
The VLDB Journal (2012) 21:509–534
DOI 10.1007/s00778-011-0256-4

REGULAR PAPER

GRAIL: a scalable index for reachability queries
in very large graphs

Hilmi Yıldırım · Vineet Chaoji · Mohammed J. Zaki

Received: 24 February 2011 / Revised: 2 June 2011 / Accepted: 8 September 2011 / Published online: 23 September 2011
© Springer-Verlag 2011

Abstract Given a large directed graph, rapidly answering
reachability queries between source and target nodes is an
important problem. Existing methods for reachability trade-
off indexing time and space versus query time performance.
However, the biggest limitation of existing methods is that
they do not scale to very large real-world graphs. We present a
simple yet scalable reachability index, called GRAIL, that is
based on the idea of randomized interval labeling and that can
effectively handle very large graphs. Based on an extensive
set of experiments, we show that while more sophisticated
methods work better on small graphs, GRAIL is the only
index that can scale to millions of nodes and edges. GRAIL
has linear indexing time and space, and the query time ranges
from constant time to being linear in the graph order and
size. Our reference C++ implementations are open source
and available for download at http://www.code.google.com/
p/grail/.

Keywords Graph query processing · Scalable graph
indexing · Reachability queries

This work was supported in part by NSF Grants EMT-0829835, and
CNS-0103708, and NIH Grant 1R01EB0080161-01A1.

H. Yıldırım (B) ·M. J. Zaki
Rensselaer Polytechnic Institute, Troy, NY, USA
e-mail: yildih2@cs.rpi.edu

M. J. Zaki
e-mail: zaki@cs.rpi.edu

V. Chaoji
Yahoo! Labs, Bangalore, India
e-mail: chaojv@yahoo-inc.com

1 Introduction

Let G = (V, E) be a directed graph, where V is the
set of vertices, and E is the set of directed edges, with
|V | = n and |E | = m. A reachability query asks whether
there exists a path p from a source node u to a target
node v in the directed graph G. If such as path exists,
we say that u can reach v (or v is reachable from u) and
denote it as u � v. If u cannot reach v, we denote it
as u �� v. The reachability query itself is denoted as

u
?� v.
Answering graph reachability queries quickly has been the

focus of research for over 20 years. Traditional applications
include reasoning about inheritance in class hierarchies and
testing concept subsumption in knowledge representation
systems. However, interest in the reachability problem has
revived in recent years with the advent of new applications
that have very large graph-structured data that are queried
for reachability repeatedly. The emerging area of Semantic
Web is composed of RDF/OWL data that are indeed graphs
with rich content, and there exist RDF data with millions of
nodes and billions of edges. Reachability queries are often
necessitated on these data to infer the relationships among the
objects. In network biology, reachability plays a role in que-
rying protein–protein interaction networks, metabolic path-
ways and gene regulatory networks. As specific examples of
graph reachability consider the following applications.

Semantic query engines: The vision of the Semantic Web
is to allow machines to understand the meaning of the infor-
mation on the World Wide Web [19]. The data stores and
interchange formats used include RDF and XML. XML doc-
uments are typically trees, but with the use of ID/IDREF links
it is possible to represent graphs. On the other hand, RDF
documents represent relationships and are naturally graph

123

http://www.code.google.com/p/grail/
http://www.code.google.com/p/grail/

510 H. Yıldırım et al.

Fig. 1 A SPARQL query that uses property paths

structured. XQuery and SPARQL are the query languages for
XML and RDF, respectively. SPARQL lets the user define
and search for graph patterns using SQL-like syntax, over
RDF stores. With SPARQL 1.1, it is possible to search for
patterns that include paths of arbitrary length via property
paths [29]. For example, the following SPARQL query asks
for all researchers named Joe Example who might be influ-
enced by the paper titled Some Paper in a citation database
(Fig. 1).

One strategy to answer this query is to use a reachability
index to check if any paper of Joe Example can reach Some
Paper by citations links (cites+). With SPARQL 1.1, the
necessity for reachability indexes in RDF stores will become
more apparent.

Concept subsumption in ontologies: In knowledge rep-
resentation systems, ontologies define a set of concepts as
well as their properties and interrelationships. Ontologies are
typically used to describe a domain or to reason about the
entities within a domain. In Semantic Web, inference engines
generate all the possible conclusions and store the resulting
triples in the data store as well. For instance, if a class A is
a subclass of B which is a subclass of C , it can be inferred
that A is a subclass of C , and this fact is stored in the data-
base. For instance, the Gene Ontology [16], which consists
of a directed acyclic graph of terms describing genes, also
includes the inferred relationships to speedup querying [17].
This is equivalent to keeping the transitive closure of the
graph in the database, which is not scalable for very large
graphs. An alternate strategy is to avoid inference computa-
tion at least for transitive rules such as rdfs:subPropertyOf
and rdfs:subClassOf [33]. In this case, the inference engine
should infer these relations on demand using a reachability
labeling mechanism. One of the test cases in our experimen-
tal evaluation in Sect. 6 is composed of the terms of the Gene
Ontology and the gene products from the Uniprot [31] anno-
tations database. The overall data have more than 7 million
nodes and 56 million connections.

Biological networks: With the advance of high-through-
put data acquisition technologies, biologists have amassed
a large amount of heterogeneous graph data such as met-
abolic pathway databases, gene regulatory networks, signal
transduction networks, etc. In these data sets, nodes represent

entities such as proteins, genes, compounds and edges repre-
sent how they interact. A query whether a gene A regulates
gene B directly or indirectly in a gene regulatory network
maps to a reachability query. Similarly, one can ask the ques-
tion of whether a specific amino acid A is broken down to a
specific chemical compound B in a metabolic pathway graph,
which is also a reachability query.

In general, given the ubiquity of large graphs in the form of
ontologies, social networks, biological networks and so on,
there is a crucial need for highly scalable indexing schemes
for reachability queries.

1.1 Reachability index

It is worth noting at the outset that the problem of reach-
ability on directed graphs can be reduced to reachability on
directed acyclic graphs (DAGs). Given a directed graph G,
we can obtain an equivalent DAG, G ′ (called the conden-
sation graph of G), in which each node corresponds to a
strongly connected component of the original graph, and an
edge exists between two components if any node in one com-
ponent can reach a node in the other component. To answer
whether node u can reach v in G, we simply lookup their
corresponding strongly connected components, Su and Sv ,
respectively, which are the nodes in G ′. If Su = Sv , then by
definition u and reach v (and vice-versa). If Su �= Sv , then
we pose the question whether Su can reach Sv in G ′. Thus, all
reachability queries on the original graph can be answered on
the DAG. Figure 2 shows an example directed graph and the
corresponding DAG obtained by coalescing the strongly con-
nected components that are marked in dashed circles. In that

graph N
?� P is true since they are in the same component.

(a) (b)

Fig. 2 Coalescing strongly connected components. a A directed graph.
b Corresponding DAG

123

GRAIL: scalable index for reachability queries 511

Fig. 3 Trade-off between query time and index size

The query of G
?� P in the original graph is equivalent to

the query of 2
?� 8 in the corresponding DAG. Henceforth,

we assume that all input graphs have been transformed into
their corresponding DAGs, unless otherwise stated.

There are two basic approaches to answer the reachability
queries which lie at the two extremes of the index design
space, as illustrated in Fig. 3. Given a DAG G, with n ver-
tices and m edges, one extreme (shown on left) is to pre-
compute and store the full transitive closure; this allows one
to answer reachability queries in constant time by a single
lookup, but it unfortunately requires a quadratic space index,
making it practically unfeasible for large graphs. On the other
extreme (shown on right), one can use a depth-first (DFS) or
breadth-first (BFS) traversal of the graph starting from node
u, until either the target, v, is reached or it is determined
that no such path exists. This approach requires no index, but
requires O(n+m) time for each query, which is unacceptable
for large graphs. Existing approaches to graph reachability
indexing lie in-between these two extremes.

While there is no single best indexing scheme for DAGs,
the reachability problem on trees can be solved effectively by
interval labeling [15], which takes linear time and space for
constructing the index and provides constant time querying.
Given a tree/forest T = (V, E) that has |V | = n edges and
|E | = m edges, interval labeling assigns each node u a label
Lu = [su, eu] that represents an interval starting at su and
ending at eu . A desired labeling has to satisfy the condition
that Lu subsumes Lv if and only if u reaches v. A reachabil-

ity query u
?� v can then be answered by just comparing the

corresponding intervals, i.e., u � v if and only if Lv ⊆ Lu

(su ≤ sv and eu ≥ ev).
Consider the min-post-labeling method for trees, which

assign Lu = [su, eu] to each node u where eu = post (u) is
the post-order value of the node u, defined as the rank of the
node u in a post-order traversal of the tree. The starting value
of the interval is defined as su = min{sx |x ∈ children(u)}
if u is not a leaf, and su = eu if u is a leaf. It is easy to see that
su is equivalent to min{ex |x ∈ descendants(u)}, that is, su

is the lowest post-order rank for any node x in the subtree
rooted at u (i.e., including u). Figure 4a shows the min-post-
labeling for an example tree. It is easy to see that reachabili-

ty queries in trees can be answered by interval containment.
For example, 1 � 9, since L9 = [2, 2] ⊂ [1, 6] = L1, but
2 �� 7, since L7 = [1, 3] �⊆ [7, 9] = L2.

Interval labeling can be generalized to DAGs. Exist-
ing methods [1,5,15,22,30] use either min-post-labeling or
pre–post-labeling (see Sect. 2) on a subtree of the DAG, as
shown in Fig. 4b (the dashed edges are the non-tree edges).
The labeling obtained is the same as in Fig. 4a, because the
same tree is used in both approaches, and dashed edges are
never followed. However, we can easily see that for DAGs,
the labeling is not sufficient to answer reachability queries,
since the labeling fails to cover some of the reachable pairs.
For example, 2 � 7 but L7 = [1, 3] �⊆ [7, 9] = L2. Exist-
ing methods thus have to supplement the index by auxiliary
indexes or some other approaches to correctly answer the
queries.

1.2 Our contributions

In this paper, we present a novel and scalable graph indexing
approach for very large graphs called GRAIL,1 that stands
for Graph Reachability Indexing via RAndomized Interval
Labeling. GRAIL applies min-post-labeling directly on the
DAG, as opposed to a subtree of the DAG, as in other interval
labeling variants. Figure 4c shows the GRAIL labeling on the
example DAG. This labeling captures all reachable pairs at
the cost of falsely categorizing some pairs as reachable. For
instance, compared to Fig. 4b, the label of node 6 is enlarged
to [1, 7] since node 8 is a descendant of node 6 and its label
is [1, 1]. With this new labeling, 2�7 can be answered using
label containment (i.e., L7 = [1, 3] ⊆ [1, 9] = L2), whereas
it cannot be answered using the labeling only on the DAG
subtree as in Fig. 4b. However, the new labeling introduces
false positives, also called as exceptions. For example, L4 =
[1, 4] ⊆ [1, 8] = L5 but 5 �� 4. GRAIL uses different
strategies to handle such exceptions, as detailed in Sect. 3.

In this paper, we make the following original
contributions:

• To our knowledge, GRAIL is the first direct DAG inter-
val labeling approach. The key idea is to do very fast
elimination for those pairs of query nodes for which non-
reachability can be determined via the intervals. In other
words, if Lv �⊆ Lu , we immediately return u �� v.

• Instead of using a single interval per node, the basic
approach GRAIL uses multiple intervals obtained via ran-
domized DAG traversals, a technique we call random-
ized multiple interval labeling. This approach drastically
reduces the number of exceptions. We also empirically
compare alternative multiple interval labeling methods
designed to minimize the number of exceptions.

1 A preliminary version of GRAIL appears in [34].

123

512 H. Yıldırım et al.

(a) (b) (c)

Fig. 4 a Min-post-labeling. b Min-post-labeling on DAG subtree. c Min-post-labeling on DAG

• To guarantee correctness, GRAIL uses “smart” graph
search methods with recursive label-based pruning. We
study the impact of DFS/BFS search and also explore
the use of bidirectional BFS. Independently, these search
methods also form optimized baseline methods for com-
parison against GRAIL. In addition, we propose an alter-
native method to directly maintain exception lists per
node, which can eliminate false positives completely.
This can offer benefit for indexing smaller graphs, with
pruning-based search as the scalable alternative for mas-
sive graphs.

• We propose several enhancements to the basic GRAIL
approach, which can dramatically improve the querying
time. The topological level filter is a simple yet effec-
tive strategy to prune non-reachable pairs of nodes. The
positive cut filter uses the subtree labelings induced by
each one of the GRAIL’s multiple DAG labelings to guar-
antee reachability for a subset of all the reachable pairs.
For these guaranteed reachable pairs u and v, if Lv ⊆ Lv ,
then GRAIL immediately returns u � v.

• Via an extensive set of experiments, we show that GRAIL
outperforms existing methods on very large real and syn-
thetic graphs, sometimes by over an order of magnitude.
Whereas previous methods studied graphs mainly under
50 K nodes and 70 K edges when transformed into DAGs,
we use large real and synthetic graphs with millions of
nodes and edges (see Tables 5, 6). In many cases, GRAIL
is the only method that can even run on such large graphs.

