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ABSTRACT
We present a closed set data mining paradigm which is par-
ticularly e�ective for uncovering the kind of deterministic,
causal dependencies that characterize much of basic science.
While closed sets have been used before in frequent set data
mining, we believe this is the �rst algorithm to incremen-
tally combine closed sets one at a time to actually mine
associations.
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1. INTRODUCTION
By data mining we mean the discovery of associations A)
B in large data sets.1 The association may be determin-
istic, that is the occurrence of A always implies B; or it
may be probabilistic, that is A often implies B. The lat-
ter describes market basket analysis which extracts common
item associations from point-of-sale data streams. As is well
known, the �rst step is to �nd sets of items that frequently
occur together so as to ensure statistical signi�cance. This
kind of frequent set data mining became practical with the
apriori algorithm [2]. Its success has provided impetus to
the entire �eld.
But, frequent set data mining has two shortcomings. Its
principal foundation is the observation that if a set X is
frequent, then every subset Y � X must be frequent as
well. Consequently, if X is a frequent set of n items, or
attributes, or behaviors, then it has 2n frequent subsets.

�Research supported in part by DOE grant DE-FG05-
95ER25254.
1The term \data mining" has come to mean the discovery of
almost any signi�cant pattern in a data set, such as �nding
clusters of similar items [5]. All these have validity and many
have their own extensive literature.
We should also note here that in the abstract, data mining
is conducted over a binary relation R. In practice, it may
be a mapping R : T ! I of a set T of \transactions" into a
set I of \items" transacted. Or we could regard R : O ! A
as a collection of observations of a set O of objects, each
exhibiting some of the attributes, or properties, of A. In
this paper we prefer the latter interpretation, and so will
speak of attributes, objects, and observations.

Thus, the �rst shortcoming of frequent set mining arises
when large frequent sets of size n are possible. This is of-
ten the case when interpreting biological or medical data
sets. For example, [3] cites an instance of an important as-
sociation of 23 attributes. The requirement of exponential
storage, in their case 223 � 8:3M frequent subsets, made
frequent set mining impossible.
The second weakness of frequent set mining is evident when
it generates too many associations. Suppose the set abcde,
a compact notation for fa; b; c; d; eg, is frequent; and using
the rule [1]

support(A [B)=support(A) � 

we determine that A ) B when A = ab and B = cde.
Then for many values of 
 we would have ab ) c, ab ) d,
abc ) de, abd ) ce, abe ) cd, abcd ) e, and so forth,
for upto 15 redundant associations that are subsumed by
ab) cde.2

When confronted with these shortcomings of frequent set
mining, Godin and Missaoui [11], Pasquier et al: [15], Zaki
[20; 19] and Brossette and Sprague [3] have all turned to
the use of closed sets to resolve their problems. So shall
we. But, we will use closed sets, not frequent sets, as the
basic mining tool. This will lead to a practical approach
for discovering the kind of deterministic associations, A )
B, that are often found in science where A always implies
B, or alternatively A causes B. As a bonus, we obtain a
process that encourages the incremental addition of data, as
is the case with on-going biological experiments. We believe
that the algorithm we present in Section 2.2 will be as basic
to closed set mining as apriori has been to frequent set
mining. In Section 2 we lay some background about closure
systems, and in Section 3 we illustrate results obtained from
this form of data mining. Since our closed set method is a
form of discrete, deterministic data mining (DDDM) which
presumes perfect causal dependence, we must consider the
possibility of error. This we do in Section 4.
Before continuing, let us point out that closed set mining
also has its shortcomings. Frequent set and closed set mining
are complementary, not competitive, systems.

When the relation is sparse, as in transactional analysis,
neither of the shortcomings of frequent set mining that we
cited above are of concern. It is clearly the method of choice.
Closed set mining should be considered when the relation
is dense. And, it is best when the associations are deter-
ministic, or nearly so, as is the case with certain kinds of

2Setting the con�dence 
 su�ciently high to avoid this mul-
tiplicity of associations in one case can cause other impor-
tant associations to be missed altogether.

BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference) page 43



biological and scienti�c data. As the associations become
more and more probabilistic, the e�cacy of closed set min-
ing decreases.
In those applications when neither method by itself is opti-
mal there can be hybrid systems. The authors cited above
used closed sets to improve a frequent set approach. In Sec-
tion 4 we indicate how frequency of support can be used to
improve closed set mining.

