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ABSTRACT

We introduce a novel approach for structure activity rela-
tionship analysis based on the use of a special kernel. The
kernel efficiently performs Gram-Schmidt orthogonalisation
in a kernel defined feature space.

We show that support vector machines in conjunction with
Gram-Schmidt kernel, a recent method to extract features,
can be adopted successfully to predict the inhibition of dihy-
drofolate reductase by pyrimidines. We show that the fea-
ture space generated by Gram-Schmidt kernel does capture
enough information, to the extent that it can outperform
state-of-the-art systems. We also show that support vector
machines in conjunction with Gram-Schmidt kernels can be
applied successfully to predict the inhibition of dihydrofolate
reductase by triazines. A preliminary experimental compar-
ison of performance of the kernel with standard kernels and
decision trees is made showing encouraging results.
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1. INTRODUCTION

Millions of people are suffering form fatal diseases such as
cancer, AIDS, and many other bacterial and viral illnesses.
The key issue now is how to design life-saving and cost-
effective drugs so that the diseases can be cured and pre-
vented. It would also enable the provision of medicines in
developing countries where approximately 80% of the world
population lives.

Structure activity relationship (SAR) analysis is a key drug
discovery task. It is based on the assumption that chemical
structure and activity of compounds are correlated. SAR
is the task of predicting the activity of new compounds by
observing the structure of the compound. The activity of a
compound can be biological activity, chemical reactivity and
toxicity. A new compound is assigned an activity by con-
ducting qualitative (q) or quantitative (Q) structure activity
relationships analysis. In other words QSAR analysis is a
regression problem whereas qSAR analysis is a classification
task.

In this paper we introduce a novel methodology based on
the use of a special kernel [4] to predict the qualitative bi-
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ological activity of a new compound. SAR analysis plays a
crucial role in the design and development of drugs. It is
used to select a subset of important molecules from a huge
sea of molecules, hence forming a small library of useful
molecules. An important factor in SAR analysis is the pre-
diction of new compounds with low probability of error, as
the false prediction can be costly and result in loss of useful
information.

Kernel methods (KM) are class of learning algorithms that
give state-of-the-art performance. The support vector ma-
chine (SVM) [3; 17] is a well known example. The building
block of these methods is an entity known as the kernel.
The non-dependence of theses methods on the dimensional-
ity of the feature space and the flexibility of using any kernel
make them a good choice for different predictive modelling
especially for SAR analysis. KM maps the vectorial data
di,...,dn, € D into some higher dimensional feature space
and trains a linear classifier in this higher dimensional space.
The kernel trick provides an efficient way to construct such
a classifier by providing an efficient method of computing
the inner product between mapped instances in the feature
space. One does not need to represent the input instances
explicitly in the feature space. The kernel function com-
putes the inner product by implicitly mapping the instances
to the feature space.

A number of learning methods have been applied to SAR
analysis including neural networks [6] and decision trees [8].
There also exists special methods such as Partial Least Squares
(PLS) [7]. The application of kernel methods in SAR analy-
sis has been pioneered by Burbidge et al. [2] and succes-
sively explored by others [5]. Note that Burbidge et al.
formulated a classification problem whereas Demiriz et al.
formulated a regression problem. Learning techniques have
been applied to compute new features to enhance the pre-
diction of activity of a compound. New features have been
computed by applying inductive logic programming in [16].
In this paper we introduce a radically different approach
to extract features for SAR analysis. We introduce Gram-
Schmidt kernels [4] (GSK) to compute features for struc-
ture activity prediction. This method incorporates more
information into a kernel matrix. In other words the com-
puted features are more informative and useful. We applied
this approach to drug design with gSAR. We show that the
computed features improve the generalisation performance
of an SVM. We applied the method to predict the inhibi-
tion of dihydrofolate reductase by pyrimidines. We compare
our methodology with SVM-RBF, artificial neural networks,

page 37



radial basis function networks and C5.0 (results extracted
from [2]) demonstrating that the approach delivers state-
of-the-art performance and can outperform all of the above
mentioned techniques. Furthermore, we conducted another
set of experiments to predict the inhibition of dihydrofolate
reductase by triazines. The preliminary experimental com-
parison of the performance of the kernel with the standard
kernels and decision trees shows encouraging results. This
shows the effectiveness of our methodology in SAR analysis.