GRAIL is a highly effective and light-weight index to
answer reachability queries in massive graphs with millions
of nodes and edges. It maintains d interval labels per node,
and thus, its index size is O(dn). The index construction
time for GRAIL is O(d(n + m)), since d random graph

traversals are made to obtain those labels. For reachability
queries, it takes only O(d) time if the query node pairs are
not reachable. Likewise, if the node pairs are part of the
guaranteed reachable pairs, then again it takes only O(d)

time. In other cases, GRAIL resorts to pruning-based recur-
sive graph search, which can take O(n + m) in the worst
case. GRAIL thus retains the best properties on both ends
of indexing extremes shown in Fig. 3. Since d is typically a
small constant (usually capped at d = 5 even for the largest
graphs), GRAIL requires index construction time and space
linear in the graph size and order. It is worth noting that since
most large real-world graphs are very sparse, most (random)
query node pairs are non-reachable, and these queries can
be answered by GRAIL in constant time. Further, due to the
positive cut filter, a significant portion of reachable pairs can
also be answered in constant time. When either of these fail,
GRAIL can take time linear in the graph to answer the query.
However, here too the time increases gracefully, since inter-
val-based pruning is applied recursively during the search.

2 Related work

Existing approaches for graph reachability combine aspects
of indexing and pure search, trading off index space for que-
rying time. Major approaches can be classified into two main
groups, namely interval labeling [1,7,22,30,32] and 2HOP
labeling [8,11,18,27,28,35]. These methods are discussed
later and summarized in Table 1.

The interval labeling approaches use either the min-post-
labeling [1] (illustrated in Fig. 4b), or pre–post-labeling
[15,30,5,22] (illustrated in Fig. 5), on a spanning subtree
of the DAG. Pre–post-labeling assigns Lu = [su, eu] to each
node u where su and eu are the pre-order and post-order

123

GRAIL: scalable index for reachability queries 513

Table 1 Comparison of approaches

Construction Query time Index size
time

Opt. Tree Cover [1] O(nm) O(n) O(n2)

GRIPP [30] O(m + n) O(m − n) O(m + n)

Dual labeling [32] O(n + m + t3) O(1) O(n + t2)

PathTree [22] O(mk) or O(mn) O(log2 k) O(nk)

2HOP [11] O(n4) O(
√

m) O(n
√

m)

HOPI [28] O(n3) O(
√

m) O(n
√

m)

GRAIL O(d(n + m)) O(d)/O(n + m) O(dn)

(this paper)

n number of vertices, m number of edges, t = O(m − n) number of
non-tree edges, k number of paths/chains, d number of intervals

Fig. 5 Pre–post-labeling on a DAG

ranks of node u in a DFS traversal of the DAG, starting from
the root(s), with the rank being incremented each time we
enter a node or back-track from a node, as shown in Fig. 5.
In contrast, as noted previously, in a min-post-labeling, eu

is the post-order rank of u, and su is the minimum rank of
any node under u, as illustrated in Fig. 4. The interval-based
indexing is not self-contained since the labeling can fail to
cover some of the reachable pairs. For example, in Fig. 5,
2 � 7 but L7 = [4, 9] �⊆ [14, 19] = L2. Thus, for com-
pleteness, the existing methods supplement the label index
with auxiliary indexes. Different interval-based graph index-
ing methods differ from each other in terms of how the subtree
of the DAG is selected, and what kind of auxiliary index is
used.

Optimal Tree Cover [1] is the first known variant of inter-
val labeling for DAGs. The approach first creates interval
labels for a spanning tree of the DAG. This is not enough
to correctly answer the reachability queries, as mentioned
previously. To guarantee correctness, the method processes
nodes in reverse topological order for each non-tree edge (i.e.,
an edge that is not part of the spanning tree) between u and
v, with u inheriting all the intervals associated with node v.

Furthermore, node u inherits the intervals of its other children
whose intervals are updated. Thus, u is guaranteed to contain
all of its children’s intervals. Testing reachability is equiva-
lent to deciding whether the interval list of the source node
subsumes the first interval of the target node. The construc-
tion complexity of this method is the same as a full transitive
closure because selecting the tree that provides optimal label-
ing requires the pre-computation of the transitive closure.

GRIPP [30] is an another variant of interval labeling.
Instead of inflating the index size for the non-tree edges as
in [1], reachability testing is done via multiple containment
queries. Given nodes u and v, if Lv is not contained in Lu ,
the non-tree edges (x, y), such that x is a descendant of u,
are fetched, and recursively a new query (y, v) is issued for
every y, until either v is reachable from a y node or if all
non-tree edges are exhausted. If one of the y nodes can reach
v, then u can reach v. Since there are m − n non-tree edges,
the query time complexity is O(m − n).

Dual labeling [32] also uses interval labeling, but it pro-
cesses non-tree edges in a different way. Their main observa-
tion is that if there exists a single non-tree edge (x, y) in the
path from u to v, it must be true that Lu contains x and L y

contains v. Based on this, a non-tree edge e = (x, y) is con-
nected to another non-tree edge e′ = (x ′, y′) if and only if
L y contains Lx ′ . After labeling the selected tree, dual label-
ing computes the transitive closure of non-tree edges so that
the entry for the edge pair (e = (x, y), e′ = (x ′, y′)) being
1 implies that all nodes u, whose interval contains x , can
reach all nodes v whose interval is contained by L y′ . There-
fore, for each query, they scan relevant edge pairs to find out
the reachability. With further optimizations, they reduce the
query time to O(1); however, their index size is O(n + t2),
and construction time is O(n+m+ t3) where t = O(m−n)

denotes the number of non-tree edges. GRIPP and dual label-
ing thus lie on the opposite sides of the trade-off illustrated
in Fig. 3.

A chain decomposition approach was proposed in [20] to
compress the transitive closure. The graph is split into node-
disjoint chains. A node u can reach to node v if they exist
in the same chain, and u precedes v. Each node also keeps
the highest node that it can reach in every other chain. Thus,
the space requirement is O(kn) where k is the number of
chains. Such a chain decomposition is computed in O(n3)

time. This bound was improved in [7], where they proposed
a decomposition which can be computed in O(n2 + kn

√
k)

time. Recently, [6] further improved this scheme by using
general spanning trees in which each edge corresponds to a
path in the original graph. [3] solves a variant of the reach-
ability problem where the input is assumed to be a collection
of non-disjoint paths instead of a graph.

PathTree [22] is the generalization of the tree cover
approach. It extracts the disjoint paths of a DAG and then
creates a tree of paths on which a variant of interval labeling

123

514 H. Yıldırım et al.

is applied. That labeling captures most of the transitive infor-
mation, and the rest of the closure is computed in an effi-
cient way. PathTree has very fast querying and construction
times, but its index size might get very large on dense graphs
(k in Table 1 denotes the number of paths in the decomposi-
tion). In a recent paper by the same authors, they proposed
3HOP [21] which addresses the issue of large index size.
Although 3HOP has a reduced index size, the construction
and query times degrade significantly.

The other major class of graph reachability indexing meth-
ods is based on 2HOP Indexing [8,11,18,27,28,35], where
each node determines a set of intermediate nodes it can
reach, and a set of intermediate nodes which can reach it.
The query between u and v returns success if the intersec-
tion of the successor set of u and predecessor set of v is not
empty. 2HOP was first proposed in [11], where they also
showed that computing the minimum 2HOP cover is NP-
Hard and gave an O(log m)-approximation algorithm based
on a greedy algorithm for the set-cover problem. Its O(n4)

construction time was improved in [35] by using a geomet-
ric approach that produces slightly larger 2HOP cover than
obtained in [11]. A divide-and-conquer strategy to 2HOP
indexing was proposed in [27,28]. HOPI [28] partitions the
graph into k subgraphs, computes the 2HOP indexing within
each subgraph and finally merges their 2HOP covers by pro-
cessing the cross-edges between subgraphs [27], by the same
authors, improved the merge phase by changing the way in
which cross-edges between subgraphs are processed. Cheng
[8] partition the graph in a top-down hierarchical manner,
instead of a flat partitioning into k subgraphs. The graph
is partitioned into two subgraphs repeatedly, and then their
2HOP covers are merged more efficiently than in [27]. Their
approach outperforms existing 2HOP approaches in large
and dense data sets.

The HLSS [18] method is a hybrid of 2HOP and inter-
val labeling. It first labels a spanning tree of the graph with
interval labeling, and then extracts a remainder graph whose
transitive closure is yet to be computed. The transitive clo-
sure of the remainder graph is computed and compressed
by a variant of 2HOP labeling. The overall time complex-
ity for constructing HLSS is O(m3), but it produces more
compressed labelings.

Although there has been much interest in static transi-
tive closure, not much attention has been paid to practical
algorithms for the dynamic case, though several theoretical
studies exist [13,23,26]. Practical works on dynamic transi-
tive closure [14,24] and dynamic 2HOP indexing [4] have
only recently been proposed.

A preliminary version of the GRAIL appeared in [34].
GRAIL is also utilizes interval labeling to construct the
index. However, it is diametrically opposite to the other
interval labeling approaches mentioned previously. Previous
methods provide an incomplete coverage of the reachable

set, i.e., they use spanning trees, chain covers, path decom-
positions and so on, to index the reachability for nodes only
in a subtree (or a set of chains/paths) of the input DAG. If
u � v, these methods do not guarantee that Lv ⊆ Lu ; this
is true only for the paths over tree edges. They thus have
to use auxiliary indexes to ensure completeness. In contrast,
GRAIL uses min-post-traversals directly on the DAG, and it
fully covers all reachable pairs, as well as some non-reach-
able pairs—the false positives. GRAIL guarantees that if
u � v, then Lv ⊆ Lu . By contraposition, if the interval
label of v is not contained in that for u, GRAIL can imme-
diately return u �� v. However, due to the false positives,
GRAIL uses graph search, and other optimizations to answer
reachability. The GRAIL approach is more favorable in large,
sparse graphs, since it is more likely that a random pair of
nodes is not reachable, and for these GRAIL can immediately
prune the search. GRAIL can also handle higher-density large
graphs; since in these cases, the subtree/path-based interval
labeling of previous approaches covers an even smaller frac-
tion of the reachable pairs. A detailed description of the
basic GRAIL approach and other novel optimizations, and
an extensive set of supporting experiments appears in the
sections below.

3 GRAIL: Scalable reachability index for large graphs

In this section, we present our novel and scalable GRAIL
approach for indexing very large graphs. As opposed to other
interval labeling variants, GRAIL uses min-post-labeling
directly on the directed acyclic graph. Furthermore, instead
of using a single interval, GRAIL employs multiple min-
post-intervals that are obtained via random graph traversals
(or other strategies). We use the symbol d to denote the num-
ber of intervals per node, which also corresponds to the num-
ber of graph traversals used to obtain the node label. For
example, Fig. 6c shows a DAG labeling using d = 2 inter-
vals (the first interval assumes a left-to-right ordering of the
children, whereas the second interval assumes a right-to-left
ordering).

3.1 Basic GRAIL approach

Our approach to reachability indexing is motivated by the
observation that existing interval labeling variants identify a
subgraph of the DAG (i.e., trees in [1,30,32] and path-tree in
[22]) in the first stage, and incorporate the remaining (uncov-
ered) portion of the DAG, in the second phase of indexing
or during the query time. However, most of the reachability
information is captured in the first stage. The motivating idea
in GRAIL is to use interval labeling multiple times to reduce
the workload of the second phase of indexing or the query-
ing. The multiple intervals yield a hyper-rectangle instead of

123

GRAIL: scalable index for reachability queries 515

(a) (b) (c)

Fig. 6 Interval labeling: Tree (a) and DAG: single (b) and multiple (c)

single interval per node, and the containment check is over
these hyper-rectangles.

In GRAIL, for a given node u, the new label is given
as Lu = L1

u, L2
u, . . . , Ld

u , where Li
u is the interval label

obtained from the i-th (random) traversal of the DAG, and
1 ≤ i ≤ d, where d is the dimension or number of intervals.
We say that Lv is contained in Lu , denoted as Lv ⊆ Lu ,
if and only if Li

v ⊆ Li
u for all i ∈ [1, d]. If Lv �⊆ Lu , then

we can conclude that u �� v, as per the lemma below.

Lemma 1 If Lv �⊆ Lu, then u �� v.

Proof Given that Lv �⊆ Lu , there must exist a “dimension” i ,
such that Li

v �⊆ Li
u . Assume that u � v, and let x and y be the

lowest ranked nodes under u and v, respectively, in the post-
order traversal. In this case, Li

v = [ry, rv] and Li
u = [rx , ru],

where rn denotes the rank of node n. But, u � v implies
that ru > rv in post-order, and further that rx ≤ ry , which in
turn implies that Li

v = [ry, rv] ⊆ [rx , ru] = Li
u . But, this is

a contradiction to our assumption that u � v. We conclude
that u �� v.
�

On the other hand, if Lv ⊆ Lu , it is possible that this is
a false positive, i.e., it can still happen that u �� v. We call
such a false positive containment an exception. For example,
in Fig. 6b, there are 15 exceptions in total, as listed in Table 2.
For instance, for node 2, node 1 is an exception, since L1 =
[1, 6] ⊆ [1, 9] = L2, but in fact 2 �� 1. The basic intuition
in GRAIL is that using multiple random labels makes it more
likely that such false containments, i.e., exceptions, are min-
imized. For example, when one considers the 2-dimensional
intervals given in Fig. 6c, for the very same graph, 12
out of the 15 exceptions get eliminated! For instance, we
see that 1 is no longer an exception for 2, since L1 =
[1, 6], [1, 9] �⊆ [1, 9], [1, 7] = L2, since for the second
interval we have [1, 9] �⊆ [1, 7]. We can thus conclude that
2 �� 1. However, note that 3 is still an exception for 4 since

Table 2 Exceptions for DAG in Fig. 6b

Node Exceptions (E) Direct (Ed) Indirect (Ei)

2 {1, 4} ∅ {1, 4}
4 {3, 7, 9} {3, 7, 9} ∅
5 {1, 3, 4, 7, 9} ∅ {1, 3, 4, 7, 9}
6 {1, 3, 4, 7, 9} {1, 3, 4, 7, 9} ∅

L3 = [1, 4], [1, 6] ⊆ [1, 5][1, 8] = L4. For 4, nodes 7 and
9 also remain as exceptions. In general, using multiple inter-
vals drastically cuts down on the exception list, but is not
guaranteed to completely eliminate exceptions.

