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Abstract
We present pSPADE, a parallel algorithm for fast discovery of
frequent sequences in large databases. pSPADE decomposes
the original search space into smaller suffix-based classes.
Each class can be solved in main-memory using efficient
search techniques, and simple join operations. Further each
class can be solved independently on each processor requiring
no synchronization. However, dynamic inter-class and intra-
class load balancing must be exploited to ensure that each
processor gets an equal amount of work. Experiments on a
12 processor SGI Origin 2000 shared memory system show
good speedup and scaleup results.

1 Introduction

The sequence mining task is to discover a sequence
of attributes (items), shared across time among a large
number of objects (transactions) in a given database.
The task of discovering all frequent sequences in large
databases is quite challenging. The search space is
extremely large. For example, withm attributes there
areO(mk) potentially frequent sequences of length at
mostk. Clearly, sequential algorithms cannot provide
scalability, in terms of the data size and the performance,
for large databases. We must therefore rely on parallel
multiprocessor systems to fill this role.

Previous work on parallel sequence mining has only
looked at distributed-memory machines[Shintani and
Kitsuregawa, 1998]. In this paper we look at shared-
memory systems, which are capable of delivering high
performance for low to medium degree of parallelism
at an economically attractive price. SMP machines are
the dominant types of parallel machines currently used
in industry. Individual nodes of parallel distributed-
memory machines are also increasingly being designed
to be SMP nodes.

Our platform is a 12 processor SGI Origin 2000

system, which is a cache-coherent non-uniform mem-
ory access (CC-NUMA) machine. For cache coher-
ence the hardware ensures that locally cached data al-
ways reflects the latest modification by any processor.
It is NUMA because reads/writes to local memory are
cheaper than reads/writes to a remote processor’s mem-
ory. The main challenge in obtaining high performance
on these systems is to ensure gooddata locality, mak-
ing sure that most read/writes are to local memory, and
reducing/eliminatingfalse sharing, which occurs when
two different shared variables are (coincidentally) lo-
cated in the same cache block, causing the block to
be exchanged between the processors due to coherence
maintenance operations, even though the processors are
accessing different variables. Of course, the other fac-
tor influencing parallel performance for any system is
to ensure goodload balance, i.e., making sure that each
processor gets an equal amount of work.

In this paper we present pSPADE, a parallel algo-
rithm for discovering the set of all frequent sequences,
targeting shared-memory systems, the first such study.
pSPADE has been designed such that it has very good
locality and has virtually no false sharing. Further,
pSPADE is an asynchronous algorithm, in that it re-
quires no synchronization among processors, except
when a load imbalance is detected. We carefully con-
sider several design alternatives in terms of data and task
parallelism, and in terms of the load balancing strategy
used, before adopting the best approach in pSPADE. An
extensive set of experiments is performed on the SGI
Origin 2000 machine. pSPADE delivers good speedup
and scales linearly in the database size.

The rest of the paper is organized as follows: We
describe the sequence discovery problem in Section 2.
Section 3 describes the serial algorithm, while the
design and implementation issues for pSPADE are
presented in Section 4. An experimental study is
presented in Section 5, and we conclude in Section 6.

2 Sequence Mining

The problem of mining sequential patterns can be stated
as follows: LetI = fi1; i2; � � � ; img be a set ofm
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distinct attributes, also calleditems. An itemsetis a
non-empty unordered collection of items (without loss
of generality, we assume that items of an itemset are
sorted in increasing order). Asequenceis an ordered
list of itemsets. An itemseti is denoted as(i1i2 � � � ik),
whereij is an item. An itemset withk items is called
a k-itemset. A sequence� is denoted as(�1 7! �2 7!� � � 7! �q), where the sequenceelement�j is an itemset.
A sequence withk items (k = Pj j�j j) is called ak-
sequence. For example,(B 7! AC) is a 3-sequence.
An item can occur only once in an itemset, but it can
occur multiple times in different itemsets of a sequence.
A sequence� = (�1 7! �2 7! � � � 7! �n) is a
subsequenceof another sequence� = (�1 7! �2 7!� � � 7! �m), denoted as� � �, if there exist integersi1 < i2 < � � � < in such thataj � bij for all aj .
For example the sequence(B 7! AC) is a subsequence
of (AB 7! E 7! ACD), since the sequence elementsB � AB, andAC � ACD. On the other hand the
sequence(AB 7! E) is not a subsequence of(ABE),
and vice versa. We say that� is a proper subsequence of�, denoted� � �, if � � � and� 6� �. A sequence is
maximalif it is not a subsequence of any other sequence.
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Figure 1: Original Database

