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Abstract

Association rule discovery has emerged as an important problem in knowledge
discovery and data mining. The association mining task consists of identify-
ing the frequent itemsets, and then forming conditional implication rules among
them. In this paper we present efficient algorithms for the discovery of frequent
itemsets, which forms the compute intensive phase of the task. The algorithms
utilize the structural properties of frequent itemsets to facilitate fast discovery.
The related database items are grouped together into clusters representing the
potential maximal frequent itemsets in the database. Each cluster induces a
sub-lattice of the itemset lattice. Efficient lattice traversal techniques are pre-
sented, which quickly identify all the true maximal frequent itemsets, and all
their subsets if desired. We also present the effect of using different database
layout schemes combined with the proposed clustering and traversal techniques.
The proposed algorithms scan a (pre-processed) database only once, addressing
the open question in association mining, whether all the rules can be efficiently
extracted in a single database pass. We experimentally compare the new algo-
rithms against the previous approaches, obtaining improvements of more than
an order of magnitude for our test databases.
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1 Introduction

Knowledge discovery and data mining (KDD) is an emerging field, whose goal is to make
sense out of large amounts of collected data, by discovering hitherto unknown patterns. One
of the central KDD tasks is the discovery of association rules [1]. The prototypical application
is the analysis of supermarket sales or basket data [2, 5, 3]. Basket data consists of items
bought by a customer along with the transaction date, time, price, etc. The association
rule discovery task identifies the group of items most often purchased along with another
group of items. For example, we may obtain a rule of the form “80% of customers who
buy bread and milk, also buy butter and eggs at the same time”. Besides the retail sales
example, association rules have been useful in predicting patterns in university enrollment,
occurrences of words in text documents, census data, and so on.

The task of mining association rules over basket data was first introduced in [2], which
can be formally stated as follows: Let Z = {¢1,22, --,%m} be the set of database items.
Each transaction, T', in the database, D, has a unique identifier, and contains a set of
items, called an itemset. An itemset with &k items is called a k-itemset. A subset of k
elements is called a k-subset. The support of an itemset is the percentage of transactions in
D that contain the itemset. An association rule is a conditional implication among itemsets,
A = B, where itemsets A, B C Z, and AN B = (. The confidence of the association rule,
given as support(AU B)/support(A), is simply the conditional probability that a transaction
contains B, given that it contains A. The data mining task for association rules can be
broken into two steps. The first step consists of finding all frequent itemsets, i.e., itemsets
that occur in the database with a certain user-specified frequency, called minimum support.
The second step consists of forming the rules among the frequent itemsets. The problem of
identifying all frequent itemsets is the computationally intensive step in the algorithm. Given
m items, there are potentially 2™ frequent itemsets, which form a lattice of subsets over I.
However, only a small fraction of the whole lattice space is frequent. This paper presents
efficient methods to discover these frequent itemsets. The rule discovery step is relatively
easy [3]. Once the support of frequent itemsets is known, rules of the form X — Y = Y
(where Y C X)), are generated for all frequent itemsets X, provided the rules meet a desired
confidence. Although this step is easy, there remain important research issues in presenting
“interesting” rules from the large set of generated rules. If the important issue in the first
step is that of “quantity” or performance, due to its compute intensive nature, the dominant
concern in the second step is that of “quality” of rules that are generated. See [26, 18]
for some approaches to this problem. In this paper we only consider the frequent itemsets
discovery step.

Related Work Several algorithms for mining associations have been proposed in the
literature [2, 21, 5, 16, 23, 17, 27, 3, 31]. Almost all the algorithms use the downward closure
property of itemset support to prune the itemset lattice — the property that all subsets
of a frequent itemset must themselves be frequent. Thus only the frequent k-itemsets are
used to construct candidate or potential frequent (k + 1)-itemsets. A pass over the database
is made at each level to find the frequent itemsets. The algorithms differ to the extent
that they prune the search space using efficient candidate generation procedure. The first
algorithm AIS [2] generates candidates on-the-fly. All frequent itemsets from the previous



transaction that are contained in the new transaction are extended with other items in that
transaction. This results in to many unnecessary candidates. The Apriorialgorithm [21, 5, 3]
which uses a better candidate generation procedure was shown to be superior to earlier
approaches [2, 17, 16]. The DHP algorithm [23] collects approximate support of candidates
in the previous pass for further pruning, however, this optimization may be detrimental to
performance [4]. All these algorithms make multiple passes over the database, once for each
iteration k. The Partition algorithm [27] minimizes I/O by scanning the database only twice.
It partitions the database into small chunks which can be handled in memory. In the first
pass it generates the set of all potentially frequent itemsets (any itemset locally frequent in a
partition), and in the second pass their global support is obtained. Another way to minimize
the I/O overhead is to work with only a small sample of the database. An analysis of the
effectiveness of sampling for association mining was presented in [34], and [31] presents an
exact algorithm that finds all rules using sampling. The recently proposed DIC algorithm
[9] dynamically counts candidates of varying length as the database scan progresses, and
thus is able to reduce the number of scans. Approaches using only general-purpose DBMS
systems and relational algebra operations have been studied [16, 17], but these don’t compare

favorably with the specialized approaches. A number of parallel algorithms have also been
proposed [24, 4, 32, 11, 14, 33].

All the above solutions are applicable to only binary data, i.e., either an item is present
in a transaction or it isn’t. Other extensions of association rules include mining over data
where the quantity of items is also considered [28], or mining for rules in the presence of
a taxonomy on items [6, 15]. There has also been work in finding frequent sequences of
itemsets over temporal data [6, 22, 29, 20].