2. KERNEL METHODS

This section reviews the main ideas behind Support Vec-
tor Machines (SVMs) (a well known example of the ker-
nel methods) and kernel functions. SVMs are a class of
algorithms that combine the principles of statistical learn-
ing theory with optimisation techniques and the idea of a
kernel mapping. They were proposed in 1992 [1]. An SVM
is provided with set S of n training instances of the form

{(d17cl)7 sy (dn7cn)}'

Here d; are the instances, which live in the instance space
D and ¢; = ¢(d;) are the class labels, categories or tar-
gets. For binary classification ¢; € {—1,+1}, otherwise
¢i € {1,2,...,k}. The learning process of these methods
consists of the following stages:

e Map the input data into some higher dimensional space
through a non-linear mapping ¢. The mapped space
is known as the feature space F' and the mapping is
given by

¢:D — F.

The mapping ¢ may not be known explicitly but be
accessed via the kernel function described below.

e Construct a linear classifier f in the feature space as
given by

f(d) = (w,¢(d)) +b.

Here w is the weight vector learned during the training
phase. This weight vector is a linear combination of
training instances. In other words

W = ialcz(j)(dz)
i=1
Substituting the value of w
F(d) =3 aici{(ds), () +b.

Hence the classifier is constructed only using the inner
products between the mapped instances.

In other words, SVMs are based on the idea of construct-
ing maximal margin hyperplane in the feature space. This
unique hyperplane separates the data into two sets with
maximum margin. Figure 1 shows a maximal margin hy-
perplane. The non-dependence of the solution on the di-
mensionality of the space where the separation takes place
makes it possible to work in very high dimensional spaces
without overfitting.

We now briefly describe a kernel function. A function that
calculates the inner product between mapped instances in a
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Figure 1: A maximal margin hyperplane

feature space is a kernel function, that is for any mapping ¢ :
D — F, K(d;,d;) = (¢(di), #(d;)) is a kernel function. Note
that the kernel computes this inner product by implicitly
mapping the instances to the feature space. The mapping ¢
transforms an n dimensional instance into an [NV dimensional
feature vector.

o(d) = (¢1(d), ..., pn(d)) = (¢i(d)) fori=1,...,N

The explicit extraction of features in a feature space gener-
ally has very high computational cost but a kernel function
provides a way to handle this problem. The mathematical
foundation of such a function was established during the
first decade of twentieth century [14]. A kernel function is a
symmetric function,

K(d;,d;) = K(dj,d;), fori,j=1,...,n.

The n x n matrix with entries of the form K;; = K(d;,d;) is
known as the kernel matrix. A kernel matrix is a symmetric,
positive definite matrix. It is interesting to note that this
matrix is the main source of information for KMs and these
methods use only this information to learn a classifier. There
are ways of combining simple kernels to obtain more complex
ones.

For example given a kernel K and a set of n vectors the
polynomial construction is given by

Kpoy(di, dj) = (K(di,dj) + c)”

where p is a positive integer and c is a nonnegative constant.
Clearly, we incur a small computational cost, to define a
new feature space. The feature space corresponding to a
degree p polynomial kernel includes all products of at most
p input features. Hence polynomial kernels create images
of the examples in feature spaces having huge numbers of
dimensions.
Furthermore, Gaussian RBF kernels define feature space
with infinite number of dimension and it is given by

Kgauss(di, dj) = EXP(M)

202

A Gaussian kernel allows an algorithm to learn a linear clas-
sifier in an infinite dimensional feature space.
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Require: A  kernel k&, training set S =
{(d1,c1),-..,(dn,cn)} and number T
for i =1 to n do
norm?2[i] = k(d;, d;);
end for
for j =1toT do
t; = argmax;, (norma2[s]);
index[j] = i;;
size[j] = y/norm?2[i;];
for ¢ =1 to n do
((di, di;) — 3121 featli, 1] = featiy, 1]

feat[, j] = — ;
size[J]
norm?2[i] = norm2[i] — feat(s, j) * feat(s, j);
end for
end for

return feat[i, j] as the j-th feature of input ¢;
To classify a new example d:
for j=1to T do

(k(d, di;)— S| newfeat[t] feat[i]—,t])

size[j]

newfeat[j] = ;

end for
return newfeat[j] as the j-th feature of the example d;

Figure 2: The GSK algorithm.

