
FlexSnap: Flexible Non-sequential Protein

Structure Alignment�

Saeed Salem1, Mohammed J. Zaki1, and Chris Bystroff1,2

1 Department of Computer Science
salems@cs.rpi.edu, zaki@cs.rpi.edu

2 Department of Biology,
Rensselaer Polytechnic Institute, Troy NY 12180, USA

bystrc@rpi.edu

Abstract. Proteins have evolved subject to energetic selection pressure
for stability and flexibility. Structural similarity between proteins which
have gone through conformational changes can be captured effectively if
flexibility is considered. Topologically unrelated proteins that preserve
secondary structure packing interactions can be detected if both flexi-
bility and sequence permutations are considered. We propose the FlexS-
nap algorithm for flexible non-topological protein structural alignment.
The effectiveness of FlexSnap is demonstrated by measuring the agree-
ment of its alignments with manually curated non-sequential structural
alignments. FlexSnap showed competitive results against state-of-the-art
algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT.

1 Background

The wide spectrum of functions performed by proteins are enabled by their in-
trinsic flexibility [1]. It is known that proteins go through conformational changes
to perform their functions. Homologous proteins have evolved to adopt confor-
mational changes in their structure. Therefore, similarity between two proteins
which have similar structures with one of them having undergone a conforma-
tional change will not be captured unless flexibility is considered.

The problem of flexible protein structural alignment has not received much
attention. Even though there are a plethora of methods for protein structure
comparison [2, 3, 4, 5, 6, 7, 8], the majority of the existing methods report
only sequential alignments and thus cannot capture non-sequential alignments.
Non-sequential similarity can occur naturally due to circular permutations [9]
or convergent evolution [10]. The case is even harder for flexible alignment since
only two methods, FlexProt [11], and FATCAT [12] report flexible alignments.
Nevertheless, both methods are inherently limited to sequential flexible struc-
tural alignment because both methods employ sequential chaining techniques.
The complexity of protein structural alignment depends on how the similarity is

� This work was supported in part by NSF Grants EMT-0829835, and CNS-0103708,
and NIH Grant 1R01EB0080161-01A1.

S.L. Salzberg and T. Warnow (Eds.): WABI 2009, LNBI 5724, pp. 273–285, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 S. Salem, M.J. Zaki, and C. Bystroff

assessed. [13] showed that the problem is NP-hard if the similarity score is dis-
tance matrix based. Therefore, over the years, a number of heuristic approaches
have been proposed, which can mainly be classified into two main categories,
dynamic programming and clustering.

Dynamic Programming (DP) is a general paradigm to solve problems that
exhibit the optimal substructure property [14]. DP-based methods, STRUC-
TAL [15] and SSAP [16], construct a scoring matrix S, where each entry, Sij ,
corresponds to the score of matching the i-th residue in protein A and the j-
th residue in protein B. Given a scoring scheme between residues in the two
proteins, dynamic programming finds the global alignment that maximizes the
score. DP-based methods suffer from two main limitations: first, the alignment
is sequential and thus non-topological similarity cannot be detected, and second,
it is difficult to design a scoring function that is globally optimal [13]. In fact,
structure alignment does not have the optimal substructure property, therefore
DP-based methods can find only a suboptimal solution [17].

The other category of alignment methods, the Clustering-based methods,
DALI [2], SARF2 [4], CE [5], SCALI [7], and FATCAT [12], seek to assem-
ble the alignment out of smaller compatible (similar) element pairs such that
the score of the alignment is as high as possible [18]. Two compatible element
pairs are consistent (can be assembled together) if the substructures obtained by
elements of the pairs are similar. The clustering problem is NP-hard [19], thus
several heuristics have been proposed. The approaches differ in how the set of
compatible element pairs is constructed and how the consistency is measured.
Both SARF2 and SCALI produce non-sequential alignments.

The two main flexible alignment methods, FlexProt [11] and FATCAT [12],
work by clustering (chaining) aligned fragment pairs (AFPs) and allowing flex-
ibility while chaining, by introducing hinges (twists). FlexProt searches for the
longest set of AFPs that allow different number of hinges. It then reports differ-
ent alignments with different number of hinges. The FATCAT method works by
chaining AFPs using dynamic programming. The score of an alignment ending
with a given AFP is computed as the maximum score of connecting the AFP
with any of alignments that end before the AFP. A penalty is applied to the
score to compensate for gaps, root mean squared deviation (rmsd), and hinges.
A third method, which can handle flexible alignments, is the HingeProt [20]
method. HingeProt first partitions one of the two proteins into rigid parts using
a Gaussian-Network-Model-based (GNM) approach and then aligns each rigid
region with the other protein using the MultiProt [6] method. HingeProt uses
the MultiProt algorithm in the sequential mode and thus does not report flexible
non-sequential alignments. Therefore, the accuracy of the HingeProt approach
depends on the accuracy of identifying the rigid domains which is a hard problem
as the best known method ,HingeMaster [21], has a sensitivity of only 50%.