2. CLOSURE SYSTEMS
We use the concept of closure to extract the desired logi-
cal implications from a relation, R. A closure operator ' is
one that satis�es the three basic closure axioms: X � X:';
X � Y implies X:' � Y:'; and X:':' = X:', for all X;Y .3

There are many di�erent closure operators. The geomet-
rical convex hull operator is perhaps the most familiar [6],
whereas monophonic closure on chordal graphs [7] is a bit
obscure.

The intersection of any two closed sets (that is, those Z for
which Z:' = Z) of a closure space must also be a closed
set of the space. The collection of all closed sets, partially
ordered by inclusion, forms a lattice, L' [13; 16]. Of central
importance to our development is the concept of \genera-
tors". A set X is a generator of a closed set Z if X:' = Z.
It is a minimal generator if Y � X implies Y:' � X:' = Z.
A closed set can have several minimal generators. By Z:


i

we mean the ith minimal generator of Z, and by Z:� the
collection fZ:


i
g of all minimal generators. (From now on,

\generator" will mean minimal generator.)
Figure 1 illustrates a closure lattice L' denoting a closure
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Figure 1: A lattice L' of closed sets with some generators
shown.

operator ' over a set, or universe U = fa; b; c; d; e; f; g; h; ig
of elements. Solid lines connect the closed sets. By dashed
lines we have tried to indicate a few of the generating sets.
All sets enclosed by them have the same closure. The sin-
gleton set feg is a minimal generator of facdeg. (From
3We use su�x notation to denote set valued operators. So
read X:' as \X closure".

now on we elide the curly braces f: : : g around sets of el-
ements of U whenever possible, and retain them to denote
collections of sets.) As we will show below, the sets bd and
bf are each minimal generators of abdf . Thus abdf:� =
fabdf:


1
; abdf:


2
g = fbd; bfg. For the time being we ignore

the numbers associated with each node.

If all generators are unique the space is said to be antima-
troid. Antimatroid closure spaces are particularly interest-
ing [4; 10; 16]. But, readily, the closure space of Figure 1 is
not antimatroid.

The whole space abcdefghi is closed, as required with any
closure operator. It has 12 minimal generators, ranging from
be through fi. The closure of any subset containing be, or
any other generator, must be the whole set U. We observe
that, unlike closed sets which are closed under intersection,
these generating sets are closed under union.
Let F be any family of sets. A set B is said to be a blocker
of F if 8X 2 F ; B\X 6= ;. The di�erence between a closed
set Z and the closed sets Yi that it covers in L' we call the
faces Fi of Z.

4 Thus, the faces of abcdf are b; c and df . The
faces of the whole space abcdefghi are eghi, bfghi, defi,
and bdef . The faces of any closed set Z, its generators and
blockers are closely related by

Theorem 2.1. If Z is closed and Z:� = fZ:
ig is its

family of minimal generators then Z covers X in L i� Z�X
is a minimal blocker of Z:�.

A proof of this theorem can be found in [17; 18]. The closed
set abdf and its generators bd, bf provide a good illustration
of this theorem. Since the two faces of abdf are b = abdf�adf
and df = abdf�ab and since bd and bf are minimal blockers
of these faces, they must be the generators of abdf , as as-
serted by the theorem. The reader should verify that each of
the doubleton generators be : : : fi of abcdefghi is a blocker
of all of its 4 faces.

2.1 Closed Set Data Mining
Theorem 2.1 applies to any closure system. And any closure
system can be represented as a latice, L', of closed sets with
generators. But, our concern here is to use a speci�c closure
operator to mine relational data. We de�ne our closure op-
erator ' so that the attributes Y of each observable object,
oi, are closed. Since the intersection of closed sets must be
closed, these determine all the remaining closures. The lat-
tice L' of Figure 1 was created from a small 8 � 9 relation
R, shown in Figure 2 by our procedure. Observe that each

1
2
3
4
5
6
7
8

a b c d e f g h i

A

O

Figure 2: A relation R giving rise to the closed set lattice of
Figure 1.

row of R, for instance < a; b; g > and < a; c; g; h; i > is a

4Recall that Z covers Yi if Yi � Z and there exists no subset
Y 0 such that Yi � Y 0 � Z. The term \face" is derived from
an application of closure in discrete geometry.
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closed set in the lattice L' of Figure 1. We interpret these
as attributes of the rows (or objects) of O. The numbers
under each node of Figure 1 denote which rows contain (or
exhibit) that attribute set. They are its support. This ex-
ample is absurdly small; but it illustrates the relationships
between the given relation R, its closed sets in L' and their
generators. A clear visualization of these relationships is
fundamental to understanding the mining technique.
Formal concept theory has been developed by Ganter and
Wille [8], and the relation of Figure 2 and the lattice of
Figure 1 constitute their �rst example.5 It captures the
biological description of pond life presented on a children's
educational TV show. The attributes A are:

a needs water to live,
b lives in water,
c lives on land,
d needs chlorophyl to prepare food,
e two little leaves grow on germinating,
f one little leaf grows on germinating,
g can move about,
h has limbs, and
i suckles its o�spring.