3. GRAM-SCHMIDT KERNELSFOR STRUC-

TURE ACTIVITY PREDICTION

In this section we describe our adaptation of Gram-Schmidt
kernels (GSK) [4] to predict qualitative biological activity
for drug design. GSK is a recently proposed method for ex-
tracting features in the kernel defined feature space. It is
based on the idea of building a more informative kernel ma-
trix as compared to the standard kernels. In this way, GSK
defines a more informative feature space and the examples
that live in a physiochemical space are mapped into a highly
informative space. This technique makes the incorporation
of information into a kernel matrix feasible and attractive.
According to this technique a set of features can be com-
puted in time proportional to O(T'n?), where T is the num-
ber of features required to create an effective feature space.
This technique significantly speeds up the computation of
feature space.

GSK is based on Gram-Schmidt decomposition that builds
the projection as the span of a subset of (the projections
of) a set of k training instances. These are selected by per-
forming a Gram-Schmidt orthogonalisation of the training
vectors in the feature space. Hence, once a vector is se-
lected the remaining training points are transformed to be-
come orthogonal to it. The next vector selected is the one
with the largest residual norm. The whole transformation is
performed in the feature space using the kernel mapping to
represent the vectors obtained. GSK is an iterative proce-
dure that greedily selects a training instance at each itera-
tion and extracts features. At each iteration the criterion for
selecting an instance is the maximum norm. Figure 2 gives
complete pseudo-code for extracting the features in the ker-
nel defined feature space. This procedure has been termed
GSK algorithm.

The GSK algorithm takes a set S = {(di,c1),...,(dn,cn)}
of n training instances. As input an underlying kernel func-
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tion and number T are also fed to the algorithm. The num-
ber T specifies the number of dimension of the new infor-
mative feature space.

The algorithm starts by measuring the norm of each in-
stance. At iteration j the training instance with maximum
norm is chosen and we denote its index by i;. A new jth
feature is extracted for the ith training instance

(k(di, d;;) — 377} feat[i, ] * feat[ij,t])

size[j]

feat[i, j] = :
where size[j] is the residual norm of the chosen example.
This process is repeated in the feature space 1" times, where
T is the chosen dimensionality of the feature space. Fi-
nally the instances are transformed into a new 7 dimen-
sional space. The feature for a new example is extracted by
projecting it into the space obtained by the Gram-Schmidt
orthogonalisation of k training vectors. It is given by

(k(d7 di;)— 21;11 newfeat[t] * feat[i]—,t])

size[j]

new feat[j] =

forj=1...T.

3.1 ChoosingError/Margin Parameter and Un-
derlying Kernel Function

We employed GSK in conjunction with an SVM in qSAR
data analysis. The goal of a classifier is to predict the in-
hibition of dihydrofolate reductase by pyrimidines with low
probaility of error (taskl) and to predict the inhibition of
dihydrofolate reductase by triazines with low probability of
error (task2). We first describe the selection of parametes
for taskl.

We can view the learning process of an SVM with GSK as
comprising two stages. In the first stage highly informa-
tive features are extracted in a kernel induced feature space.
In the second stage a soft margin hyperplane classifier is
trained. In order to train a linear SVM classifier we used
SV M'9" [11]. The generalisation performance of an SVM
can be controlled by the free parameter C. It is a trade off
parameter between margin maximisation and error. For the
underlying kernel function we employed a Gaussian RBF.
The effectiveness of a structure activity prediction system
based on GSK can be influenced by the free parameter o.
Note that for each new value of this parameter, we obtain
a new kernel and in turn the resultant feature space con-
tains new information. Highly informative features can be
computed by using an optimal value of 0. We now have
two tunable parameters o (for underlying kernel function)
and C (for SVM). In order to choose an optimal value of
C a range of values of C' were selected. The set is given
by {1,10,100}. Similarly a range of values of o were se-
lected based on a heuristic method [10] . The set is given
by {0, 20, 30,40}, where o is the median Euclidean distance
between a positive instance and its its nearest negative in-
stance in the training set. We mapped the data into a fea-
ture space defined by GSK using each value of ¢ in the set.
Once we have computed a feature space, we trained linear
SVMs using different values of C. The optimal values of C
and ¢ which minimise the upper bound on generalisation
error [12] were chosen. Note that we prefer higher values of
o in a scenario where more than one values of o give approx-
imately same estimate. Table 1 illustrates the behaviour of
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SVM in conjunction with GSK for different values of ¢ in
128 dimensional feature space (1" = 128).

o 20 30 4o

77.52 | 85.74 | 84.65 | 80.5

Table 1: Generalisation (Accuracy) of SVM in conjunction
with GSK for different values of ¢ for fold 1 of dataset 1.