In this paper, we propose FlexSnap1, a greedy algorithm for flexible non-
sequential protein alignment. The algorithm assembles the alignment from the

1 A non-sequential permutation of the bold letters in Flexible non-Sequential protein
Alignment

FlexSnap: Flexible Non-sequential Protein Structure Alignment 275

set of AFPs and allows non-sequential alignments and hinges. We demonstrate
the effectiveness of FlexSnap by evaluating its alignments’ agreement with man-
ually curated non-sequential alignments.

2 Methods

The main idea of the FlexSnap approach is to assemble the alignment from short
well-aligned fragment pairs, which are called AFPs. As we assemble the alignment
by addingAFPs,we introduce hingeswhennecessary. Figure 1shows how the align-
ment is constructed fromsmaller aligned fragmentpairs.Whenchaining a fragment
pair to the alignment,we choose the fragment thathas thehighest scorewhen joined
with the last rigid region in the alignment. The score rewards longer alignments
with small rmsd and penalizes large rmsd, gaps, and the introduction of hinges. In
the next subsections, we provide a detailed discussion of the FlexSnap algorithm.

2.1 AFPs Extraction

Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn} be two proteins with n
and m residues respectively, and Ai ∈ �3×1 (similarly Bi) represents the 3D
coordinates of the Cα atom of the i-th residue in protein A. The first step in
FlexSnap is to generate a list of aligned fragment pairs (AFPs):

AFPs = {(i, j, l)| rmsd(i, j, l) ≤ ε}
Each AFP, (i, j, l), is a fragment that starts at the i-th residue in A and j-th
residue in B and it has a length of l residues. An AFP is formally represented
as a set of l equivalenced pairs between the two proteins, and given as:

Introduce a hinge here

Protein A

Protein B

Rigid Alignment

Flexible Alignment

Fig. 1. Flexible Structural Alignment by chaining. The figure shows protein A and
protein B which have 3 similar structure fragments. A rigid alignment (top right)
is not able to align the blue fragment, but a flexible alignment (bottom right) can
do this easily by introducing a hinge between the rigid block (the black and green
fragments) and the blue fragment. As we assemble the alignment from well-aligned
pairs, we introduce hinges to get a longer alignment and smaller rmsd.

276 S. Salem, M.J. Zaki, and C. Bystroff

(i, j, l) = {(Ai, Bj), (Ai+1, Bj+1), · · · , (Ai+l−1, Bj+l−1)}
where (Ai, Bj) indicates that the ith residue of protein A is paired with the jth

residue of protein B, and l is AFP’s length. Each AFP must satisfy a user-defined
similarity constraint. In FlexSnap, approach, we employ the root mean square
deviation as the similarity measure, i.e., rmsd(i, j, l) ≤ ε. Moreover, we require
that the length of the AFP be at least L, i.e., 3 ≤ L ≤ l. Furthermore, we define
bP
k and eP

k to be the beginning and end of the AFPk along the backbone of protein
B. e.g, for a triplet AFPk = (i, j, l) and protein A, bA

k = i and eA
k = i + l − 1.

The number of possible AFPs can be as large as O(n3). The set of all AFPs
can be obtained by iterating over all the triplets (i, j, l),

where

⎡
⎣ i = 1 · · ·n − L

j = 1 · · ·m − L
L ≤ l ≤ min(n − i + 1, m − j + 1)

⎤
⎦

and for each triplet checking if the rmsd(i, j, l) ≤ ε. The rmsd of a fragment can
be obtained in O(l) [22]. A naive implementation that iterates over all the triplets
(i, j, l) to obtain the set of all the AFPs would have an O(n4) time complexity.
However, by observing that the rmsd of the AFP (i, j, l + 1) can be computed
incrementally from the rmsd of AFP (i, j, l) in constant time, the set of aligned
fragment pairs (AFPs) can be obtained in O(n3) time complexity [11].