A transactionT has a unique identifier andcontains
a set of items, i.e.,T � I. A customer, C, has a unique
identifier and has associated with it a list of transactionsfT1; T2; � � � ; Tng. Without loss of generality, we assume
that no customer has more than one transaction with the
same time-stamp, so that we can use the transaction-
time as the transaction identifier. We also assume
that the list of customer transactions is sorted by the
transaction-time. Thus the list of transactions of a
customer is itself a sequenceT1 7! T2 7! � � � 7! Tn,
called thecustomer-sequence. The database,D, consists
of a number of such customer-sequences. A customer-
sequence,C, is said tocontaina sequence�, if � � C,
i.e., if � is a subsequence of the customer-sequence

C. The supportor frequencyof a sequence, denoted�(�), is the the total number of customers that contain
this sequence. Given a user-specified threshold called
the minimum support(denotedmin sup), we say that
a sequence isfrequent if occurs more thanmin sup
times. The set of frequentk-sequences is denoted asFk. Given a databaseD of customer sequences and
min sup, the problem of mining sequential patterns is to
find all frequent sequences in the database. For example,
consider the customer database shown in figure 1. The
database has three items (A;B;C), four customers, and
twelve transactions in all. The figure also shows all the
frequent sequences with a minimum support of 75% or
3 customers.

3 The Serial SPADE Algorithm

Several sequence mining algorithms have been proposed
in recent years[Srikant and Agrawal, 1996, Mannila
et al., 1997, Oateset al., 1997]. GSP [Srikant and
Agrawal, 1996] is one of the best known serial algo-
rithms. Recently, SPADE[Zaki, 1998] was shown to
outperform GSP by a factor of two in the general case,
and by a factor of ten with a pre-processing step. In this
section we describe SPADE[Zaki, 1998], a serial algo-
rithm for fast discovery of frequent sequences, which
forms the basis for the parallel pSPADE algorithm.

Sequence Lattice SPADE uses the observation that
the subsequence relation� defines a partial order on the
set of sequences, also called aspecialization relation. If� � �, we say that� is more general than�, or � is
more specific than�. The second observation used is
that the relation� is amonotone specialization relation
with respect to the frequency�(�;D), i.e., if � is a
frequent sequence, then all subsequences� � � are
also frequent. The algorithm systematically searches the
sequence lattice spanned by the subsequence relation,
from the most general to the maximally specific frequent
sequences in a breadth/depth-first manner. For example,
Figure 2 A) shows the lattice of frequent sequences for
our example database.

Support Counting Most of the current sequence min-
ing algorithms[Srikant and Agrawal, 1996] assume a
horizontaldatabase layout such as the one shown in Fig-
ure 1. In the horizontal format the database consists of
a set of customers (cid’s). Each customer has a set of
transactions (tid’s), along with the items contained in
the transaction. In contrast, we use avertical database
layout, where we associate with each itemX in the se-
quence lattice itsidlist, denotedL(X), which is a list of
all customer (cid) and transaction identifiers (tid) pairs
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containing the atom. The vertical idlist format, called
binary association table, has also been used in[Hol-
sheimeret al., 1996] for parallel data mining. Figure 2
B) shows the idlists for all the items.

