
Mobile Robotics 1994Graduate Students: O. Fuentes, J. Karlsson, W. Meira, R. RaoT. Riopka, J. Rosca, R. SarukkaiM. Van Wie, M. ZakiSta�: T. Becker, R. Frank, B. MillerProf. C. M. BrownThe University of RochesterComputer Science DepartmentRochester, New York 14627Technical Report 588June 1995AbstractOn 7 December 1994, four student-built autonomous robots demonstrated various strategic, tac-tical, and mechanical approaches to a delivery task. That event was preceded by approximately twoyears of history and two days of frenzied preparation. Our robotics e�orts were based on materialsfrom MIT's well-known 6.270 course. This report summarizes our experiences, from pedagogicalgoals and organizational matters through mechanical and electronic techniques. Our intended audi-ence is future robot-builders, and organizers of robot-building courses. We assume familiarity withmaterial in Jones and Flynn's Mobile Robotics text, and with the various materials available fromMIT over the internet.Keywords: Mobile Robotics, LEGO, Interactive C, MIT 6.270, Sensors.This material is based on work generously supported by the Department of Computer Science (Tom LeBlanc,Chair) and NSF IIP grant CDA-94-01142. Wagner Meira Jr. is supported by CNPq-Brazil Grant 200.862/93-6

Contents1 Prehistory 32 Getting Started 33 The Competition 34 Map-Maker (Sarukkai, Meira, Zaki) 54.1 Map-maker: General description : 54.2 Beacons and Triangulation : 64.3 Localization Tower Design : 74.4 Photoresistor Mounting : 74.5 Beacon Tracking : 74.6 Line Following : 74.7 Steering : 74.8 Map-Maker: Gearing : 84.9 Map-Maker: Lego Experience : 84.10 Map Algorithms : 104.11 Actions algorithm : 114.12 Position Finding : 135 Line-Follower (Miller, Becker) 166 Cyclops (Riopka, Rosca) 186.1 Cyclops functionality : 186.2 Cyclops sensors : 196.3 The Cyclops Arti�cial Eye System : 20Linear Scanner : 20Scanner Calibration and Thresholds : 21The Vision Algorithm : 21Image Analysis : 22Vision as a Behavior : 226.4 Skill Learning : 23Skill Acquisition : 23Manoever Reversal : 24Photoresistor Response Time : 24Servo-multiplexing Circuit : 24Behavior as a Hierarchy of Goals : 256.5 Cyclops actuators : 261

7 Meccano Monster (Fuentes, Rao, Van Wie) 277.1 Why Meccano? : 277.2 Disaster! : 287.3 Building the Board : 287.4 Designing the Body with Meccano : 297.5 Software for Compulsory Floor Exercises : 307.6 The Competition : 317.7 Beyond the Minibot : 32A Parts Lists and Information 33A.1 Rug Warrior: Jones and Flynn Book : 33A.2 From Randy Sargent at MIT : 34A.3 Work Area : 34B Supplemental Sensors 35B.1 Parts List : 35B.2 Break Beam Sensors : 36B.3 IR LED Pairs : 36B.4 Microphone : 36B.5 Miniature IR Re
ectance Sensors : 36B.6 Ultrasound : 36B.7 Further Ideas : 39C Course Details 39C.1 Goals and Organization : 39C.2 Compulsory Floor Exercises : 41C.3 The Robot Competition : 43
2

1 PrehistoryIn 1992 { 1993, Lambert Wixson, Jonas Karlsson (Grad students in thesis mode) and Ray Frankordered some \miniboard" kits through connections discovered on the comp.robotics newsgroup.Miniboards are scaled-down versions of the microcontroller boards ultimately used in the roboticswork described here. Wixson and Karlsson produce a successful autonomous LEGO corridor-runningrobot, and the miniboard was used later in real-time applications (sensing for digital closed-loopcontrol).Thanks as usual to student enthusiasm and agitation, Brown volunteered in the Spring of 1994to be the statutory organizer and titular head of a robot-building seminar to be held in the Fallsemester of 1994. One constraint was that if the necessary parts could not be ordered in kit (onecall does all) form, it was not deemed practical to pursue the idea. For the more hardy, parts listsare available in the very helpful documentation available at MIT in support of their 6.270 course.Luckily, Randy Sargent of MIT had gone into the business of selling these kits, and so we proceeded.Over the summer an organizing committee (Brown, Karlsson, Frank, Brad Miller and Tim Becker)dealt with the kit-ordering process, wrote a proposal for an Undergraduate version of the course,made up lists of tools and other support material deemed needed to get started (some details are inSection 2).The organizers undertook to assemble robot during the summer and assess the di�culties, andto design a graduate-level seminar based on the robot-building and -competition conception (detailsin Section C).2 Getting StartedA good place to get general information is:http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/robotics/top.htmlOf course the newsgroup comp.robotics is still the standard place read and keep current, or topost speci�c inquiries.The \consumables" in our work were almost entirely the electronics parts to assemble the micro-controller computer. Appendix A gives parts lists and two di�erent alternatives for robot kits. TheLEGO kits used for mechanical robot construction can be recycled. The $500/group cost comes to$167 per student. Students might decide to buy their robot or microcontroller once assembled, wemight charge a lab fee of $180/student. As of now we don't have a �xed plan for how to �nance thissigni�cant ongoing cost.Aside from the above consumable items, ideally the rest of the course equipment is \permanent",meaning that students take responsibility for returning it with only reasonable wear and tear.3 The CompetitionThe stars of this report are the four robots that were built during the course. The robot descriptionsfollow, along with algorithms, assumptions, associated team goals, successful and less successfulideas, and so on. It is interesting to note how the individual mechanical and software designsinteract to produce coherent component capabilities and integrated systems.First, however, to understand some of the design decisions, it helps to know the history of thecourse assignments and the rules governing the �nal competition. More course details are presentedin Appendix C. The course had three phases: construction, robot olympics and compulsory exercises,3

and the competition. To provide context for the reports on individual robots, the competition rulesare presented here.On 7 December 1994 a \robot Federal Express" competition was held with four contestants.There was an enthusiastic turnout of locals; the press was not noti�ed until after the event. We hada re-run for the press a week later, attended by two television stations, the local paper, and a radiostation. The resulting coverage was responsible and good-natured and more than likely good forbusiness. Following are the rules and a diagram of the arena as it was set up for the competition.In fact one team (MAP-MAKER) did use a 3rd IR beacon for ego-location.� The spirit of the competition is to investigate trades-o� between the following capabilities{ line following { beacon following { obstacle avoidance { memory (learning) and geometricrepresentations { other ingenious ideas invented by contestents� Competition takes place on the 8' by 8' white sheet, with walls, markings, and obstacles added.Walls are sturdy and 6" high, made of 1/2" or 5/8" plywood. Interior of walls painted white.There will up to a maximum of eight physical obstacles, 3-4 inches high and a foot square, atunannounced positions on a 1-foot square grid. The sides of obstacles will be painted grey.See Fig. 1.� Robot must not be tethered to receive either power or digital information; it must be completelyautonomous.� Robot begins or arrives at a Pickup Area, marked by an IR beacon at height of 12 inchesabove
oor. Robot requests (via its beeper) and within 3 seconds is given, in its ball-carryinghopper, a ping-pong ball.� Obstacles and Pickup and Delivery areas are one foot square, placed on one foot grid squares.These areas will be in a �xed position on the arena, KNOWN in advance, to be �xed andpainted black soon.� Between the pickup and delivery areas will be a path marked in eletrical tape. This path isUNKNOWN in advance.� There will be not more than eight obstacles in the arena, whose location, like the path, isvariable and UNKNOWN in advance.� Over the pickup area will be 100Hz IR beacon at the height of 12".� Over the delivery area will be 125Hz IR beacon at the height of 12".� A team can design and deploy more beacons:{ prior to the competition a single IR or visible-light beacon can be set up. These beacons'location must be communicated to the organizer (CB) before the arena is set up for thecompetition: their position cannot depend on the location of obstacles, for instance.{ during the competition the robot can drop beacons or other navigational aids freely.� Both pickup and delivery areas are black areas on
oor. Pickup and Delivery areas may ormay not be against walls. We shall use black electrical tape to darken these areas (as soon aswe determine that it will work). THUS if you are over a big black area (bigger than the tape)and you can sense an IR beacon in the direction you've been heading. there's a good chanceyou're in the desired area. 4

� Robot is to deliver the package to the delivery area: take it there and dump it. There will beseparate style points and perhaps a separate award for the elegance or distance or accuracy ofejecting the pingpong ball but as long as it gets \o� the truck" somehow while the robot ispositioned (at least partly) over the drop-o� area, full credit results.� The robot makes its way back to pickup area and repeats (only we hope with improved per-formance).� There will be a tape path, guaranteed unobstructed, between the pickup and delivery areas.It is guaranteed not to be the shortest path. It will have no radius of curvature less than onefoot. We'll try to be nice and not put minimum clearances near maxima of curvature. Weguarantee 6" of clearance on either side of the tape.� We guarantee at least a 12"-wide path between any separated obstacles.� There will be partial scores for partial performance, to be determined. But the main score ishow many packages can be delivered in four minutes. If robot functions perfectly, four minutesshould be enough to show it o�. If it malfunctions, four minutes is an eternity.� A human may intervene in the contest to rotate (not translate) or to repair (replace bits thathave fallen o�) the robot. The clock runs during interventions and each separate interventioncosts one ping-pong ball. Any number of repairs, but only one rotation, are allowed perintervention. The intent here is to minimize robot and team and audience frustration causedby simple mechanical or logical failures.� In the spirit of minimally changing the rules, if robots A and B have each delivered N ballsat the end of four minutes, then that robot farthest along its way to delivering N+1 balls isthe winner. This criterion should apply pairwise to all robots, and should order the set. Thejudge's (or judging panel's) opinion will be �nal. Videotape replays may be needed but wehave the technology.4 Map-Maker (Sarukkai, Meira, Zaki)With this section we commence descriptions of individual robots.Map-maker is an ambitious robot with complex internal representations and sensing capabilities.The MAP-Making robot is uniquely distinguished by the ability to plan paths, determine presentlocation, and accomodate sensor errors during position determination. Given a grid model of theworld, positional information of the robot is su�cient to build the world representation. For instance,if an obstacle is detected by the robots front switches, then the position determining routine isexecuted, followed by marking the appropriate location of the world as an obstacle.4.1 Map-maker: General descriptionWe can divide our robot into the following functional parts:Traction: the traction includes the two back wheels and the gear train (including one motor)associated with them. We used the \di�erential" provided with the lego set, distributing thepower between the wheels. 5

Figure 1: The eight-foot-square arena. Black line marks black tape path. IR beacons of di�erentfrequencies hang 1 foot over start and �nish squares and also over the south-east corner. Shadedsquares show obstacles.Steering: Our steering is provided by one wheel that is controlled by a motorized gear train. Thereare two lateral sensors that prevent excessive steering. To determine if the robot is goingstraight, we used an optical solution with photodiodes: we attached the emitter to the robotbody and the receiver to the steering wheel in such a way that, when they are aligned (i.e. thereceiver is receiving the emitter's signal), the wheel is in a straight direction.Bumper system: We have four bumpers, two frontal and one in each side. There is a digitalswitch associated with each of them.Localization System: The mechanics involved in the localization system consists of the servomotor that drives three IR receivers and is mounted on a tower.Ball holder: The ball holder consists of lego-built box with a motor included. The motor has astick attached to its axle. When the motor is activated for 0.5 seconds, the stick throws outthe ball.4.2 Beacons and TriangulationIn order to detect our exact position in the board, we needed three referencial points. It is knownthat the IR receiving task is CPU intensive, so in order to take advantage of the special sensorelectronics of the board, we decided to use only the two standard frequencies; thus two of the threetransmitters were constrained to use the same frequency.This caused two problems:Bimodality detection: Detecting two emitters of the same frequency causes two peaks at theend of the scanning information. Sorting them out and dealing with them required context-dependent information such as knowledge about the minimum angle between beacons (seelater). 6