There are two main issues in GRAIL: (i) how to compute
the d random interval labels while indexing, and (ii) how to
deal with exceptions, while querying. We will discuss these
in detail later.

3.2 Index construction

The index construction step in GRAIL is very straightfor-
ward; we generate the desired number of post-order interval
labels by simply changing the visitation order of the chil-
dren randomly during each depth-first traversal. Algorithm 1
shows an implementation of this strategy; an interval Li

u is
denoted as

Li
u = [si

u, ei
u]

The number of possible labelings is exponential, but most
graphs can be indexed very compactly with a small number
of dimensions depending on the edge density of the graph.
Furthermore, since it is not guaranteed that all exceptions
will be eliminated, the best strategy is to cease label-
ing after a small number of dimensions (such as 5), with
reduced exceptions, rather than trying to totally eliminate

123

516 H. Yıldırım et al.

all exceptions, which might require a very large number of
dimensions.

Algorithm 1: GRAIL indexing: randomized intervals
RandomizedLabeling(G, d):
foreach i ← 1 to d do1

r ← 1 //global variable: rank of node2
Roots ← {n : n ∈ roots(G)}3
foreach x ∈ Roots, in random order do4

Call RandomizedVisit(x, i, G)5

RandomizedVisit(x, i, G) :
if x visited before then return6
foreach y ∈ Children(x), in random order do7

Call RandomizedVisit(y, i, G)8

r∗c ← min{si
c : c ∈ Children(x)}9

Li
x ← [min(r, r∗c), r]10

r ← r + 111

In terms of the traversal strategies, we aim to generate
labelings that are as different from each other as possible.
We experimented with the following traversal strategies.

Randomized: This is the strategy shown in Algorithm 1,
with a random traversal order for each dimension.

Randomized pairs: In this approach, we first randomize
the order of the roots and children, and fix it. We then generate
pairs of labeling, using left-to-right (L–R) and right-to-left
(R–L) traversals over each node’s children. The intuition is
to make the intervals as different as possible; a node that
is visited first in L–R order is visited last in R–L order. An
example of such a pair is shown in Fig. 6c.

Heuristic (guided) traversals: It is also possible to use
deterministic approaches with the hope of eliminating excep-
tions as much as possible. Intuitively, during the i th traversal,
the idea would be to choose the node with the most num-
ber of exceptions in the first i − 1 dimensions. However,
computing the number of exceptions after each traversal
is expensive; instead, we experiment with the following
heuristic approaches. For each of the approaches, during the
i th traversal, from any node in the graph, we choose the child
that maximizes the given objective:

• Maximum volume: The volume of a node is defined
as the volume of its hyper-rectangle in the first i − 1
traversals, given as

vol(u) =
i−1∏

j=1

(e j
u − s j

u)

Choosing u’s child in decreasing order of volume is based
on the intuition that a larger volume may contain more
exceptions than a smaller volume.

• Maximum of minimum interval: The volume of node
u can be large even if in one of the first i −1 traversals it
has a tight interval. Therefore, another approach is to sort
the children of u in decreasing order of their minimum
interval ranges in the first i − 1 traversals. The objective
is given as:

mi(u) = i−1
min
j=1

{
(e j

u − s j
u)

}

• Maximum adjusted volume: The nodes which have
bigger reachable sets (the number of nodes they can
reach) are expected to have larger intervals and thus
larger volumes. Therefore, a larger volume does not
directly imply larger number of exceptions. In the ideal
case, each node should have intervals whose lengths are
equal to the size of its reachable set. Thus, we adjust
our computations to eliminate the effect of reachable set
sizes by subtracting them from the actual values. The
adjusted volume of a node is given as

ad j_vol(u) =
i−1∏

j=1

(e j
u − s j

u − tcs(u))

where tcs(u) is the size of the reachable set of u. Since
computing the exact tcs values is not practical, we use
a linear-time estimation approach [9,10] to approximate
the tcs values.

• Maximum of adjusted minimum interval: This is sim-
ilar to the minimum interval, but using the maximum of
the adjusted intervals. That is, we sort the children of
each node u in decreasing order of

ad j_mi(u) = i−1
min
j=1

{
(e j

u − s j
u − tcs(u))

}

With randomized or randomized pair traversal, the index
construction time for GRAIL is O(d(n + m)), correspond-
ing to the d traversals for the graph G. For the other traversal
strategies, since we have to sort the children of each node,
the construction complexity is O(d(n + m) + dn(o log o)),
where o is the maximum out-degree in the graph. Comput-
ing adjusted interval (in terms of tcs) does not increase the
complexity as we used linear-time reachability set estima-
tion [9]. The space complexity of the GRAIL index is exactly
2dn = O(dn), since d intervals are kept per node.

3.3 Reachability queries

To answer reachability queries between two nodes, u and v,
GRAIL adopts a two-pronged approach. GRAIL first checks
whether Lv �⊆ Lu . If so, we can immediately conclude that

123

GRAIL: scalable index for reachability queries 517

u �� v, by Lemma 1. On the other hand, if Lv ⊆ Lu , nothing
can be concluded immediately since we know that the index
can have false positives, i.e., exceptions.

There are basically two ways of tackling exceptions. One
approach is to explicitly maintain an exception list per node.
Given node x , we denote by Ex , the list of exceptions involv-
ing node x , given as:

Ex = {y : (x, y) is an exception, i.e.,L y ⊆ Lx and x �� y}
For example, for the DAG in Fig. 6b, we noted that there
were 15 exceptions in total, as shown in Table 2. From the
table, we can see that E2 = {1, 4}, E4 = {3, 7, 9} and so
on. If every node has an explicit exception list, then once we
know that Lv ⊆ Lu , all we have to do is check if v ∈ Eu .
If yes, then the pair (u, v) is an exception, and we return
u �� v. If no, then the containment is not an exception, and
we answer u � v. We describe how to construct exception
lists in Sect. 4.

Unfortunately, keeping explicit exception lists per node
adds significant overhead in terms of time and space and fur-
ther does not scale to very large graphs. Thus, the default
approach in GRAIL is to not maintain exceptions at all.
Rather, GRAIL uses a “smart” DFS with recursive contain-
ment check-based pruning to answer queries. This strategy
does not require the computation of exception lists so its
construction time and index size are linear in the graph.

Algorithm 2: GRAIL query: reachability testing
Reachable(u, v, G):
if Lv �⊆ Lu then1

return False //u �� v2

else if use exception lists then3
if v ∈ Eu then return False //u �� v4
else return True //u � v5

else6
//DFS with pruning
foreach c ∈ Children(u) such that Lv ⊆ Lc do7

if Reachable(c, v, G) then8
return True //u � v9

return False //u �� v10

Algorithm 2 shows the pseudo-code for reachability test-
ing in GRAIL. Line 1 tests whether Lv �⊆ Lu , and if so,
returns false. Line 3 is applied only if exception lists are
explicitly maintained, either complete or memoized (see
Sect. 4): if v ∈ Eu , then GRAIL returns false, otherwise
it returns true. Lines 7–10 implement the default strategy of
recursive DFS with pruning. If there exists a child c of u,
which satisfies the condition that Lv ⊆ Lc, and we check
and find that c � v, we can conclude that u � v, and
GRAIL returns true (Line 9). Otherwise, if none of the chil-
dren can reach v, then we conclude that u �� v, and we

return false in Line 10. As an example, let us consider the
single interval index in Fig. 6b. Let u = 2, and let v = 4,
and assume that we are not using exception lists. Since
L4 = [1, 5] ⊆ [1, 9] = L2, we have to do a DFS to deter-
mine reachability. Both 3 and 5 are children of 2, but only 5
satisfies the condition that L4 = [1, 5] ⊆ [1, 8] = L5, we,
therefore, check if 5 can reach 4. Applying the DFS recur-
sion, we will check 6 and then finally conclude that 5 cannot
reach 4. Thus, the condition in Line 8 fails, and we return
false as the answer (Line 10), i.e., 2 �� 4.

Computational complexity: It is easy to see that query-
ing takes O(d) time if Lv �⊆ Lu . If exception lists are to be
used, and they are maintained in a hash table, then the check
in Line 3 takes O(1) time; otherwise, if the exceptions list
is kept sorted, then the times is O(log(|Eu |)). The default
option is to perform DFS, but note that it is possible we may
terminate early due to the containment-based pruning. Thus,
the worst-case complexity is O(n + m) for the DFS, but in
practice, it can be much faster, depending on the topologi-
cal level of u and depending on the effectiveness of pruning.
Thus, the query time ranges from O(d) to O(n + m).

4 Exception lists

A naive approach for computing the exception lists is to pre-
compute the transitive closure of each node and then to check
whether each pair of nodes is an exception or not. Its over-
all complexity is O(nm + n2d). O(nm) is for computing
transitive closure, and O(n2d) is the time spent for check-
ing each pair. It also requires quadratic space. This is clearly
not acceptable for large graphs. Instead, we suggest another
approach (see Algorithm 3) that has a better computational
complexity and is faster in practice.

We categorize exceptions into two classes: (i) If Lu con-
tains v,2 but none of the children of u contain v, then we
call the exception between u and v a direct exception. (ii) If
at least one child of u contains v as an exception, then we
call the exception between u and v an indirect exception. For
example, in Fig. 6b, 3 is a direct exception for 4, but 1 is an
indirect exception for 2, since 5 is a child of 2, and 1 is also an
exception for 5. Table 2 shows the list of direct (denoted Ed)
and indirect (denoted Ei) exceptions for the DAG in Fig. 6b.

The algorithm first computes the direct exceptions consid-
ering only the first dimension (or traversal). Then, indirect
exceptions from the first traversal are inferred via the method
ExtractIndirectExceptions. After each node, u has two lists,
Ed

u and Ei
u , namely the direct and indirect exception lists,

2 In this section, the phrases “u contains v”, “Lu contains v”, and
“u contains Lv” are used interchangeably. All are equivalent to say-
ing that Lu contains Lv .

123

518 H. Yıldırım et al.

and these lists are updated after each additional traversal, via
the method ShrinkExceptionLists.

Algorithm 3: GRAIL: exception list extraction
ExceptionListExtraction(G, L , d):
T ← Reverse Topological Order(G)1

Call FindDirectExceptions(G, L , Ed)2

Call ExtractIndirectExceptions(G, L1, Ed , Ei , C)3
foreach i ← 2 to d do4

ShrinkExceptionLists(G, L , Ed , Ei , C, dim)5

FindDirectExceptions(G, L , Ed) :
Initiate an empty IntervalTree I T6
T ← Sort by Increasing Interval Size7
foreach node u ∈ T do8

c← Sort children of u - with keys (s1
c j

(↑), e1
c j

(↓))9

qr ← Find query regions by scanning c10
foreach region ri ∈ qr do11

Query I T for the range ri12

Add resulting nodes to Ed
u13

Add the interval [s1
Ti

, e1
Ti
] to I T14

ExtractIndirectExceptions(G, L , Ed , Ei):
foreach node u in bottom up order do15

foreach x ∈ (
⋃k

j=1 Ec j) where c j is a child of u do16
if x is not a proper descendant of any child c then17

Add x to Ei
u18

Cx
u ← Number of children u that contain x19

ShrinkExceptionLists(G, L , Ed , Ei , C, dim):
foreach node u do20

foreach exception x ∈ Ed
u do21

if Ldim
u �⊇ Ldim

x then22

Remove x from Ed
u23

foreach parent p of u where x ∈ Ei
p do24

Cx
p ← Cx

p − 125

if Cx
p = 0 then26

Move x from Ei
p to Ed

p27

Direct exceptions: Let us assume that d = 1, that is, each
node has only one interval. GRAIL uses an interval tree [12]
which keeps a list of intervals. Querying the interval tree for
intervals intersecting a given range or interval of interest can
be done in O(log n + K) time, where n is the number of
intervals, and K is the number of results returned. Given the
interval labeling, GRAIL constructs the exception lists for all
nodes in the graph as described later. We illustrate how the
algorithm works on the example in Fig. 7, where we want to
determine the exceptions for node u. ci denote the children’s
intervals, whereas xi denote the exceptions to be found.

The nodes are processed in increasing interval size order
so that when a node u is being processed, all the intervals that
are contained in Lu are in the interval tree (line 7). To find the

Fig. 7 Direct exceptions: ci denote children, and xi denote exceptions,
for node u

direct exceptions of u, we look for the intervals that are not
covered by any of the children of u using the interval tree. We
first sort the children by increasing s1

c values, and if there is a
tie on these values, they are ordered by decreasing e1

c values
(line 9). It is clear that if an exception is contained completely
within any one of the children intervals, it cannot be a direct
exception. There are two cases where a direct exception can
occur: (i) The regions not covered by the union of the child
intervals. We can see that these regions are qr1 = [6, 8] and
qr3 = [13, 15] in our example. These regions are queried
in the interval tree, and we find the nodes x1 and x3 as the
direct exceptions of u. (ii) Some exceptions might fall into
the region of the union of two consecutive children as in the
case of c3 and c4 in our example. x2 is not covered by both
of them, but it is an exception for u so it should be a direct
exception. To find such nodes, we query a very tiny interval
at the end of the first child. In our case, we query the region
[11, 11+ δ], where δ is a constant less than 1. Note that we
can skip the end regions of the children that are contained by
other children such as in the case of c1 and c2. For example,
if we had queried the region [5, 5 + δ], it would return x4

that is indeed covered by c1 so it is not a direct exception.
Thus, scanning the intervals in that particular order is suffi-
cient to find out such query regions (line 10). Next, we query
each region in the interval tree and add the resulting inter-
vals to the direct exception list of the node being processed
(lines 11–13). Finally, that node is added to the interval tree
so that it can be found if it is an exception for other nodes.
The complexity of this method is O(no(log n + p)), where
o is the maximum out-degree, and p is maximum number
of exceptions returned by a query. This is because at each
node, we can query at most o times, each of which runs in
O(log n + p).