Given the sequence idlists, we can determine the
support of anyk-sequence by simply intersecting the
idlists of any two of its(k � 1) length subsequences. In
particular, we use the two(k � 1) length subsequences
that share a common suffix (the generating sequences)
to compute the support of a newk length sequence. A
simple check on the cardinality of the resulting idlist
tells us whether the new sequence is frequent or not.
Figure 2 shows this process pictorially. It shows the
initial vertical database with the idlist for each item.
There are two kinds of intersections:temporal and
equality. For example, Figure 2 shows the idlist forA! B obtained by performing a temporal intersection
on the idlists ofA andB, i.e.,L(A ! B) = L(A) \tL(B). This is done by looking if, within the samecid,
A occurs before B, and listing all such occurrences. On
the other hand the idlist forAB ! B is obtained by
an equality intersection, i.e.,L(AB ! B) = L(A !B) \e L(B ! B). Here we check to see if the two
subsequences occur within the samecid at the same
time. Additional details can be found in[Zaki, 1998].

To use only a limited amount of main-memory
SPADE breaks up the sequence search space into
small, independent, manageable chunks which can be
processed in memory. This is accomplished via suffix-
based partition. We say that twok length sequences are
in the same equivalence class orpartition if they share
a commonk � 1 length suffix. The partitions, such asf[A℄; [B℄g, based on length 1 suffixes are calledparent
partitions. Each parent partition is independent in the
sense that it has complete information for generating
all frequent sequences that share the same suffix. For
example, if a class[X ℄ has the elementsY ! X ,
andZ ! X . The possible frequent sequences at the
next step areY ! Z ! X , Z ! Y ! X , and(Y Z) rightarrowX . No other itemQ can lead to a
frequent sequence with the suffixX , unless(QX) orQ! X is also in[X ℄.

SPADE recursively decomposes the sequences at
each new level into even smaller independent classes,
which produces a computation tree of independent
classes as shown in Figure 2B). This computation tree is
processed in a breadth-first manner within each parent
class. Figure 3 shows the pseudo-code for SPADE; we
refer the reader to[Zaki, 1998] for more details.

4 The Parallel pSPADE Algorithm
While parallel association mining has attracted wide
attention[Agrawal and Shafer, 1996, Zakiet al., 1997],

SPADE (min sup;D):C = f parent classesCi = [Xi℄g;
for eachCi 2 C do Enumerate-Frequent-Seq(Ci);

//PrevL is list of frequent classes from previous level
//NewL is list of new frequent classes for current level
Enumerate-Frequent-Seq(PrevL):

for (;PrevL 6= ;;PrevL = PrevL:next())NewL = NewL [ Get-New-Classes(PrevL:item());
if (NewL 6= ;) then Enumerate-Frequent-Seq(NewL);

Get-New-Classes(S):
for all atomsAi 2 S do

for all atomsAj 2 S, with j > i doR = Ai [ Aj ;L(R) = L(Ai) \ L(Aj);
if (�(R) � min sup) then Ci = Ci [ fRg;CList = CList [ Ci;

return CList;
Figure 3: SPADE pseudo-code

there has been relatively less work on parallel mining of
sequential patterns. Three distributed-memory parallel
algorithms based on GSP were presented in[Shintani
and Kitsuregawa, 1998]. pSPADE is the first algorithm
for shared-memory systems.

pSPADE is best understood by visualizing the com-
putation as a dynamically expanding irregular tree of in-
dependent suffix-based classes, as shown in Figure 4.
This tree represents the search space for the algorithm.
There are three independent suffix-based parent equiva-
lence classes. These are the only classes visible at the
beginning of computation. Since we have a shared-
memory machine, there is only one copy on disk of
the database in the vertical idlist format. It can be
accessed by any processor, via a local file descriptor.
Given that each class in the tree can be solved indepen-
dently the crucial issue is how to achieve a good load
balance, so that each processor gets an equal amount of
work. We would also like to maximize locality and min-
imize/eliminate cache contention.