Proximity e�ect: if we are really near one beacon, usually we are not able to detect the other,not only because of the intensity of the nearest that is bigger, but also because the minimumangle is not e�ective in this case.4.3 Localization Tower DesignOne of the problems we realized when using the servo motor is that it does not cover the nominalrange of 180o. We guess that it does not reach the �nal 5o in each side. In order to be able toperform the localization, we attached three IR receivers with the same angular distance betweenconsecutive ones (120o).We had various problems with interference due to re
ections of the IR signals transmited fromthe reference points. To avoid such problems, we used aluminum foil around the receiver \collector".Another detail is that the \collector" is taller than it is wide, being able to detect transmitters sitedat various heights without horizontal accuracy loss.4.4 Photoresistor MountingThe photoresistors were used to implement line following. Each of them was mounted in a blackpaper cylinder. The purpose of this tube is to avoid external light interference. These tubes aremounted in the front wheel structure, with their entrance standing 2mm over the
oor.The calibration was done manually, checking the readings for black and white areas. Despitethis, we found that light variations (like a person's shadow) are enough alter the thresholds thatdistinguish the regions.4.5 Beacon TrackingWe used our servo motor to perform beacon tracking. We attached three IR receivers to the servomotor in order to cover all the 360o around the robot. We detect the position of a beacon bypositioning the servo motor in di�erent angles and checking the IR receivers.The scanning procedure has two steps: coarse scan and �ne scan.In the coarse scan we check angles spaced by 5 degrees to detect the regions where the beaconscould be. After this procedure we perform the �ne scan, where we check a 10 degrees angle withincrements of 1 degree.4.6 Line FollowingOur line following strategy is simple but e�cient.We attached two photoresistors to our front wheel in such way that if we are following the line,the photoresistors will sense the black region. If one of them loses the line then we know that weare not only going out of the desired direction but also to which side of the line, allowing us to takethe correct recovery action.4.7 SteeringWe used the motors supplied with the kits to implement our steering mechanism. These are highspeed motors, and we needed a gear train with a reduction factor of about 3600:1 that is attachedto the front wheel. 7

To avoid damage to the steering and robot, we put two touch sensors in the front of the robotthat deactivate the steering motor when it tries to turn more than allowed.The main problem with this approach is the inaccuracy of the turns. Gor reactive tasks like linefollowing it works satisfactorily, but things become really hard when we talk about spacially exactactions like the ones required in a mapped environment. It is hard to measure progress by timingthe activation/deactivation of motors since their performance is in
uenced by the (variable) stateof battery charge.Another problem is that the gear train is not accurate enough to avoid some slippage when themotor direction is reversed. Another precision - related problem is the speed: reducing it to allowadequate control had the e�ect of slowing down steering appreciably.4.8 Map-Maker: GearingMap-maker has two gear trains, one for steering and other for traction. Both use the same motor andhave reductions of 3600:1 and 243:1 respectively. The gear train building should be done carefully,not only to avoid friction in the axles (that can cause the train to block), but also to save space inthe robot.4.9 Map-Maker: Lego ExperienceThe main lesson from our lego adventures is that we should be conservative. We tried to build somestructures and had a lot of problems:
IR receivers

Servo
Motor

Ball
Holder

Side Bumpers

AA Batteries

Front Bumpers Figure 2: The MAP-Maker8

Steering: one of the big problems with our steering mechanism is gear slippage. Due to the factthat the plastic gears have sloppy tolerances, high precision constructions like the steering havelow accuracy.Skirt: We designed a bumper system that uses a skirt around the robot. The main feature of theskirt is free movement in the horizontal plane. Properly attached to four touch sensors (front,left, right and back), it allows easy handling of all possible bumping situations.Grasp and Lift: We tried to devise a pretty complicated \grasp and lift" device for the robot. Theidea is using only one motor, perform two tasks. The motor power is shared via a di�erential.We start grasping, when this operation is complete, the di�erential transmits the power to thelift mechanism. The reverse operation is similar, as the force to unlift is bigger than the oneto ungrasp, we �rst put the device down and then ungrasp. The problem in this case was gearslippage also; they are not strong enough to hold while the di�erential is transferring power tothe other task.
Eyes

Steering
Mechanism

Robot TractionFigure 3: The MAP-Maker
9

Algorithm MAIN1. Start at Starting point START.2. Determine ORIENTATION.3. Take Commands returned by function FindActions();4. If Obstacle,then SCAN to �nd present LOCATION.Find ORIENTATION.Mark MAP with OBSTACLE.Recompute PATH to goal.5. goto step 3 until GOAL REACHED.6. Throw BALL.The main algorithm is pretty straightforward. The starting point for the task is �xed. Ourposition determining mechanism is based on the angular locations of three IR transmitters that hadto be placed in an appropriate geometric con�guration, so as to enable unique position detection,and is detailed later. Based on the \quadrant locations" of the IR transmitters, the head-on directionor orientation of the robot with respect to the three IR transmitters, and thus the board can bedetermined robustly.The action sequence is constrained to one of the following: STRAIGHT, RIGHT, LEFT, BACK.The actual path planning algorithm (shown in a later section) is basically a dynamic programmingsearch from the goal location to the start location of the map using the available action sequences.In our preliminary experiments, the map grid locations were �lled with distance (to the goal) values,and actions required to go from the START position to the GOAL position were then determined.However, this need not be the best possible action sequence: an alternate would be to use a dynamicprogramming approach and accumulating the penalties of each reverse action from the GOAL stateto the START state. During a �nal run, due to the very low 16K (including system stack) onboardmemory, the actual exhaustive dynamic programming search had to be abandoned in place of a localgreedy action selection mechanism. Thus, the procedure was to determine the present location, �ndpath and take the appropriate action. If an unexpected event such as the detection of an obstacleoccurs, mark appropriate cell in the map as an obstacle, and recompute an alternative path.The idea behind fast, robust determination of the location of the robot was twofold: use atable-lookup (angular information from the real world worked better than geometrically computedvalues for some \ill-posed" locations) to match sensor angles with stored angles to get the k nearestneighbours (locations); the important second aspect was to cross-validate the K-NN locations withthe neighbourhood of the expected location. At locations more than a square away from the IRtransmitters, the cross-validation scheme enabled recovery from positional errors accumulated dueto friction, wheel slippage etc. Finding the angles accurately could be expensive; however, we reducedthe cost of scanning by doing two passes. The �rst pass is a coarse scan, and the second pass is of�ne resolution in a 10 degree range of the maxima detected during the �rst pass.4.10 Map AlgorithmsAlgorithm FindPath/** The map is represented by a 8 x 8 table. ***/1. Clear MAP at all points, leaving the obstacle locations unchanged.2. Mark START and END locations.3. Starting at the END location, apply recursively the following step:� Depth at END =0;� Let current location be x; y, and depth of recursion=DEPTH.� Let x0; y0 be a neighbor of x; y.� MAP[x0; y0]= min(MAP[x0; y0], DEPTH+1);10

4.11 Actions algorithmAlgorithm FindActions1. Find (using the 3 IR beacons) the initial ORIENTATION of the robot.2. Assign ORIENTATION.3. X= STARTx ; Y = STARTy;4. For each of the following moves determine the value entered in the MAP, and choosethe action wth the minimum value.LEFT : RIGHT : BACK : STRAIGHT : STRAIGHT2MOVES5. Assign X=ActionX; Y=ActionY; ORIENTATION=ActionORIENTATION;6. If not reached END then goto step 4.EXAMPLEInitial configuration of MAP==========|........||....*...| S= START|.*S.*...||........| E= END|........||....*...| *= Obstacle|.*......||..*..E..|==========Filling the MAP with path information by using dynamic programmingAlgorithm FindPath applied.Note that the path is given by following the sequence abc...S in reverse.==========|lkjihghi||kjih*fgh| a= 1 step away from END. b= 2steps and so on...|j*Sg*efg||ihgfedef||hgfedcde||gfed*bcd||h*dcbabc||ij*baEab|==========Finding Action Sequences after applying Algorithm FindActions.Initial ORIENTATION is to the RIGHT ---->Action Sequence generated:RIGHT STRAIGHT2 STRAIGHT LEFT STRAIGHTPosition of Robot after each ACTION:1. INITIAL 11

==========|........||....*...||.*@.*...||........| @ position of ROBOT|........| ORIENTATION Facing Right|....*...||.*......||..*..E..|==========2. RIGHT==========|........||....*...||.*S.*...||...@....| ORIENTATION Facing down|........||....*...||.*......||..*..E..|==========3. STRAIGHT2==========|........||....*...||.*S.*...||........| ORIENTATION Facing down|........||...@*...||.*......||..*..E..|==========4. STRAIGHT==========|........||....*...||.*S.*...||........| ORIENTATION Facing down|........||....*...||.*.@....||..*..E..|==========5. LEFT==========|........||....*...| 12

|.*S.*...||........| ORIENTATION Facing Right|........||....*...||.*......||..*.@E..|==========6. STRAIGHT==========|........||....*...||.*S.*...||........| ORIENTATION Facing Right|........||....*...||.*......||..*..@..|==========REACHED GOAL4.12 Position FindingWe use three infra-red transmitters to determine the robot position anywhere on the grid uniquely.Refer to �gure 4. We use the servo motor to scan and get the three angles A, B and C. Wenext �nd the centers of the three circles passing through the points : ROBOT, GOAL, THIRD IR;ROBOT, START, THIRD-IR; and ROBOT, START, GOAL. These centers are denoted as P, Q,and S respectively. Let Rx, Ry denote the x and y co-ordinates of the Robot. Let a similar notationdenote the co-ordinates of the three centers. We can now �nd the Robot position by the followingset of equations:- (Rx� Px)2 + (Ry � Py)2 = Pr2 (1)(Rx� Qx)2 + (Ry �Qy)2 = Qr2 (2)(Rx� Sx)2 + (Ry � Sy)2 = Sr2 (3)Now from equation 1 and 2 we get the following:-2Rx(Qx� Px) + 2Ry(Qy � Py) = (Pr2 � Qr2) + (Qx2 � Px2) + (Qy2 � Py2) (4)And similarly from equation 2 and 3 we have the following:-2Rx(Sx� Qx) + 2Ry(Sy � Qy) = (Qr2 � Sr2) + (Sx2 � Qx2) + (Sy2 � Qy2) (5)From these two equations we can easily compute the two unknowns, namely Rx and Ry. Howeverthere is still the matter of computing the radius and the centers co-ordinates of the three circles.We'll show how to do this for the circle passing through ROBOT, START and THIRD-IR, i.e., theone centered at Q. 13