Indirect exceptions: Given that we have the list of direct
exceptions Ed

u for each node, the construction of the indirect
exceptions (Ei

u) proceeds in a bottom-up manner from the
leaves to the roots. Let Ec j = Ed

c j
∪ Ei

c j
denote the list of

direct or indirect exceptions for a child node c j of u. To com-
pute Ei

u , for each exception x ∈ Ec j we check whether there

123

GRAIL: scalable index for reachability queries 519

exists another child c that can reach x (line 17). This reach-
ability check is easy since by that time we know the exception
list of c (i.e., Ec) A child ck reaches to x if L1

x ⊆ L1
c and

x �∈ Ec. On the other hand, if there is no such children, then
x must be an indirect exception for u, and we add it to Eu

(line 24). We also keep a counter for each exception x of the
node u, Cx

u , which records the number of children of u that
have x as exception. These counters are utilized while incor-
porating the other traversals. For example, consider node 2
in Fig. 6b. Assume we have already computed the excep-
tion lists for each of its children, E3 = Ed

3 ∪ Ei
3 = ∅, and

E5 = Ed
5∪Ei

5 = {1, 3, 4, 7, 8}. We find that for each x ∈ E5,
nodes 1, and 4 fail the test with respect to E3, since L1 �⊆ L3

and L4 �⊆ L3, therefore, Ei
2 = {1, 4}, as illustrated in Table 2.

The complexity of this step is O(neo2), where o is the max-
imum out-degree, and e is maximum number of exceptions
a child node has. This is because every exception of a child
node ci of a node u has to be checked in the exception list of
every other child c j .

Multiple intervals: To find the exceptions when d > 1,
GRAIL first computes the direct and indirect exceptions from
the first traversal, as described previously. We maintain the
counters Cx

u to keep track of the number of children of u
which has x in their exception list. It is worth noting that an
exception can be removed only when Cx

u becomes zero. For
computing the remaining exceptions after the i th traversal,
GRAIL processes the nodes in a bottom-up order. For every
direct exception x ∈ Ed

u , remove x from the direct exception
list if x is not an exception for u for the i th dimension (line
24) and further decrement the counter for x in the indirect
exceptions list Ei

p for each parent p of u (line 25). Also, if
after decrementing, the counter for any indirect exception x
becomes zero, then move x to the direct exception list Ed

p
of the parent p, providing Lx ⊆ L p (lines 26–27). In this
way, all exceptions can be found out for the i-th dimension
or traversal. The complexity of this step is O(nφe) as every
direct exception is checked in constant time, and the counters
for the parent nodes are decremented if needed in O(φ) time,
where φ is the maximum in-degree.

Therefore, the overall complexity of exception list
maintenance is O(neo(log n + e + o)) with the reasonable
assumption of maximum in-degree is in the order of maxi-
mum out-degree. It is expected to be better than O(nm) as
long as e is not close to n. In practice, the bottleneck of
this algorithm is the second step as there are many excep-
tions just after the first traversals. However, the number of
exceptions reduces drastically with the addition of second
traversal; therefore, the shrinking exception lists step runs
very fast although it is called multiple times. It is possible to
speedup the algorithm if direct exceptions can be found by
considering the first two traversals; we plan to explore this
idea in the future.

5 GRAIL optimizations

In this section, we discuss several optimizations over the
basic GRAIL approach. The proposed methods can be very
effective in speeding up the query times.

5.1 Topological level filter

Once the graph is transformed into a directed acyclic graph,
the nodes can be divided into levels so that the leaf nodes are
placed into the first level, and the interior nodes are placed in
a higher level than all of their children. Therefore, the level
of u is

lu =
{

1 if u is leaf
1+ max

v∈children(u)
{lv} otherwise

There is no possibility for a node u at level lu to reach
another node v at level lv if lv ≤ lu . Thus, the topological
level filter can be utilized during GRAIL’s recursive DFS to
prune unreachable node pairs. Even though this filter is very
simple, our experimental results show that it is very effective
in improving query times.

5.2 Different search strategies

We perform a depth-first search from the source node to
the target node in Algorithm 2 for reachability testing. How-
ever, it is not always the best strategy. Breadth-first search
(BFS) guarantees to find the shortest path with the cost of
using more memory, though this is not a limitation in our
case because the memory usage is limited by the graph size.
In average, BFS is expected to be faster considering the cases
where the target node is close to the source node that has a
large reachability set. However, this difference might not be
apparent in sparse graphs where DFS is also very fast. In neg-
ative queries, they both have to exhaust the whole reachable
set to conclude non-reachability, so they are expected to have
similar performance.

Besides the standard graph search strategies of DFS and
BFS, we also consider bidirectional breadth-first search
(BBFS) that has a few advantages over BFS. In bidirec-
tional search, two BFS are started simultaneously utilizing

separate queues for the query u
?� v. The first adds all the

children ci ∈ children(u) to a BFS queue QC of children,
whereas the second adds all the parents pi inparents(v) to
another BFS queue Q P of parents. Then, BBFS alternating-
ly extracts one node from QC pushing its children back to
QC and extracts one node from Q P pushing its parents back
to Q P . BBFS stops positively if any newly added node ci is
already in Q P , or any newly added node p j is already in QC ,
and BBFS returns u �� v the moment either of the queues
becomes empty. Furthermore, BBFS prunes the branch of ci

123

520 H. Yıldırım et al.

by not adding into QC if Lv �⊆ Lci . Symmetrically, p j is
not added to Q P if L p j �⊆ Lu . The first advantage of bidi-
rectional search is that it can answer positive queries faster
when the average degree of the graph is high. In negative que-
ries, the worst-case scenario is that bidirectional search takes
twice as much time as a BFS would take; however, there
are substantial amount of cases where bidirectional search
is much faster than BFS. For instance, consider the case in
which the source node has a large reachable set and the tar-
get has a small number of ancestors. In this scenario, bidi-
rectional search terminates after visiting the ancestors of the
target node that is significantly smaller than the search space
of a standard BFS that has to exhaust the large reachable set
of the source node.

Our experiments show that BBFS can be a very effective
strategy, especially in combination with the level filter. In
fact, we use the three different search strategies DFS, BFS
and BBFS (with and without the level filter) as the baseline
methods to compare against GRAIL as well as other indexing
methods.

5.3 Positive cut filter

Recall that GRAIL use direct DAG interval labeling to guar-
antee that if u � v then Lv ⊆ Lu . However, it can have false
positives, i.e., for a pair of nodes with Lv ⊆ Lu , it may be
that case that u �� v. Recall also that other interval labeling
methods try to label only a subtree (or a set of paths), and
for paths restricted to the tree edges (which typically consti-
tute only a small fraction of the DAG), reachability can be
guaranteed. It is possible for GRAIL to also make use of the

subtree edges, via a new pruning method we call positive cut
filter.

Notice that from each of the d traversals in GRAIL, we
can easily keep track of additional interval labels restricted
to only a (spanning) subtree of the input DAG. For exam-
ple, in Fig. 8a, a min-post-labeling that is produced by a
traversal of GRAIL is shown. We call these set of labels the
exterior labels, denoted as E Lu for node u. Figure 8b is the
min-post-labeling of the corresponding spanning tree, which
is composed of the solid edges (the dashed edges are the
non-tree edges). We call this set of labels the interior labels,
denoted as I Lu for node u. The figure shows only one label,
but for d traversals, there are a set of d exterior and interior
labels.

Given a query u
?� v, we can first check whether

I Lv ⊆ I Lu . If yes, then we are guaranteed that u � v,
and we can immediately return a positive answer. On the
other hand, if the interior check fails, then we default to the
basic GRAIL strategy of first checking the exterior set and
then recursive search. That is, we next check if E Lv �⊆ E Lu .
If yes, then we immediately return a negative answer u �� v.
If no, then we do a recursive DFS (or BBFS, etc.). This
positive cut filter strategy allows GRAIL to substantially
speedup the positive queries. In effect, GRAIL captures the
core benefits of interval labels in both directions, allowing
it to cut-off the search for guaranteed positive pairs (over
the tree edges, the interior labels), and also allowing it to
prune the non-reachable pairs (using the exterior labels).
Figure 8c illustrates this positive cut filter via a Venn dia-
gram over d = 2 traversals. The solid black line (rounded
outer rectangle) demarcates the universal set of all possible

(a) (b) (c)

Fig. 8 Venn diagram of pairs wrt. reachability. a Exterior labels. b Interior labels. c Venn diagram

123

GRAIL: scalable index for reachability queries 521

ordered pairs of nodes (all possible queries) in the graph.
The solid red line (inner rounded rectangle) denotes the tran-
sitive closure, i.e., the set of all reachable pairs of nodes.
Each GRAIL traversal is associated with two label sets. The
exterior set defined by the min-post-labeling of the graph is
a superset of the reachable set (denoted by the outer blue and
green hatched regions). The interior set defined by the min-
post-labeling of the tree is a subset of the reachable set (inner
solid blue and green regions). The intersection of the exte-
rior sets (the crosshatched region) defines the ordered pairs
for whom GRAIL is not sure whether they are reachable or
not. The union of the interior sets defines the set of ordered
pairs which GRAIL guarantees to be reachable. If the two
checks over the interior or exterior labels fail, then GRAIL
must perform a recursive search to determine reachability;
this corresponds to the visible crosshatched region, which
excludes the interior regions. The recursive search continues
as long as it is in the crosshatched region. GRAIL prunes a
branch whenever it exits the region and it halts with a positive
result whenever it reaches a pair inside the union of interior
sets.

Experimental results in Sect. 6 show that in many cases
using positive cut filter substantially improves the GRAIL
query performance. It is especially very effective on posi-
tive queries. Note that it does not deteriorate the construc-
tion time as the exterior and interior labelings can be created
simultaneously. Furthermore, instead of doubling the index
size, the increase is only a factor of 1.5. This is because, the
two intervals (interior and exterior) per node can be stored
by three integers. The interval label for node u for the i th

dimension/traversal is given as Li
u = [si

u, mi
u, ei

u], where
E Li

u = [si
u, ei

u] and I Li
u = [mi

u, ei
u] are the exterior and

interior intervals, respectively. For example, in Fig. 8, the
exterior label E L5 = [1, 8] and interior label I L5 = [1, 7]
for node 5 are stored as a single label L5 = [1, 7, 8].
Algorithm 4 shows the GRAIL querying method using the
positive cut filter. For clarity, the method is shown using sep-
arate E Lu and I Lu labels, but in reality, only Lu is main-
tained.

Algorithm 4: GRAIL + query: reachability testing
Reachable(u, v, G):
if I Lv ⊆ I Lu then1

return True //u � v2

else if E Lv �⊆ E Lu then3
return False //u �� v4

else5
//DFS with pruning
foreach c ∈ Children(u) such that E Lv ⊆ E Lc do6

if Reachable(c, v, G) then7
return True //u � v8

return False //u �� v9

6 Experiments

We conducted extensive experiments to compare our algo-
rithm with the best existing methods. All experiments are per-
formed in a machine with x86_64 Dual Core AMD Opteron
Processor 870, which has 8 processors and 32 GB ram. We
compared our algorithm with several baseline search meth-
ods like DFS (depth-first), BFS (breadth-first) and BBFS
(bidirectional BFS), as well as state-of-the-art reachability
indexes, such as those based on interval labeling: Interval
(INT) [1], GRIPP [30] and Dual Labeling (Dual) [32], based
on path decomposition: PathTree (PT) [22], and variants of
2HOP indexing: HLSS [18] and 3HOP [21]. The code for
these methods was obtained from the authors, though in some
cases, the original code had been reimplemented by later
researchers. We implemented GRIPP in-house.

We evaluate all methods in terms of the query time, index
size and index construction time. All query times reported
below are aggregate times for 100 K queries. We generate
100 K random query pairs and issue the same set of que-
ries to all methods. In the tables later, we use the notation
–(t), and –(m), to note that the given method exceeds the
allocated time (10 M milliseconds (ms) for small sparse, and
20 M ms—about 5.5 h—for all other graphs; M ≡ million)
or memory limits (32 GB RAM; i.e., the method aborts with
a bad-alloc error). All times reported are averages over
three runs.

6.1 Data sets

We used a variety of real graph data sets, both small and
large, as well as large synthetic ones, as described below. We
present these graphs in 4 tables each of which lists the follow-
ing properties: node size, edge size, average degree, average
clustering coefficient (CC) and effective diameter (ED). As
we are dealing with directed graphs, the average degree of
a graph is equal to the ratio of the number of edges-to-the
number of nodes. We used SNAP [25] software to compute
the values of clustering coefficient and effective diameter.

Small sparse: These are small, real graphs, with average
degree less than 1.2, taken from [22], and listed in Table 3.
xmark and nasa are XML documents, and amaze and
kegg are metabolic networks, first used in [30]. Others were
collected from BioCyc (http://www.biocyc.org), a collection
of pathway and genome databases. amaze and kegg have
a different structure, in that they have a central node that has
a very large in-degree and out-degree. Therefore, these two
graphs have smaller effective diameter although the number
of reachable pairs is very high compared to other graphs.