1.1 Contribution

The main limitation of almost all proposed algorithms [2, 5, 21, 23, 3] is that they make
repeated passes over the disk-resident database partition, incurring high I/O overheads.
Moreover, these algorithms use complicated hash structures which entails additional overhead
in maintaining and searching them, and they typically suffer from poor cache locality [25].
The problem with Partition, even though it makes only two scans, is that, as the number of
partitions is increased, the number of locally frequent itemsets increases. While this can be
reduced by randomizing the partition selection, results from sampling experiments [34, 31]
indicate that randomized partitions will have a large number of frequent itemsets in common.
Partition can thus spend a lot of time in performing redundant computation.

Our work contrasts to these approaches in several ways. We present new algorithms for
fast discovery of association rules based on our ideas in [33, 35]. The proposed algorithms
scan the pre-processed database exactly once greatly reducing I/O costs. The new algorithms
are characterized in terms of the clustering information used to group related itemsets, and
in terms of the lattice traversal schemes used to search for frequent itemsets. We propose two
clustering schemes based on equivalence classes and maximal uniform hypergraph cliques,
and we utilize three lattice traversal schemes, based on bottom-up, top-down, and hybrid
top-down /bottom-up search. We also present the effect of using different database layouts



— the horizontal and vertical formats. The algorithms using the vertical format use simple
intersection operations, making them an attractive option for direct implementation on gen-
eral purpose database systems. Extensive experimental results are presented contrasting the
new algorithms with previous approaches, with gains of over an order of magnitude using
the proposed techniques.

The rest of the paper is organized as follows. Section 2 provides details of the itemset
clustering techniques, while section 3 describes the lattice traversal techniques. Section 4
gives a brief overview of the KDD process and the data layout alternatives. The Aprior,
Partitin and six new algorithms employing the above techniques are described in section 5.
Our experimental study is presented in in section 6, and our conclusions in section 7.

2 Itemset Clustering

Lattice of Subsets of {1,2,3,4,5} Sublattices Induced by Maximal Itemsets

Lattice of Subsetsof {1,234}

Border of
Freguent ltemsets

Lattice of Subsets of {3,4,5}

23 (i

Figure 1: Lattice of Subsets and Maximal Itemset Induced Sub-lattices

We will motivate the need for itemset clustering by means of an example. Consider the
lattice of subsets of the set {1,2,3,4,5}, shown in figure 1 (the empty set has been omitted
in all figures). The frequent itemsets are shown with dashed circles and the two mazimal
frequent itemsets (a frequent itemset is mazimal if it is not a proper subset of any other
frequent itemset) are shown with the bold circles. Due to the downward closure property
of itemset support — the fact that all subsets of a frequent itemset must be frequent — the
frequent itemsets form a border, such that all frequent itemsets lie below the border, while all
infrequent itemsets lie above it. The border of frequent itemsets is shown with a bold line in
figure 1. An optimal association mining algorithm will only enumerate and test the frequent
itemsets, i.e., the algorithm must efficiently determine the structure of the border. This
structure is precisely determined by the maximal frequent itemsets. The border corresponds



to the sub-lattices induced by the maximal frequent itemsets. These sub-lattices are shown
in figure 1.

Given the knowledge of the maximal frequent itemsets we can design an efficient algo-
rithm that simply gathers their support and the support of all their subsets in just a single
database pass. In general we cannot precisely determine the maximal itemsets in the inter-
mediate steps of the algorithm. However we can approximate this set. Our itemset clustering
techniques are designed to group items together so that we obtain supersets of the maximal
frequent itemsets — the potential mazimal frequent itemsets. Below we present two schemes
to generate the set of potential maximal itemsets based on equivalence classes and maximal
uniform hypergraph cliques. These two techniques represent a trade-off in the precision of
the potential maximal itemsets generated, and the computation cost. The hypergraph clique
approach gives more precise information at higher computation cost, while the equivalence
class approach sacrifices quality for a lower computation cost.

2.1 Equivalence Class Clustering

Let’s consider the candidate generation step of Apriori. The candidates for the k-th pass
are generated by joining Lj_i, the set of frequent (k — 1)-itemsets with itself, which can
be expressed as: Cp = {X = A[l]A[2]...A[k — 1|B[k — 1]}, for all A,B € Lj_;, with A[l :
k—2] = B[l:k—2],and Ak —1] < B[k — 1], where X[i] denotes the i-th item, and X[i : j]
denotes items at index ¢ through j in itemset X. Let L, = {AB, AC, AD, AE, BC, BD,
BE, DE}. Then C3 = { ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE}. Assuming
that Lg_; is lexicographically sorted, we can partition the itemsets in Ly_; into equivalence
classes based on their common k — 2 length prefixes, i.e., the equivalence class @ € Ly_o, is
given as:

Se=1[a]={blk—11 €L | a[l:k—2 =b[1:k—2}

Candidate k-itemsets can simply be generated from itemsets within a class by joining all
("g”) pairs, with the the class identifier as the prefix. For our example L, above, we obtain
the equivalence classes: S4 = [A] = {B, C, D, E}, Sg = [B] = {C, D, E}, and Sp = [D]
= {E}. We observe that itemsets produced by the equivalence class [A], namely those in
the set {ABC, ABD, ABE, ACD, ACE, ADE}, are independent of those produced by the
class [B] (the set {BCD, BCE, BDE}. Any class with only 1 member can be eliminated
since no candidates can be generated from it. Thus we can discard the class [D]. This idea
of partitioning Lj_; into equivalence classes was independently proposed in [4, 32]. The
equivalence partitioning was used in [32] to parallelize the candidate generation step. It was
also used in [4] to partition the candidates into disjoint sets.