ROBOT

START

GOAL
THIRD IR-T

Q

P

S
C

B

A

Figure 4: Position FindingThere are two cases to be dealt with here. In the �rst case the angle between the THIRD IR,ROBOT and START, namely the angle B, is less then 90 degrees, which is shown in �gure 5. Recallthe fact that the angle made by the chord THIRD IR|START at the center of the circle is twice B.Therefore, when we drop a perpendicular from the center onto the chord we get two right triangleswith B as one of the angles. We already know the length of the chord, lets call it AB, and we knowthe angle D. We �rst �nd the radius od the circle, Qr, as follows:-Qr = AB=2sin(B) (6)Now that we know Qr, and know the angle D+90-B, we know the hypotenuse and one acuteangle of the right triangle with thick lines. We can easily �nd Qx and Qy relative to the co-ordinatesof the THIRD IR, say Tx and Ty. We can then �nd the real co-ordinates of the center by adding orsubtracting Tx and Ty appropriately. The following equations achieve that:Qx = Qr � Sin(D + 90� B) (7)Qy = pQr2 � Qx2 (8)The second case is shown in �gure 6, where the angle B is greater than 90 degrees. In this casewe use the angle 180-B which must be less then 90 degrees. Then the angle made by the chord14

B

B

THIRD IR

START

ROBOT

Q

D 90-B

(Qx,Qy)Qx

Qy Qr

Figure 5: Case I :B < 90.0at the center of the circle is twice 180-B, and dropping the perpendicular from the center onto thechord we get a right triangle with 180-B as one of the angles. From this information we can easilyget the angle B-90-D of the thick right triangle. The radius Qr is calculated as before and we caneasily obtain Qx and Qy as follows:Qx = Qr � Sin(B � 90�D) (9)Qy = pQr2 � Qx2 (10)In the beginning we were planning to do this at run time, but we soon ran into memory problems.We then decided to make a table of positions along with the angles at that position. We decidedto keep a minimal sized tables with 64 entries corresponding to the positions of the centers of thesquares in the 8x8 grid. To �nd our position the robot would scan the grid and obtain the threeangles. We could then simply search through the table and output the closest match. However, therewas one additional problem with this approach. The IR transmitters at the GOAL and THIRD IR-Tboth transmitted at 100Hz, while the START was at 125Hz. When the robot is close to the GOAL,and especially in the top right squares, it becomes di�cult to distinguish the two transmitters, sincethe GOAL IR obscures the THIRD IR-T. We got around this problem by measuring the anglesreturned by the servo at the trouble spots, and storing these values in the table instead of the actualvalues we should have obtained.This di�culty could be solved if the THIRD IR-T were at a di�erent frequency. But we didn'thave time to hack the assembly code to achieve this. A good feature of our approach is that dueto the palcement of the transmitters we could uniqely identify which region we were in, and thathelped us in calculating the exact position of the robot. There are four regions.Having found the robot position correctly, we can also �nd the robot orientation. So far wehad been using the angle di�erences, i.e., we actually measure the absolute angles to the threetransmitters, but our position �nding algorithm uses the di�erences between these. We can get our15

Q

START

ROBOT

THIRD IR

B

180-B

D

B-D-90

(Qx,Qy)

Qy

Qx

Qr

B
-9

0

180-B

Figure 6: Case II :B > 90.0orientation by taking the absolute angle we get, and comparing it to a �xed reference point. Forexample we can say that facing the THIRD-IR and GOAL line means that we are North. So if theabsolute angle di�ers by 45 degrees then we can say that we are facing north-west.5 Line-Follower (Miller, Becker)Line-Follower pursued the strategy of following the black line on the
oor from start to �nish,dropping the ball, doing an open-loop 180 degree turn, and returning to the start. Five re
ectancesensors across the front gave the control a startling robustness, and the �nal robot was very smalland compact. It used a gear-head drive motor and thus was very quiet. It was rather slow, but itsno-nonsense attitude let it deliver three balls in the alloted four minutes. This robot's design is anexample of retrograde evolution, starting from a highly original design that involved new sensorsand the goal of measuring absolute 2-D location.One of the ways to solve the problem in maze-walking was to develop an absolute positioningsystem. Unfortunately, monies not being available for a geostationary sattelite, or even for a gyro-scope (inertial guidance), and having no expertise in vision, Miller leveraged his prior work on IRcommunication for the minibot with some knowledge of history. (This team had given some thoughtto how two robots might use the IR detectors to communicate information between themselves).At one point in history, navigation was done by the stars, speci�cally, the angle of the northstar was used to calculate the latitude, while a compass and the position of the star with respect tothe time of day was used to �x the longitude. Unfortunately, electronic compasses being o� budgetexpenditures, Miller investigated the notion of using a pair of stars for calculating absolute position,with the possibility of using dead reckoning and tracking of a single star to update it as the robotmoved. 16

To do this, the team built a primitive astrolabe out of lego. A servo moter was used to adjustthe azimuth which would give the distance to the star. A normal motor and break-beam sensorwas used, suitably geared, to adjust the angle of the astrolabe (henceforth referred to as �) to themounting. Two Sharp IR sensors were used, each with a di�erent length brass tube attached. Thesewere used to limit the angle of sensitivity of the sensors to the emitters (stars). Each star wasmodulated at a di�erent frequency, and primitive PLLs (new sensor hardware developed by Millerand Ray Frank for this project) were used to register the frequency being detected by the wide-anglesensor.The basic idea was that with the robot stationary, the astrolabe would be swept until the wideangle sensor found the appropriate signal to be in view (thresholded to eliminate re
ections), andthen the narrow-angle sensor would hillclimb until the star position was �xed. From the azimuthwe then knew the distance to the beacon, as well as the angle to the robot. Now we �x on the otherstar, and simple geometry gives us an absolute position, given the �xed nature of the stars (one wasthe starting beacon, the other was a separate beacon we erected at a su�cient distance o� the
oorto give reliable azimuth information, as well as reduce the possibility that both might be seen bythe 'bot at the same � in a portion of the maze).Once the position was �xed, the robot could then use sensors on its motors to judge the delta ina particular angle, and errors tracking the star could be correlated into a guess of a new position.From this we hoped (with our knowledge of the basic map layout), we could map the maze.While preliminary results were encouraging, the following problems ensued: The line followingstrategy of the robot was very robust, but caused a large amount of angle change to occur as ittracked the line, far greater than the slew rate of the � moter on the astrolabe. To increase the slewrate, however, would drastically decrease its accuracy (currently to 1 degree, but another 2 degreeerror from the narrow aperture sensor meant we were pretty much at the limits of sensitivity whenfar from the star). To compensate for this we should have to re�x our position on the two starsmore frequently, and this was seen as slowing down line following enough that unless the maze wasparticularly tilted against simple obstacle avoidance strategies (unfortunately, it wasn't), the costof absolute positioning swamped performance. Additionally, it was unclear the software needed toreason about position while tracking the star, in addition to the line following code and basic beaconand astrolabe code would all �t into the limited memory of the robot.Additionally, the feedback from the motors needed the two ports for break-beam sensors, yet, theastrolabe itself used one. The board we were using had no provision for counting a third break-beam,so dead reckoning would have been di�cult without additional sensors.There are a number of possible solutions to this dilemma given funds:1. Fix the astrolabe position, put the star on the robot, and relay information (using the IRtransmission scheme perhaps) between the �xed astrolabe and the robot. This would haveavoided slew rate and tracking problems, but would have violated tournament rules since therobot would not have been autonomous, and we would have needed an additional cpu board.2. Add a compass to the robot. This would have meant only one star would have been needed to�x position. This would not have solved the problem of dead reckoning, we still would need athird break-beam port.3. Use inertial guidance for dead reckoning. Presumably this can be done without a break-beamor equivalent. Since we don't know initial �, but do know the angle of the start position to ourstar, we could dispense with the compass (since the inertial system should give us any �� aswell as o�set from our starting point). An accurate enough system might be able to dispensewith the external reference point as well, e.g. that used for cruise missiles.17

4. Use a di�erent approach, e.g. embedding wires into the arena and checking
ux changes as therobot passes over them. Modulating each wire with di�erent current, or amplitude changes,means we can either read absolute position more or less directly, or at least can distinguishhorizontal from vertical grid lines and count as in a very accurate dead reckoning system.6 Cyclops (Riopka, Rosca)Cyclops is a LEGO mobilemini-robot that is capable of exploring a planar world by combining severalhigh-level behaviors such as line following, beacon following, horizon scanning, obstacle detectionand avoidance, wall following and map construction. Cyclops can be taught a set of micro-skillswhich can be used in writing its higher-level behaviors. Cyclops has the capability of building a mapof a grid-world. Such a map can be used as a starting basis in implementing a simple task plannerfor task optimization.The high level design decisions that guided the implementation of Cyclops were:1. Support a software architecture that can implement well the tradeo� between reactive andreasoning capabilities2. Learn a map of the competition environment by creating, updating and using the necessaryinformation opportunistically3. Keep track of the vehicle orientation or reinitialize it and be able to realize if the orientationis lost.We intensively experimented with various design decisions in
uencing the �rst major goal above.The second and third goals are inherently very di�cult to implement. Although we made advancesin this direction, any map construction facilities were infeasible given the speci�c delivery taskand the amount of time allowed to compete. However, we experimented and equipped our robotwith various sensors that support the creation and interpretation of a higher level representationof the environment. We outline here that competition rules, and most importantly the given worldcon�guration and the time allowed for each robot may rule out capabilities that make a robot moreintelligent. This would be the case with a very simple world which implicitly favors very simplearchitectures. Our robot has been designed to cope with a more complex world.6.1 Cyclops functionalityCyclops is equipped with a variety of sensors and actuators. Each of them will be shortly describedat two abstraction levels. First we refer to the devices used. Secondly we mention the desiredfunctionality which is re
ected in the software.The desired functionality in
uences every aspect of the device: the mechanical, and electricalcomponent choices, the sensor or actuator mechanical assembly, the way sensors are interfaced to amicroprocessor board and the driver routines used.We start our description with the desired functionality and the goals pursued. Then we describethe sensors and actuators used and the way they are interfaced to the controller board.Given the objectives mentioned before, we de�ned a set of necessary functions our design has tosupport. Most of these impose constraints on the sensors and actuators that will endow our robot.The discussion on sensors and actuators will follow these more detailed goals.� Drive forwards and backwards. 18

� Perform turns with a very low steering radius.� Control the steering angle with a very high precision.� Estimate the distance traversed by the vehicle regardless of speed or steering, in any giventime interval.� Detect obstacles bumped into when driving forwards or backwards. Detect if an obstacle ispositioned to the left, right, front, or rear of the vehicle.� Detect obstacles touched by the sides of the vehicle� Detect obstacles that appear at a given distance in front of the vehicle before bumping intothem.� Detect a nearby infrared beacon emitting a modulated IR signal of a given frequency.� Detect side obstacles without touching them.� Follow a black winding stripe on a lightly colored
oor (e.g white
oor) regardless of illumi-nation conditions.6.2 Cyclops sensorsCyclops is equipped with the following sensors:1. Four bumping sensors. All are simple microswitches attached to the vehicle in appropriatemountings.(a) Two front sensors. They are mounted on a common bumper. They can be switched oneither independently or together if the vehicle bumps frontally into an obstacle.(b) Two rear sensors made of roller microswitches. They are mounted at the rear left andright corners of the vehicle.2. Two touch sensors or side bumpers made of ALPS switches. They are mounted on the leftand right sides respectively, close to the front corners of the vehicle, and carry side wings ofthe length of the vehicle, so that whenever a side of the vehicle is pressed against an obstacleor a wall, at any angle, the sensor becomes switched on.3. IR beacon detector. It is made out of four Sharp detector packages GP1U52X which can detectIR light of 100 or 125 MHz and are mounted at 0, 60, 180 and 300 degrees. 0 degrees corre-sponds to the direction of the vehicle axis and a forward orientation. We have experimented,with equally good results, with a simpler design in which only two IR detectors are used. Theyare mounted at �15 degrees.4. Two IR side re
ectance sensors. Each is a Sharp detector package similar to the ones used inthe IR beacon detector.5. Four IR re
ectance sensors. They are made out of pairs of an IR LED and an ultrasensitiveIR phototransistor (Sec. B.1).6. One breakbeam sensor. It is mounted above a LEGO pulley wheel attached to the directionaxle carrying the front wheels of the vehicle.19