123

http://www.biocyc.org

522 H. Yıldırım et al.

Table 3 Small and sparse real graphs

Data set Nodes Edges Avg deg CC ED

agrocyc 12,684 13,657 1.06 0.33 11.98

amaze 3,710 3,947 1.06 0.31 3.79

anthra 12,499 13,327 1.07 0.32 11.89

ecoo 12,620 13,575 1.08 0.32 12.23

human 38,811 39,816 1.03 0.39 11.74

kegg 3,617 4,395 1.22 0.26 4.08

mtbrv 9,602 10,438 1.09 0.30 11.90

nasa 5,605 6,538 1.17 0.07 14.22

vchocyc 9,491 10,345 1.09 0.07 11.91

xmark 6,080 7,051 1.16 0.00 11.34

Table 4 Small and dense real graphs

Data set Nodes Edges Avg deg CC ED

arxiv 6,000 66,707 11.12 0.35 5.48

citeseer 10,720 44,258 4.13 0.28 8.36

go 6,793 13,361 1.97 0.07 10.92

pubmed 9,000 40,028 4.45 0.10 6.32

yago 6,642 42,392 6.38 0.24 6.57

Small dense: These are small, dense real-world graphs
taken from [21] (see Table 4). arxiv,3 citeceer,4 and
pubmed5 are all citation graph data sets. GO is a subset of the
Gene Ontology6 graph, and yago is a subset of the seman-
tic knowledge database YAGO.7 Among these graphs, go
is significantly different from others with its low average
degree and clustering coefficient and high diameter. Since it
is a graph representing a taxonomy, triangles in it implies the
existence of redundant edges (e.g., if node a has b and c as
neighbors and b has c, the edge between a and c is redun-
dant in a taxonomy due transitivity). Therefore, it is natural
to have low clustering coefficient.

Large real: To evaluate the scalability of GRAIL on real
data sets, we collected 7 new data sets which have previously
not been used by existing methods (see Table 5).citeseer,
citeseerx and cit-patents are citations networks in
which non-leaf nodes have 10–30 outgoing edges on average.
However, citeseer is very sparse because of data incom-
pleteness. citeseerx8 is the complete citation graph as of

3 http://www.arxiv.org.
4 http://www.citeseer.ist.psu.edu.
5 http://www.pubmedcentral.nih.gov.
6 http://www.geneontology.org.
7 http://www.mpi-inf.mpg.de/suchanek/downloads/yago.
8 http://www.citeseerx.ist.psu.edu.

Table 5 Large real graphs: sparse and dense

Data set Nodes Edges AD CC ED

citeseer 340,945 312,282 0.92 0 5.7

uniprot22m 1,595,444 1,595,442 1.00 0 3.3

uniprot100m 16,087,295 16,087,293 1.00 0 4.1

uniprot150m 25,037,600 25,037,598 1.00 0 4.4

citeseerx 6,540,399 15,011,259 2.30 0.06 8.4

cit-patents 3,774,768 16,518,947 4.38 0.09 10.5

go-uniprot 6,967,956 34,770,235 4.99 0 4.8

Table 6 Large synthetic graphs

Data set Nodes (M) Edges (M) Avg deg CC ED

rand10m2x 10 20 2 0 13.61

rand10m5x 10 50 5 0 8.75

rand10m10x 10 100 10 0 6.86

rand100m2x 100 200 2 0 ?

rand100m5x 100 500 5 0 ?

March 2010. cit-patents9 includes all citations within
patents granted in the US between 1975 and 1999. go-
uniprot is the joint graph of Gene Ontology terms and
the annotations file from the UniProt10 database, the uni-
versal protein resource. Gene Ontology is a directed acyclic
graph of size around 30 K, where each node is a term. UniProt
annotations consist of connections between the gene prod-
ucts in the UniProt database and the terms in the ontology.
UniProt annotations file has around 7 million gene products
annotated by 56 million annotations. The remaining uniprot
data sets are obtained from the RDF graph of UniProt. uni-
prot22m is the subset of the complete RDF graph that has
22 million triples, and similarly, uniprot100m and uni-
prot150m are obtained from 100 million and 150 million
triples, respectively. These are some of the largest directed
acyclic graphs ever considered for reachability testing. The
reasons why these graphs have zero clustering coefficient
vary. uniprot graphs have distinctive topology of having
many roots that are connected to a single sink node via short
paths. It is kind of a tree whose edges are reversed. Therefore,
there exists no triangles. For go-uniprot, the reason is its
being a taxonomy, and for �citeseer, it is data incompleteness.

Large synthetic: To test the scalability with different den-
sity setting, we generated random DAGs, with 10 and 100 M
nodes and with average degrees of 2, 5 and 10 (see Table 6).
We first randomly select an ordering of the nodes which cor-
responds to the topological order of the final dag. Then, for

9 http://www.snap.stanford.edu/data.
10 http://www.uniprot.org.

123

http://www.arxiv.org
http://www.citeseer.ist.psu.edu
http://www.pubmedcentral.nih.gov
http://www.geneontology.org
http://www.mpi-inf.mpg.de/suchanek/downloads/yago
http://www.citeseerx.ist.psu.edu
http://www.snap.stanford.edu/data
http://www.uniprot.org

GRAIL: scalable index for reachability queries 523

Table 7 Small sparse graphs:
construction time (ms) Data set GRAIL HLSS INT Dual PT 3HOP GRIPP

agrocyc 18.33 12,832.40 5,188.56 12,092.73 269.71 108,761.47 4.72

amaze 5.67 684,259.17 3,074.14 4,621.47 839.31 3,387,549.83 2.73

anthra 17.04 11,935.63 4,916.71 11,375.35 259.08 95,874.58 4.64

ecoo 20.26 12,958.68 5,058.26 11,892.17 269.01 110,114.53 4.76

human 52.33 129,599.17 45,352.85 128,064.60 831.37 −(m) 16.02

kegg 5.83 1,112,604.10 3,466.63 5,381.69 968.50 4,044,018.00 2.56

mtbrv 14.46 3,630.32 2,517.65 3,130.82 204.91 65,721.12 3.53

nasa 9.29 1,748.71 805.65 1,037.23 124.67 50,839.88 2.60

vchocyc 15.04 4,840.56 2,543.42 4,350.59 201.27 66,401.13 3.47

xmark 11.31 68,687.95 1,512.11 1,788.98 260.53 197,554.38 2.60

Table 8 Small sparse graphs:
index size (Num. Entries) Data sets GRAIL HLSS INT Dual PT 3HOP GRIPP

agrocyc 88,788 40,097 27,100 58,552 39,027 38,631 27,314

amaze 25,970 17,110 10,356 433,345 12,701 10,221 7,894

anthra 87,493 33,532 26,310 37,378 38,250 38,112 26,654

ecoo 88,340 34,285 26,986 58,290 38,863 38,449 27,150

human 271,677 109,962 79,272 54,678 117,396 −(m) 79,632

kegg 25,319 17,427 10,242 504K 12,554 10,141 8,790

mtbrv 67,214 30,491 20,576 41,689 29,627 29,324 20,876

nasa 39,235 20,976 18,324 5,307 21,894 18,913 13,076

vchocyc 66,437 30,182 20,366 26,330 29,310 28,988 20,690

xmark 42,560 23,814 16,474 16,434 20,596 21,161 14,102

the specified number of edges, we randomly pick two nodes
and connect them with an edge from the lower to higher
ranked node. Since we randomly select the neighbors of the
nodes, it is very unlikely to choose two nodes that are already
connected among millions of nodes. Therefore, clustering
coefficient is zero in these graphs. SPAN was not able to
scale to 50 million nodes for computing effective diameter,
so we show them with question mark.

6.2 Performance comparison with graph indexes

Before studying the sensitivity of GRAIL to various param-
eters and before evaluating the effectiveness of the various
search strategies and optimizations, we compare GRAIL’s
performance with existing state-of-the-art graph reachability
indexes, as well as the baseline search methods.

Based on our experiments (outlined later), the default
strategy for GRAIL is to use randomized pairs traversal to
construct the labeling (with d = 2 for small sparse graphs,
d = 3 for small dense graphs and d = 5 for large graphs).
Furthermore, GRAIL uses the topological level and posi-
tive cut filters and does not maintain exception lists. It uses

DFS with recursive pruning as the default search strategy.
We denote by GRAIL* the basic approach, i.e., randomized
traversals, with no level or positive cut filters, and without
exceptions lists (using DFS for recursive search).

6.2.1 Small real data sets: sparse and dense

Tables 7, 8 and 9 show the index construction time, query time
and index size for the small, sparse, real data sets. Tables 10,
11 and 12 give the corresponding values for the small, dense,
real data sets. The last column in Tables 9 and 12 shows the
number of reachable query node pairs, called positive que-
ries, out of the 100K test queries; the query node pairs are
sampled randomly from the graphs, and the small counts are
reflective of the sparsity of the graphs. The best results are
shown in bold.

Small sparse graphs: On the sparse data sets (see Table 7),
GRIPP has the smallest construction time among all indexing
methods, though GRAIL (with d = 2 traversals) is a close
second. PathTree is typically an order of magnitude slower
than GRAIL, and the other methods are even more expensive

123

524 H. Yıldırım et al.

Table 9 Small sparse graphs: query time (ms)

Data set GRAIL HLSS INT Dual PT 3HOP GRIPP DFS-L BBFS-L #Pos.Q

agrocyc 20.83 71.10 162.82 70.93 8.42 122.63 70.95 34.26 142.31 133

amaze 16.46 99.20 103.05 62.91 7.08 50.51 73.21 693.76 196.66 17,259

anthra 20.61 70.66 160.67 65.50 8.26 117.15 65.77 31.06 143.91 97

ecoo 20.74 74.35 161.41 68.22 8.07 120.40 74.94 35.03 143.47 129

human 22.69 80.36 237.73 76.57 16.93 −(m) 57.82 32.31 165.34 12

kegg 17.95 106.88 104.06 64.11 7.25 52.13 72.27 1,086.81 265.52 20,133

mtbrv 18.11 78.23 145.61 69.46 7.42 106.21 80.14 34.56 128.61 175

nasa 19.93 90.78 129.52 63.20 7.85 76.74 165.40 92.37 135.26 562

vchocyc 17.86 68.43 145.03 62.64 7.22 105.60 77.03 34.27 127.60 169

xmark 30.20 91.00 122.24 76.02 7.50 100.40 89.79 321.22 164.66 1,482

Table 10 Small dense graphs:
construction time (ms) Data set GRAIL HLSS INT Dual PT 3HOP GRIPP

arXiv 29.71 –(t) 20,097.87 386,701.59 9,770.60 8,854,231.00 22.57

citeseer 46.82 117,865.33 6,712.07 30,213.80 710.29 110,783.48 115.28

go 20.05 68,030.83 1,122.11 7,491.06 219.43 29,578.30 4.88

pubmed 35.05 142,844.19 5,043.40 25,832.03 768.78 293,161.20 181.80

yago 24.60 28,259.51 2,593.61 5,329.56 506.53 30,602.29 44.95

Table 11 Small dense graphs:
index size (Num. Entries) Data sets GRAIL HLSS INT Dual PT 3HOP GRIPP

arxiv 60,000 −(t) 145,668 14,057,239 86,855 47,472 133,414

citeseer 107,200 114,088 142,632 30,615,323 91,820 51,035 88,516

go 67,930 60,287 40,644 11,000,662 37,729 27,764 26,722

pubmed 90,000 102,946 181,260 15,040,251 107,915 54,531 80,056

yago 66,420 57,003 57,390 4,371,065 39,181 27,038 84,784

Table 12 Small dense graphs: query time (ms)

Data set GRAIL HLSS INT Dual PT 3HOP GRIPP DFS-L BBFS-L #Pos.Q

arXiv 380.94 −(t) 269.64 80.42 24.73 355.36 4,041,302.42 6,599.51 665.56 15,459

citeseer 64.04 327.45 222.12 80.58 24.61 184.21 9,064.53 203.80 256.54 388

go 30.79 274.64 148.14 77.01 11.67 105.23 2,015.98 106.07 164.00 241

pubmed 70.07 307.48 244.04 76.79 21.85 179.81 7,551.03 202.00 190.14 690

yago 19.64 256.72 174.86 64.91 14.18 117.08 1,122.39 29.86 161.17 171

(several orders of magnitude slower). 3HOP could not run on
human, since it exhausted the memory (denoted –(m)). INT
and GRIPP have the smallest index size (see Table 8). The
other methods have comparable index sizes, though GRAIL
has the largest number of entries (about 3 times larger than
INT).

In terms of query times on the small sparse graphs (see
Table 9), PathTree is the best, with GRAIL in the second
place, typically being 2–4 times slower. On these small

sparse data sets, it is worth noting that, with few exceptions,
DFS-L (DFS with level filter) is faster than all index-
ing methods other than PathTree and GRAIL. The excep-
tions are amaze, kegg and xmark, where DFS-L is
not as effective; on these graphs, BBFS-L is able to
improve the query times by a factor of 2–4. The reason
why DFS-L suffers in these graphs is the graph topol-
ogy. These graphs have a central node which has a very
high in-degree and out-degree; therefore, in most of the

123

GRAIL: scalable index for reachability queries 525

Table 13 Large real graphs:
construction time (ms) and
index size

Data set Construction time (ms) Index size

GRAIL GRIPP GRAIL GRIPP

cit-patents 64,676.35 41,453.16 60,396,288 33,037,894

citeseer 5,791.04 234,166.72 11,103,152 624,564

citeseerx 58,746.74 1,174,080 104,646,416 30,022,520

go-uniprot 89,821.39 41,851.86 111,487,296 69,540,470

uniprot22m 2,767.63 2,642.50 11,168,108 3,190,884

uniprot100m 31,919.36 33,863.25 112,611,065 32,174,586

uniprot150m 49,355.86 59,986.65 175,263,200 50,075,196

Table 14 Large real graphs:
query times (ms) Data set GRAIL GRIPP DFS-L BFS-L BBFS-L #Pos.Q

cit-patents 1,369.02 31,177,982 25,774.05 3,407.33 5,064.83 39

citeseer 27.04 362.91 25.749 86.10 157.49 0

citeseerx 113.43 27,932.54 119,260.48 4,372.09 4,162.48 239

go-uniprot 31.06 4,864.87 37.78 157.56 271.21 0

uniprot22m 22.65 279.94 24.52 120.32 174.13 0

uniprot100m 59.35 496.59 63.47 155.44 220.87 0

uniprot150m 52.66 530.61 71.55 145.55 238.51 0

cases, a DFS has to scan the children of that central
node to arrive the target. Whereas BBFS can terminate
the search without scanning the children of the central
node. Given the fact that the baseline graph search meth-
ods have no construction time or indexing size over-
head, they are quite attractive for these small data sets.
A more detailed comparison among DFS, BFS and BBFS
(with and without the level filter) appears in Tables 18, 19
and 20.