The observations O of objects that exhibited these attributes
were: 1 leech, 2 bream, 3 frog, 4 dog, 5 spike-weed, 6 reed,
7 bean, and 8 maize. While one expects real biological
data sets to be a bit more sophisticated and much larger,
this provides an excellent introductory example.

In formal concept analysis, Figure 1 is called a \concept
lattice"; each closed set is called a \concept". In their ex-
cellent book, they demonstrate that the closure, ', we use
is a Galois connection between O and A with many elegant
mathematical properties. Most important, they show that
if R : O ! A is a binary relation, or data set, then if Z is a
closed set of attributes and X is its generator, then we can
translate this as

(8oi 2 O)[X(oi)) Z(oi)].
Consider once again bd and bf which generate abdf in Fig-
ure 1. In Figure 2, there are only rows with attributes b
and d; they are rows 5 and 6. These same two rows are the
only ones with attributes b and f . So \if an object (in O)
has attributes bd or bf , it must have attributes abdf (the
intersection of these two rows)". They are minimal gener-
ators, or antecedents of the implication; 5, 6 constitute the
support.
One can make logically valid, deterministic assertions about
the characteristics of observed objects in R. For example,
if each letter in the lattice of Figure 1 denotes a biological
property, as it does in [8], then one can assert that: bcd _
bcf ) abcdf , and e) abcde, and bcg_ bch) abcgh, and so
forth. The lattice completely captures the logical structure
of R, as the reader can verify.

2.2 Incremental Algorithm
Bernard Ganter [9; 8] has presented algorithms which, given
an entire relation R, will determine all the closures (with-
out generators) of L'. In this section we describe a process
which incrementally creates the closure lattice (with gener-
ators), one row at a time. It is the major contribution of
this paper.

5However, they employ a somewhat di�erent closure algo-
rithm which makes repeated sweeps over the binary relation
R.

Assume we have made a number of observations of biological
objects and have created L' based on this data. We now
make a new observation oi of some phenomena exhibiting
the set Y of attributes. After reading oi, Y must be inserted
into L'. If Y already exists in L', we only update the
support of Y . By the support of a closed attribute set we
mean all objects, ok, that exhibit all of those attributes. The
numbers of Figure 1 denote those rows of R that support the
closed set.
If Y 62 L', it must be added. It is inserted below the small-
est closed set Z such that Y � Z. Z is said to cover Y in
L'. Next the intersection Y \ Xk must be computed for
all Xk covered by Z. If Y \ Xk 2 L', nothing more need
be done.6 If Y \ Xk 62 L', it must be recursively entered
as a new closed set. Pseudocode for this recursive insertion
procedure is shown below:

insert closed set (SET Z, SET Y, LATTICE L)

// Insert the closed set Y into L so that

// it is covered by Z

f

SET Y[];

update gen (Z, Y, L);

for each Y[i] covered by Z do

f // Y[i] will be a sibling of Y

if (not empty(Y meet Y[i]) )

f

update gen (Y, Y meet Y[i], L);

if (Y meet Y[i] in L)

continue;

X = new SET (Y meet Y[i]);

insert closed set (Y[i], X, L);

g

g

g

Godin and Missaoui �rst proposed this kind of construc-
tion in [11]. Our contribution is the update gen process
which appears twice in the preceding pseudocode. This pro-
cess, based on Theorem 2.1, identi�es the generators of each
closed set, either on-the-
y during incremental construction
or in batch mode when displaying or searching the lattice.
We believe this is completely new. The following pseudocode
describes in detail the procedure for updating the generators
incrementally. In this code, the covering set Z is called cov c
and the new closed set Y being inserted is new c. The COL
data type denotes a collection of SET s.
void update generators( concept cov c, concept new c )

// "cov c" will cover the new concept "new c"

// update cov c.gens to reflect the face

// cov c.atts DIFF new c.atts

f

ELEMENT elem;

SET face, g sup;

COL new GEN, keep GEN, diff GEN;

int keep;

// determine the new face

face = cov c.atts DIFF new c.atts;

new GEN = EMPTY COL;

6Properly, the support of all X < Y in L' should be incre-
mented by oi. But, for e�ciency we usually defer this until
we display the lattice.
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for each gen set in cov c.gens

if( (gen set INTERSECT face) != EMPTY SET )

f // keep any generators that intersect

// the new face

add to col(gen set, new GEN);

g

keep GEN = new GEN;

diff GEN = cov c.gens DIFF keep GEN;