The main idea to incrementally compute the rmsd is to simplify the rmsd
formula. Given two sets, A and B, of N points each, the root mean square
deviation (rmsd) is calculated as [23]:

rmsd2 =
1
N

×
(

N∑
i=1

A′2
i +

N∑
i=1

B′2
i − 2

3∑
i=1

di

)
(1)

where A′ (similarly B′) is the points after recentering, i.e., A′
i = Ai −

∑N
i=1 Ai

N ,
and the di’s are the singular values of C = A′B′T , which is a 3 × 3 covariance
matrix given as:

C =
n∑

i=1

AiB
T
i −

∑N
i=1 Ai

∑n
i=1 BT

i

N
(2)

In rare cases when the determinant of C is negative, then d3 = −1∗d3. Equation
1 can be simplified as:

rmsd2 =
1
N

×
⎛
⎝ N∑

i=1

A2
i −

1
N

(
N∑

i=1

Ai

)2

+
N∑

i=1

B2
i − 1

N

(
N∑

i=1

Bi

)2

− 2
3∑

i=1

di

⎞
⎠

It is clear that all the terms used in the rmsd computation can be updated in
constant time and thus computing the rmsd for N + 1 points requires constant

FlexSnap: Flexible Non-sequential Protein Structure Alignment 277

time if we have all the terms evaluated for the first N points. Therefore comput-
ing the rmsd for AFP(i, j, l) for all values of l’s requires only O(n) time. Thus,
the total time complexity for the seeds extraction step is O(n3).

2.2 Flexible Chaining

The second step in FlexSnap is to construct the alignment by selecting a subset
of the AFPs. Given a set of AFPs, P , obtained in the AFPs extraction step, we
are interested in finding a subset of AFPs, R ⊆ P , such that all the AFPs in
R are mutually non-overlapping and the score of the selected AFPs in R is as
large as possible. At one hand, we want to get as large an alignment as possible,
while on the other hand, we want to minimize the number of hinges and gaps.
Therefore, our goal is to optimize a score that rewards long alignments with
small rmsd and penalizes the introduction of hinges and gaps.

The set of AFPs can be thought of as runs in an n × m matrix S, where n
and m are the sizes of proteins A and B, respectively (see Figure 2). We define a
precedence relation, ≺, between two AFPs such that Pi ≺ Pj if Pi appears either
in the upper or lower left quadrant of Pj , i.e. bA

j > eA
i and bB

j > eB
i , or eA

j < bA
i

and bB
j > eB

i (recall that bA
i (eA

i) denote beginning (end) of AFP Pi in protein
A). Generally speaking, we say that two AFPs, Pi and Pj , can be chained if they
do not overlap, i.e., Pi ≺ Pj or Pj ≺ Pi. In Figure 2, P7 and P8 can be chained to
P1. For sequential chaining, we define a sequential precedence relation, ≺s, such
that Pi precedes Pj (written as Pi ≺S Pj) if Pi appears strictly in the upper left
quadrant with respect to Pj , i.e. bA

j > eA
i and bB

j > eB
i . Two AFPs Pi and Pj

X

P4

P5

A hinge

A

B

P6P7

P8

S(P2, P3, P6)

S(P2, P3, P5)

S(P1, P8)

S(P1, P7)

Alignment, R

P1

P2

P3

S(P2, P3, P4)

Fig. 2. Flexible Structural Alignment by chaining AFPs. When extending the align-
ment R = {P1, P2, P3}, the score of adding each AFP is computed computed and we
extend the alignment by the AFP that gives the best score. The score S(P4, P2, P3))
indicates the score of adding P4 to the region composed of P2 and P3.

278 S. Salem, M.J. Zaki, and C. Bystroff

can be sequentially chained together if Pi ≺S Pj or Pj ≺S Pi. In Figure 2, P7

and P2 can be sequentially chained to P1.
An AFP, Pi, can be chained to an alignment R, denoted as (R → Pi), if

it does not overlap with any AFP in R. In Figure 2, P7, P4, and P5 can be
sequentially chained to R which consists of AFPs {P1, P2, P3}; and both P6 and
P8 can be non-sequentially chained to R. Next, we shall introduce our solution
for the general flexible chaining problem.