Small dense graphs: On the small dense data sets, GRAIL
(with d = 3) has the smallest index construction times (see
Table 10), being up to 6 times faster than the closest rival
GRIPP. Other methods are orders of magnitude slower, and
HLSS could not run onarxiv. The index size (see Table 11)
is comparable for all methods except DUAL. 3HOP has the
smallest index.

On these small dense graphs, PathTree is still the fastest
indexing method, with GRAIL in the second place, being typ-
ically 2–3 times slower than PathTree (see Table 12). Once
again, DFS-L is comparable to the other indexing methods.
On arXiv, BBFS-L is able to remedy the shortcomings of
DFS-L. It is also worth noting that GRIPP’s query perfor-
mance acutely deteriorates as the average degree increases.
One can conclude that for the small dense graphs, while pure
search-based methods are quite acceptable, indexing does
deliver significant benefits in terms of query time perfor-
mance.

6.2.2 Large data sets: real and synthetic

Large real graphs: Table 13 shows the construction time
and index size on the large real graphs. On these graphs,
with the exception of GRAIL and GRIPP, none of the other
indexing methods were able to run. PathTree aborted with a
memory limit error (–(m)) on cit-patents and cite-
seerx, and it exceeded the 20 M ms time limit (–(t)) for
the other data sets. It was able to run only on citeseer
data (130,406 ms for construction, and the index size was
2,360,732 entries). While GRIPP’s index size is smaller than
GRAIL’s, its construction time can be up to 40 times slower
than GRAIL. The main index construction of GRIPP is linear
on the number of edges; however, by default, it also extracts
a list of special nodes (i.e., stop nodes) to speedup the que-
rying. Therefore, in some cases such as in citeseer, its
construction time does not reflect its linear computational
complexity.

From the query times (see Table 14), we can observe that
GRAIL can easily scale to large data sets (the only limita-
tion being that it does not yet process disk-resident graphs).
We can see that GRAIL outperforms GRIPP by orders of
magnitude, and it is faster than BFS-L (the best among the
search-based methods) by 3–40 times on the denser graphs:
go-uniprot, cit-patents and citeseerx. On the
other data sets, which are very sparse, GRAIL is still the win-
ner, while pure DFS is the close second. On these graphs,
we use d = 2 traversals for GRAIL. It is worth noting that

123

526 H. Yıldırım et al.

Table 15 Large synthetic graphs: construction time (ms) and index size

Size Deg. Construction time (ms) Index size

GRAIL GRAIL* GRIPP GRAIL (M) GRAIL* (M) GRIPP (M)

rand10m 2 52,782.9 53,368.0 585,639.3 70 40 40

5 259,631.1 244,291.0 48,338.5 160 100 100

10 433,898.4 412,623.3 80,471.1 160 100 200

rand100m 2 336,722.2 313,333.4 9,920,415.0 350 200 200

5 1,661,943.6 1,458,824.1 292,427.0 800 500 500

Table 16 Large synthetic graphs: query times (ms)

Size Deg. GRAIL GRAIL* GRIPP DFS-L BFS-L BBFS-L #Pos.Q

rand10m 2 174.8 259.8 1,955.9 326.3 266.9 476.4 0

5 6,102.9 5,764.5 54,212,516.0 75,732.8 13,011.2 17,449.6 17

10 1,523,248.0 1,417,776.5 −(t) 35,372,076.0 2,815,736.7 1,734,676.1 5,522

rand100m 2 229.0 326.7 2,646.6 532.0 343.0 603.4 0

5 9,281.9 7,241.1 -(t) 130,050.5 16,229.6 23,115.3 6

PathTree took 47.4 ms for querying on the sparser cite-
seer data, which is still 2 times slower than GRAIL. It
is also interesting that GRIPP is still 10 times slower than
GRAIL; however, it uses one-third of index size. If memory
is an issue, one should definitely choose with DFS with a
simple topological filter on such sparse graphs.

Large synthetic graphs: We also tested the scalability of
GRAIL on the large synthetic graphs, which have 10M and
50M nodes, with different average degrees: 2, 5 and 10.
We used 2 traversals for GRAIL when the average degree
is 2, and 5 traversals otherwise. Table 15 shows the construc-
tion time and index sizes. Once again, none of the indexing
methods other than GRAIL and GRIPP could handle these
large graphs. PathTree too aborted on all data sets, except
for rand10m2xwith avg. degree 2; it took 526,004.7ms for
construction, and its index size was 69,378,979 entries). The
table also includes the performance of GRAIL*, the basic
approach without any optimizations. We see that GRIPP con-
struction time and index size are smaller for dense graphs.
Because its construction time is linear on the number of edges
and GRIPPs index size is equal to twice the number of edges.
However, GRIPPs construction is again an order of mag-
nitude slower for sparser graphs. (the reason is discussed
above) Looking at the query times (Table 16), GRAIL is
orders of magnitude faster than GRIPP. In fact, when que-
rying on rand10m10x, GRIPP exceeded the 20 M ms time
limit. Note that DFS also exceeded the time limit in that data
set. We can see that for these data sets GRAIL can be orders
of magnitude faster than search-based methods. However, for
very dense graphs such as rand10m10x, BBFS gets closer
to GRAIL. PathTree ran only on rand10m2x, with query time

211.7 ms, where GRAIL took 174.8 ms. It is interesting to
note that for these large, and sparse synthetic graphs, the
positive cut and level filters can slightly slowdown the query
times for GRAIL, since the basic GRAIL* approach can be
about 5–7% faster. Once again, we conclude that GRAIL is
the most scalable reachability index for large graphs, espe-
cially with increasing density. The fastest index PathTree
does not scale to large graphs, and the scalable index GRIPP
cannot provide fast querying with increasing density. Indeed,
even pure search methods with level filters are preferable to
them.

Synthetic scale-free graphs: Additionally, we generated
some random scale-free graphs using Albert–Barabasi
preferential attachment network growth model [2] to exam-
ine the behavior of the leading methods on graphs that have
power-law degree distribution. We generated 3 graphs of
10,000 nodes with average degrees of 2, 5 and 15, and 2
graphs of 100,000 nodes with average degrees of 2 and 5.

This particular set of experiments were performed on a
system that has four 2.5 Ghz processors with 4 GB memory.
Table 17 shows the comparison between GRAIL, GRIPP and
PathTree. GRIPP is still fast at indexing, but even for average
degree 2, it provides the worst query time. It gets drastically
worse as the density increases. PathTree provides the fastest
querying once it manages to construct the index; however,
it is not scalable since it suffers memory problems as the
density increases (e.g., for 100,000 node graph with average
degree 5). GRAIL is still fast at indexing and querying in all
cases. These results generally conform to the results in the
previous experiments.

123

GRAIL: scalable index for reachability queries 527

Table 17 Synthetic scale-free graphs

Data set Construction time (ms) Query time (ms)

Nodes Deg PosQ GRAIL GRIPP PathTree GRAIL GRIPP PathTree DFS

10000 2 353 11.39 6.49 281.11 23.11 4026.49 9.14 209.35

10000 5 4,287 16.22 12.13 3,537.25 117.24 561,482.62 34.16 2,561.99

10000 15 21,222 48.41 34.14 38,716.01 658.91 −(t) 67.91 16,251.73

100000 2 94 169.86 81.45 11,581.34 46.86 16,529.73 39.48 521.98

100000 5 1,842 206.82 156.96 −(m) 511.88 −(t) −(m) 12,422.07

(a) (b)

Fig. 9 Reachability queries: a positive, b deep positive distance

6.3 Graph search strategies: baseline methods

We saw previously that pure graph search methods like DFS,
BFS and bidirectional BFS can be very effective in answering
reachability queries, especially for the smaller graphs. In
this section, we conduct a detailed evaluation of these
strategies—the baseline methods—with and without the
level filter.

We show results on three sets of queries. As one set we use
the same 100K random query pairs used in all of the results
above. However, since the graphs are very sparse, the vast
majority of these pairs are not reachable. As an alternative,
we generated 100 K reachable pairs by simulating a random
walk (start from a randomly selected source node, choose
a random child with 99% probability and proceed, or stop
and report the node as target with 1% probability). Finally,
we generated an additional set of 100K deep positive que-
ries, where by deep we mean longer path lengths between
the source and destination nodes in the query. The frequency
distribution for the number of hops between source and tar-
get nodes for the positive queries and deep positive queries
is plotted in Fig. 9. We can see the random positive que-
ries have hop lengths from 1 to 18, but the deep positive
pairs start and end at longer hop lengths. For example, for
cit-patents, the hop length ranges from 1 to 12, but for
the deep positive queries, the hop length ranges from 10 to
15.

We compare the query time performance of depth-first,
breadth-first and bidirectional breadth-first approaches both
with and without the topological level filter in Tables 18, 19
and 20. We use DFS, BFS and BBFS for the three search
strategies without the level filter, and DFS-L, BFS-L and
BBFS-L with the level filter.

Comparing the query times on the random query pairs
(Table 18), we can observe that the simple topological level
filter is extremely effective in pruning. It improves the per-
formance of all the search methods. On the small graphs,
the improvement is typically 2–4 times, whereas on the
large graphs the improvement can be up to a factor of 10.
One can also observe that DFS-L is invariably the preferred
method for the sparse graphs. However, there are a few excep-
tions, such as amaze, kegg, xmark and arxiv, where
BBFS-L can be an order of magnitude faster. The distinc-
tion of these graphs is their smaller effective diameter. On
the large graphs, BFS-L seems to be the preferred method,
since it is either the fastest method (by a factor of 2 or higher)
or is not very far from the best method. BBFS-L is a close
second.

On the positive and deep positive queries (Tables 19,
20), the effectiveness of the level filter is not very much.
This is because of the fact that these are all reachable
pairs of nodes and cannot be filtered out. Thus, the over-
head of applying the level check consistently slows down
the query times for all the three search methods, with