At any intermediate step of the algorithm when the set of frequent itemsets, Ly for k& > 2,
has been determined we can generate the set of potential maximal frequent itemsets from
L. Note that for £ = 1 we end up with the entire item universe as the maximal itemset.
However, For any k > 2, we can extract more precise knowledge about the association among
the items. The larger the value of £ the more precise the clustering. For example, figure 2
shows the equivalence classes obtained for the instance where & = 2. Each equivalence class
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is a potential maximal frequent itemset. For example, the class [1], generates the maximal

1itemset 12345678.

Frequent 2-lItemsets
12, 13, 14, 15, 16, 17, 18, 23, 25, 27, 28, 34, 35, 36, 45, 46, 56, 58, 68, 78
Equivalence Classes Equivalence Class Graph
1]1: 2345678
2]: 3578
3]l: 456
4]: 56
5|/: 68
6]: 8
. 8
Maximal Cliques per Class Maximal Cliques For Equivalence Class 1
1] : 1235, 1258, 1278, 13456, 1568
2] : 235, 258, 278
3] : 3456
4] . 456 5 3 5 @ @
5] . 568
6| . 68
1 78 @ A\@«

Figure 2: Equivalence Class and Uniform Hypergraph Clique Clustering

2.2 Maximal Uniform Hypergraph Clique Clustering

Let the set of items Z denote the vertex set. A hypergraph [7] on I is a family H =
{E1, Es, ..., E,} of edges or subsets of Z, such that F; # (), and U? E; = Z. A simple
hypergraph is a hypergraph such that, £, C E; = ¢ = j. A simple graph is a simple
hypergraph each of whose edges has cardinality 2. The maximum edge cardinality is called
the rank, r(H) = maz;|E;|. If all edges have the same cardinality, then H is called a uniform
hypergraph. A simple uniform hypergraph of rank r is called a r-uniform hypergraph. For a
subset X C Z, the sub-hypergraph induced by X is given as, Hx = {E;N X £ 0|1 < j <n}.
A r-uniform complete hypergraph with m vertices, denoted as K

m)

subsets of Z. A r-uniform complete sub-hypergraph is called a r-uniform hypergraph cligue.

consists of all the r-

A hypergraph clique is mazimal if it is not contained in any other clique. For hypergraphs
of rank 2, this corresponds to the familiar concept of maximal cliques in a graph.

Given the set of frequent itemsets Ly, it is possible to further refine the clustering process
producing a smaller set of potentially maximal frequent itemsets. The key observation used
is that given any frequent m-itemset, for m > k, all its k-subsets must be frequent. In
graph-theoretic terms, if each item is a vertex in the hypergraph, and each k-subset an edge,
then the frequent m-itemset must form a k-uniform hypergraph clique. Furthermore, the set



of maximal hypergraph cliques represents an approximation or upper-bound on the set of
maximal potential frequent itemsets. All the “true” maximal frequent itemsets are contained
in the vertex set of the maximal cliques, as stated formally in the lemma below.

Lemma 1 Let Hy, be the k-uniform hypergraph with vertex set I, and edge set L. Let C
be the set of mazimal hypergraph cliques in H, i.e., C = {KF|m >k}, and let M be the set
of vertex sets of the cligues in C. Then for all mazimal frequent ttemsets f, I3t € M, such
that f C t.

An example of uniform hypergraph clique clustering is given in figure 2. The example is
for the case of L, and thus corresponds to an instance of the general clustering technique,
which reduces to the case of finding maximal cliques in regular graphs. The figure shows all
the equivalence classes, and the maximal cliques within them. It also shows the graph for
class 1, and the maximal cliques in it. It can be seen immediately the the clique clustering
1s more accurate than equivalence class clustering. For example, while equivalence class
clustering produced the potential maximal frequent itemset 12345678, the hypergraph clique
clustering produces a more refined set {1235, 12581278, 13456, 1568} for equivalence class

[1].

Clique Generation

The maximal cliques are discovered using an algorithm similar to the Bierstone’s algo-
rithm [19] for generating cliques. For a class [x], and y €[x], y is said to cover the subset
of [x], given by cov(y) = [y] N [x]. For each class C, we first identify its covering set, given
as {y € Clecov(y) # 0, and cov(y) € cov(z), for any z € C,z < y}. For example, consider
the class [1], shown in figure 2. cov(2) =[2], since [2] C [1]. Similarly, cov(y) =[y], for all
y €[1]. The covering set of [1] is given by the set {2,3,5}. The item 4 is not in the covering
set since, cov(4) = {5,6} is a subset of cov(3) = {4,5,6}. Figure 3 shows the complete
clique generation algorithm. Only the elements in the covering set need to be considered
while generating maximal cliques for the current class (step 3). We recursively generate the
maximal cliques for elements in the covering set for each class. Each maximal clique from the
covering set is prefixed with the class identifier to obtain the maximal cliques for the current
class (step 7). Before inserting the new clique, all duplicates or subsets are eliminated. If
the new clique is a subset of any clique already in the maximal list, then it is not inserted.
The conditions for the above test are shown in line 8.