7. One photoresistor. It is mounted in a black-covered drinking straw tilted forwards in orderto o�er an analog signal on white/grey/black objects a given distance away in front of thevehicle. The photoresistor is part of an arti�cial eye system used for obstacle avoidance. Theentire system will be described in more detail below.Interfacing sensors to the microprocessor board1. Bumping sensors. The left front and rear microswitches are mounted in parallel and connectedto an analog port. However they are used as digital devices (on/o�). The one correspondingto the direction of movement (front for forward movement and rear for backward movementrespectively) o�ers information about obstacles the vehicle has bumped into.2. Touch sensors are also connected to an analog port, although they have a digital function.3. IR beacon detector. Each detector package is connected to a high digital port. The InteractiveC software only supports ports 4-7 for reading the modulated IR light signal.4. IR side re
ectance sensors. Each is connected to a high digital port.5. IR re
ectance sensors. Each is connected to an analog port.6. Breakbeam sensor. It is connected to a low digital port. This makes possible to use thefast, assembly language shaft-encoder routines from Interactive C. Although this alternativeo�ers more accurate information in case high sampling speeds are needed (determined by highrotation rates of the pulley wheel), our robot did not travel at high speeds.7. The photoresistor is connected to an analog port. It o�ers an analog signal that is decodedinto information on the grey level of the point viewed.6.3 The Cyclops Arti�cial Eye SystemLinear ScannerA line scan \camera" was constructed using a single photoresistor mounted on a servo. A singlephotoresistor was used in order to simplify calibration and photosensitivity problems that might ariseusing multiple detectors. Early measurements showed that the sensitivity of any one photoresistornot only varied considerably from one to the next, but was also non-linear over its range. Usingonly one photoresistor alleviated many of these potential di�culties.The detector for the linear scanner consisted of a photoresistor mounted in one end of a 10cmlong straw. The straw was covered with electrical tape with a black "cone" on the end opposite thephotoresistor to insure no re
ections from the straw opening. The tube was then encased in a legostructure which was centered on an axle whose axis was perpendicular to the tube but parallel (andconnected) to the shaft of the servo.The entire scanner was tilted at an angle of approximately 29 degrees to the horizontal resultingin a \view" approximately 38 cm or 1 1/4 feet in front of the vehicle. A �xed angle provided a wayfor the robot to measure object distance and also simpli�ed the vision algorithm (see below). In the�nal implementation, 16 sample points were used, each point separated from the next by an angleof 5 degrees resulting in a scan angle of 75 degrees centered about the robot and looking forward.Experiments with a visual test display indicated that the �eld of view (i.e. the angle subtended bythe area from which light was detected by the photoresistor through the tube) was approximately 7degrees. This provided signi�cant directionality and su�cient resolution to enable accurate enoughedge detection for object avoidance. The location of the object edge was used as a parameter to20

the general \skill" learned by the robot for object avoidance (see Skill Learning). Scan time wasapproximately 8 seconds per line acquisition requiring 200ms rise time for the photoresistor, 200 msper sample to reduce scanner vibration, and 1-2 seconds for servo-switching. This was considered tobe a reasonable time, but one which did not encourage indiscriminate scanner use.Scanner Calibration and ThresholdsOne of the main advantages of using a single photoresistor for line acquisition was the very simplecalibration procedure. To calibrate the line scanner, two readings were required: one with thephotoresistor tube aimed at an area that corresponded to the darkest scene possible under ambientlight and one with the tube aimed at the lightest scene possible. The di�erence between these tworeadings is the dynamic range of the photoresistor. Because the analog value was small for \light"scenes and large for \black" scenes, the following formula was used to obtain a "graylevel" value:graylevel = 255(1� measuredvaluedynamicrange).Graylevel measurements after calibration were very reasonable. The single photoresistor wascalibrated on the objects for "black" and on the
oor for \white". This calibration resulted in adynamic range (as measured by the analog output of the photoresistor) of up to 60 levels (or 1.2volts assuming a full 5 volts for logic) in the ambient light of the playing �eld. This enabled thescanner to tell reliably the di�erence between an object, the
oor and even the walls of the playing�eld, throughout the playing �eld. However, shadows cast by the objects themselves resulted insimilar readings for both the walls of the playing �eld and the
oor (in certain shadowed areas). Asimilar observation was made in regards to the colors on top of the objects. That is, although thescanner could theoretically tell the di�erence between the
oor, walls and even colors on top of theobjects, shadows prevented the robot from taking full advantage of this potential capability.After several experiments, it was determined that a proper gradient threshold (or more accurately,the di�erence in gradient value required between two points such that an object/
oor transition canbe considered to be very likely) could be obtained by subtracting 10 from the dynamic range. Anautomated vision calibration could have been developed by using the loading area for black and the
oor for white. Since the starting position of the robot was known, the entire procedure could havebeen automated. In our implementation, the calibration constants were determined ahead of timeand hard-coded into the application. (Note that this did result in problems when the television crewlights were on to �lm the arena, but in general, under ambient light conditions, the calibration wasfairly stable.)The Vision AlgorithmThe vision \behavior" was implemented as follows. During regular robot movement, the scanner isactive (i.e. the photoresistor output is monitored) and the scanner is positioned directly forward.The angle for the scanner is such that a black object is detected (i.e. light detected falls below aspeci�c threshold) at an approximate distance of about 1 \grid" square (or about 30 cm) in front ofthe robot. The threshold for this initial object detection was selected empirically in such a way asto ensure that a horizontal scan line at that point intersects the approximate center of the object.Object detection causes the robot to stop and initiate a single line scan as described above. The robotthen uses the edge information from the line scan to parameterize an object avoidance manoeverimplemented as a skill (described below).In all the scenarios, the general strategy was to determine where the \
oor" is and to move therobot in that direction, avoiding object edges. Because of the constraints on object location, shapeand size, only three image scenarios are possible:21

1. No
oor/object transitions - only objects in front. This suggests that the robot is orientedalmost perpendicular to a set of at least two and probably three adjacent objects. The reactionin this case is to initiate either a \left turn" or \right turn" skill depending on higher levelinformation.2. One object transition - two cases are possible, object to the left,
oor to the right OR
oorto the left, object to the right. In either case the robot is again almost perpendicular to anobject wall. The location of the single edge is used to determine whether an \avoid object -go left" skill or an \avoid object - go right" skill is initiated. In either case, the exact locationof the edge is used to parameterize the skill by varying how much the robot needs to shift itsposition to the left or to the right to avoid the object.3. Two object transitions - two cases are possible,
oor on either side of an object OR
oorbetween two objects. In these two cases, the orientation of the robot is no longer clear (althoughdue to the constraints on the robot world, it could probably be calculated). The goal of theimage analysis here was to determine where a large enough
oor area for the robot was inrelation to the robot, and to determine which of the \avoid object - go left" or \avoid object -go right" skills was appropriate and lastly, parameterize the appropriate skill using the relevantobject edge.Image AnalysisOne dimensional zero crossings were used to localize the position of the edges to eliminate edgeambiguities and to simplify the vision algorithm. Although a simple thresholding approach withan ad hoc search algorithm could have been implemented, the zero-crossing approach seemed moreelegant algorithmically and resulted in a straightforward algorithm implementation. The algorithmproceeds as follows. First, �rst derivative (gradient) and second derivative images temporary imagesare formed from \padded" versions of the original input. Zero crossings in the second derivativeimage are used to locate possible edges. Gradient values at these locations are used to determine thevalidity of the edge transition using an empirically determined gradient threshold. A thresholdedversion of the original input as well as a holding array for the object edge locations are then generatedand used by the knowledge source associated with robot avoidance strategies to implement theappropriate robot action (as described above).Vision as a BehaviorThe general idea behind the vision behavior was to treat it as a \reactive behavior" on an analogouslevel with lower level reactive behaviors but with the following quali�cations. Because of the methodused to trigger the vision capability, i.e. real-time monitoring of the center pixel for object detection,the time required for scanning can be considered to be irrelevant, as long as all other behaviors aretemporarily \suspended" during line acquisition and analysis. (The vision system could easily bereplaced by a real time system capable of visual analysis in a time frame compatible with the timeframe of other reactive behaviors.) The execution of an \avoid object" skill can be viewed in twoways. First, one could argue that the proper way to perform a reactive behavior to avoid an objectwould be to \visually servo" the object edge as the robot moves around it, similar to the strategyused by truck drivers manoevering their vehicle in reverse. On the other hand, truck drivers are alsocapable of performing rather complicated turns without visually servoing, by noting the location ofan obstacle and relying on experience to enable them to manoever around it. And, analogously, justas the poor execution of a truck turn can be interrupted by a vehicle collision, so can skill executionbe interrupted by lower level higher priority behaviors such as bump sensors. It is this capabilitythat we intended to capture in our \skills" implementation (as described in Section 6.4).22

6.4 Skill LearningSkill AcquisitionThe development of control software for actuators is often a time consuming, trial and error pro-cess due to the inherent error between speci�ed actions and their real world execution. Unforseenexternalities and robot hardware de�ciencies often conspire to hinder accurate execution of prepro-grammed actions.To facilitate \skill" learning and alleviate these di�culties, we incorporated a joystick interfaceinto our robot and implemented a method of actuator learning similar to that used for programmingsome industrial robots. The joystick control enabled us to move the robot interactively. \Teaching"the robot a skill involved moving the robot interactively to execute the desired action while atthe same time storing the associated motor and steering commands and odometric readings betweenconsecutively di�erent commands. By using the operator in the feedback loop, a skill can be preciselylearned and reproduced each and every time, since the actuator commands stored are exactly thoseexecuted during operator control. The accuracy of the reproduction is limited only by the samplingerror associated with the encoder used to measure distance and of course, relies on consistent contactbetween the odometric wheel and the
oor. To execute such an action in normal operation, eachset of actuator commands in the stored sequence is simply \replayed" for a duration determinedby the corresponding odometric reading, in essence, executing a speci�c trajectory fragment. Theexecution of trajectory fragments continues until the entire set is either completed or interrupted asa result of a change another part of the system. For example, one such action could be a precise \leftturn". A lower level, higher priority process monitoring wheel rotations might determine that therobot has stalled and consequently will never complete the speci�ed action. Such a fact would becommunicated through common data structures causing the execution of the skill to be suspended,perhaps only temporarily, enabling another, lower level, reactive behavior to take over to try andcorrect the impasse and possibly resume the skill execution.Time was not considered in the implementation of skills for a number of reasons. First, thetype of skills we considered did not have a dynamic element to them, that is, the speed of theskill implementation was not a relevant factor. This may or may not be true in general and henceour particular representation may not be optimal for all applications (but was for ours). In ourcase, the most important requirement was that the robot move in a particular trajectory for givendistance. Second, using time to control the duration of motor and steer commands had negativepractical rami�cations for accurate replay of learned skills. This was primarily due to the fact thatthe instantaneous power level of the robot directly a�ected the speed of the robot at any givencommand setting for motor control, and hence the time spent in that state. For example, assumethat during learning, a motor command is stored while the robot power level is high. Later, thecommand is replayed when the power level of the robot is low. The time stored during learningwill be shorter because the robot speed will have been greater and will be too short when therobot \replays" the command later on. The use of odometry to monitor the progress of the actiontherefore ensures that power
uctuations and furthermore, mechanical irregularities do not impedeaction execution, since physical movement of the robot is required to complete it.Skills are implemented using one array to store encoded motor and steer commands (both com-mands are stored using a single integer) and another array storing the distance traversed betweenchanges in commands. The possible commands are also discretized and referred to by array indexto reduce the number of command permutations, and hence reduce the size of the command array.Distance is measured using a single wheel encoder on the front wheel. Advantages of using distancetraversed over time passed are:1. \Duration" of commands does NOT depend on power level since the robot must physicallymove to complete a command. 23