123

528 H. Yıldırım et al.

Table 18 Query time
comparison of the baseline
methods: random queries

Data set DFS DFS-L BFS BFS-L BBFS BBFS-L

agrocyc 43.68 33.06 105.23 76.35 141.32 138.65

amaze 1,737.61 692.88 1,844.58 406.93 283.17 191.74

anthra 38.79 29.83 100.68 71.65 139.55 139.62

ecoo 50.29 33.83 110.59 78.01 142.37 141.85

human 34.09 32.43 93.27 80.39 156.31 164.86

kegg 2,150.63 1,085.38 2,049.80 606.48 388.31 267.29

mtbrv 54.70 33.32 117.74 77.56 126.74 125.47

nasa 131.12 93.12 190.31 85.47 142.67 132.49

vchocyc 55.43 33.80 104.10 64.50 126.68 124.34

xmark 388.60 324.93 370.84 214.58 204.89 158.41

arxiv 13,237.37 6,816.73 10,635.92 1,513.44 3,491.59 664.77

go 121.75 106.21 161.35 121.39 179.10 164.64

pubmed 323.84 207.70 443.40 94.84 202.40 188.04

yago 116.43 29.52 133.26 90.70 152.03 162.44

cit-Patents 38,616.12 30,317.47 40,983.66 3,403.68 7,997.03 5,045.11

citeseer 46.20 25.97 101.31 87.58 139.00 153.54

citeseerx 224,954.60 153,682.93 259,932.93 4,428.25 6,098.53 4,218.07

go-uniprot 37.87 156.11 268.58 372.05 320.92 235.17

rand10m2x 553.33 391.02 625.60 266.27 537.53 477.06

rand10m5x 91,262.17 74,963.43 96,374.10 12,598.14 29,365.89 17,110.69

Table 19 Query time
comparison of the baseline
methods: positive queries

Data set DFS DFS-L BFS BFS-L BBFS BBFS-L

agrocyc 392.27 456.49 226.55 296.55 150.49 176.07

human 924.84 933.10 323.98 528.19 182.20 255.21

arxiv 1,390.69 1,399.79 858.13 1,006.30 240.03 296.98

citeseerx 79,843.72 80,639.62 2,133.04 3,160.10 147.55 183.47

cit-Patents 6,851.40 6,859.36 2,852.23 3,623.24 605.37 944.77

go-uniprot 151.69 168.31 221.77 243.11 86,679.75 2,058,323.75

rand10m2x 430.95 461.72 299.84 369.90 292.26 384.79

rand10m5x 49,874.03 50,063.26 3,570.48 4,738.75 1,106.92 1,627.96

Table 20 Query time
comparison of the baseline
methods: deep positive queries

Data set DFS DFS-L BFS BFS-L BBFS BBFS-L

agrocyc 699.56 710.95 1,306.06 1,785.99 299.60 387.30

human 1,359.66 1,263.17 2,105.32 3,164.45 357.66 309.99

arxiv 1,084.50 1,010.98 2,188.39 2,348.89 380.77 503.91

citeseerx 1,510,195.37 1,481,738.00 375,087.90 471,321.15 9,488.83 17,209.19

cit-Patents 50,584.21 49,820.53 96,294.84 128,953.70 11,692.85 18,848.20

go-uniprot 173.61 188.34 256.48 290.80 184,129.15 3,214,053.00

rand10m2x 1,069.12 1,120.13 1,413.06 1,801.97 1,124.22 1,512.55

rand10m5x 174,483.20 174,269.43 213,657.48 268,942.18 62,386.87 81,867.81

123

GRAIL: scalable index for reachability queries 529

Table 21 Query time comparison of the GRAIL methods

Data set d GRAIL* GRAIL* + LF GRAIL* + BI GRAIL* + BILF GRAIL−LF GRAIL GRAIL + BI GRAIL + BILF

agrocyc 2 66.76 66.08 151.75 151.62 51.38 21.99 151.39 150.05

amaze 2 818.53 834.61 340.41 318.06 25.17 15.81 135.78 136.08

anthra 2 62.50 62.23 148.21 146.85 49.17 22.37 153.76 154.35

ecoo 2 68.52 64.44 175.18 158.57 54.63 22.95 156.08 154.04

human 2 86.15 84.44 160.19 161.84 64.03 23.45 161.95 177.25

kegg 2 1105.01 1079.61 503.31 496.06 25.60 17.57 150.93 159.23

mtbrv 2 61.40 58.80 151.47 151.52 47.42 20.40 148.28 165.92

nasa 2 37.75 35.68 176.42 146.64 35.70 21.98 147.30 146.45

vchocyc 2 60.00 57.74 156.44 155.75 46.43 19.85 138.99 137.54

xmark 2 97.61 88.75 180.60 176.62 42.46 28.04 148.17 165.71

arxiv 4 457.89 436.09 1,149.78 1,126.67 369.36 331.72 732.75 718.59

go 3 54.55 50.27 159.23 142.51 52.65 34.11 141.77 144.07

pubmed 3 89.56 85.77 216.76 215.18 94.07 66.23 219.38 219.36

yago 3 50.29 45.62 216.07 213.03 53.95 19.10 221.40 233.04

cit-Patents 5 1,425.87 1,363.89 1,995.60 1,982.56 1,537.45 1,412.75 2,021.37 1,999.32

citeseer 2 99.99 93.29 224.15 225.36 105.15 26.30 248.23 245.85

citeseerx 5 8,173.68 8,259.32 2,583.46 2,381.76 193.41 115.42 1,044.88 1,044.86

go-uniprot 2 163.10 131.59 465.90 507.32 171.82 29.63 489.76 469.97

rand10m2x 3 222.25 210.52 338.70 347.04 234.54 155.93 350.90 344.73

rand10m5x 5 6,479.56 6,322.14 7,914.99 6,969.14 6,196.16 5,990.32 7,446.50 7,376.99

some exceptions. On these (deep) positive queries, BBFS
is the best overall method, being 2–100 times faster than
alternative methods. The only exception is go-uniprot,
where DFS/BFS does much better. This graph has around
seven million roots that are connected to the remaining
30 K nodes. Bidirectional search is slow in this graph
because the reverse search that starts from the target node
has to explore many irrelevant roots before finding a
solution.

We can conclude that for small graphs, DFS-L is the best
overall method, whereas for the large graphs BFS-L is the
best. However, BBFS is the clear winner if one expects more
positive queries. It is for this reason that BBFS-L is the fast-
est on data sets like kegg, amaze and xmark on the 100 K
random queries, since there are a relatively larger number of
positive pairs in those query sets.

6.4 GRAIL: effect of parameters and optimizations

In this section, we study the behavior of GRAIL under opti-
mizations like the level and positive cut filter, as well as the
choice of the graph search strategy (DFS/BFS/BBFS). We
also evaluate the effectiveness of maintaining exceptions lists
and of the various traversal strategies to construct the interval
labels.

6.4.1 Effect of optimizations

We first consider the effect of the filters in combination with
the recursive graph search strategy on the random, positive
and deep positive query pairs. We compared eight variations
of GRAIL, which are shown in Tables 21, 22 and 23. Here,
GRAIL is the version which uses positive cut filter, whereas
GRAIL* is the version without this filter. The suffix of LF is
used when level filter is used, and BI is used when a bidirec-
tional search is performed instead of DFS. Thus, GRAIL is
the approach that uses positive cut and the level filter, whereas
GRAIL-LF is with level filter removed, GRAIL+BI uses bidi-
rectional BFS instead of DFS, and GRAIL+BILF uses both
BBFS and level filter. Similar extensions for GRAIL* show
the variants of the basic approach, which uses no optimiza-
tions, and GRAIL*+LF uses the level filter. The column d
represents how many traversals are used to index that graph.

It is clear that the positive cut filter is extremely effective,
since GRAIL variants are invariably superior to the GRAIL*
counterparts, by up to 100 times in some cases. The positive
cut filter is very helpful for positive queries since if at any
point of the search a node contains the guaranteed interval,
it is sufficient to terminate the query with positive answer.
However, it is also helpful in sparse graphs because most of
the reachable pairs can be covered with the interior label set.
In some exceptional cases, GRAIL* is better than GRAIL,
when the distance from the source to target nodes is high as

123

530 H. Yıldırım et al.

Table 22 Query time comparison of the GRAIL methods with positive queries

Data set d GRAIL* GRAIL* + LF GRAIL* + BI GRAIL* + BILF GRAIL−LF GRAIL GRAIL + BI GRAIL + BILF

agrocyc 2 479.69 561.59 325.44 330.82 36.47 38.55 150.99 159.66

human 2 1,377.98 1,163.86 745.24 748.22 35.84 37.39 146.89 148.35

arxiv 4 321.82 330.89 1,070.86 1,222.06 253.14 253.09 816.84 826.17

cit-Patents 5 3,109.31 3,303.92 3,037.28 2,694.92 3,195.76 3,089.42 2,452.24 2,475.95

citeseerx 5 27,400.50 26,402.77 327.15 317.41 123.55 117.37 232.21 234.51

go-uniprot 2 262.75 275.12 −(t) −(t) 319.57 327.29 −(t) −(t)

rand10m2x 3 550.03 549.80 775.11 842.06 546.64 522.34 685.14 698.08

rand10m5x 5 17,997.88 17,555.28 3,417.46 3,840.27 19,593.36 19,371.47 3,152.93 3,175.09

Table 23 Query time comparison of the GRAIL methods with deep positive queries

Data set d GRAIL* GRAIL* + LF GRAIL* + BI GRAIL* + BILF GRAIL−LF GRAIL GRAIL + BI GRAIL + BILF

agrocyc 2 492.98 512.95 1,001.90 840.36 66.32 69.89 459.63 467.71

human 2 670.90 709.45 547.53 508.68 49.64 50.91 242.98 247.03

arxiv 4 371.42 376.47 2,484.63 2,513.01 282.28 292.93 1,512.91 1,488.77

cit-Patents 5 30,969.72 30,174.54 46,411.89 45,814.12 33,551.28 33,093.57 43,740.33 44,198.10

citeseerx 5 1,131,971.50 1,090,715.25 63,204.19 62,324.88 3,711.59 3,529.66 15,287.94 15,432.34

go-uniprot 2 290.22 301.95 −(t) −(t) 349.56 361.48 −(t) −(t)

rand10m2x 3 1,294.02 1,323.16 2,363.52 2,343.72 1,195.18 1,177.69 1,914.48 1,951.57

rand10m5x 5 64,076.53 63,784.27 90,399.75 80,405.13 68,951.63 70,447.32 74,483.97 75,279.82

forcit-patents andrand10m5x in Table 23. Due to the
density of these data sets, positive cut filter only works after
some level until which the search compares interior intervals
in vain. For instance, for rand10m5x, the deep positive
query lengths range from 10 to 16, whereas the search uti-
lizes the positive cuts only after depth 5 on average, and
thus up to depth 5, the search makes twice the number of
comparisons. Even in these cases, it is worth noting that the
performance difference between GRAIL and GRAIL* + LF
is not high.

We also observe that bidirectional search is not effective
when used with GRAIL variants because the overhead of
maintaining two queues and comparing twice the number of
intervals at every step adds extra cost, which is not offset by
additional pruning. We conclude that GRAIL (with positive
cut and level filters, and DFS search) is the preferred method.

6.4.2 Exception lists

Table 24 shows the effect of using exception lists. Here,
GRAIL is the default GRAIL strategy with reversed pairs tra-
versals, level and positive cut filters, and without exception
lists, GRAIL* is the basic approach without any optimiza-
tions, and GRAIL* + E is the basic approach with excep-
tion lists. Results are shown only for small, real, sparse and
dense graphs, since computing the exception lists on the large

graphs is too expensive. We used d = 2 for sparse and d = 3
for dense graphs.

On both the sparse and dense graphs, the construction
time for exception lists blows up; GRAIL* + E is 2–3 orders
of magnitude slower than GRAIL/GRAIL*. It is interesting
to note that for the spare graphs, the number of exceptions
is not very large. In fact, the total index size for GRAIL* + E
(which is equal to the index size of GRAIL* plus the number
of exceptions) can be smaller than the index size for GRAIL
(which has to keep additional information for the positive cut
and level filters). However, computing the exception lists is
very expensive. On the dense graphs, the number of excep-
tions blows up by over a factor of 100, and thus, the con-
struction time for GRAIL* + E increases even more rapidly.
In terms of query time, for the sparse graphs, it is interesting
to note that GRAIL is faster than GRAIL* + E by a factor
of 2. However, GRAIL* + E is faster than the basic GRAIL*
method (sometimes by a factor of 40). This means that using
the positive cut and level filters is much more effective than
using exception lists, though exception lists can deliver bet-
ter performance than DFS search. On the other hand, on the
dense graphs, the exception lists lead to faster query times,
even when compared to positive cut and level filters. For
example, on arXiv, GRAIL* + E is faster than GRAIL by
a factor of 6. However, this comes at the cost of 3 orders of
magnitude slowdown in construction times. We can conclude
that whereas using exceptions does help in some cases, the

123

GRAIL: scalable index for reachability queries 531

Table 24 GRAIL: effect of exceptions

Data set Construction time (ms) Index size Query time (ms)

GRAIL GRAIL* GRAIL* + E GRAIL GRAIL* GRAIL* + E # Exceptions GRAIL GRAIL* GRAIL* + E

agrocyc 18.37 18.33 7615.42 88,788 50,736 79,378 28,642 20.81 72.10 53.10

amaze 5.72 5.72 2,221.14 25,970 14,840 45,720 30,880 16.91 867.85 25.36

anthra 17.15 17.17 14,521.61 87,493 49,996 65,320 15,324 20.62 61.22 52.87

ecoo 20.27 20.36 7,865.13 88,340 50,480 79,576 29,096 20.89 64.38 53.86

human 52.75 52.71 15,756.67 271,677 155,244 176,663 21,419 22.90 81.84 69.88

kegg 5.89 5.87 2,409.59 25,319 14,468 56,717 42,249 18.84 1,137.29 25.81

mtbrv 14.53 14.60 4,764.51 67,214 38,408 57,085 18,677 18.39 64.99 46.90

nasa 9.31 9.38 2,952.96 39,235 22,420 191,771 169,351 20.16 35.73 30.95

vchocyc 15.12 15.29 4,790.82 66,437 37,964 54,234 16,270 17.91 56.55 46.80

xmark 9.87 9.83 7,134.75 42,560 24,320 1,368,326 1,344,006 30.30 99.72 37.71

arXiv 29.71 29.68 57,595.03 60,000 36,000 4,203,463 4,167,463 380.94 485.79 57.56

citeseer 46.82 47.19 169,422.86 107,200 64,320 8,399,563 8,335,243 64.04 88.66 58.89

go 20.05 20.09 14,653.48 67,930 40,758 656,031 615,273 30.79 47.69 39.39

pubmed 35.05 34.95 94,894.25 90,000 54,000 5,980,867 5,926,867 70.07 92.96 54.92

yago 24.60 24.53 56,401.45 66,420 39,852 2,179,247 2,139,395 19.64 49.51 46.08

substantially higher overhead of construction time, and the
large size overhead of storing exception lists, do not justify
the relative small gains in query times. Furthermore, excep-
tions could not be constructed on the large real graphs.

6.4.3 Label traversal strategies

We implemented different traversal strategies for interval
labeling, as explained in Sect. 3.2. Random is the default
randomized strategy, whereas ReversePairs denotes the
randomized pairs strategy. MaxVol, MaxInt, MaxAdjVol and
MaxAdjInt denote the deterministic methods that priori-
tize the nodes that have larger volume, minimum interval,
adjusted volume and minimum adjusted interval, respec-
tively. For the adjusted methods, we implemented the tran-
sitive closure size estimation algorithm in [9] to get the
approximate size of the reachable set for each node. In these
experiments, we used GRAIL*.

As seen in Table 25, random labeling has the worst perfor-
mance. Though the differences among the methods are not
substantial, they are more pronounced for the large graphs.
On the small sparse data sets, deterministic methods provide
up to 20% improvement over the randomized labeling. Max-
Vol gives best results most of the time, closely followed by
ReversePairs. We use ReversePairs as the default strategy for
GRAIL, since it is usually better for large graphs and does
not need the estimation of the transitive closure.