There are two main paradigms that may be utilized
in the implementation of parallel sequence mining: a
data parallelapproach and atask parallelapproach. In
data parallelismP processors work on distinct portions
of the database, but synchronously process the global
computation tree. It essentially exploits intra-class
parallelism, i.e., the parallelism available within a class.
In task parallelism, the processors share the database,
but work on different classes in parallel, asynchronously
processing the computation tree. This scheme is thus

3



[B->B]

[B][A]

3

44

3 3 4 34

CID TID
1
2
2
3
4

10
20
30
10
30
404

A->B
CID TID

10
20
30

B->B

2
1
1

4 30

CID TID
1
2
4

30
30

10

AB->B

A
CID TID

1 10

40

2
2

3
3
4
4

1
20
30

30
10
40
30

CID TID
1 10

2

3
4
4

1
1

2

20

30
30
50

50
30
30

B

ORIGINAL ID-LIST DATABASE SUFFIX-JOINS ON ID-LISTSFREQUENT SEQUENCE LATTICE

B. C.A. D.

AB->B

{ }

BA

A->A B->A B->BA->BAB

(Intersect A and B)

(Intersect A->B and B->B)

[A->B][AB]

[AB->B]

[B->A][A->A]

[{}]

EQUIVALENCE CLASS LATTICE

Figure 2: SPADE: Lattices and Joins

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 5

LEVEL 4

Parent Class C2 Parent Class C3Parent Class C1

P0 P0 P0

P0P0P0P0P0P0

P0 P0

P1P1P1

P1 P1 P1 P1

P1

P1

P1 P1

P1 P1

P1

P0

P0P1 P1 P0

P0 P0

P0

P1

P0 P1

New Class X1 New Class X2 New Class X3

Y2 Y3Y1Z1 Z2

Figure 4: Dynamic, Irregular Computation Tree of
Classes

based on inter-class parallelism.

4.0.1 Data Parallelism

For sequence mining, data parallelism can come in two
flavors. The first case corresponds toidlist parallelism,
in which we physically partition each idlist intoP
ranges over the customer sequence
ids (for example,
processor 0 is responsible for the
id range 0 � � � l,
processor 1 for rangel + 1 � � � 2l, and so on). Each
processor is responsible for1=P of the 
ids. The
other case corresponds tojoin parallelism, where each
processor picks a sequence and performs intersections
with the other sequences in the same class, generating
new classes for the next level.

Idlist Parallelism There are two ways of implement-
ing the idlist parallelism. In the first method each in-
tersection is performed in parallel among theP proces-
sors. Each processor performs the intersection over its
id range, and increments support in a shared variable.
A barrier synchronization must be performed to make
sure that all processors have finished their intersection
for the candidate. Finally, based on the support this
candidate may be discarded or added to the new class.
This scheme suffers from massive synchronization over-
heads. As we shall see in Section 5 for some values of
minimum support we performed around 0.6 million in-
tersections. This scheme will require as many barrier
synchronizations. The other method uses a level-wise
approach. In other words, at each new level of the com-
putation tree, each processor processes all the classes at
that level, performing intersections for each candidate,
but only over its local database portion. The local sup-
ports are stored in a local array to prevent false shar-
ing among processors. After a barrier synchronization
signals that all processors have finished processing the
current level, a sum-reduction is performed in parallel
to determine the global support of each candidate. The
frequent sequences are then retained for the next level,
and the same process is repeated for other levels until no
more frequent sequences are found.

We implemented the level-wise idlist parallelism and
found that it performed very poorly. In fact, we got a
speed-down as we increased the number of processors
(see Section 5). Even though we tried to minimize
the synchronization as much as possible, performance
was still unacceptable. Since a candidate’s memory
cannot be freed until the end of a level, the memory
consumption of this approach is extremely high. We
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were unable to run this algorithm for low values of
minimum support. Also, when the local memory is not
sufficient the Origin allocates remote memory for the
intermediate idlists, causing a performance hit due to
the NUMA architecture.