2. Repeatibility during manoever reversal (see below) is improved.3. The algorithm for manoever reversal is easy because both steering and motor commands areavailable at each step.4. Skill array simpli�cation is more straightforward because distances in the array can simply beadded for identical steering commands. For example, if over some distance interval the samesteering command is used, but the speed varied for some reason during learning, the distancestraversed can be added and all commands with the same steering in the interval compressedinto one steering command at a some �xed speed. This simpli�cation not only reduces the sizeof the arrays needed to store the manoevers but allows e�cient, automatic array simpli�cation.Primitive manoevers left-turn(), right-turn(), straight(), avoid-go-left() (a jog to the left) andavoid-go-right() (a jog to the right) were all \learned" and stored. The manoevers avoid-go-right()and avoid-go-left() were parameterized to allow edge location from visual input to a�ect the amountthat the robot shifted to the right or to the left.Manoever ReversalManoever reversal refers to replaying a set of trajectory fragments backwards in order to reset therobot to its starting position. This was found to be useful for small reversals but results varied inaccuracy for more complicated trajectories. More experimentation with this type of manoever mightprove very interesting. The idea of being able to \take back" a given robot move precisely might beextremely useful in many situations. For example, if a robot were to enter a trap and recognize itas such, manoever reversal might be able to take it out. A \left turn" into an object could simplybe aborted and the robot returned to its original location, giving it a chance to try something new.Photoresistor Response TimeA set of tests was made to measure the approximate rise time of the photoresistors we had available.Photoresistor rise time had rami�cations for the speed of the linear scan and hence the time requiredfor \image" acquisition. Each photoresistor was tested mounted inside a scanner tube as describedin the section on the linear scanner. Before testing, the photoresistor was calibrated using blackand white �elds under the same lighting conditions as the test. Note that a linear response wasassumed even though there was evidence that the response of some (or all) of the photoresistors wasnot. A simple subroutine was written to monitor the derivative of the calibrated graylevel changeover time. A timer was started as soon as a \sudden" rate of change was detected. The time takenfrom this point to the time that the derivative became zero (i.e. no further change in graylevel) wasconsidered to be the time to steady state. This method was used for two reasons. First, using a\sudden" rate of change in the derivative (where value of the derivative corresponding to \sudden"was determined experimentally) to start the timer allowed the measurement to be started simply byturning on (or o�) a light. Second, going from total dark to bright light (under calibrated conditionsof course) resulted in the largest possible dynamic range, presumably giving an upper bound on therise time measurement. Measurements indicated a maximum rate of change ranging between 1.0 and6.5 calibrated graylevels per ms (or if a full 5 volts can be assumed for logic, 0.02 to 0.13 volts perms) with a rise time ranging between 24 and 197 ms. Various combinations of lighting and dynamicrange were experimented with to obtain a full range of values for most possible �eld conditions.Servo-multiplexing CircuitRay Frank designed a servo-multiplexing circuit to enable us to use the same circuit for controllingtwo servos, one for the steering and one for the linear scanner. In normal, free-
oating mode, both24

servos are active, i.e. a signal to any one servo causes both to respond. A logical one on eithercontrol line suppresses the operation of the corresponding servo. Both control lines for the servoswere connected to the output of one of the motor ports. A signal corresponding to a motor commandinstructing the motor to turn one direction selects one servo while a command to turn the otherway selects the other servo. This also resulted in a di�erent color LED being turned on wheneverone servo was active. Capacitors were added in various locations to reduce noise in the circuit, sinceinterference from motor operation caused both servos to \twitch" periodically. A circuit diagram isshown in Fig. 7.
SERVO-SWITCHING CIRCUIT

RAY FRANK 1DEC94

5K

.1uf
500

1

2

5K

1uf
500

Servo
in from
Microcontroller

Control

1

Servo In

from
Controller

Control

2

+5

10 uf
Gnd

+ ++

+ +

Servo

ServoFigure 7: Servo Multiplexing Circuit.Behavior as a Hierarchy of GoalsGoal-driven actions and \behaviors" are usually considered separately. From one perspective, onecould think of a behavior as di�ering from the execution of some high level goal only in the scopeof the resulting action. For example, in line-following, the robot generates steering and motorcommands whenever a line transition alarm is indicated. Due to the swiftness of the action and thenature of the trigger, this type of action is typically called a \reactive behavior". The commandsgenerated compete in priority with other commands to �nally execute a command which essentiallyresults in a circular trajectory of an arc-length determined by the time required to move the robotto a position straddling the opposite side of the line. One could interpret this trajectory as beingthe ful�llment of a minor \goal" of the system, that is, to move the robot from one side of the lineto the other. This \micro-goal" is simply triggered by sensor input instead of a higher reasoningfaculty. 25

Now, take as a second example, the action initiated by our robot upon seeing an object in its path.The robot stops, does a linear scan to acquire the location of the object edges, and then generatesa move to avoid the object. In this case, the assocated logic uses the object edge location to derivemotor and steer commands from the stored skill (see Skill Learning). The action corresponds againto a trajectory, albeit a more complicated one, and can also be interpreted as the ful�llment of agoal, in this case, to avoid the object. As before, this set of commands also competes with othercommands for control. For example, actions initiated by \bump" sensors may temporarily interruptexecution of the skill. In this sense, there is a layering of control similar to the layering postulatedby K.L. Doty, based on temporal considerations. However, the use of execution time to discriminatebetween levels of control does not seem very intuitive since the time taken to execute various actionsdepends more on hardware and the computational resources of the robot than on absolute necessity.The time taken to execute a particular action is very di�erent from the timeliness of a particularaction. The way in which we ensure that a timely scheduling of the lower level task processes isdone is by statically describing the \lazy" or \eager" type of process to be created. This is similar infunction to the types of sensed feature refreshing in [3]. One might be able to postulate a distinctionbetween layers that is based on scale of action, that is, the resolution of the goal. In the case of linefollowing or bump behaviors, the robot response (or goal) is rather subtle. In the case of skills, therobot response typically has greater scope, involving complicated movement trajectories.An even more ambitious goal such as map building for improved navigation could be incorporatedby treating exploratory behavior as a low priority process. That is, when no other higher priorityprocesses are active, an exploratory behavior initiates skills such as \turn left" or \turn right" toexamine an area of interest. The exact nature of the exploratory behavior could be determined bya combination of sensor information (e.g., the current location of the beacon) and memory (e.g. theexpected location of known objects). The result of the exploration would then be used to updatethe map.6.5 Cyclops actuators1. Driving motor. It transmits power to the rear wheels through an 81:1 gear reduced box.2. Direction servomotor. It drives directly the steering axle that carries the two front wheels. Theoverall steering capability is 174 degrees. The front wheel module is mounted so that steeringis straight for a servo control value half way between the maximum and minimum possiblevalues. The steering values practically used are bounded by the �70 degrees representingminimum/maximum values.3. Scanning servomotor. The commands to this servomotor are obtained by multiplexing the drivesignal taken from the servomotor output of the controller board to both servomotors using acontrol signal taken from a free DC motor. It orients the arti�cial eye to a set of �xed frontdirections in order to scan a horizontal set of equidistant points. The re
ection informationobtained during a scan is used to generate high level information about the existence of objects(obstacles) in front of the vehicle.4. Ball eject motor. This DC motor is used to drive the ball eject mechanism used in the deliverycompetition.5. IR emitter. It is activated in order to detect side obstacles close to the vehicle. It can emitlight on one of two frequencies 100 or 125 MHz. The IR side re
ectance sensors can be testedto detect if a side obstacle re
ects IR light.26

Board
Microcontroller

Bump Sensors

Photosensors

Infrared Detectors

(a) (b)Figure 8: (a) The \Meccano Monster" mobile robot (b) The robot in action.7 Meccano Monster (Fuentes, Rao, Van Wie)The winner of the competition incorporated physical and algorithmic robustness. Physical strengthcame from Meccano construction, which though less suited for rapid prototyping has de�nite advan-tages of durability and dependability in the �eld. This robot was also extremely fast. The strategyemployed by this team was to use the IR beacons for guidance and to head toward them, withreactive obstacle-avoidance to get around barriers. The unit had no memory of where the obstacleswere.The Meccano Monster (Figure 8) is a purely reactive mobile robot built with parts from theMIT 6.270 kit and two store-bought Meccano erector sets. It rests on a three wheel base, with aservo motor controlling the angle of the front (steering) wheel. In its present incarnation, its sensorsinclude four IR sensors wrapped in tinfoil for directionality; two front, two side and one back bumpsensor; three forward-looking light detectors; and two downward-looking light detectors. At the timeof the UR minibot competition, a mechanical arm was attached in the place of the forward-lookinglight sensors.7.1 Why Meccano?Originally, we wanted to build a walking robot and do research into techniques for learning to walk.Thinking that it would be easier to build a bipedal body from erector set pieces than from LEGO,we volunteered to give up our LEGO pieces and instead buy a Meccano kit from the local toy store.Though we eventually gave up on the walking robot idea, using Meccano for the robot body turnedout to be a good idea: in the end our robot was faster and more solid than comparable LEGO-builtrobots.Meccano motors seem more easily adapted to running a robot than LEGO gears. Our motorswere slower but more powerful, which meant our gear train could be relatively simple. Instead of along 243-1 gear train, we built a simple two-gear chain that su�ced for our drive motor.With a stronger chassis, we could a�x more sensors to the robot than other teams. Having theextra sensors helped our line-following and wall-following behaviors, and improved the fault-toleranceof our algorithms.Unfortunately, working with Meccano was not always pleasant. Our original design was a long,thin robot that would never have navigated the course we saw in the competition, and we spentmany hours reworking the design to shorten and strengthen our robot.27