// for each of the other generators

for each gen set in diff GEN

f

for each elem in face

f // adding this `elem' of the face

// will create a blocker

keep = 1;

g sup = gen set UNION felemg;

for each keep set in keep GEN

if( keep set IS SUBSET OF g sup )

f // `g sup' not minimal blocker

keep = 0;

break;

g

if( keep )

add to col(g sup, new GEN);

g

g

cov c.gens = new GEN;

g

Obtaining the generators of these closed sets is important
for two reasons. First, as noted in Section 1, the authors
of [3; 11; 15; 19; 20] all observed that requiring A [ B to
be closed signi�cantly reduces the number of rules A ) B
returned by frequent set mining. Retaining only those where
A is minimal (i:e: a minimal generator) reduces the set even
further.

To illustrate insert closed set and update generators,
suppose we return to the pond and observe a plant growing
in the water that germinates with two small leaves. It is
characterized by the attributes abe and the data set of Figure
2 becomes that of Figure 3.

1
2
3
4
5
6
7
8

a b c d e f g h i

A

O

9

Figure 3: The relation R after adding a new observation/row
9.

Figure 4 illustrates the changed closure system L'. The
new closed set Y = abe has been inserted under abcdefghi,
the smallest closed set containing it. The siblings of abe
are abcdf; acde; abcgh and acghi; pairwise intersection yields
only ab (already closed) and ae (which is new). It is easy
to see that be is the generator of abe since its two faces
are b = abe�ae and e = abe�ab. The single generator of
ae (which is not shown in the �gure to avoid clutter) is
e = ae�a. The generators of abcdefghi are more interest-
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Figure 4: A lattice L' of closed sets with a few generators
shown.

ing. The former generator be can no longer be one because
it does not block the new face cdfghi = abcdefghi�abe.
So, update generators tries to augment it with the ele-
ments of c; d; f; g; h; i. Each combination, such as bce, bde
or bef : : : must block all faces and must be generators. But,
bef is not minimal (since ef � bef) as are all other combi-
nations but bce and bde.

The generators of the lattice supremum = A = abcdefghi
have an additional signi�cance. This closed set has ; for
support. No object has been observed with all 9 attributes.
Consequently, any generator of abcdefghi, whether minimal
or not, corresponds to logical contradiction over the �nite
world encompassed by O. A rule based system that not
only enumerates all implications that must be true, but also
enumerates all combinations that cannot be true (given the
observations to date) can be quite valuable.

Once a system has thousands of observations, any new ob-
servation which changes the generators of A, such as row 9
in Figure 3, would be examined carefully. Changing what
has heretofore been regarded as an empirical contradiction
should not be taken lightly.

3. BIOLOGICAL IMPLICATIONS
We will use the mushroom data set obtained from the UCI
Data Repository to illustrate some of the characteristics of
closed set data mining. This data set was derived from \The
Audubon Society Field Guide to North American Mush-
rooms" [12] and, since these characteristics of mushrooms
are deterministic, it is representative of descriptive biologi-
cal data. It has also been used in many other data mining
studies and thus provides a good point of comparison.

Each record consists of 22 attributes, all of which have nom-
inal values. Because each of these attributes can have multi-
ple values, there are e�ectively 85 binary attributes. Conse-
quently, for the purposes of this paper we consider only the
�rst 9 attributes which are enumerated in Figure 5. These
were converted to binary attributes by appending to let-
ter \values" on the left, the attribute number on the right.
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Attr-0  edibility:

attr-1  cap shape:
  e=edible, p=poisonous 

attr-2  cap surface:
  f=fibrous, g=grooved, s=smooth, y=scaly
attr-3  cap color:
  b=buff, c=cinnamon, e=red, g=gray, n=brown, p=pink,
r=green, u=purple, w=white, y=yellow 

  t=bruises, f=doesn’t bruise
attr-5  odor: 
  a=almond, c=creosote, f=foul, l=anise, m=musty,

attr-4  bruises?:

  n=none, p=pungent, s=spicy, y=fishy

  a=attached, d=descending, f=free, n=notched
attr-7  gill spacing:
  c=close, d=distant, w=crowded
attr-8  gill size:
  b=broad, n=narrow

attr-6  gill attachment:

  b=bell, c=conical, f=flat, k=knobed, s=sunken, x=convex

Figure 5: The �rst 9 attributes of the mushroom data set,
with nominal values.