Join Parallelism In join parallelism each processor
performs intersections for different sequences within the
same class. Once the current class has been processed,
the processors must synchronize before moving on to
the next class. While we have not implemented this
approach, we believe that it will fare no better than
idlist parallelism. The reason is that it requires one
synchronization per class, which is better than the single
candidate idlist parallelism, but still much worse than
the level-wise idlist parallelism, since there can be many
classes.

4.0.2 Task Parallelism

In task parallelism all processors have access to the
entire database, but they work on separate classes. We
present a number of load balancing approaches starting
with a static load balancing scheme and moving on to a
more sophisticated dynamic load balancing strategy.

Static Load Balancing (SLB) Let C = fC1; C2; C3g
represent the set of the parent classes at level 1 as shown
in Figure 4. We need to schedule the classes among
the processors in a manner minimizing load imbalance.
In our approach an entire class is scheduled on one
processor. Load balancing is achieved by assigning a
weight to each equivalence class based on the number
of elements in the class. Since we have to consider
all pairs of items for the next iteration, we assign the
weight W1i = �jCij2 � to the classCi. Once the
weights are assigned we generate a schedule using a
greedy heuristic. We sort the classes on the weights (in
decreasing order), and assign each class in turn to the
least loaded processor, i.e., one having the least total
weight at that point. Ties are broken by selecting the
processor with the smaller identifier. We also studied
the effect of other heuristics for assigning class weights,
such asW2i = Pj jL(Aj)j for all itemsAj in the
classCi. This cost function gives each class a weight
proportional to the sum of the supports of all the items.
We also tried a cost function that combines the above
two, i.e., W3i = �jCij2 � � Pj jL(Aj)j. We did not
observe any significant benefit of one weight function
over the other, and decided to useW1.

Figure 5 shows the pseudo-code for the SLB algo-
rithm. We schedule the classes on different processors
based on the class weights. Once the classes have been

scheduled, the computation proceeds in a purely asyn-
chronous manner since there is never any need to syn-
chronize or share information among the processors. If
we applyW1 to the class tree shown in Figure 4, we getW11 = W12 = W13 = 3. Using the greedy schedul-
ing scheme on two processors,P0 gets the classesC1
andC3, andP1 gets the classC2. We immediately see
that SLB suffers from load imbalance, since after pro-
cessingC1, P0 will be busy working onC3, while after
processingC2, P1 has no more work. The main problem
with SLB is that, given the irregular nature of the com-
putation tree there is no way of accurately determining
the amount of work per class statically.

Inter-Class Dynamic Load Balancing (CDLB) To
get better load balancing we utilize inter-class dynamic
load balancing. Instead of a static or fixed class
assignment of SLB, we would like each processor to
dynamically pick a new class to work on from the list of
classes not yet processed. We also make use of the class
weights in the CDLB approach. First, we sort the parent
classes in decreasing order of their weight. This forms a
logical central task queue of independent classes. Each
processor atomically grabs one class from this logical
queue. It processes the class completely and then grabs
the next available class. Note that each class usually
has a non-trivial amount of work, so that we don’t have
to worry too much about contention among processors
to acquire new tasks. Since classes are sorted on their
weights, processors first work on large classes before
tackling smaller ones, which helps to achieve a greater
degree of load balance. The pseudo-code for CDLB
algorithm appears in Figure 5. Thecompare-and-swap
(CAS) is an atomic primitive on the Origin. It compares
lassid with i. If they are equal it replaces
lassid withi+1, returning a 1, else it returns a 0. CAS ensures that
processors acquire separate classes.