For general graphs the maximal clique decision problem is NP-Complete [13]. However,
the equivalence class graph is usually sparse and the maximal cliques can be enumerated
efficiently. As the edge density increases the clique based approaches may suffer. Some of
the factors affecting the edge density include decreasing support and increasing transaction
size. The effect of these parameters is studied in section 6. A number of other clique
generating algorithms were brought to our notice after we had chosen the above algorithm.
The algorithm proposed in [8] was shown to have superior performance than the Bierstone
algorithm. Some other newer algorithms for this problem are presented in [10, 30]. We plan
to incorporate these for the clique generation step of our algorithm, minimizing any overhead
due to this step.



l:for : = N;i: >=1;: — — do

2:  [i].CligList = 0;

3:  for all z € [i].CoveringSet do

4 for all clig € [z].CligList do

5: M = cligN [i];

6 if M # ( then

7 insert ({¢} U M) in [i].CligList such that
8 AXorY € [i].CligList, X C Y, orY C X

Figure 3: The Maximal Clique Generation Algorithm

Weak Maximal Cliques

As we shall see in the experimental section, for some database parameters, the edge density
of the graph may be too high, resulting in a large number of cliques with significant overlap
among them. In these cases, not only the clique generation takes more time, but also
redundant frequent itemsets may be discovered within each cluster. To solve this problem
we introduce the notion of weak maximality of cliques. Given any two cliques X, and Y, we
say that they are a-related, if a = I%ﬁgg},
the cliques, to the distinct elements between them. A weak mazimal clique, Z = {X UY}, is
generated by collapsing the two cliques into one, provided that they are a-related. During

i.e., the ratio of the common elements between

clique generation only weak maximal cliques are generated for some user specified value of
a. Note that for o = 1, we obtain regular maximal cliques, while for & = 0, we obtain a
single clique, the same as the equivalence class cluster. Preliminary experiments indicate
that using an appropriate value of «, all the overhead of redundant cliques can be avoided,
yet retaining a better clique quality than the equivalence class clusters.

3 Lattice Traversal

The equivalence class and uniform hyper-graph clique clustering schemes generate the set
of potential maximal frequent itemsets. Each such potential maximal itemset induces a
sublattice of the lattice of subsets of database items Z. We now have to traverse each of
these sub-lattices to determine the “true” frequent itemsets. Our goal is to devise eflicient
schemes to precisely determine the structure of the border of frequent itemsets. Different
ways of expanding the frequent itemset border in the lattice space are possible. Below
we present three schemes to traverse the sublattices — a pure bottom-up approach, a pure
top-down approach, and a hybrid top-down/bottom-up scheme.

3.1 Bottom-up Lattice Traversal

Consider the example shown in figure 4. It shows a particular instance of the clustering
schemes which uses L, to generate the set of potential maximal itemsets. Let’s assume that



Cluster: Potential Maximal Frequent |temset (123456)

ltemset| 12| 13| 14| 15] 16
Support 150| 300| 200| 400| 500

True Maximal Frequent |temsets: 1235, 13456

BOTTOM-UP TRAVERSAL HYBRID TRAVERSAL
Sort |temsets by Support

Qe @5@3@e@2

Top-Down Phase

(A58, 1595 | 1356 1456)

7 > . = S -
(53 35 A36|1as as|i56

Figure 4: Bottom-Up, Top-Down and Hybrid Lattice Traversal

for equivalence class [1], there is only one potential maximal itemset, 123456, while 1235
and 13456 are “true” maximal frequent itemsets. The support of 2-itemsets in this class are
also shown. Like figure 1, the dashed circles represent the frequent sets, the bold circles the
maximal such itemsets, and the boxes denote equivalence classes. The potential maximal
itemset 123456 forms a lattice over the elements of equivalence class [1] = {12,13,14,15,16}.
We need to traverse this lattice to determine the “true” frequent itemsets.

A pure bottom-up lattice traversal proceeds in a breadth-first manner generating frequent
itemsets of length k, before generating itemsets of level £+ 1, i.e., at each intermediate step
we determine the border of frequent k-itemsets. For example, all pairs of elements of [1]
are joined to produce new equivalence classes of frequent 3-itemsets, namely [12] = {3,5}
(producing the maximal itemset 1235), [13] = {4,5,6}, and [14] = {5,6}. The next step
yields the frequent class, [134] = {5,6} ( producing the maximal itemset 13456). Most
current algorithms use this approach. For example, the process of generating Cj from Lz,
used in Apriori [3], and related algorithms [27, 23], is a pure bottom-up exploration of the
lattice space. Since this is a bottom-up approach all the frequent subsets of the maximal
frequent itemsets are generated in intermediate steps of the traversal.

3.2 Top-Down Search

The bottom-up approach doesn’t make full use of the clustering information. While it
uses the cluster to restrict the search space, it may generate spurious candidates in the



intermediate steps, since the fact that all subsets of an itemset are frequent doesn’t guarantee
that the itemset is frequent. For example, the itemsets 124 and 126 in figure 4 are infrequent,
even though 12, 14, and 16 are frequent. We can envision other traversal techniques which
quickly identify the set of true maximal frequent itemsets. Once this set is known we can
either choose to stop at this point if we are interested in only the maximal itemsets, or we
can gather the support of all their subsets as well (all subsets are known to be frequent
by definition). In this paper we will restrict our attention to only identifying the maximal
frequent subsets.

