3 wires (yellow, orange, green) and a
female connector, with what looks like 2 leds in a black plastic case. These actually turned
out to be just two IR LEDs and NO detector: a cataloger’s error. See Section B.3.

4. 5 electret microphones. These perform reasonably, but possibly do not have much range. This
is an analog device. The classic problem with robot-mounted mics is that local ambient noise
from motors drowns all other sounds. Still... See Section B.4.

5. 5 Mercury switches. Good for signalling tilts. This is a digital device.
6. 6 electric motors. Seem to work...have their rotors visible.

7. 10 TR detector/transmitter bonanza packs duplicating some we already had.

35

8. 10 IR LEDs.
9. . 15 Super IR Leds.
10. 5 IR transmitter/receiver pairs.
11. 10 Ultrasensitive IR sensors.
12. 10 miniature optical reflectance sensors. Small, cheapies. See Section B.5.

13. 1 ultrasound emitter/detector pair for experimentation. See Section B.6.

B.2 Break Beam Sensors

The 242 connector original parts seem to work better. Ray had best luck wiring them as shown in
Fig. 9 (Fig. 10 is more explicit). He got a 4.5V difference between broken and unbroken. Note the
100 ohm resistor in place of the 330 recommended. Likewise the 1.2K resistor works better than the
47TKohm supplied.

For the 2+3 connector parts, Ray had best luck wiring them as shown in Fig. 9 (also see Fig.
10). He got a 1.5V difference between broken and unbroken. Note the 100 ohm resistor in place of
the 330 recommended. Likewise the 1.2K resistor works better than the 47Kohm supplied.

B.3 IR LED Pairs

This seems to be a very unexciting part. One (or maybe both) of two IR LEDs light(s) up depending
on where power is applied. Fig. 11 is what works (if you can call it that). Perhaps the 100ohm
resistor would be better than 330, as usual.

B.4 Microphone

These have only been bench-tested at this writing, but seem to put out enough voltage to be
detectable. If it is too low, mention the problem to a course organizer and we’ll get Ray to whip up
some amplifiers. They are analog devices, wired as in Fig. 12.

B.5 Miniature IR Reflectance Sensors

These tiny devices have three leads and two open windows with silver metal inside them. Surprise,
the “business” side (the emitter and detector) are on the OTHER side of the device from the
windows, shielded by a daylight-filter material of glossy brown or black glassy stuff. On the bench
we find these devices to be sensitive to white reflective surfaces up to an inch away, with a nice
smooth response until the surface gets close enough to block the emission. We find white and black
ink to be discriminable, so these devices should be good for line-following as well as really proximal
proximity-sensing. They are analog devices, wired as in Fig. 13.

B.6 Ultrasound

The emitter is labeled A3S on the back, the receiver A3R.

The ultrasound emitter must be driven with a square (or sine) wave of 40KHz. The receiver
synchs with the transmitter if the signal is strong enough. The transmitter can be driven at other
frequencies but the receiver only synchs if the emission is pretty close to 40KHz. There are more

36

E D Analog

Output

O—

TopView

+V
100 Q%@ Parts as supplied Cg‘:j,
j C

NPN type 1.2K Q

+V
+V

100Q B
2-3 Connector Part ——

O E s O

O=1- _Ignore!

L) Analog
. Output
TopView utp
— 1.2KQ
PNP Type

+V

Figure 9: BreakBeam sensors (old and new) and wiring diagram.

Part as supplied
8423 Mexico

_ blk _
red D .
o blk E ‘
 100- 1.2K Q
330Q red =

Top View

Figure 10: Physical interpretation of break-beam wiring.

37

Jﬂn&ﬂ—{ I
MMMN
+Vfor LED
O CA> noerar eads 3002
B
+V for LED B
3000

Figure 11: Two LEDs.

Microphone
Middle
Ground,
Connected
To Case ‘
I
RED blk |
MARK
red green
+V

output

Figure 12: Electret Microphone Wiring.

// IR in and out
7~ < OTHER SIDE +5 +5

O

47Q 1K Q

3
1\\
3 21

BACK SIDE --
(SILVER WINDOWS) 1

N

Figure 13: Miniature IR reflectance sensor wiring.

38

specs in the Electronic Goldmine catalog but they may not be too helpful. We were driving the
emitter with up to 20 volts, at which power the range seemed to be about 3 feet. The sound bounced
off surfaces, etc. At lower powers the range diminished but devices still could be useful for proximity
sensing.