2.3 The FlexSnap Approach

The goal of chaining is to find the highest scoring subset of AFPs, i.e., R ⊆ P , such
that all the AFPs in R are mutually consistent and non-overlapping. The problem
of finding the highest scoring subset of AFPs is essentially the same as finding the
maximum weighted clique in a graph G = (V, E, w) where the set of vertices V
represent the set of AFPs, each vertex vi has a weight equal to the score of the
AFP, w(vi) = S(Pi), where the score of an AFP Pi, S(Pi), could be its length or
some other combination of length and rmsd. There is an edge (vi, vj) ∈ E if the
AFPs Pi and Pj do not overlap and are consistent (can be joined with small rmsd
or have similar rotation matrices). The problem of finding the maximum weighted
clique in a graph is computationally expensive; it is NP-hard [19].

We propose a greedy algorithm to find an approximate solution for the chain-
ing problem. The main idea is to start building the alignment from an initial
AFP and add AFPs to the alignment. We start the alignment by selecting the
longest AFP, then we iteratively add new AFPs to the alignment as long as the
newly added AFP improves the score of the alignment. Given an alignment, R,
we add to it the AFP that contributes most. We keep growing the alignment
until no more AFPs can be added. The contribution of an AFP to the alignment
is scored by how consistent the AFP is with the alignment and how good the
AFP is. When adding an AFP to an alignment, we reward longer AFPs with
smaller rmsd, and we penalize for gaps, inconsistency, and hinges. The penalty
takes into consideration: 1) the number of gaps introduced; 2) the increase in
rmsd when combining two or more AFPs; 3) the introduction of new hinges.

As depicted in Figure 2, the scores of extending the alignment, R, with P4,
P5, P6, P7, or P8 are computed and the AFP with the best score is added to
the alignment. When measuring the score of adding an AFP to the alignment,
we actually measure the score of adding the AFP to the last rigid region in the
alignment. In Figure 2, the score of adding P4 to R is the score of adding P4

to the region composed of P2 and P3. Since P2 and P3 together form a rigid
sub-alignment (as we can see there is no hinge between them). When adding P7

to R, the score of adding P7 to the region composed only of P1 is computed.
Figure 3 shows the pseudo-code for the greedy chaining algorithm used in

FlexSnap. Since the chaining is a greedy algorithm, we run it K times starting
from the longest non-overlapping K AFPs and we report the longest alignment.
Next, we will discuss how we extend the alignment with the best AFP. More
specifically, given an alignment R, the next AFP to chain to the alignment is
the one that maximizes the following scoring function:

FlexSnap: Flexible Non-sequential Protein Structure Alignment 279

GreedyChaining(A, B, L, H, ε, Dc, Mr, Mg)
A,B: the two proteins to be aligned
L: the minimum length of an AFP, L ≥ 3
ε: the maximum rmsd for an AFP
Dc: the rmsd for introducing a hinge
Mr: the penalty for a hinge
Mg: the penalty for a gap
H : the maximum number of hinges allowed
1.P= seedExtraction(A, B, L, ε)
2.P ′= longest AFP in P
3.R = P ′

4.While(R can be extended)
5.P ′ ← maxPi(S(R, Pi))
6.R← R ∪ {P ′}
7.End

Fig. 3. A greedy algorithm for AFP chaining. The algorithm iteratively chooses an
AFP to add to R (lines 5-6) until no more AFPs can be added, or the best score of
adding an AFP to R is negative.

P ′ = max
∀Pi,s.t.R→Pi

(S(R, Pi)) (3)

where R → Pi indicates that Pi does not overlap with R, and S(R, Pi) is the
score of chaining Pi to R. The score, S(R, Pi), is a combination of the weight
of the AFP, W (Pi), and the penalty of extending R with Pi, C(R → Pi). The
score is defined as follows:

S(R, Pi) = W (Pi) + C(R → Pi) (4)

where C(R → Pi) is the penalty incurred when connecting Pi to R, and W (Pi)
is the score of the AFP itself. The scoring function rewards longer AFPs with
small rmsd and penalize gaps and hinges. If the addition of an AFP Pi to the
alignment results in a large rmsd, then we introduce a hinge only if W (Pi) is
large enough to compensate for the penalty incurred. A similar approach for
penalizing gaps and hinges was used in the FATCAT method [12]. Though their
score and cost functions are different, and they do not consider rigid regions
as we do in FlexSnap when connecting an AFP to the alignment. The score of
connecting Pi to R is defined as follows:

C(R → Pi) = Mr ∗ Z(DRPi) + Mg ∗ gap (5)

where Z(DRPi) =

⎧⎪⎨
⎪⎩

1 ifDRPi > Dc(
DRPi

−ε

Dc−ε

)2

ifε < DRPi < Dc

0 otherwise

⎫⎪⎬
⎪⎭

where Mg is the penalty for a gap, Mr is the maximum penalty for a hinge, and
DRPi is the rmsd of connecting Pi to the last rigid region in R. If DRPi increases

280 S. Salem, M.J. Zaki, and C. Bystroff

above a user-defined threshold, Dc, we introduce a hinge and the penalty is
maximum; if not, the penalty is proportional to how far the rmsd value is from
ε (maximum rmsd for an AFP). Moreover, we allow only a maximum number of
H hinges. The score for an AFP is a function of its length and rmsd. The score
is the length of the AFP, L(Pi), plus a contribution of the rmsd of the AFP,
rmsd(Pi), to the score, and is given as:

W (Pi) = L(Pi) + α ∗ L(Pi) ∗
(

ε − rmsd(Pi)
ε

)2

(6)

The complexity of the chaining algorithm depends on the number of AFPs,M ,
that two structures have. In the worst case, M could be close to n3, but in
practice it is much less, i.e., M ≤ n2. The complexity of the algorithm is
Mlog(M) + k ∗ M ∗ n, where k is the number of AFPs in the final solution
and n is the size of the larger protein.

2.4 Sequential Flexible Chaining

The above general chaining algorithm reports both sequential and non-sequential
alignments. In the results section, we show the quality of its alignments when
compared to state-of-the-art non-sequential alignment methods. However, for se-
quential flexible alignment, there are more efficient chaining algorithms, namely
FlexProt and FATCAT. The FATCAT algorithm follows a dynamic programing
approach for chaining the AFPs. In FATCAT, the score of an alignment ending
with AFP Pi is defined in terms of the score of Pj ’s and the connection cost of
Pi with these Pj ’s such that Pj ≺s Pi. More specifically, FATCAT defines the
score of the alignment that ends with Pi as follows:

S(Pi) = W (Pi) + max
∀Pj ,s.t.Pj≺sPi

{max(S(Pj) + C(Pj → Pi), 0)}

where C(Pj → Pi) is the penalty incurred when connecting Pi to the alignment
that ends with Pj and it is similar to the penalty function used in the general
chaining and W (Pi) is the score of the AFP itself. In FATCAT, C(Pj → Pi) is the
connection cost of Pi and Pj . If Pj belongs to a rigid region and the connection
cost of Pi with Pj is small, we will add Pi to the same rigid region as Pj even
though Pi might not be consistent with other AFPs in the same region. In Figure
2, if we were connecting P4 to P3, FATCAT would compute the connection cost
C(P3, P4) while it makes more sense to compute C((P2, P3) → P4). Moreover,
W (Pi) is a function of the length of Pi and its rmsd and thus S(Pi) cannot be
optimal because we do not know of a scoring function that involves the rmsd
value that is additive and optimal (rmsd score is not a metric since it does not
satisfy the triangle inequality property). Therefore, the optimality of FATCAT
alignments is not guaranteed since the sub-optimality property of the dynamic
programming does not hold if the score incorporates an rmsd term.

Our approach for sequential chaining is essentially the same as the FATCAT
algorithm with the exception that we consider connecting an AFP to the last

FlexSnap: Flexible Non-sequential Protein Structure Alignment 281

rigid region in the alignment, not to the last AFP in the alignment as is the
case in FATCAT. Moreover, we use a simpler function for scoring an AFP, e.g.,
W (Pi) = length(Pi). In the results section, we investigate how these two mod-
ifications to the FATCAT algorithm would affect the performance of sequential
chaining. Since we do not have the exact FATCAT scoring function because
some terms are not adequately defined in the paper, we implemented our own
and compared the results when including all the AFPs in the last rigid region
or not including them.

3 Results and Discussion

To assess the quality of FlexSnap alignment compared to other structural align-
ment methods, we evaluated the agreement of the methods’ alignments with
reference manually-curated alignments. We compared our FlexSnap against se-
quential methods (DALI [2] and CE [5]), non-sequential methods (SARF2 [4],
MultiProt [6], and SCALI [7]), and flexible sequential alignment methods (Flex-
Prot [11] and FATCAT [12]). All the experiments were run on a 1.66 GHz Intel
Core Duo machine with 1 GB of main memory running Ubuntu Linux. The
chaining algorithm is efficient and its running time varies from 1 second to a
minute depending on the size of the proteins. We used the corresponding web
server for most of the other alignment methods. The optimal values for the dif-
ferent parameters were found empirically such that they give the best agreement
with manually curated alignments; we used L = 8, ε = 2Å, Dc = 3Å, α = 0.3,
Mr = −10, Mg = −1, and H = 3 (see Figure 3).