One possible approach is to perform a pure top-down traversal on each cluster or sublat-
tice. This scheme may be thought of as trying to determine the border of infrequent itemsets,
by starting at the top element of the lattice and working our way down. For example, con-
sider the potential maximal frequent itemset 123456 in figure 4. If it turns out to be frequent
we are done. But in this case it is not frequent, so we then have to check whether each of its
5-subsets is frequent. At any step, if a k-subset turns out to be frequent, we need not check
any of its subsets. On the other hand, if it turns out to be infrequent, we recursively test
each (k—1)-subset. To ensure that infrequent itemsets are not tested multiple times, we also
maintain a hash table of infrequent itemsets. Depending on the accuracy of the potential
maximal clusters, the top-down approach may save some intersections. In our example the
top-down approach performs only 14 intersections against the 16 done by the bottom-up
approach. However, this approach doesn’t work too well in practice, since the clusters are
only an approximation of the maximal frequent itemsets, and a lot of infrequent supersets
of the “true” maximal frequent itemsets may be generated. Furthermore, it also uses hash
tables, and k-way intersections instead of 2-way intersections, adding extra overhead. We
therefore, propose a hybrid top-down and bottom-up approach that works well in practice.

3.3 Hybrid Top-down/Bottom-up Search

The basic idea behind the hybrid approach is to quickly determine the “true” maximal item-
sets, by starting with a single element from a cluster of frequent k-itemsets, and extending
this by one more itemset till we generate an infrequent itemset. This comprises the top-down
phase. In the bottom-up phase, the remaining elements are combined with the elements in
the first set to generate all the additional frequent itemsets. An important consideration in
the top-down phase is to determine which elements of the cluster should be combined. In
our approach we first sort the itemsets in the cluster in descending order of their support.
We start with the element with maximum support, and extend it with the next element in
the sorted order. This approach is based on the intuition that the larger the support the
more the likely is the itemset to be a part of a larger itemset. Figure 4 shows an example of
the hybrid scheme on a cluster of 2-itemsets. We sort the 2-itemsets in decreasing order of
support, intersecting 16 and 15 to produce 156. This is extended to 1356 by joining 156 with
13, and then to 13456, and finally we find that 123456 is infrequent. The only remaining
element is 12. We simply join this with each of the other elements producing the frequent
itemset class [12], which generates the other maximal itemset 1235. The bottom-up, top-
down, and hybrid approaches are contrasted in figure 4, and the pseudo-code for all the
schemes is shown in figure 5.



Input: Fy = {..I,} HT = HashTable Hybrid(F;):

cluster of frequent X ={ili € I;,VI; € Fp}; /* Top-Down Phase */
k-itemsets. N=I5L; Si={L};
Top-Down(X): for all ; € 5, +>1 do
Output: Frequent [=1X]; N=OnNI5L;
[-itemsets, [ >k if X ¢ F; then if N.sup > minsup then
/* do l-way join */ S1 = S1U{L};
Bottom-Up(Fy): N = get-intersect(X); else break;
for all I, € F, do end;
Fip1=0; if N.sup > minsup then So = Fy, — Sy
for all I; € F;,, 1 <j do FE=FU{N}; /* Bottom-Up Phase */
N=(NI); else if 1 > 3 then for all I, € S;,do
if N.sup > minsup then for all1 Y C X,|Y|=1-1 F3={Y,.sup > minsup|
Fri1 :Fk+1U{N}; if Y¢ HT then YjZ(IiﬁXj),VXjEsl};
end; Top-Down(Y) ; S1 = S1U{L};
if Fry1 #0 then if Y.sup < minsup if F3#0 then
Bottom-Up (Fi11); HT = HT U{Y}; Bottom-Up (F3) ;
end; end; end;

Figure 5: Pseudo-code for Bottom-up and Hybrid Traversal

4 The KDD Process and Database Layout

The KDD process consists of various steps [12]. The initial step consists of creating the target
dataset by focusing on certain attributes or via data samples. The database creation may
require removing unnecessary information and supplying missing data, and transformation
techniques for data reduction and projection. The user must then determine the data mining
task and choose a suitable algorithm, for example, the discovery of association rules. The
next step involves interpreting the discovered associations, possibly looping back to any of
the previous steps, to discover more understandable patterns. An important consideration in
the data preprocessing step is the final representation or data layout of the dataset. Another
issue is whether some preliminary invariant information can be gleaned during this process.
There are two possible layouts of the target dataset for association mining — the horizontal
and the vertical layout.

Horizontal Data Layout

This is the format standardly used in the literature (see e.g., [5, 21, 3]). Here a dataset
consists of a list of transactions. Each transaction has a transaction identifier (TID) followed
by a list of items in that transaction. This format imposes some computation overhead during
the support counting step. In particular for each transaction of average length [, during
iteration k, we have to generate and test whether all (Ilc) k-subsets of the transaction are
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contained in C. To perform fast subset checking the candidates are stored in a complex hash-
tree data structure. Searching for the relevant candidates thus adds additional computation
overhead. Furthermore, the horizontal layout forces us to scan the entire database or the
local partition once in each iteration. Both Count and Candidate Distribution must pay the
extra overhead entailed by using the horizontal layout. Furthermore, the horizontal layout
seems suitable only for the bottom-up exploration of the frequent border. It appears to be
extremely complicated to implement the hybrid approach using the horizontal format.