In Table 26, we take a closer look at the impact of traversal
strategy by comparing the number of exceptions remain-
ing after performing the traversals. It is interesting to note
that Random labeling produces significantly more exceptions

compared to other labelings whereas the difference is not that
apparent in query time comparison. It also suggests that the
query time does not necessarily have to be directly corre-
lated with the number of exceptions remained. For instance,
in Table 26, ReversePairs have about 20% more exceptions
than MaxAdjInt for arxiv graph; however, its query time is
still 20% faster than MaxAdjInts as seen in Table 25.

6.4.4 Number of traversals/intervals (d)

In Fig. 10, we plot the effect of increasing the dimension-
ality of the index, i.e., increasing the number of travers-
als d, on three small sparse (agrocyc, amaze, ecoo),
two small dense (arxiv, pubmed), two large real (cit-
patents, citeseerx) and two large synthetic (rand
10m2x, rand10m5x) graphs. In each plot, we show the
query times of GRAIL and GRAIL*. Since GRAIL is usu-
ally much faster than GRAIL*, we had to use two different
y-axis for some of the results. The y-axis on the left hand
side shows the query time of GRAIL, while the one on the
right side displays the query time for GRAIL*. Note that
the plots for GRAIL and GRAIL* appear similar in most
of the graphs even though their query times are in different
scales. For instance, in amaze GRAIL rises to 26 ms from
19 ms, whereas GRAIL* rises to 940 ms from 840 ms in a
very similar manner. It is clear that increasing the number
of intervals increases the construction time and index size,
while decreasing the query time. However, increasing d does
not progressively decrease query times, since at some point,
the overhead of checking a larger number of intervals negates
the potential reduction in exceptions. In small sparse graphs,

123

532 H. Yıldırım et al.

Table 25 Comparison of different traversal strategies in GRAIL: query times (ms)

Data set d Random ReversePairs MaxVol MaxInt MaxAdjVol MaxAdjInt

agrocyc 2 78.39 72.33 65.45 65.53 64.92 64.93

anthra 2 66.44 60.98 65.55 65.53 65.07 65.67

amaze 2 838.09 872.46 726.80 713.04 726.26 717.27

mtbrv 2 73.07 64.57 62.24 62.19 62.16 62.13

arxiv 3 535.05 490.00 595.52 568.92 673.33 589.49

arviv 4 477.71 417.76 495.20 452.59 598.03 497.92

pubmed 3 98.15 92.20 86.52 88.90 86.07 86.91

pubmed 4 89.33 86.32 79.68 82.36 80.64 82.48

yago 3 56.25 49.33 46.66 47.15 46.98 46.82

yago 4 53.01 48.32 45.80 46.35 45.86 46.38

go 3 60.93 46.99 45.25 45.62 48.86 49.20

go 4 48.19 45.25 43.50 43.26 46.61 46.45

citeseerx 4 8,905.04 7,797.91 7,848.54 7,850.85 8,142.71 8,093.69

citeseerx 5 8,404.13 8,148.96 7,374.71 7,455.17 7,942.13 7,680.86

cit-Patents 4 1,694.08 1,626.33 1,748.10 1,926.49 1,890.82 1,915.62

cit-Patents 5 1,458.75 1,350.29 1,387.13 1,620.15 1,593.68 1,617.17

go-uniprot 4 158.72 137.59 136.71 136.52 136.65 135.37

go-uniprot 5 149.08 141.82 135.72 135.62 135.89 135.50

Table 26 Comparison of different traversal strategies in GRAIL: number of exceptions remained

Data set d Random ReversePairs MaxVol MaxInt MaxAdjVol MaxAdjInt

agrocyc 2 1,514,319 28,642 29,943 29,943 29,672 29,672

amaze 2 685,366 30,880 108,472 108,472 41,280 41,280

anthra 2 78,560 15,324 14,874 14,874 14,436 14,436

ecoo 2 2,701,160 29,096 28,475 28,475 27,576 27,576

human 2 2,003,874 21,419 23,756 23,746 21,720 21,720

kegg 2 651,196 42,249 100,449 100,449 36,604 36,604

mtbrv 2 1,612,124 18,677 20,240 20,240 19,734 19,734

nasa 2 674,175 169,351 225,161 225,161 208,253 208,253

vchocyc 2 961,784 16,270 16,131 16,131 15,759 15,759

xmark 2 2,298,605 1,344,006 1,376,535 1,376,535 1,233,041 1,233,041

arxiv 3 4,944,155 4,167,463 3,387,488 3,452,679 3,251,799 3,174,875

citeseer 3 12,645,509 8,335,243 6,560,907 6,777,400 6,547,945 6,801,282

go 3 1,279,303 615,273 640,928 608,102 663,908 662,851

pubmed 3 8,255,165 5,926,867 4,643,569 4,768,787 4,621,694 4,714,258

yago 3 4,729,341 2,139,395 1,054,214 1,198,431 1,055,417 1,198,552

the minimum query time is obtained at some point between
2 and 4. However, we decided to use d = 2 traversals for
these graphs since adding each dimension increases the index
size significantly, while the gain in query time is compara-
tively very small. As the graphs get denser, the optimum
number of traversals increases. For example, for arxiv,
we get the minimum query times between 12 and 16, and
adding more traversals degrades query performance. Con-
sidering this graph has an average degree of 11.12, using 10

traversals seems acceptable. That makes the index size close
to the order of the graph size and the query time close to the
minimum. However, we used much smaller d in our experi-
ments to be able to compete with other algorithms in terms
of index size as well. Therefore, one can choose the value d
according to the needs by balancing the index size and query
time. On very large sparse graphs such as citeseerx and
rand10m2x, the query times approach to the minimum level
after 4 traversals. However, for the denser large graphs, we

123

GRAIL: scalable index for reachability queries 533

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Effect of increasing number of intervals: a agrocyc, b amaze, c ecoo, d arxiv, e pubmed, f cit-patents, g citeseerx,
h rand10m2x, i rand10m5x

see that the query times continue to decrease up to 25 travers-
als. It is also interesting to see that for these graphs, positive
cut filter does not improve query performance and GRAIL
has almost the same timing with GRAIL*. For cit-Pat-
ents, we obtained 1,369 ms with 5 traversals and this plot
suggests that it can be improved to 650 ms by increasing its
index size by 4 times. Therefore, even in these cases, it may
not worth to keep adding traversals unless the memory is not
a constraint or the query performance is critical.

Consequently, estimating the number of traversals that
minimize the query time, or that optimize the index size/query
time trade-off, is not straightforward. However, for any prac-
tical benefit, it is imperative to keep the index size smaller
than the graph size. This loose constraint restricts d to be less
than the average degree. In our experiments, we found out
that the best query time is obtained when d = 5 or smaller
(when the average degree is smaller).

7 Conclusion

We proposed GRAIL, a relatively simple indexing scheme,
for fast and scalable reachability testing in very large graphs,
based on randomized multiple interval labeling. GRAIL
has linear construction time and index size, and its query
time ranges from constant to linear time per query. Based
on an extensive set of experiments, we conclude that for
the class of smaller graphs (both dense and sparse), while
more sophisticated methods give a better query time per-
formance, a DFS/BFS search is often good enough, with
the added advantage of having no construction time or
index size overhead. On the other hand, GRAIL outper-
forms all existing methods, as well as pure search-based
methods on large real graphs; in fact, for these large
graphs existing indexing methods are simply not able to
scale. Although GRIPP is scalable in indexing, it is not

123

534 H. Yıldırım et al.

able to compete even with pure search methods in denser
graphs.

As a future work, we plan to address reachability labeling
in dynamic graphs. GRAIL seems promising for the prob-
lem of dynamic reachability since its labeling has relaxed
invariants. The updates on the graph such as edge addition
and deletion could be reflected on the labeling via local mod-
ifications to the labels. The reachability problem in labeled
graphs is also an interesting direction.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management
of transitive relationships in large data and knowledge bases.
SIGMOD Rec. 18(2), 253–262 (1989)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random net-
works. Science 286(5439), 509–512 (1999)

3. Bouros, P., Skiadopoulos, S., Dalamagas, T., Sacharidis, D.,
Sellis, T.: Evaluating reachability queries over path collections.
In: SSDBM, p. 416 (2009)

4. Bramandia, R., Choi, B., Ng, W.K.: On incremental maintenance
of 2-hop labeling of graphs. In: WWW (2008)

5. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pat-
tern matching on dags. In: VLDB (2005)

6. Chen, Y.: General spanning trees and reachability query evalua-
tion. In: Canadian Conference on Computer Science and Software
Engineering, Montreal (2009)

7. Chen, Y., Chen, Y.: An efficient algorithm for answering graph
reachability queries. In: ICDE (2008)

8. Cheng, J., Yu, J.X., Lin, X., Wang, H., Yu, P.S.: Fast computing
reachability labelings for large graphs with high compression rate.
In: EBDT (2008)

9. Cohen, E.: Estimating the size of the transitive closure in linear
time. In: 35th Annual Symposium on Foundations of Computer
Science, pp. 190–200 (1994)

10. Cohen, E.: Size-estimation framework with applications to tran-
sitive closure and reachability. J. Comput. Syst. Sci. 55(3),
441–453 (1997)

11. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability
and distance queries via 2-hop labels. SIAM J. Comput. 32(5),
1335–1355 (2003)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

13. Demetrescu, C., Italiano, G.: Fully dynamic transitive closure:
breaking through the O(n2) barrier. In: FOCS (2000)

14. Demetrescu, C., Italiano, G.: Dynamic shortest paths and transi-
tive closure: algorithmic techniques and data structures. J. Discret.
Algorithms 4(3), 353–383 (2006)

15. Dietz, P.F.: Maintaining order in a linked list. In: STOC (1982)
16. Gene Ontology. http://www.geneontology.org/ (2010). Accessed 4

Dec 2010
17. Gene Ontology. Go Database Guide. http://www.geneontology.

org/GO.database.shtml#schema_notes (2010). Accessed 4 Dec
2010

18. He, H., Wang, H., Yang, J., Yu, P.S.: Compact reachability labeling
for graph-structured data. In: CIKM (2005)

19. Herman, I.L: W3c semantic web faq. http://www.w3.org/2001/sw/
SW-FAQ# (2010). Accessed 4 Dec 2010

20. Jagadish, H.V.: A compression technique to materialize transitive
closure. ACM Trans. Database Syst. 15(4), 558–598 (1990)

21. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression
indexing scheme for reachability query. In: SIGMOD (2009)

22. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficient answering reach-
ability queries on very large directed graphs. In: SIGMOD (2008)

23. King, V., Sagert, G.: A fully dynamic algorithm for maintaining
the transitive closure. J. Comput. Syst. Sci. 65(1), 150–167 (2002)

24. Krommidas, I., Zaroliagis, C.: An experimental study of
algorithms for fully dynamic transitive closure. J. Exp.
Algorithmics 12, 16 (2008)

25. Leskovec, J.: Snap Network Analysis Library. http://snap.stanford.
edu/snap/index.html (2010). Accessed 4 Dec 2010

26. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for
directed graphs with an almost linear update time. In: STOC (2004)

27. Schenkel, R., Theobald, A., Weikum, G.: HOPI: an efficient con-
nection index for complex XML document collections. In: EBDT
(2004)

28. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and
incremental maintenance of the hopi index for complex xml docu-
ment collections. In: ICDE (2005)

29. Steve Harris, G.: Sparql 1.1 Query Language. http://www.w3.org/
TR/sparql11-query/#propertypaths (2010). Accessed 4 Dec 2010

30. Trissl, S., Leser, U.: Fast and practical indexing and querying of
very large graphs. In: SIGMOD (2007)

31. UniProt. http://www.uniprot.org/ (2010). Accessed 4 Dec 2010
32. Wang, H., He, H., Yang, J., Yu, P., Yu, J.X.: Dual labeling: answer-

ing graph reachability queries in constant time. In: ICDE (2006)
33. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V.,

Annamalai, M., Srinivasan, J.: Implementing an inference engine
for rdfs/owl constructs and user-defined rules in oracle. In: Inter-
national Conference on Data Engineering, pp. 1239–1248 (2008)

34. Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: scalable reachability
index for large graphs. PVLDB 3(1), 276–284 (2010)

35. Yu, J.X., Lin, X., Wang, H., Yu, P.S., Cheng, J.: Fast computation
of reachability labeling for large graphs. In: EBDT (2006)

123

http://www.geneontology.org/
http://www.geneontology.org/GO.database.shtml#schema_notes
http://www.geneontology.org/GO.database.shtml#schema_notes
http://www.w3.org/2001/sw/SW-FAQ#
http://www.w3.org/2001/sw/SW-FAQ#
http://snap.stanford.edu/snap/index.html
http://snap.stanford.edu/snap/index.html
http://www.w3.org/TR/sparql11-query/#propertypaths
http://www.w3.org/TR/sparql11-query/#propertypaths
http://www.uniprot.org/

	GRAIL: a scalable index for reachability queries in very large graphs
	Abstract
	1 Introduction
	1.1 Reachability index
	1.2 Our contributions

	2 Related work
	3 GRAIL: Scalable reachability index for large graphs
	3.1 Basic GRAIL approach
	3.2 Index construction
	3.3 Reachability queries

	4 Exception lists
	5 GRAIL optimizations
	5.1 Topological level filter
	5.2 Different search strategies
	5.3 Positive cut filter

	6 Experiments
	6.1 Data sets
	6.2 Performance comparison with graph indexes
	6.2.1 Small real data sets: sparse and dense
	6.2.2 Large data sets: real and synthetic

	6.3 Graph search strategies: baseline methods
	6.4 GRAIL: effect of parameters and optimizations
	6.4.1 Effect of optimizations
	6.4.2 Exception lists
	6.4.3 Label traversal strategies
	6.4.4 Number of traversals/intervals (d)

	7 Conclusion
	References