3.1 Non-sequential Alignments

We used the reference alignments for the structure pairs which have circular per-
mutation in the RIPC dataset [24]. The RIPC set contains 40 structurally related
protein pairs which are challenging to align because they have indels, repeti-
tions, circular permutations, and show conformational flexibility [24]. There are
10 pairs in the RIPC dataset that have circular permutation. Since the structure
pairs have non-sequential alignments, to be fair, we only compare with algorithms
that can handle non-sequentiality. However, we report the average agreement for
some sequential methods as well. The agreement of a given alignment, S, with
the reference alignment, R, is defined as the percentage of the residue pairs in
the alignment which are identically aligned as in the reference alignment (IS)
relative to the reference alignment’s length (LR), i.e., A(S, R) = (IS/LR)× 100.
Table 1 shows the agreements of four different methods with the reference align-
ments in the RIPC dataset. The results show that FlexSnap is competitive to
state-of-the-art methods in non-sequential alignment. In fact, it has the highest
average agreement (79%) among the methods shown. The average agreement of
most of the sequential alignment methods, we compared with, were drastically
lower: DALI [2] (40%), CE [4](36%), FATCAT [12](28%), and LGA [25](38%).

FlexSnap alignments have 100 percent agreement on four structure pairs. One
suchpair is the alignment ofNK-lysin (1nkl, 78 residues)withprophytepsin (1qdm,

282 S. Salem, M.J. Zaki, and C. Bystroff

Table 1. Comparison of SARF, MultiProt, and FlexSnap on the RIPC dataset. Three
values are reported for each alignment: its length, its rmsd, and A which is its agreement
with the reference alignment in the RIPC dataset.

SCOPID SARF MultiProt SCALI FlexSnap

Pro1 Pro2 size rmsd A size rmsd A size rmsd A size rmsd A

d1nkl d1qdma1 67 2.21 92 67 1.82 68 62 1.94 69 73 2.39 100
d1nls d2bqpa 212 1.50 83 213 1.03 100 195 1.62 83 210 2.81 83
d1qasa2 d1rsy 109 2.27 65 107 1.24 93 98 1.92 82 111 1.73 100
d1b5ta d1k87a2 171 2.63 63 144 2.04 0 159 3.38 0 177 2.99 50
d1jwyb d1puja 115 2.43 83 108 1.81 92 110 4.60 83 116 2.61 92
d1jwyb d1u0la2 97 2.02 100 103 1.86 91 91 4.52 90 96 2.82 100
d1nw5a d2adma 129 2.52 85 130 2.11 92 132 3.73 84 128 2.91 100
d1gsa 1 d2hgsa1 73 2.59 20 74 1.56 40 69 3.23 40 73 2.81 20
d1qq5a d3chy 88 2.39 67 82 1.97 67 52 2.08 66 93 2.94 67
d1kiaa d1nw5a 146 2.48 83 153 1.85 75 138 3.99 75 141 2.69 75

Avg. Agreement 74 72 67 79

 1

 15

 30

 45

 60

 75

 1 15 30 45 60 75

d1
nk

l

d1qdma1

Reference
FlexSnap

SARF2
MultiProt

SCALI
DALI

FATCAT

Fig. 4. Comparison of the agreement between the reference alignment and 6
other alignment methods on the structure pair of prophytepsin(d1qdma1) and nk-
lysin(d1nkl). Residue positions of d1qdma1 and d1nkl are plotted on the x-axis
and y-axis, respectively. Note: The reference alignment pairs are shown in circles. The
SARF, MultiProt, SCALI, and FlexSnap plots overlap with the reference alignment.
FlexSnap has 100 percent coverage of the reference alignment; there is a triangle in
every circle.

chainA, 77 residues).On this pair, all the sequential alignmentmethods(CE,DALI,
FATCAT, andLGA) returned zero agreements. For the non-sequential ones: SARF
returned 92%, MultiProt got 68%, and SCALI returned 69%. The reference

FlexSnap: Flexible Non-sequential Protein Structure Alignment 283

Table 2. Comparison of FlexProt, FATCAT, FlexSnapF , and FlexSnapF2 . Each align-
ment is reported in the following format: length, rmsd, and T which is the number of
hinges introduced.