One would think that with all that metal in the chassis, and all those sensitive electronic partson the board, we might have problems with short-circuits. And indeed, at one point shorts becamea problem.7.2 Disaster!We almost had a major disaster when we tried to turn the board on after mounting the IR detectors- �rst, the board didn't enter download mode, then, some components near the switch began gettinghot and pretty soon we even saw a swirl of smoke rising majestically from one of the components.This of course meant a short somewhere in our circuit and since things were �ne until IR detectorscame into the picture, we unplugged these, and it was one tense moment when we turned the boardon again: much to our relief, a miracle seemed to have occured and, lo and behold - the boardsignaled its willingness to accept code again.The problem turned out to be a short in one of the IR detectors, caused by the aluminum foilthat had been wrapped around it for directionality. We �xed the problem by insulating the detectorswith masking tape and carefully re-wrapping the foil covers.The problem of shorts is indeed a serious hazard to the board and some of the places these aremost likely to occur include:� Connectors plugged into the board that are close to each other may have excess solder stickingto the pins and these may come in contact. Removing excess solder/plugging sensors into theboard at alternating ports/using tape for insulation alleviates this problem a good deal.� All sensor connections should be thoroughly checked and properly insulated using tape.� The underside of the board may cause problems if not shielded (we used a cardboard sheet).� Battery/sensor connections may be reversed.7.3 Building the BoardA greater part of the �rst week was spent in reading relevant parts of the manual and reviving fadedmemories of diodes, transistors, resistor packs and inductances (chapter 2 was very useful). Whilesome teams decided to sort out the various components before beginning assembly, we decided ona more direct approach considering the fact that we had three team members: two team membersworked on soldering boards in parallel while one was in charge of selecting and directing the \whereand what" of soldering. This gameplan speeded up the process considerably and we were able toget all boards soldered within six hours including a 45 minute break.Lessons learned:1. The instructions may not always be right - for example, when assembling the infrared transmit-ter board, if you try to solder the LED's after you've soldered the resistor packs (as instructedin the manual), then good luck! We ended up breaking on the leads of a high-power red LED.It pays to use common sense and think about the end result before jumping in to assemblethings.2. Another case in point: the cable wiring instructions for the download link - we faithfullyfollowed the instructions step by step until we realized that we had cut the cable in vain -the phone cable could directly be plugged into the connector with no need for soldering. Theinstructions turned out to be outdated. Luckily, the damage was undone without much e�ort.28

3. Piggybacking two chips was tricky - our problem was that there was a little too much solderon the connectors, making it hard for the chip on the bottom to slide into the socket. A littledesoldering did the trick.4. It helps to have a multimeter at your side to check the values of resistors, check connectivity,polarity etc. just to make sure things are going where and how they should be. Chapter 2 hassome helpful diagrams for visual identi�cation of parts.5. Some components may have gotten damaged in transit or during soldering. One of the con-nectors on one of our photoresistors was broken when examined. The battery plug connectorstopped functioning after soldering (probably due to overheating) - luckily, there was anotherone.Apart from testing individual parts before soldering, the main assembly consisting of the micro-processor board, the expansion board and the LCD display were tested as given in the instructions.Everything went �ne until we came to the part where we needed to check if the download mode wasworking correctly. Upon pressing the escape button and turning on the board, we were supposed tosee a
ickering of the yellow LED after which it would turn o�. However, in our case, it still stayedon. The required behavior was however obtained when pressing the choose button. We decided toproceed with tests anyway, and it turned out that everything worked as described - we were able todownload the pcode, use IC, load the program testbrd.c which checked various board components.The escape and choose buttons functioned normally. While we are not totally sure why the choosebutton and not escape button worked to get the board into downloading mode, one guess is thatthe results of pressing the two were
ipped in our case due to the initial state.7.4 Designing the Body with MeccanoMeccano design was an iterative process: we kept �nding new and better ways of shortening ourwheel-base, attaching sensors, and a�xing the steering mechanism to the body. At least three timeswe completely disassembled our robot, each time cutting the length of the body signi�cantly. Ourguiding principle was to keep the robot as compact as possible, and in the end it had just enoughroom for its own sensors, e�ectors, batteries and CPU.For steering, we mounted a single wheel on an assembly that was mounted on our servo. TheCPU signaled the servo with the absolute angle it wanted (45 degrees for straight ahead) and theservo responded by turning the assembly to that angle.Because the assembly occasionally slipped while the robot was in motion, we had to recalibratethe facing of the front wheel continually. To recalibrate, we set the servo angle to 45 degrees andmanually rotated the steering assembly until it was pointed as close as possible to straight ahead.Meccano motors are slower and more powerful than LEGO motors, which meant that our geartrain could be simpler and more e�cient that comparable LEGO models. In our case, a worm gearon the motor output shaft directly turned the gear on the drive-axle. Note that, while the lego-robotmanual claims that using the worm-gear as part of a gear train is ine�cient, we found that it workedquite well.Sensors for the robot included �ve bump sensors, four IR detectors, and two light sensors.The bump sensors were constructed from microswitches, to which we attached long,
exiblemeccano sheets as feelers. We tied the microswitches to the robot with twists of wire.The IR detectors were attached to a sensor tower that rose over the center of the robot. Neitherthe tower nor the sensors were mobile; however, the IR detectors were omni-directional enough thateven with �xed placements they covered the robot's entire range of vision. In fact, unshielded IR29

detectors turned out to be too omni-directional { when approaching the beacon, all of them couldsense IR, regardless of the direction they were pointed! We solved this problem by wrapping the IRdetectors in aluminum foil (taking care to insulate them with tape �rst { see above).Originally, we planned to use an electromagnet-driven gate to drop the ball at the destinationsquare. Unfortunately, our experiments with electromagnets showed that anything with enoughpower to open a metal gate would draw far too much power from our board.Our �rst attempt to build an electromagnet was the naive method of wrapping a wire arounda iron nail - a test of the mechanism showed that it indeed opened the \door" for the ball to slidethrough, except for the problem that the electromagnet was drawing current close to 6 Amps, enoughto burn the board many times over.Later attempts proved somewhat more successful, but eventually we abandoned that design forsomething more striking: the mechanical arm. The arm was a catapult-like ball-throwing device,designed to throw the ball straight down, like a football player spiking the ball after scoring atouchdown or a slam dunk in basketball. A simple 90 degree rotation of the whole thing enabledit to throw the ball forward. We used a second motor to control rotation of the arm, with variousphysical hacks to keep the arm from damaging other parts of the robot. After several more roundsof design and construction, we had a working (and crowd-pleasing) model.7.5 Software for Compulsory Floor ExercisesBefore the robot competition came the Robot Olympics Compulsory Floor Exercises , where eachteam had to show a working robot running three di�erent behaviors: line following, wall followingand beacon following. For the Olympics, we stripped down to the barest essentials in sensors. Whichsensors we used are listed at the head of each subsection.For line following we used four photoresistors as sensors. The photoresistors are located aboutan inch deep inside paper tubes that point directly to the
oor. The tubes increased reliability byminimizing the amount of ambient light that the sensors received. Preliminary tests showed thatsuch an arrangement gave analog measurements roughly below 75 for white and above 75 for blackat distances of approximately one inch.To obtain a composite of the sensory input, we used the weighted sum of the individual sensorreadings. The inside sensors were weighted by a small constant, and the outside sensors by a largerconstant. The sensors to the left were weighted positively and the sensors to the right were weightednegatively. The composite reading was given by:c = co � (Leftoutside �Rightoutside) + ci � (Leftinside � Rightinside) (11)where co > ci:This way c was proportional to the change in steering angle needed to drive c to zero, whichcorresponded to the black line being at the center.Finally we obtained the change in steering at time t using a PD controller as follows:�steering(t) = k1c(t) + k2(c(t) � c(t � 1)) (12)After tweaking the constants and adding a few hacks, we obtained a reasonably good behavior. Bymaking the robot move as slowly as possible, we reduced the possibility of crossing the line withoutseeing it.Other interesting aspects of line following included: normalizations for DC (additive) illuminationchanges and a proportional power control which supplied more power when negotiating sharper turns.30

Our idea for the wall-following exercise was quite simple: try to keep the front sensor always o�but keep the (relatively longer) side sensor always on (i.e. touching the wall). We also decided touse a controller that caused the robot's steering angle to increase in proportion with the amount oftime the robot was o� course { the longer the robot went without touching the wall, the sharper thecorrection to the steering. The implementation took less than half an hour but considerable amountof time was spent �ne tuning the various parameters, such as when and how much to back-up incase of collision, rate of increase in the steering angle, and so forth.We only used three switches for wall following, which appeared to be enough for a robust wallfollowing behavior. The robot had two switches at the front, connected in parallel. When either ofthem was pressed, the robot stopped, backed up for a short time (about .8 seconds), steered to theleft by a small amount (about 15 degrees) and started forward again. At the time of the Olympics,we had just one side sensor, so our robot could only follow walls on one side. When the side sensorwas pressed it meant that the robot was successfully following the wall (provided the front switchesweren't pressed), so it continued forward in a straight line.When none of the sensors were pressed, the robot turns to the right, increasing the steering angleby a small amount each time though the loop until it found a wall.With this simple strategy we obtained a surprisingly robust behavior. Before the competitionthe robot managed to circle the sixth
oor hallway several times without human assistance.The third compulsory exercise was beacon following. Preliminary tests revealed that the sensorswere quite sensitive to IR radiation even when turned in the opposite direction.We used cones of aluminum foil to shield IR radiation from all directions except the front, andthen arranged the IR sensors in a cross, each at a ninety-degree angle from the two closest to it.The readings from these were then used to turn in the direction of the strongest response.When no IR was received by any of the detectors, the robot continued in the direction it wasoriginally going. This of course meant that it soon ended up bumping into obstacles, so we activatedthe bump sensors also during beacon following, so that the robot would back up in case of collision,hopefully getting back reception of the lost IR.7.6 The CompetitionHardware for the competition was somewhat more sophisticated than for the Olympics: we had afull complement of bump sensors, the arm, and two downward-looking light sensors to identify thedestination square. We kept the beacon-sensors as they were during the beacon- following test.Our priority in designing an algorithm for the competition was to keep our code as simple aspossible. To that end, we decided on a purely reactive, subsumption-style program. When none ofthe bump- sensors was active, the robot followed the beacon-following behavior from above. Whenthe robot hit an obstacle, however, beacon-following was turned o� for a short time (about a second)to allow the robot to back away from the obstacle and move away from the problem spot.Unfortunately, the �nal algorithm wasn't quite that simple. The fact that we had to �nd thedestination square complicated matters, as did the introduction of several programming hacks thatwere supposed to avoid certain kinds of traps.To recognize the destination square, we used the two downward-looking light sensors. Theyscanned the
oor for dark tape and, when either of them got three consecutive \black" readings,signaled to stop the robot. The algorithm took three readings before reporting that it had foundthe destination square in order to avoid incorrectly identifying the tape path as the goal.Though this technique worked well in most cases, the algorithm often still incorrectly identi�edthe source square as the destination square. To avoid this behavior, we added a simple test: if the31

robot had seen the destination beacon in its front IR detector since the last time it had touched a wall,it assumed that any black square it found was the destination. If it hadn't, it continued looking. Thisapproach resulted in the robot occasionally passing over the destination square without stopping,but in most cases it found it on the second try.7.7 Beyond the MinibotAfter the competition, having replaced the robot arm with an array of forward-looking light sensors,we developed a streamlined version of our algorithm. Three arrays are kept mapping sensor inputsto motor outputs: one for the various combinations of bump sensor readings, one for the variouscombinations of light sensor readings, and one for the various combinations of beacon sensor readings.If any bump sensor is active, we use the corresponding bump motor code; otherwise, if any lightsensor is active, we use the corresponding light motor code; otherwise, if any beacon sensor is active,we use the corresponding beacon motor code. The codes are translated into steering and drive-motoroutputs, which are used to drive the robot. If no sensor readings are reported, the robot continueswith its last action.The streamlined algorithm was invented for a research project we started after the course. Theidea was to learn the motor codes by driving around a course at random, and our attempt at solvingit involved a combination of stochastic hill-climbing and reinforcement learning. The space of motorcodes was searched via stochastic hill-climbing, and the resultant motor codes were scored on their�tness through a reinforcement learning type algorithm. We refer the interested reader to [1] formore details.In addition, we have also been working on methods for perception-based navigation using self-organizing sensory-motor networks [4].The Cyclops robot has a complex control structure that is reported in the Spring AAAI Sympo-sium on Instantiated Agents. The Meccano Monster was re-programmed and re-instrumented to doobstacle recognition with a triad of photo-resistors, each looking down a tube. This gave a (very)low-resolution view of the area in front of the robot. The robot used these inputs and a form ofreinforcement learning to learn how to avoid obstacles [1]. Later, a simulator for the robot worldwas built and a simulated version of the robot learned to �nd its way home from any position onthe arena [4].
32