If we apply CDLB to our example computation tree
in Figure 4, we might expect a scenario as follows: In
the beginningP1 grabsC1, andP0 acquiresC2. SinceC2 has less work,P0 will grab the next classC3 and
work on it. ThenP1 becomes free and finds that there is
no more work, whileP0 is still busy. For this example,
CDLB did not buy us anything over SLB. However,
when we have a large number of parent classes CDLB
has a clear advantage over SLB, since a processor grabs
a new class only when it has processed its current class.
This way only the free processors will acquire new
classes, while others continue to process their current
class, delivering good processor utilization. We shall
see in Section 5 that CDLB can provide up to 40%
improvement over SLB. We should reiterate that the
processing of classes is still asynchronous. For both
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SLB (min sup;D):C = f parent classesCi = [Xi℄g;
Sort-on-Weight(C);
for all Ci 2 C doPj = Proc-with-Min-Weight();SPj = SPj [ Ci;
parallel for all Ci 2 SPj do

Enumerate-Frequent-Seq(Ci);
CDLB (min sup;D):C = f parent classesCi = [Xi℄g;

Sort-on-Weight(C);

shared int classid=0;
parallel for (i = 0; i < jCj; i++)

if (compareand swap(
lassid; i; i+ 1))
Enumerate-Frequent-Seq(Ci);

Figure 5: The SLB (Static Load Balancing) and CDLB (Dynamic Load Balancing) Algorithms

SLB and CDLB, false sharing doesn’t arise, and all
work is performed on local memory, resulting in good
locality.

Recursive Dynamic Load Balancing (RDLB) While
CDLB improves over SLB by exploiting dynamic load
balancing, it does so only at the inter-class level, which
may be too coarse-grained to achieve a good workload
balance. RDLB addresses this by exploiting both inter-
class and intra-class parallelism. To see where the
intra-class parallelism can be exploited, lets examine the
behavior of CDLB. As long as there are more parent
classes remaining, each processor acquires a new class
and processes it completely. If there are no more parent
classes left, the free processors are forced to idle. The
worst case happens whenP � 1 processors are free
and only one is busy, especially if the last class has a
deep computation tree (although we try to prevent this
case from happening by sorting the classes, so that the
smaller ones are at the end, it can still happen). We can
fix this problem if we can provide a mechanism for the
free processors to join the busy ones. We accomplish
this by recursively applying the CDLB strategy at each
new level, but only if there is some free processor
waiting for more work. Since each class is independent,
we can treat each class at the new level in the same way
we treated the parent classes, so that different processors
can work on different classes that the new level.

Figure 6 shows the pseudo-code for the pSPADE al-
gorithm, which uses a recursive dynamic load balancing
(RDLB) scheme. We start with the parent classes and in-
sert them in the global class list,GlobalQ. A processor
atomically acquires classes from this list until all parent
classes have been taken. At that point the processor in-
crementsFreeCnt, and waits for more work. When a
processor is processing the classes at some level, it pe-
riodically checks if there is any free processor. If so,
it inserts the remaining classes at that level (PrevL)
in GlobalQ, emptyingPrevL in the process, and setsGlobalF lg. This processor then quits the loop on line
16, and continues working on the new classes (NewL)

1. shared int FreeCnt = 0; //Number of free processors
2. shared int GlobalF lg = 0; //Is there more work?
3. shared list GlobalQ; //Global list of classes

pSPADE (min sup;D):
4. GlobalQ = C = f parent classesCi = [Xi℄g;
5. Sort-on-Weight(C);
6. Process-GlobalQ();
7. FreeCnt ++;
8. while (FreeCnt 6= P )
9. if (GlobalF lg) then
10. FreeCnt ��; Process-GlobalQ(); FreeCnt+ +;
Process-GlobalQ():
11. shared int 
lassid = 0;
12. parallel for (i = 0; i < GlobalQ:size(); i ++)
13. if (compareand swap(
lassid; i; i+ 1))
14. RDLB-Enumerate-Frequent-Seq(Ci);
15. GlobalF lg = 0;
RDLB-Enumerate-Frequent-Seq(PrevL):
16. for (;PrevL 6= ;;PrevL = PrevL:next())
17. if (FreeCnt > 0) then
18. Add-to-GlobalQ(PrevL:next()); GlobalF lg = 1;
19. NewL = NewL [ Get-New-Classes(PrevL:item());
20. if (NewL 6= ;) then RDLB-Enumerate-Frequent-Seq(NewL);