FlexProt FATCAT FlexSnapF FlexSnapF2

Pro1 Pro2 size rmsd T size rmsd T size rmsd T size rmsd T

1wdnA(223) 1gggA(220) 218 0.94 2 220 1.01 2 220 0.96 2 220 0.96 2
1hpbP(238) 1gggA(220) 220 2.34 2 213 1.59 2 211 1.67 2 210 3.88 1
2bbmA(148) 1cll (144) 139 2.22 1 144 2.28 1 138 1.8 1 138 1.80 1
2bbmA(148) 1top (162) 147 2.40 3 145 2.28 3 137 1.78 3 137 1.78 3
1akeA(214) 2ak3A(226) 200 2.44 2 202 1.54 2 207 2.05 2 206 6.72 1
2ak3A(226) 1uke (193) 182 2.90 2 188 2.97 0 184 2.36 1 184 3.08 0
1mcpL(220) 4fabL(219) 218 1.93 1 217 1.40 1 217 1.49 1 217 1.49 1
1mcpL(220) 1tcrB(237) 212 2.33 1 213 2.20 1 202 2.3 1 200 2.38 1
1lfh (691) 1lfg (691) 691 1.41 2 686 0.89 2 688 0.99 2 688 0.99 2
1tfd (294) 1lfh (691) 291 1.98 2 290 1.37 2 287 1.89 2 283 1.41 2
1b9wA(91) 1danL(142) 75 2.78 1 80 2.39 2 82 2.25 2 83 2.7 2
1qf6A(641) 1adjA(420) 323 4.43 1 351 2.68 1 326 2.45 3 320 2.47 2
2clrA(275) 3fruA(269) 253 2.71 2 245 3.06 0 254 2.57 3 252 4.31 0
1fmk (438) 1qcfA(450) 424 1.25 2 433 2.27 0 413 2.71 0 413 2.44 1
1fmk (438) 1tkiA(321) 231 3.28 2 238 3.07 0 241 2.58 3 242 3.14 2
1a21A(194) 1hwgC(191) 163 2.75 4 153 3.16 1 156 2.35 3 155 3.79 2

alignment had 72 aligned pairs. As shown in Figure 4, the sequential alignment
methods (only DALI and FATCAT shown) have their alignment paths along the
diagonal and do not agree with with the reference alignment (shown as circles).

3.2 Sequential Flexible Alignments

Table 2 shows the alignments of different methods on the FlexProt dataset [11]
which is obtained from the database of macromolecular motions [26]. FlexSnapF

is our implementation of FATCAT with a simpler function for the score of AFP
and a different function for the connection cost of two AFPs. In this version,
C(Pj → Pi) calculates the connection cost of Pi with the rigid region to which
Pj belongs. In the second version, FlexSnapF2 , C(Pj → Pi) calculates the connec-
tion cost of Pi with only Pj . It is obvious that when considering the entire rigid
region, we get much better alignments. Moreover, FlexSnapF gives comparable
results to the FATCAT method. In few cases it got slightly shorter alignments
with much better rmsd as in the case of the third and fourth alignment pairs.

4 Conclusion

We have introduced FlexSnap, a chaining algorithm that reports both sequen-
tial and non-sequential alignments and allows twists (hinges). We assessed the

284 S. Salem, M.J. Zaki, and C. Bystroff

quality of the FlexSnap alignments by measuring its agreements with manually
curated non-sequential alignments. Moreover, we employed the scoring function
devised in FlexSnap in a FATCAT-like algorithm for sequential flexible align-
ments. The new algorithm for flexible sequential alignment, FlexSnapF , gave
competitive results against state-of-the-art flexible sequential alignment meth-
ods: FlexProt and FATCAT. Our future goal is to compile a list of manually
curated flexible non-sequential alignments and measure the agreement of FlexS-
nap alignments with this dataset. Moreover, we would like to apply the algorithm
on SCOP [27] and CATH [28] classifications to investigate how the introduction
of flexibility would change the classification of some proteins.