The IR beacon output is a 40KHz square wave modulated by 125 or 100 Hz square wave. So
that should generate ultrasound pulses at 125 or 100 Hz. This hack has not been tried as of this

writing. It is not hard to design a 40 Khz oscillator and there are probably enough connections on
the expander board to make the ultrasound a reality.

B.7 Further Ideas

1. Colored LEDs for colored light recognition. Electronic Goldmine has.

2. Polarization filters — as in AAAI94 competition: way to recognize beacons at one of two
orientations. Edmunds will have these.

3. Bending sensors — what’s with ACE or ART or wherever that place is? Tim’s idea of stiff
whiskers inside long coil springs...

4. Hall Effect Sensors — AAAI94 again. Electronic Goldmine has.

C Course Details

C.1 Goals and Organization

577 Seminar in AI: Practical Robotics (4 hrs)

The mechanics (and electronics) of this course consist of populating a few printed circuit boards,
including a powerful M68HC11 microcontroller; and building a mechanical device with sensors and
effectors (by default a LEGO floor-rolling robot). Intellectual issues are the design of the hardware
and the control of the final device to accomplish some task. Plans are for the class robots to take
part in two competitions of some sort, with the goal of research relevance or publishable results from
the second competition. The controller is a powerful device and the sophistication of applications
are likely to be limited only by the difficulties of mechanical design and fabrication. Programming is
in ”Interactive C”, cross-compiled and downloaded from a Sun or other workstation. One goal of the
course 1s to expose students to various basic aspects of robotic construction and control, but there
is plenty of time and opportunity to explore more advanced aspects of Al and robotics. Finally, the
completed microcontrollers could play roles in future research projects.

Texts: Mobile Robotics (Jones and Flynn). (Bookstore) Motorola M68HC11 Reference Manual
(Free from CS Dept) UR’s version of MIT’s and AAAT’s 6.270 Handbook (Sold by CS Dept)

Reserve Reading: Mobile Robotics Readings (2 vols), various papers on control, learning, etc. as
needed.

Proceedings MLC-COLT Workshop on Robot Learning June 10th 1994.
Course Committee: Brown, Karlsson, Becker, Miller, Frank, Nelson.

There will be one lecture or general session per week, which will move from being an introduction
to soldering to consideration of promising research projects in the LEGO robot domain.

Otherwise student time is spent on preparing for the three robot events in the course, or in
reading, writing, and thinking about mobile robot research. Students will divide into groups of
2-4 people. Each group will be given raw materials for which they will be held responsible. The

39

microcontroller board built during the course is a valuable piece of hardware and may be useful in
future research projects.

The first robot event is a non-competitive exercise that demonstrates basic sensor and effector
capabilities and LEGO engineering. The next event is a competition, which will be run twice to
allow time to do further debugging and improvements.

The third event is an “individual” (really group) project that can have as much research content
as practicable. Submission of papers to the next AAAI Workshop is a sample of a specific goal
but will require advance planning (Oct 28 Deadline). Anything is possible here, including relaxing
mechanical design constraints (e.g. ME is sponsoring a rope-climbing event in the spring — collabo-
ration could be possible). The “autonomous” constraint can be relaxed to allow umbilicals for power
and information, allowing quicker movement for pole-balancing or RHET-sized reasoning engines.

Assignments:
0. Three robot events plus one re-match.

1. Weekly written report, one per individual — mechanical or electronic construction work, or
programming — tangible results from individual. — ideas contributed (used or not). — plans for next
week.

2. Two written group reports: one on the competition — issues worked on by team together —
competing ideas, compromises, etc. — interesting facets, solutions, wrinkles, ideas in your robot.

one on the group project — TR or conference paper style, including references.

3. Group interview — course organizers need feedback on the course: what you learned, how
course could be improved, suitability for undergraduates, suitability as research launching pad.

4. Grades from group members?

Schedule by Week (Highly flexible — slippage is likely)
1 Lecture: Organization: course goals, choose meeting time.

At meeting time: Hand out robot kits, intro to the microprocessor board, soldering demo. LEGO
robot lore on the net.

Participants: assemble and debug PC boards, get familiar with IC.
2 Lecture: Lego Engineering, sensors and effectors.
The Compulsory Floor Exercises:

test_board suite runs successfully locomotion: forward, reverse, left and right turns behaviors:
wall-following with bump sensors homing on IR beacon line-following fiducial-counting and distance
estimation odometry (7)

Participants: design robot to do compulsory floor exercises.