Horizontal Layout Vertical Layout
ITEMS ITEMS
A/B|C D E AIBJCID]E

TI'1/0l0/ 111 TIJ11010¢111)1

Figure 6: Horizontal and Vertical Database Layout

Vertical Data Layout

In the vertical (or inverted) layout (also called the decomposed storage structure [16]), a
dataset consists of a list of items, with each item followed by its tid-list — the list of all the
transactions identifiers containing the item. An example of successful use of this layout can
be found in [16, 27, 33, 35]. The vertical layout doesn’t suffer from any of the overheads
described for the horizontal layout above due to the following three reasons: First, if the tid-
list is sorted in increasing order, then the support of a candidate k-itemset can be computed
by simply intersecting the tid-lists of any two (k—1)-subsets. No complicated data structures
need to be maintained. We don’t have to generate all the k-subsets of a transaction or
perform the search operations on the hash tree. Second, the tid-lists contain all relevant
information about an itemset, and enable us to avoid scanning the whole database to compute
the support count of an itemset. This layout can therefore take advantage of the principle
of locality. All frequent itemsets from a cluster of itemsets can be generated, before moving
on to the next cluster. Third, the larger the itemset, the shorter the tid-lists, which is
practically always true. This results in faster intersections. For example, consider figure
6, which contrasts the horizontal and the vertical layout (for simplicity, we have shown
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the null elements, while in reality sparse storage is used). The tid-list of A, is given as
T(A) = {1,2,4}, and T(B) = {2,4}. Then the tid-list of AB is simply, T(AB) = {2,4}.
We can immediately determine the support by counting the number of elements in the tid-
list. If it meets the minimum support criterion, we insert AB in Ly. The intersections among
the tid-lists can be performed faster by utilizing the minimum support value. For example
let’s assume that the minimum support is 100, and we are intersecting two itemsets — AB
with support 119 and AC with support 200. We can stop the intersection the moment we
have 20 mismatches in AB, since the support of ABC is bounded above by 119. We use this
optimization, called short-circuited intersection, for fast joins.

The inverted layout, however, has a drawback. Examination of small itemsets tends to
be costlier than when the horizontal layout is employed. This is because tid-lists of small
itemsets provide little information about the association among items. In particular, no such
information is present in the tid-lists for 1-itemsets. For example, a database with 1,000,000
(IM) transactions, 1,000 frequent items, and an average of 10 items per transaction has
tid-lists of average size 10,000. To find frequent 2-itemsets we have to intersect each pair
of items, which requires (1’200) -(2-10,000) ~ 10° operations. On the other hand, in the
horizontal format we simply need to form all pairs of the items appearing in a transaction
and increment their count, requiring only (120) -1,000,000 = 4.5 - 107 operations.

There are a number of possible solutions to this problem: 1) Use a preprocessing step
to gather the occurrence count of all 2-itemsets. Since this information is invariant, it has
to be performed once during the lifetime of the database, and the cost can be amortized
over the number of times the data is mined. This information can also be incrementally
updated as the database changes over time. 2) Instead of storing the support counts of all
the 2-itemsets, use a user specified lower bound on the minimum support the user may wish
to apply. Then store the counts of only those 2-itemsets that have support greater than
the lower bound. The idea is to minimize the storage by keeping the counts of only those
itemsets that can be frequent, provided the user always specifies a minimum support greater
than the lower bound. 3) Use a small sample that would fit in memory, and determine a
superset of the frequent 2-itemsets, Ly, by lowering the minimum support, and using simple
intersections on the sampled tid-lists. Sampling experiments [31, 34] indicate that this is a
feasible approach. Once the superset has been determined we can easily verify the “true”
frequent itemsets among them,

Our current implementation uses the pre-processing approach due to its simplicity. We
plan to implement the sampling approach in a later paper. The two solutions represent a
trade-off. The sampling approach generates L, on-the-fly with an extra database pass, while
the pre-processing approach requires extra storage. For m items, count storage requires
O(m?) disk space, which can be quite large for large values of m. However, for m = 1000,
used in our experiments this adds only a very small extra storage overhead. Note also that
the database itself requires the same amount of memory in both the horizontal and vertical
formats (this is obvious from figure 6).
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5 Algorithms for Frequent Itemset Discovery

We first give a brief overview of the well known previous algorithms:

5.1 Aprior: Algorithm

Apriori [5, 21, 3] uses the downward closure property of itemset support that any subset of a
frequent itemset must also be frequent. Thus during each iteration of the algorithm only the
itemsets found to be frequent in the previous iteration are used to generate a new candidate
set, Ck. Before inserting an itemset into Ci, Apriori tests whether all its (K — 1)-subsets are
frequent. This pruning step can eliminate a lot of unnecessary candidates. The candidates
are stored in a hash tree to facilitate fast support counting. An internal node of the hash
tree at depth d contains a hash table whose cells point to nodes at depth d + 1. All the
itemsets are stored in the leaves. The insertion procedure starts at the root, and hashing
on successive items, inserts a candidate in a leaf. For counting (Y, for each transaction in
the database, all k-subsets of the transaction are generated in lexicographical order. Each
subset is searched in the hash tree, and the count of the candidate incremented if it matches
the subset. This is the most compute intensive step of the algorithm. The last step forms
Ly by selecting itemsets meeting the minimum support criterion. The complete algorithm
1s shown in figure 7.