References

[1] Wriggers, W., Schulten, K.: Protein domain movements: detection of rigid do-
mains and visualization of hinges in comparisons of atomic coordinates. Proteins:
Structure, Function, and Genetics 29, 1–14 (1997)

[2] Holm, L., Sander, C.: Protein structure comparison by alignment of distance ma-
trices. J. Mol. Biol. 233(1), 123–138 (1993)

[3] Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of dna-binding do-
mains of bacteriophage repressors and the globin core. Curr. Biol. 3, 141–148
(1993)

[4] Alexandrov, N.N.: Sarfing the pdb. Protein Engineering 50(9), 727–732 (1996)

[5] Shindyalov, I.N., Bourn, P.E.: Protein structure alignment by incremental combi-
natorial extension (ce) of the optimal path. Protein Eng. 11, 739–747 (1998)

[6] Shatsky, M., Nussinov, R., Wolfson, H.J.: A method for simultaneous alignment
of multiple protein structures. Proteins: Structure, Function, and Bioinformat-
ics 56(1), 143–156 (2004)

[7] Yuan, X., Bystroff, C.: Non-sequential structure-based alignments reveal topology-
independent core packing arrangements in proteins. Bioinformatics 21(7), 1010–
1019 (2003)

[8] Zhu, J., Weng, Z.: Fast: A novel protein structure alignment algorithm. Pro-
teins:Structure, Function and Bioinformatics 14, 417–423 (2005)

[9] Lindqvist, Y., Schneider, G.: Circular permutations of natural protein sequences:
structural evidence. Curr. Opin. Struct. Biol. 7(3), 422–427 (1997)

[10] Milik, M., Szalma, S., Olszewski, K.A.: Common structural cliques: a tool for
protein structure and function analysis. Protein Engineering 16(8), 543–552 (2003)

[11] Shatsky, M., Nussinov, R., Wolfson, H.J.: Flexible protein alignment and hinge
detection. Proteins: Structure, Function, and Bioinformatics 48, 242–256 (2002)

[12] Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment
pairs allowing twists. Bioinformatics 19, II246–II255 (2003)

[13] Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial
time. PNAS 101, 12201–12206 (2004)

[14] Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453
(1970)

FlexSnap: Flexible Non-sequential Protein Structure Alignment 285

[15] Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate
pairwise and multiple alignments of protein structures. In: Proc. Int. Conf. Intell.
Syst. Mol. Biol., vol. 4, pp. 59–67 (1996)

[16] Orengo, C.A., Taylor, W.R.: Ssap: sequential structure alignment program for
protein structure comparison. Methods Enzymol. 266, 617–635 (1996)

[17] Eidhammer, I., Jonassen, I., Taylor, W.R.: Protein Bioinformatics: An algorithmic
Approach to Sequence and Structure Analysis. John Wiley & Sons Ltd., UK (2004)

[18] Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure comparison and structure
patterns. J. Comput. Biol. 7(5), 685–716 (2000)

[19] Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of np-completeness. W.H. Freeman, San Francisco (1979)

[20] Emekli, U., Schneidman-Duhovny, D., Wolfson, H.J., Nussinov, R., Haliloglu, T.:
Hingeprot: Automated prediction of hinges in protein structures. Proteins 70(4),
1219–1227 (2008)

[21] Flores, S.C., Keating, K.S., Painter, J., Morcos, F., Nguyen, K., Merritt, E.A.,
Kuhn, L.A., Gerstein, M.B.: Hingemaster: normal mode hinge prediction approach
and integration of complementary predictors. Proteins 73, 299–319 (2008)

[22] Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta
Crystallogr. A32, 922–923 (1976)

[23] Chwartz, J.T., Sharir, M.: Identification of partially obscured objects in two di-
mensions by matching of noisy characteristic curves. Int. J. Robotics Res. 6, 29–44
(1987)

[24] Mayr, G., Dominques, F., Lackner, P.: Comparative analysis of protein structure
alignments. BMC Structural Biol. 7(50), 564–577 (2007)

[25] Zemla, A.: Lga - a method for finding 3d similarities in protein structures. Nucleic
Acids Research 31(13), 3370–3374 (2003)

[26] Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids
Res. 26(18), 4280–4290 (1998)

[27] Murzin, A., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: A structural classifica-
tion of proteins for the investigation of sequences and structures. J. Mol. Biol. 247,
536–540 (1995)

[28] Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton,
J.M.: Cath- a hierarchic classification of protein domain structures. structure 5(8),
1093–1108 (1997)

	Background
	Methods
	AFPs Extraction
	Flexible Chaining
	The FlexSnap Approach
	Sequential Flexible Chaining

	Results and Discussion
	Non-sequential Alignments
	Sequential Flexible Alignments

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