We now describe the selection of parametes for task2. We
use the value of C which has shown high performance for
taskl. We also observed the support vectors to assess our
selection. For the underlying kernel function, we employed
linear and Gaussian RBF. As described earlier the perfor-
mance of an SVM with GSK can be influenced by the pa-
rameter 0. We now have only one tunable parameter o.
In order to choose an optimal value of o a range of values
of v {7, 27,3747} were selected. We set v = 1/20% = .1.
For comparison we applied an SVM with standard kernels
and C4.5 [15]. We now explain the selection of parameters
for an SVM with standard kernels. As standard kernels we
applied linear and Gaussian kernels. Note that we applied
the same methodology to set the parameter C' and o as de-
scribed (for an SVM with GSK). We trained SVM classifier
using SV M"9"* [11]. We used C4.5 with default parameters
by keeping pruning on.

4. DATASETS

We performed structure activity relationship analysis by
conducting experiments on UCI datasets. We selected two
collections described below.

4.1 Dataset 1

In order to study the performance of the proposed method-
ology we chose benchmark dataset described in [13; 2] in
detail. In this problem the aim of a learning algorithm is to
predict the inhibition of dihydrofolate reductase by pyrim-
idines with low probability of error. In order to obtain a
solution for QSAR a regression problem is solved, as QSAR
analysis are generally regression problems. This problem
has been converted into a binary classification task by con-
sidering a greater activity relationship between pairs of com-
pounds. In this way each instance in the dataset is assigned
an integer label. The dataset contains 55 compounds that
are divided into 5-fold cross-validation series. The examples
in the dataset are in vectorial form. For each drug there are
3 positions of possible substitution and the number of at-
tributes for each substitution position is 9. These attributes
are namely, polarity, size, flexibility, hydrogen-bond donor,
hydrogen-bond acceptor m donor, m acceptor, polarisability
and o effect. Each drug, now is described by 27 attributes.
Two drugs for each examples in the dataset makes the di-
mensionality of the space 54.

4.2 Dataset 2

We conducted second set of experiments on a subset of a
benchmark dataset. This dataset is described in detail in [9].
The dataset is used to predict the inhibition of dihydrofo-
late reductase by triazines. In order to reproduce cancer
cells triazines inhibit dihydrofolate enzymes. The dataset
comprises of 186 compounds that are organised into six
folds. As described in the preceeding section the dataset
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has been converted into a binary classification dataset by
considering a greater activity relationship between pairs of
compounds. There are two drugs for each instance. The
instances are labelled on the basis of greater activity rela-
tionship between two drugs. Each drug is characterised by
6 position of possible substitution. The number of physio-
chemical attributes tht can be substituted are 10. These at-
tributes are namely polarity, polarisability, hydrogen-bond
donar, hydrogen-bond acceptor, m donar, 7 acceptor, size,
flexibility, o effect and braching. In this way there are 60
attributes for each drug. Tow drugs for each instance make
the total number of attributes 120. In other words instances
live in a physiochemical space where dimensionality of space
is 120. In order to analyse the performace of GSK in qSAR
analysis we took a subet of first fold (computational rea-
sons). The selected subset comprises 1300 examples. We
selected randomly 80% of the data for training the classifier
and 10% for evaluation. We repeated this process 10 times.
Note that for this set of experiments we set T to 256.