L; = {frequent 1-itemsets };
for (k=2;Ly_1 £ 0;k+4)
Ckr = Set of New Candidates;
for all transactions ¢t € D
for all k-subsets s of ¢
if (s € C) s.count + +;
Ly, = {c € Ck|c.count > minimum support };
Set of all frequent itemsets = J;, Lg;

Figure 7: The Aprior: algorithm

5.2 Partition Algorithm

Partition [27] logically divides the horizontal database into a number of non-overlapping
partitions. Each partition is read, transformed into vertical format on-the-fly, and all locally
frequent itemsets are generated via tid-list intersections. All such itemsets are merged and
a second pass is made through all the partitions. The database is again converted to the
vertical layout and the global counts of all the chosen itemsets are obtained. The partition
sizes are chosen so that they can be accommodated in memory. The key observation used
above is that a globally frequent itemset must be locally frequent in at least one partition.
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5.3 New Algorithms

We present six new algorithms, depending on the clustering, lattice traversal and database
layout scheme used.

Horizontal Data Layout

o ClusterApr: ClusterApr uses the maximal hypergraph clique clustering with the hori-
zontal database layout. It consists of two distinct phases. In the first step each cluster and
all of its subsets are inserted into hash trees, ensuring that no duplicates are inserted. There
are multiple hash trees, one for candidates of a given length. Bit masks are created for each
hash tree indicating the items currently used in any of the candidates of that length. The
second step consists of gathering the support of all the candidates. This support counting is
similar to the one used in Apriori. For each transaction, we start by generating all subsets
of length k, for each k > 2, after applying the appropriate bit mask. We then search each
subset in (y and update the count if it is found. Thus only one database pass is required
for this step, instead of the multiple passes used in Apriori. The pseudo-code is given in

figure 8.

for all clusters M
for all k > 2 and k& < | M|
Insert each k-subset of M in Cf;
for all transactions ¢t € D
for all £ > 2 and k& < [¢]
for all k-subsets s of ¢
if (s € C) s.count + +;
Ly, = {c € Ck|c.count > minsup};
Set of all frequent itemsets = J, Lg;

Figure 8: The ClusterApr algorithm

Vertical Data Layout

Each of remaining new algorithms uses the vertical layout, and uses one of the itemset
clustering schemes to generate the potential maximal itemsets. Each such cluster induces a
sublattice, which is traversed using bottom-up search to generate all frequent itemsets, or
using the top-down or hybrid scheme to generate only the maximal frequent itemsets. Each
cluster is processed in its entirety before moving on to the next cluster. Since the transactions
are clustered using the vertical format, this involves a single database scan, resulting in
huge I/0 savings. Frequent itemsets are determined using simple tid-list intersections. No
complex hash structures need to be built or searched. The algorithms have low memory
utilization, since only the frequent k-itemsets within a single cluster need be kept in memory
at any point. The use of simple intersection operations also makes the new algorithms an
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attractive option for direct implementation on general purpose database systems. The new
algorithms are:

o Fclat: use equivalence class clustering along with bottom-up lattice traversal.

o MazEclat: uses equivalence class clustering along with hybrid traversal.

o Cligue: uses maximal hypergraph clique clustering along with bottom-up traversal

o MaxzClique: uses maximal hypergraph clique clustering along with hybrid lattice traversal
o TopDown: uses maximal hypergraph clique clustering with top-down traversal.

The pseudo-code for the maximal hypergraph clique scheme was presented in figure 3
(generating equivalence classes is quite straightforward), while the code for the three traversal
strategies was shown in figure 5. Theses two steps combined represent the pseudo-code for
the new algorithms. We would like to note that our current implementation uses only an
instance of the general maximal hypergraph cliques technique, i.e. for the case where k = 2.
We can easily envision a more dynamic scheme where we refine the hypergraph clustering as
the frequent k-itemsets for &£ > 2 become known. For example, when all 3-itemsets have been
found within a class, we can try to get a more refined set of maximal 3-uniform hypergraph
cliques, and so on. We plan to implement this approach in the future.

6 Experimental Results

Our experiments used a 100MHz MIPS processor with 256MB main memory, 16KB pri-
mary cache, 1MB secondary cache and an attached 2GB disk. We used different synthetic
databases which mimic the transactions in a retailing environment, and were generated us-
ing the procedure described in [5]. These have been used as benchmark databases for many
association rules algorithms [5, 16, 23, 27, 3]. The different database parameters varied in
our experiments are the number of transactions D, average transaction size T, and the av-
erage size of a maximal potentially frequent itemset /. The number of maximal potentially
frequent itemsets was set at L = 2000, and the number of items at N = 1000. We refer the
reader to [5] for more detail on the database generation. For fair comparison, all algorithms
discover frequent k-itemsets for £ > 3, using the 2-itemset supports from the preprocessing
step.

6.1 Performance

In figures 9 and 10, we compare our new algorithms against Aprior: and Partition (with
10 partitions) for decreasing values of minimum support on the different databases. We
compare Fclat against Apriori, ClusterApr and Partition in the left column, and we compare
Eclat against the other algorithms in the right column, to highlight the differences among
them. As the support decreases, the size and the number of frequent itemsets increases.
Apriori thus has to make multiple passes over the database, and performs poorly. Partition
performs worse than Apriori on small databases, and for high support, since the database
is only scanned once or twice at these points. Partition also performs the inversion from
horizontal to vertical tid-list format on-the-fly, incurring additional overhead. However, as
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the support is lowered, Partition wins out over Apriori, since it only scans the database
twice. It also saves some computation overhead of hash trees, since it also uses simple
intersections to compute frequent itemsets. These results are in agreement with previous
experiments comparing these two algorithms [27]. One major problem with Partition is that
as the number of partitions increases, the number of locally frequent itemsets, which are
not globally frequent, increases. While this can be reduced by randomizing the partition
selection, sampling experiments [34, 31] indicate that randomized partitions will have a
large number of frequent itemsets in common. Partitton can thus spend a lot of time in
performing these redundant intersections. ClusterApr scans the database only once, and out-
performs Apriort in almost all cases, and generally lies between Apriort and Partition. More
extensive experiments on large out-of-core databases are necessary to fully compare it against
Partition. ClusterApr is very sensitive to the quality of maximal cliques that are generated.
For small support, or small average maximal potential frequent itemset size I for fixed T,
or with increasing average transaction size T for fixed I, the edge density of the hypergraph
increases, consequently increasing the size of the maximal cliques. ClusterApr is unlikely to
perform well under these conditions, and this is confirmed for the T20.12.D100K database,
where it performs the worst. Like Apriori, it also maintains hash trees for support counting.
Eclat performs significantly better than all these algorithms in all cases. It out-performs
Apriort by more than an order of magnitude, and Partition by more than a factor of five.
Eclat makes only once database scan, requires no hash trees, uses only simple intersection
operations to generate globally frequent itemsets, avoids redundant computations, and since
it deals with one cluster at a time, has excellent locality.