Figure 6: The pSPADE Algorithm (using RDLB)

generated before a free processor was detected. When a
waiting processor sees that there is more work, it starts
working on the classes inGlobalQ. When there is no
more work,FreeCnt equals the number of processorsP , and the computation stops.

Let’s illustrate the above algorithm by looking at the
computation tree in Figure 4. The nodes are marked
by the processors that work on them. First, at the
parent class level,P0 acquiresC1, and P1 acquiresC2. SinceC2 is smaller,P1 grabs classC3, and starts
processing it. It generates three new classes at the next
level,NewL = fX1; X2; X3g, which becomesPrevL
when P1 start the next level. Let’s assume thatP1
finishes processingX1, and inserts classesZ1; Z2 in
the newNewL. In the meantime,P0 becomes free.
Before processingX2, P1 notices in line 17, that there
is a free processor. At this pointP1 insertsX3 inGlobalQ, and emptiesPrevL. It then continues to
work onX2, insertingY1; Y2; Y3 in NewL. P0 sees the
new insertion inGlobalQ and start working onX3 in
its entirety. P0 meanwhile starts processing the next
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Dataset C T S I D Size MinSup
C10T5S4I1.25D1M 10 5 4 1.25 1M 320MB 0.25%
C10T5S4I2.5D1M 10 5 4 2.5 1M 320MB 0.33%
C20T2.5S4I1.25D1M 20 2.5 4 1.25 1M 440MB 0.25%
C20T2.5S4I2.5D1M 20 2.5 4 2.5 1M 440MB 0.25%
C20T5S8I1.25D1M 20 5 8 1.25 1M 640MB 0.33%
C20T5S8I2D1M 20 5 8 2 1M 640MB 0.5%
C5T2.5S4I1.25DxM 5 2.5 4 1.25 1M-10M 110MB-1.1GB 0.25%-0.01%

Table 1: Synthetic Datasets

level classes,fZ1; Z2; Y1; Y2; Y3g. If at any stage it
detects a free processor, it will repeat the procedure
described above recursively. Figure 4 shows a possible
execution sequence for the classC3. The RDLB scheme
of pSPADE preserves the good features of CDLB, i.e., it
dynamically schedules entire parent classes on separate
processors, for which the work is purely local, requiring
no synchronization. So far only inter-class parallelism
has been exploited. Intra-class parallelism is required
only for a few (hopefully) small classes towards the
end of the computation. We simply treat these as new
parent classes, and schedule each class on a separate
processor. Again no synchronization is required except
for insertions and deletions fromGlobalQ. In summary,
computation is kept local to the extent possible, and
synchronization is done only if a load imbalance is
detected.

5 Experimental Results

Experiments were performed on a 12 processor SGI Ori-
gin 2000 machine at RPI, with 195 MHz R10000 MIPS
processors, 4MB of secondary cache per processor, 2GB
of main memory, and running IRIX 6.5. The databases
we stored on an attached 7GB disk, and all I/O is serial.
Further, there were only 8 free processors available to
us.

Synthetic Datasets We used the publicly available
dataset generation code from the IBM Quest data
mining project [IBM, ]. These datasets mimic real-
world transactions, where people buy a sequence of
sets of items. Some customers may buy only some
items from the sequences, or they may buy items from
multiple sequences. The customer sequence size and
transaction size are clustered around a mean and a
few of them may have many elements. The datasets
are generated using the following process. FirstNI
maximal itemsets of average sizeI are generated by
choosing fromN items. ThenNS maximal sequences
of average sizeS are created by assigning itemsets from

NI to each sequence. Next a customer of averageC transactions is created, and sequences inNS are
assigned to different customer elements, respecting the
average transaction size ofT . The generation stops
whenD customers have been generated. We setNS =5000,NI = 25000 andN = 10000. Table 1 shows the
datasets with their parameter settings.