3. Lecture: Sensors and Effectors continued, Subsumption architectures.
Participants: design robot to do compulsory floor exercises.

4 Lecture: The MC68HCI11 architecture: tools and opportunities.
Participants: Demonstration I: Compulsory Floor Exercises

5 Lecture: Assembly Language and interrupt-level programming (we hope). Competition I
description.

Participants: Begin Competition I Design.

6 Lecture: Robot Control Architectures: Subsumption, Blackboards, Hierarchies, Reactive Sys-
tems etc. (some readings?).

40

Participants: Continue Competition I Design.

7 Lecture: Control — relevant aspects of open-loop, closed-loop, feed-forward control.
Participants: Continue Competition I Design.

8 Lecture: Learning — CMACs, nets, reinforcement, case-based, map-making...
Participants: Competition

9 Lecture/Discussion: State of Art in Lego Robotics, Research Opportunities.
Participants: Re-Match

10 Lecture: Discussion: What further lectures do we want/need?

Participants: Begin Serious Group Project Planning.

11 Lecture: TBA

Participants: Continue Group Project Work

12

Participants: Ditto

13 Lecture: TBA

Participants: Project Demonstrations

14 Lecture: TBA

Participants: Project Demonstrations

15 Team Interviews

fffff - Things that will be learned or (if not known apriori by participants):
Electrical Engineering: Basic soldering techniques, Board debugging techniques,
Sensors: Optical, Infrared, Mechanical, Gyro, GPS, Accelerometers

Mechanical Engineering: Basic concepts of mechanical advantage through levers, gears, chains.
Different motor types, motor principles.

Lego Engineering: Stable structures, Lego units for gears and support beams.

Computer Science: Subsumption Architecture, Reactive Systems, Machine Learning (reinforce-
ment learning, Q-learning, neural nets), Multi-tasking “parallel” implementations, Computer Vision
(7), Research issues in the Navigation Domain, Research issues in small robotics,

C.2 Compulsory Floor Exercises

Due: 12 October

The idea here is to demonstrate your robot’s ability to do basic sensory and motor tasks, without
putting the individual tasks in any sort of integrated, goal-oriented context.

For a demonstration of the various capabilities, you might consider composing the various abilities
and stepping through them with the escape program, as the testboard.c program in /u/minibot /ic/src
does.

Note that CB bought lots of extra sensors, motors, and STUFF, outlined in the piece by cb and
ray in the lab notes. Lots of it works, some is untested. Feel free to request some of these pieces if
you think they’ll help you.

You should demonstrate all the following basic capabilities:

41

10.

. testboard.c should run without problems.

. Turn right.

Turn left.

Drive “straight ahead” open loop (of course you’ll get an arc, but it should be approximately
straight ahead).

Follow a wall as in the “rug warrior”. This could use two bump-sensing switches and could
subsume 1.- 3.

Use interrupt-level assembly-language programming to sense the output of the breakbeam
Sensor.

Use your breakbeam sensing to implement shaft-encoders. Monitor left and right wheel revo-
lutions and use a controller to equalize them to implement “straight ahead” driving. Can you
drive in a straighter line than you could open-loop?

Sense the IR beacon. You might want to try this two ways, using the system call and following
up the hint and using a direct analysis of the digital input. The latter saves time.

Drive in the direction of an IR, or visible beacon. Two sensors might help here, mounted left
and right; as in the shaft encoder case, you might want to turn right if the left input is weaker
and vice-versa. Can you drive straighter this way than in 6. or 3.7 You can rig an IR beacon
from one of CB’s ultra-bright leds, a resistor, and one of ray’s 5V power supplies.

Follow a black stripe on the white “robot arena” using feedback control. For this you can
make your own reflectance sensor or use one of the emitter-receiver pairs CB ordered.

In addition to these basic tasks, there are plenty of fun things we’d like to try. The more
capabilities we can demonstrate the better. (We shall get records of these things...video or 35mm
slides or both — both the behavior and details of the mechanical wizardry involved).

So the organizers would like to encourage you to volunteer to try one or more of the following
“off the wall” 1deas. These are in totally random order of interest and difficulty, but that sort of
thing should be obvious.

1.

Detect Color. I don’t think we have any color LEDs but they’re easy to get and radio shack
probably has some anyway. If you want to pursue this talk to CB and he’ll order some if need
be. There are color filters in the lab. We can get more from Edmund.