A Parts Lists and InformationThe following is to set up the lab with two workstations and to get four kits, one for assembly oversummer by the course organizers, three for Fall 1994 Grad course.The �rst issue is board kits.A.1 Rug Warrior: Jones and Flynn BookOne choice: Rug Warrior kits from AK Peters (publisher of [2]).Rug Warrior is a robot board designed to support the examples in [2]. The kit supplies all thecontrol and sensor circuitry needed to construct a custom designed, fully autonomous mobile robot.The microprocessor, memory, and interface circuits are assembled and tested at the factory so thatkits arrive ready to connect to the user's computer.The assembly manual provides detailed instructions for installing the standard sensors and sup-port circuitry included with the kit. Alternately, users can customize the board as desired. Diagnos-tic software, included with the kit, helps builders discover any errors they might make as subsystemsare added. Library functions simplify access to all sensors and actuators. The self test code providesexamples of how to use the library functions.Interactive C (IC) is supplied with the kit as the suggested programming environment. BothMacintosh and PC versions are available. For those who have already built Rug Warriors on theirown, the new software for Rug Warrior is now available via ftp on cherupakha.media.mit.edu. Lookfor:/pub/interactive-c/ms-dos/ic2853rw.zip/pub/interactive-c/macintosh/ic-2.853-RW.sea.hqxKit features include the following:Motorola MC68HC11A1 microcontrollerLCD display (32 alphanumeric characters)32K of battery backed RAMRS-232 serial portThree bump switches (for 6-direction collision detection)Two photoresistors for light detectionTwo infrared emittersOne Sharp GP1U52X infrared detectorMicrophone for sound detectionPiezoelectric buzzer generates tones of arbitrary frequencyMotor driver chip (SN754410) for control of two DC motorsDual shaft encoders allow velocity/position controlFour user controllable LEDsBattery holder, hookup wire, heat shrink tubing, and extra connector socketsDigital and analog inputs (two each) are available for user assignmentAccess to MC68HC11 bus allows construction of memory mapped devicesThe kit is available direct from the publisher, they are charging $289.95:A. K. Peters, Ltd. kpeters@math.harvard.edu289 Linden St. (617) 235-2210Wellesley, MA 02181 Fax: (617) 235-240433

A portion of the income generated by sales of the kits will be used to provide free kits to highschools that would otherwise not be able to purchase robots. (You can thank Anita Flynn for thispolicy.)A.2 From Randy Sargent at MIT6270KIT -- Complete 6.270 KitA complete kit that includes:1. Robot Board kit (assembled or Unassembled)2. 6.270 Notes3. Motor Batteries (2 sets)4. Sharp IR Sensors5. Touch Sensors6. LEGO Resources Kit7. Light Sensors8. Serial Cable9. Copy of ICCost: $500 (unassembled)ACTAS -- Actuator Assortment(1) Solenoid, (4) 3-5V Mabuchi DC Motors, (1) Futaba ServoCost: $55Misc: sensors and actuators: $45.A.3 Work AreaAnother issue is a work area for electronic and mechanical assembly. We felt we needed the followingitems:drill 30.00drill bits 13.00hack saw 12.95crescent wrench 7.50box wrenches 23.70hex wrenches 15.00Phillips screwdrivers 10.00slotted screwdrivers 10.00hammer 4.00champ crimper 10.40nut drivers 50.00tin snips 18.10groove pliers 9.00slip joint pliers 5.70multimeter 20.00DC power supplies 50.00tool box 15.002 power strips 20.00 34

2 work benches 164.002 vises 30.00wire cutters 6.00needle-nose pliers 6.00wire stripper 9.00utility knife 1.502 soldering iron 30.002 holders 5.00solder 10.00desolderer 15.00safety goggles 3.00(misc: nuts,bolts,glue,etc)100.00B Supplemental SensorsAs was mentioned in the previous sections, some of the robots had some interesting hardware thatwas not included in the original parts list. Since our exercise was meant to encourage independentthought and to lead on to research, the organizers were not comfortable with enforcing uniformityon the projects. Thus no reasonable request for unique hardware was refused (including the wholeMeccano kit, for instance). Also, Brown ordered several useful-looking sensors during the semester,which Ray Frank then had to get working.B.1 Parts ListWe ordered and received the following:1. 4-wire
at cable. VERY FINE wires, too small for our stripper, thus very hard to work with.Might be worth getting smaller stripper, since the wires are more supple than the round 3-wirecables.2. 10 Slotted optical switches (2-connectors for emitter, 3 connectors for detector). This is ananalog device. As far as we can tell these devices are worse than the ones that came with thekit, but still usable. The 2+2 connector parts have a 4.5V di�erence between on and o�, the2+3 have 1.5V di�erence at best. See Section B.2.3. 10 \re
ective optical sensors". These are parts with 3 wires (yellow, orange, green) and afemale connector, with what looks like 2 leds in a black plastic case. These actually turnedout to be just two IR LEDs and NO detector: a cataloger's error. See Section B.3.4. 5 electret microphones. These perform reasonably, but possibly do not have much range. Thisis an analog device. The classic problem with robot-mounted mics is that local ambient noisefrom motors drowns all other sounds. Still... See Section B.4.5. 5 Mercury switches. Good for signalling tilts. This is a digital device.6. 6 electric motors. Seem to work...have their rotors visible.7. 10 IR detector/transmitter bonanza packs duplicating some we already had.35

8. 10 IR LEDs.9. . 15 Super IR Leds.10. 5 IR transmitter/receiver pairs.11. 10 Ultrasensitive IR sensors.12. 10 miniature optical re
ectance sensors. Small, cheapies. See Section B.5.13. 1 ultrasound emitter/detector pair for experimentation. See Section B.6.B.2 Break Beam SensorsThe 2+2 connector original parts seem to work better. Ray had best luck wiring them as shown inFig. 9 (Fig. 10 is more explicit). He got a 4.5V di�erence between broken and unbroken. Note the100 ohm resistor in place of the 330 recommended. Likewise the 1.2K resistor works better than the47Kohm supplied.For the 2+3 connector parts, Ray had best luck wiring them as shown in Fig. 9 (also see Fig.10). He got a 1.5V di�erence between broken and unbroken. Note the 100 ohm resistor in place ofthe 330 recommended. Likewise the 1.2K resistor works better than the 47Kohm supplied.B.3 IR LED PairsThis seems to be a very unexciting part. One (or maybe both) of two IR LEDs light(s) up dependingon where power is applied. Fig. 11 is what works (if you can call it that). Perhaps the 100ohmresistor would be better than 330, as usual.B.4 MicrophoneThese have only been bench-tested at this writing, but seem to put out enough voltage to bedetectable. If it is too low, mention the problem to a course organizer and we'll get Ray to whip upsome ampli�ers. They are analog devices, wired as in Fig. 12.B.5 Miniature IR Re
ectance SensorsThese tiny devices have three leads and two open windows with silver metal inside them. Surprise,the \business" side (the emitter and detector) are on the OTHER side of the device from thewindows, shielded by a daylight-�lter material of glossy brown or black glassy stu�. On the benchwe �nd these devices to be sensitive to white re
ective surfaces up to an inch away, with a nicesmooth response until the surface gets close enough to block the emission. We �nd white and blackink to be discriminable, so these devices should be good for line-following as well as really proximalproximity-sensing. They are analog devices, wired as in Fig. 13.B.6 UltrasoundThe emitter is labeled A3S on the back, the receiver A3R.The ultrasound emitter must be driven with a square (or sine) wave of 40KHz. The receiversynchs with the transmitter if the signal is strong enough. The transmitter can be driven at otherfrequencies but the receiver only synchs if the emission is pretty close to 40KHz. There are more36

TopView

E D

1.2K

Ω

C

E

Analog

Output

TopView

E S

+V
+V

NPN type

PNP Type

Ignore!

+V

Analog

Output

+V

100

Ω

1.2K Ω

100

2-3 Connector Part

Ω

Parts as supplied

Figure 9: BreakBeam sensors (old and new) and wiring diagram.
Top View

8423 Mexico

Part as supplied

1.2K Ω

red

blk

E D

100 -

330 Ω

red

blkFigure 10: Physical interpretation of break-beam wiring.37

AB
+V for LED B

+Vfor LED A
near leads

green

orange

yellow

300 Ω

300ΩFigure 11: Two LEDs.
Ground,

Connected

To Case

blk

Middle

Microphone

+V

green

RED
MARK

red

outputFigure 12: Electret Microphone Wiring.
BACK SIDE --

(SILVER WINDOWS)

3 2 1

IR in and out

OTHER SIDE +5 +5

1K47

2

1
3

Ω ΩFigure 13: Miniature IR re
ectance sensor wiring.38

specs in the Electronic Goldmine catalog but they may not be too helpful. We were driving theemitter with up to 20 volts, at which power the range seemed to be about 3 feet. The sound bouncedo� surfaces, etc. At lower powers the range diminished but devices still could be useful for proximitysensing.The IR beacon output is a 40KHz square wave modulated by 125 or 100 Hz square wave. Sothat should generate ultrasound pulses at 125 or 100 Hz. This hack has not been tried as of thiswriting. It is not hard to design a 40 Khz oscillator and there are probably enough connections onthe expander board to make the ultrasound a reality.B.7 Further Ideas1. Colored LEDs for colored light recognition. Electronic Goldmine has.2. Polarization �lters { as in AAAI94 competition: way to recognize beacons at one of twoorientations. Edmunds will have these.3. Bending sensors { what's with ACE or ART or wherever that place is? Tim's idea of sti�whiskers inside long coil springs...4. Hall E�ect Sensors { AAAI94 again. Electronic Goldmine has.C Course DetailsC.1 Goals and Organization577 Seminar in AI: Practical Robotics (4 hrs)The mechanics (and electronics) of this course consist of populating a few printed circuit boards,including a powerful M68HC11 microcontroller, and building a mechanical device with sensors ande�ectors (by default a LEGO
oor-rolling robot). Intellectual issues are the design of the hardwareand the control of the �nal device to accomplish some task. Plans are for the class robots to takepart in two competitions of some sort, with the goal of research relevance or publishable results fromthe second competition. The controller is a powerful device and the sophistication of applicationsare likely to be limited only by the di�culties of mechanical design and fabrication. Programming isin "Interactive C", cross-compiled and downloaded from a Sun or other workstation. One goal of thecourse is to expose students to various basic aspects of robotic construction and control, but thereis plenty of time and opportunity to explore more advanced aspects of AI and robotics. Finally, thecompleted microcontrollers could play roles in future research projects.Texts: Mobile Robotics (Jones and Flynn). (Bookstore) Motorola M68HC11 Reference Manual(Free from CS Dept) UR's version of MIT's and AAAI's 6.270 Handbook (Sold by CS Dept)Reserve Reading: Mobile Robotics Readings (2 vols), various papers on control, learning, etc. asneeded.Proceedings MLC-COLT Workshop on Robot Learning June 10th 1994.Course Committee: Brown, Karlsson, Becker, Miller, Frank, Nelson.There will be one lecture or general session per week, which will move from being an introductionto soldering to consideration of promising research projects in the LEGO robot domain.Otherwise student time is spent on preparing for the three robot events in the course, or inreading, writing, and thinking about mobile robot research. Students will divide into groups of2-4 people. Each group will be given raw materials for which they will be held responsible. The39