Parallel Performance In [Zaki, 1998] SPADE was
shown to outperform GSP, thus we chose not to par-
allelize GSP for comparison against pSPADE. As we
mentioned in Section 4.0.1, the level-wise idlist data
parallel algorithm performs very poorly, resulting in a
speed-down with more processors. Results on 1, 2, and
4 processors shown in Figure 7 confirm this.

We now look at the parallel performance of pSPADE.
Figure 8 shows the total execution time and the speedup
charts for each database on the minimum support values
shown in Table 1. We obtain near perfect speedup for
2 processors, ranging as high as 1.92. On 4 processors,
we obtained a maximum of 3.5, and on 8 processors the
maximum was 5.4. As these charts indicate, pSPADE
achieves good speedup performance. Finally, we study
the effect of dynamic load balancing on the parallel
performance. Figure 7 shows the performance of
pSPADE using 8 processors on the different databases
under static load balancing (SLB), inter-class dynamic
load balancing (CDLB), and the recursive dynamic
load balancing (RDLB). We find that CDLB delivers
more than 22% improvement over SLB in most cases,
and ranges from 7.5% to 38% improvement. RDLB
delivers an additional 10% improvement over CDLB
in most cases, ranging from 2% to 12%. The overall
improvement of using RDLB over SLB ranges from
16% to as high as 44%. Thus our load balancing scheme
is extremely effective.

Scaleup Results Figure 9 shows how pSPADE scales
up as the number of customers is increased ten-fold,
from 1 million to 10 million (the number of transactions
is increased from 5 million to 50 million, respectively).
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Figure 7: A) Level-Wise Idlist Data Parallelism, B) Effect of Load Balancing
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Figure 8: pSPADE Parallel Performance
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The database size goes from 110MB to 1.1GB. All
the experiments were performed on the C5T2.5S4I1.25
dataset with a minimum support of 0.025%. Both
the total execution time and the normalized time (with
respect to 1M) are shown. It can be seen that while the
number of customers increases ten-fold, the execution
time goes up by a factor of less than 4.5, displaying sub-
linear scaleup.

Finally, we study the effect of changing minimum
support on the parallel performance, shown in Figure 10.
We used 8 processors on C5T2.5S4I1.25D1M dataset.
The minimum support was varied from a high of 0.25%
to a low of 0.01%. Figure 10 also shows the number
of frequent sequences discovered and the number of
joins performed (candidate sequences) at the different
minimum support levels. Running time goes from 6.8s
at 0.1% support to 88s at 0.01% support, a time ratio
of 1:13 vs. a support ratio of 1:10. At the same time
the number of frequent sequences goes from 15454 to
365132 (1:24), and the number of joins from 22973
to 653596 (1:29). The number of frequent/candidate
sequences are not linear with respect to the minimum
support.

6 Conclusions

In this paper we presented pSPADE, a new parallel al-
gorithm for fast mining of sequential patterns in large
databases. We carefully considered the various paral-
lel design alternatives before choosing the best strategy
for pSPADE. These included data parallel approaches
like idlist parallelism (single vs. level-wise) and join
parallelism. In the task parallel approach we consid-
ered different load balancing schemes such as static,
dynamic and recursive dynamic. We adopted the re-
cursive dynamic load balancing scheme for pSPADE,
which was designed to maximize data locality and min-
imize synchronization, by allowing each processor to
work on disjoint classes. It also has no false sharing. Fi-
nally, the scheme minimizes load imbalance by exploit-
ing both inter-class and intra-class parallelism. Experi-
ments conducted on the SGI Origin CC-NUMA shared
memory system show that pSPADE has good speedup
and scaleup properties.
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