Detect Polarization. A la AAAI contest. I guess this takes buying some polarizing filters.
Probably not a big deal...

First, can IR detectors detect candles? CB suspects so. Buy a small cylindrical box of Quaker
Oats...throw them oats away, feed ’em to the birds, or compost them. Save the top. Cut a
penny-sized, penny-shaped hole in the center of the top and put it back on. You now have a
vortex cannon. Light a candle; stand a few feet away and thump the back of the box I mean
fire the vortex cannon at the candle. You should be able to extinguish the flame from several
feet. Now get a fine maduro cigar, preferably from Cuba (warning, illegal) or the Dominican
Republic. Uppmann is a good brand. Carefully clip the end, light it, draw gently several times
and let a wonderful feeling of well-being suffuse your entire body, soul, and spirit. Welcome to
the wonderful world of cigar smoking. Before you finish the cigar, load the cannon with smoke.
Fire it and you can see the vortices. So here’s the idea. Mount the cannon on your robot and

42

10.
11.
12.

13.

14.

15.
16.

see if you can detect and extinguish candles. You can pre-arrange candle and cannon heights
and orientations so you don’t have to go looking for or aiming at candles. I’'m wondering just
if you can detect them and kill them. I'm thinking a motor or the servo or maybe something
clever with a rubber band and trigger can be used to fire the cannon repeatedly.

Can you fire a single ping pong or plastic practice golf ball from some computer-controlled
contraption? What sort of range and accuracy is possible? How about multiple balls?

Can you pick up an object or somehow “collect” it and carry it? Object could be small
styrofoam box, a metallic thing (maybe you can make an electromagnet?), a ball.

Can you detect things on the floor you might want to pick up? Can you get their direction and
range? Maybe with special paint and lighting can you detect balls, white or colored styrofoam
objects, etc. Would maybe an “IR designator” work, where you aim an IR emitter at what
you want detected and the robot uses the reflection?

Can you use two directional detectors (say for IR) and do crude stereo by measuring a vergence
angle? Maybe one sits on the servo and you thus can measure the angle.

Can you do IFF (Identify Friend or Foe?). Work with another group to see if you can use the
IR detector/emitters in their usual mode: you broadcast 100 Hz and he broadcasts 125 Hz and
you try to recognize/locate him and vice-versa. This is basic in all MIT contests. Can MORE
information be broadcast between robots using the IR beacon? You can maybe modulate the
125 or 100 Hz square wave in different ways to send different messages...how accurately can
these messages be decoded?

How easy or possible is it to “dribble” or simply push a ball around and keep it under control?
How about propelling it on the ground in a desired direction?

Try out the idea of driving the ultrasound generator from the IR output port and detecting it.
Can you get the microphones to work? To direct robot by clapping, say?

Odometry....since you have shaft encoders, can you do quantitative measurement of distance
travelled?

Can you use parabolic reflectors (perhaps from flashlights?) to send and/or receive IR mes-
sages? You’'ll need a long set of wires or a cooperative buddy robot. Modulate the TR emitter
and detect its output (put phototransistor at focus of the receiving antenna?). Ultimately
in order to communicate you’ll need a transmit/receive protocol, error correction, etc. etc.
Maybe one reflector houses the emitter and receiver. Should be fun.

Bar-code reader. Can you reliably count a number of parallel black stripes (electrical-tape
width, say, separated by similar space)? Maybe the “barcode” starts with a double thickness?
I’'m thinking you just drive over the code and read it with reflectance sensing.

Try the prey-tracker posted on cs.minibot recently

Any other cute idea you have to extend our range of sensing and effecting capabilities.

C.3 The Robot Competition

See Section 3.

43

References

[1] Olac Fuentes, Rajesh P. N. Rao, and Michael Van Wie. Hierarchical learning of reactive behav-
iors in an autonomous mobile robot using stochastic hillclimbing. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics 1995, Vancouver, B.C., Canada,
October 1995. to appear.

[2] J. L. Jones and A. M. Flynn. Mobile Robots: Inspiration to Implementation. A. K. Peters, 1993.

[3] Tom M. Mitchell. Becoming increasingly reactive. In Proceedings of the AAAI pages 1051-1058,
1990.

[4] Rajesh P. N. Rao and Olac Fuentes. Perceptual homing by an autonomous mobile robot using
sparse self-organizing sensory-motor maps. In Proceedings of the World Congress on Neural
Networks 1995, Washington, D.C., July 1995. to appear.

44