Eclat | Clique | MaxEclat | MaxClique | TopDown | Partition
# Joins 83606 | 61968 56908 20322 24221 895429
Time (sec) | 46.7 42.1 28.5 18.5 48.2 174.7

Table 1: Number of Joins: T20.16.D100K (0.25%)

The right hand columns in figure 9 and 10 present the comparison among the other new
algorithms. Among the clustering techniques, Cligue provides a finer level of clustering, re-
ducing the number of candidates considered, and therefore performs better than Eclat when
the number of cliques considered is not too large. The graphs for MazFclat and MazCligue
indicate that the reduction in search space by performing the hybrid search also provides
significant gains. Both the maximal strategies outperform their normal counterparts. Top-
Down generally speaking out-performs both Eclat and MazEclat, since it also only generates
the maximal frequent itemsets. As with ClusterApr, it is very sensitive to the accuracy of
the cliques, and it suffers as the cliques become larger. The best scheme for the databases
considered is MazClique since it benefits from both the finer clustering, and hybrid search
scheme. Table 1 gives the number of joins performed on T20.12.D100K, while figure 12
provides more detail for the different databases. It can be observed that MazClique cuts
down the candidate search space drastically (more than a factor of 4 for T20.16.D100K). In
terms of raw performance MazCligue outperforms Aprior: by a factor of 40 Partition by a
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factor of 20, and FEclat by a factor of 2.5 for this case. However, as previously mentioned,
whenever the number of cliques becomes too large and there is a significant overlap among
different cliques, the clique based schemes will suffer. This is borne out in the graphs for
T20.12.D100K with decreasing support, and in figure 11 b) as the transaction size increases
for a fixed support value. We expect to reduce the overhead of the clique generation by
implementing the algorithms proposed in [8, 10, 30|, which were shown to be superior to the
Bierstone algorithm [19], a modification of which is used in the current implementation.

6.2 Join and Memory Statistics
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Figure 12: Statistics

Figure 12 a) shows the comparison among the different algorithms in terms of the num-
ber of intersections performed. As mentioned above the different clustering and traversal
techniques are able to reduce the joins to different extents, providing the key to their per-
formance. The amount of redundant computation for Partition is easily seen in the figure
in terms of the extra intersections performed by it compared to the other algorithms. Fig-
ure 12 b) shows the total memory usage of the Fclat algorithm as the computation of frequent
itemsets progresses on T20.16.D100K. The mean memory usage for the tid-lists is less than
0.18MB, or roughly 2% of the total database size. The figure only shows the cases where
the memory usage was more than twice the mean. The peaks in the graph are usually due
to the initial construction of all the 2-itemset tid-lists within each cluster. For the other
algorithms, we expect these peaks to be lower, since the maximal clique clustering is more
precise, resulting in smaller clusters, and the hybrid traversal doesn’t need the entire cluster
2-itemsets initially.

6.3 Scalability

Figure 11 a) shows how the different algorithms scale up as the number of transactions
increases from 100,000 to 5 million. The times are normalized against the execution time
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for MazClique on 100,000 transactions. A minimum support value of 0.25% was used. The
number of partitions for Partition was varied from 1 to 50. While all algorithms scale
linearly, the slope is much smaller for the new algorithms. This implies that the performance
differences for larger databases, across algorithms is likely to increase. Figure 11 b) shows
how the different algorithms scale with increasing transaction size. The times are normalized
against the execution time for MazCligue on T' = 5 and 200,000 transactions. Instead of a
percentage, we used an absolute support of 250. The physical size of the database was kept
roughly the same by keeping a constant T * D value. We used D = 200,000 for 7' = 5, and
D = 20,000 for ' = 50. There is a gradual increase in execution time for all algorithms
with increasing transaction size. However the new algorithms again outperform Aprior: and
Partition. As the transaction size increases, the number of cliques increases, and the clique
based algorithms start performing worse.

7 Conclusions

In this paper we proposed new algorithms for association mining and evaluate their effective-
ness. The proposed algorithms scan the preprocessed database exactly once, greatly reducing
I/O costs. Three main techniques are employed in these algorithms. We first cluster itemsets
using equivalence classes or maximal hypergraph cliques to obtain a set of potential maximal
frequent itemsets. We then generate the true frequent itemsets from each cluster sublattice
using bottom-up, top-down or hybrid lattice traversal. Two different database layout are
studied — the horizontal or the vertical format. Experimental results indicate more than an
order of magnitude improvements over previous algorithms.
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