microcontroller board built during the course is a valuable piece of hardware and may be useful infuture research projects.The �rst robot event is a non-competitive exercise that demonstrates basic sensor and e�ectorcapabilities and LEGO engineering. The next event is a competition, which will be run twice toallow time to do further debugging and improvements.The third event is an \individual" (really group) project that can have as much research contentas practicable. Submission of papers to the next AAAI Workshop is a sample of a speci�c goalbut will require advance planning (Oct 28 Deadline). Anything is possible here, including relaxingmechanical design constraints (e.g. ME is sponsoring a rope-climbing event in the spring { collabo-ration could be possible). The \autonomous" constraint can be relaxed to allow umbilicals for powerand information, allowing quicker movement for pole-balancing or RHET-sized reasoning engines.Assignments:0. Three robot events plus one re-match.1. Weekly written report, one per individual { mechanical or electronic construction work, orprogramming { tangible results from individual. { ideas contributed (used or not). { plans for nextweek.2. Two written group reports: one on the competition { issues worked on by team together {competing ideas, compromises, etc. { interesting facets, solutions, wrinkles, ideas in your robot.one on the group project { TR or conference paper style, including references.3. Group interview { course organizers need feedback on the course: what you learned, howcourse could be improved, suitability for undergraduates, suitability as research launching pad.4. Grades from group members?||-Schedule by Week (Highly
exible { slippage is likely)1 Lecture: Organization: course goals, choose meeting time.At meeting time: Hand out robot kits, intro to the microprocessor board, soldering demo. LEGOrobot lore on the net.Participants: assemble and debug PC boards, get familiar with IC.2 Lecture: Lego Engineering, sensors and e�ectors.The Compulsory Floor Exercises:test board suite runs successfully locomotion: forward, reverse, left and right turns behaviors:wall-following with bump sensors homing on IR beacon line-following �ducial-counting and distanceestimation odometry (?)Participants: design robot to do compulsory
oor exercises.3. Lecture: Sensors and E�ectors continued, Subsumption architectures.Participants: design robot to do compulsory
oor exercises.4 Lecture: The MC68HC11 architecture: tools and opportunities.Participants: Demonstration I: Compulsory Floor Exercises5 Lecture: Assembly Language and interrupt-level programming (we hope). Competition Idescription.Participants: Begin Competition I Design.6 Lecture: Robot Control Architectures: Subsumption, Blackboards, Hierarchies, Reactive Sys-tems etc. (some readings?). 40

Participants: Continue Competition I Design.7 Lecture: Control { relevant aspects of open-loop, closed-loop, feed-forward control.Participants: Continue Competition I Design.8 Lecture: Learning { CMACs, nets, reinforcement, case-based, map-making...Participants: Competition9 Lecture/Discussion: State of Art in Lego Robotics, Research Opportunities.Participants: Re-Match10 Lecture: Discussion: What further lectures do we want/need?Participants: Begin Serious Group Project Planning.11 Lecture: TBAParticipants: Continue Group Project Work12Participants: Ditto13 Lecture: TBAParticipants: Project Demonstrations14 Lecture: TBAParticipants: Project Demonstrations15 Team Interviews|||||- Things that will be learned or (if not known apriori by participants):Electrical Engineering: Basic soldering techniques, Board debugging techniques,Sensors: Optical, Infrared, Mechanical, Gyro, GPS, AccelerometersMechanical Engineering: Basic concepts of mechanical advantage through levers, gears, chains.Di�erent motor types, motor principles.Lego Engineering: Stable structures, Lego units for gears and support beams.Computer Science: Subsumption Architecture, Reactive Systems, Machine Learning (reinforce-ment learning, Q-learning, neural nets), Multi-tasking \parallel" implementations, Computer Vision(?), Research issues in the Navigation Domain, Research issues in small robotics,C.2 Compulsory Floor ExercisesDue: 12 OctoberThe idea here is to demonstrate your robot's ability to do basic sensory and motor tasks, withoutputting the individual tasks in any sort of integrated, goal-oriented context.For a demonstration of the various capabilities, you might consider composing the various abilitiesand stepping through them with the escape program, as the testboard.c program in /u/minibot/ic/srcdoes.Note that CB bought lots of extra sensors, motors, and STUFF, outlined in the piece by cb andray in the lab notes. Lots of it works, some is untested. Feel free to request some of these pieces ifyou think they'll help you.||You should demonstrate all the following basic capabilities:41

1. testboard.c should run without problems.2. Turn right.3. Turn left.4. Drive \straight ahead" open loop (of course you'll get an arc, but it should be approximatelystraight ahead).5. Follow a wall as in the \rug warrior". This could use two bump-sensing switches and couldsubsume 1.- 3.6. Use interrupt-level assembly-language programming to sense the output of the breakbeamsensor.7. Use your breakbeam sensing to implement shaft-encoders. Monitor left and right wheel revo-lutions and use a controller to equalize them to implement \straight ahead" driving. Can youdrive in a straighter line than you could open-loop?8. Sense the IR beacon. You might want to try this two ways, using the system call and followingup the hint and using a direct analysis of the digital input. The latter saves time.9. Drive in the direction of an IR or visible beacon. Two sensors might help here, mounted leftand right; as in the shaft encoder case, you might want to turn right if the left input is weakerand vice-versa. Can you drive straighter this way than in 6. or 3.? You can rig an IR beaconfrom one of CB's ultra-bright leds, a resistor, and one of ray's 5V power supplies.10. Follow a black stripe on the white \robot arena" using feedback control. For this you canmake your own re
ectance sensor or use one of the emitter-receiver pairs CB ordered.In addition to these basic tasks, there are plenty of fun things we'd like to try. The morecapabilities we can demonstrate the better. (We shall get records of these things...video or 35mmslides or both { both the behavior and details of the mechanical wizardry involved).So the organizers would like to encourage you to volunteer to try one or more of the following\o� the wall" ideas. These are in totally random order of interest and di�culty, but that sort ofthing should be obvious.1. Detect Color. I don't think we have any color LEDs but they're easy to get and radio shackprobably has some anyway. If you want to pursue this talk to CB and he'll order some if needbe. There are color �lters in the lab. We can get more from Edmund.2. Detect Polarization. A la AAAI contest. I guess this takes buying some polarizing �lters.Probably not a big deal...3. First, can IR detectors detect candles? CB suspects so. Buy a small cylindrical box of QuakerOats...throw them oats away, feed 'em to the birds, or compost them. Save the top. Cut apenny-sized, penny-shaped hole in the center of the top and put it back on. You now have avortex cannon. Light a candle, stand a few feet away and thump the back of the box I mean�re the vortex cannon at the candle. You should be able to extinguish the
ame from severalfeet. Now get a �ne maduro cigar, preferably from Cuba (warning, illegal) or the DominicanRepublic. Uppmann is a good brand. Carefully clip the end, light it, draw gently several timesand let a wonderful feeling of well-being su�use your entire body, soul, and spirit. Welcome tothe wonderful world of cigar smoking. Before you �nish the cigar, load the cannon with smoke.Fire it and you can see the vortices. So here's the idea. Mount the cannon on your robot and42

see if you can detect and extinguish candles. You can pre-arrange candle and cannon heightsand orientations so you don't have to go looking for or aiming at candles. I'm wondering justif you can detect them and kill them. I'm thinking a motor or the servo or maybe somethingclever with a rubber band and trigger can be used to �re the cannon repeatedly.4. Can you �re a single ping pong or plastic practice golf ball from some computer-controlledcontraption? What sort of range and accuracy is possible? How about multiple balls?5. Can you pick up an object or somehow \collect" it and carry it? Object could be smallstyrofoam box, a metallic thing (maybe you can make an electromagnet?), a ball.6. Can you detect things on the
oor you might want to pick up? Can you get their direction andrange? Maybe with special paint and lighting can you detect balls, white or colored styrofoamobjects, etc. Would maybe an \IR designator" work, where you aim an IR emitter at whatyou want detected and the robot uses the re
ection?7. Can you use two directional detectors (say for IR) and do crude stereo by measuring a vergenceangle? Maybe one sits on the servo and you thus can measure the angle.8. Can you do IFF (Identify Friend or Foe?). Work with another group to see if you can use theIR detector/emitters in their usual mode: you broadcast 100 Hz and he broadcasts 125 Hz andyou try to recognize/locate him and vice-versa. This is basic in all MIT contests. Can MOREinformation be broadcast between robots using the IR beacon? You can maybe modulate the125 or 100 Hz square wave in di�erent ways to send di�erent messages...how accurately canthese messages be decoded?9. How easy or possible is it to \dribble" or simply push a ball around and keep it under control?How about propelling it on the ground in a desired direction?10. Try out the idea of driving the ultrasound generator from the IR output port and detecting it.11. Can you get the microphones to work? To direct robot by clapping, say?12. Odometry....since you have shaft encoders, can you do quantitative measurement of distancetravelled?13. Can you use parabolic re
ectors (perhaps from
ashlights?) to send and/or receive IR mes-sages? You'll need a long set of wires or a cooperative buddy robot. Modulate the IR emitterand detect its output (put phototransistor at focus of the receiving antenna?). Ultimatelyin order to communicate you'll need a transmit/receive protocol, error correction, etc. etc.Maybe one re
ector houses the emitter and receiver. Should be fun.14. Bar-code reader. Can you reliably count a number of parallel black stripes (electrical-tapewidth, say, separated by similar space)? Maybe the \barcode" starts with a double thickness?I'm thinking you just drive over the code and read it with re
ectance sensing.15. Try the prey-tracker posted on cs.minibot recently16. Any other cute idea you have to extend our range of sensing and e�ecting capabilities.C.3 The Robot CompetitionSee Section 3. 43

References[1] Olac Fuentes, Rajesh P. N. Rao, and Michael Van Wie. Hierarchical learning of reactive behav-iors in an autonomous mobile robot using stochastic hillclimbing. In Proceedings of the IEEEInternational Conference on Systems, Man and Cybernetics 1995, Vancouver, B.C., Canada,October 1995. to appear.[2] J. L. Jones and A. M. Flynn. Mobile Robots: Inspiration to Implementation. A. K. Peters, 1993.[3] TomM. Mitchell. Becoming increasingly reactive. In Proceedings of the AAAI, pages 1051{1058,1990.[4] Rajesh P. N. Rao and Olac Fuentes. Perceptual homing by an autonomous mobile robot usingsparse self-organizing sensory-motor maps. In Proceedings of the World Congress on NeuralNetworks 1995, Washington, D.C., July 1995. to appear.

44