5. EXPERIMENTAL RESULTSAND DISCUS-

SION

Algorithm T
16 32 64 | 128 | 200 | 256
SVM-GSK || 76.5 | 82.0 | 86.2 | 87.6 | 88.1 | 88.8

Table 2: The performance (accuracy) of SVM with GSK.
The results are averaged over five cross-validation folds. The
results show the influence of computed features on general-
isation performance of SVM

In this section we present our experimental results that show
that our adaptation of SVM-GSK is effective for gSAR anal-
ysis. The GSK algorithm requires a set of examples, an un-
derlying kernel function and the number T that specifies the
dimension of the feature space. The algorithm starts by cal-
culating the norm of each example giving a norm vector. Of
all the examples, one with maximum norm is chosen. Once,
an example is selected, the algorithm focuses on extracting
features relative to this example. Given that the features
are extracted, the next action is to update the norm vec-
tor. This process is repeated for T number of times. At
the end of feature extraction process, that is done in the
feature space a set of training documents and a norm vec-
tor is obtained. By exploiting the information obtained in
the training phase, the algorithm extract features for new
examples.

We employed GSK in conjunction with an SVM on the
datasets described in the preceeding section.

We conduted a set of experiments to predict the inhibition
of dihydrofolate reductase by pyrimidines. We investigated
the influence of computed features on the generalisation per-
formance of an SVM. Furthermore we observed the affect
of variability of dimensionality of space on performance.
The results are shown in Table 2. The results are aver-
aged over 5-cold cross validation folds. To accomplish our
goals we started with a small dimensional feature space. We
increased the dimensionality of the feature space in inter-
vals by extracting more features. Our results demonstrates
that our adaptation of GSK is very effective. The results
also demonstrate the generalisation performance of an SVM
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classifier varies with respect to the dimensions of the feature
space. The higher values of accuracy demonstrate that the
computed features are effective and informative. Table 3
shows the published results on the same dataset. These
results are extracted from [2]. The reported results are av-
eraged over five cross-validation folds. These results demon-
strate that our methodology outperforms all the methods
listed in Table 3. Our results show the effectiveness of an
SVM learner when it manipulates the information encoded
in a kernel matrix that contains more information than a
standard kernel matrix. Note that the free parameter 7" can
be tuned by adopting the strategy explained in section 3.1.

Algorithm Accuracy
SVM-RBF 87.33
1-NN 83.62
NN (manual) 86.97
RBF 78.76
C5.0 81.30

Table 3: Reported accuracies extracted from

Furthermore, we performed preliminary experiments to pre-
dict the inhibition of dihydrofolate reductase by triazines.
We conduted experiments on subset of dataset as described
in 4.2. We studied the affect of computed features on the
generalisation performance of an SVM. The results are shown
in Table 4. The results are averaged over 10 random splits
of the data. The average accuracy is given and note that
this table also show the the standard deviations. Our results
show the technique GSK computes infromative features. We
compared the performance of GSK with other techniques.
The results show that an SVM classifier in conjunction with
GSK is slighly better than the generalistion performance of
an SVM with standard kernel. It is worth noting that GSK
outperforms C4.5. We would like to further extend this work

Algorithm Kernel Accuracy
Mean | SD
SVM linear || 83.03 | 2.99
gaussian || 88.04 | 2.30
GSKiinear || 83.88 | 2.20
GSKyaussian || 88.15 | 1.11
| C4.5 I | 80.66 | 2.42 |

Table 4: The generalisation performance (Accuracy) of SVM
with GSK, standard kernels (linear kernel and Gaussian
RBF kernel) and C4.5. The results are averaged over 10
runs of the techniques. We also report standard deviation.

by performing an extensive experimental analysis on other
datasets and for harder problems such as QSAR with GSK.
We believe that features extracted using GSK will be useful
and will lead to a successful QSAR analysis.

6. CONCLUSIONS

The paper has introduced a novel methodology based on
a special kernel for SAR analysis. The performance of the
Gram-Schmidt kernel was empirically tested for structure
activity prediction by applying it to a publicly available
datasets. This kernel can be used with any kernel-based
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learning system, for example in clustering, regression, rank-
ing, etc. In this paper we have focused on qSAR analysis,
using a Support Vector Machine.

We have shown that the feature space generated by GSK is
more informative than the feature spaces generated by stan-
dard kernels. The extracted features are highly effective and
informative. A system based on GSK can outperform state-
of-the-art systems. The experiments indicate that GSK can
provide an effective alternative to the standard kernels used
in previous SVM applications for SAR analysis.
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