Thus, for example, a mushroom with attributes g2 and p5

has a \grooved cap surface" and a \pungent odor". A single
mushroom will exhibit precisely 9 of these 42 possible binary
attributes. The �rst two rows of this reduced data set are

p0 x1 s2 n3 t4 p5 f6 c7 n8

e0 x1 s2 y3 t4 a5 f6 c7 b8

Readily, the attributes e0 (edible) and p0 (poisonous) are of
considerable interest. Many of the data mining experiments
of the literature have treated this data set as categorical data
mining, that is discovering which of the other attributes can
be used to assign a speci�c mushroom to one of these two
edibility categories.

Frequent set data mining using apriori yields 25,210 rules
when we set min sup = 1% and min conf = 90%. The dis-
crete data mining technique described in Section 2.2 yields
2,641 closed concepts.7 There is no nice visualization such as
Figure 1. Since some concepts have several generators (c:f:
concept 667 in Figure 7), this translates into 3,773 distinct
rules. We observe the nearly 10-fold reduction described by
Zaki [19].

To provide some sense of this data set we list in Figure 6 all
those rules A ) B which have a singleton attribute for A.
These are often regarded as conveying the most information
because they are easiest to comprehend and facilitate tran-
sitive reasoning. We have added the concept number to the
left to indicate where this rule was uncovered in the discrete
data mining process and its support to indicate themin sup
necessary to consider it frequent. If � = 1%, min sup = 81;
so all but 6 of these rules would have been uncovered by
frequent set mining.

Medical data mining is commonly concerned with a small set
of distinct \outcomes", such as survival rates or diagnoses.

7If all attributes are encoded we generate a concept lattice
with 104,104 closed concepts! It was not pretty. Our al-
gorithm took over a day and a half. On the other hand,
an open source implementation of apriori available in the
public domain, executing on a server with 2 GB of main
memory, required nearly 3 days to return 15,552,210 rules
with � = 1%, 
 = 90%. There are frequent sets of size 19
in the mushroom data set. (The same implementation re-
quired less than 6 hours when run on a server with 4 GB of
memory.)
The performance and growth patterns of closed set data
mining are quite interesting and will be the topic of a dif-
ferent paper.

1040
3376
2512
 400
 400
  32
2320
1312
 192
1072
 168
2160
 144
  16
   4
  16
 576
 576
 210
  36
1500
   4

SUPPORT

60 w3  ->  f6
105
109
117
144

t4  ->  f6
n8  ->  f6
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r3  ->  e0, y2, f4, n5, f6, c7, n8
s5  ->  p0, f4, f6, c7, n8

1687 y5  ->  p0, f4, f6, c7, n8
2019
2022
2162
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a6  ->  f4, c7, b8
m5  ->  p0, y2, f4, c7, b8
e3  ->  c7
c1  ->  p0, n5, f6, w7, n8

IMPLICATIONCONCEPT

Figure 6: All implications in mushroom with a single an-
tecedent.

We then seek attributes that will e�ectively categorize these
outcomes, as in [14]. The \edible" and \poisonous" cate-
gories of the mushroom data set are also examples. The
implications of Figure 6 show that \smell" is an important
criterion of edibility, with c5, f5, s5, y5 and m5 all indi-
cating poisonous and a5 and l5 implying edibility. These
7 implications are invariably found by frequent set mining.
But, we see that c1 and g2 also indicate poisonous; and
with a support of only 4 instances, they are unlikely to be
found. But, if you eat any of the 4 kinds of mushroom with
a conical cap or grooved cap cover it might be serious.
Are there simple combinations of attributes that also de-
note poisonous? Figure 7 illustrates those non-trivial impli-
cations A) B for which jAj = 2 and p0 2 B. Again recall

  32
  64
  64
  32
  12
  12
  12
  24
 876
  18
   6
   6
   2
   2
   3

 666    p3, w7  ->  p0, x1, f4, c5, f6
 667    p3, f4  ->  p0, x1, c5, f6, n8
 667    p3, n8  ->  p0, x1, f4, c5, f6
 696    f2, p3  ->  p0, x1, f4, c5, f6, n8
1184    b1, n8  ->  p0, n5, f6
1495    b1, b3  ->  p0, t4, n5, f6, c7, b8
1567    b1, p3  ->  p0, t4, n5, f6, c7, b8
2081    y3, n5  ->  p0, f4, f6, n8
2177    e3, f4  ->  p0, c7
2181    y2, a6  ->  p0, f4, m5, c7, b8
2372    c3, a6  ->  p0, y2, f4, m5, c7, b8
2470    e3, a6  ->  p0, y2, f4, m5, c7, b8
2561    c1, y3  ->  p0, y2, f4, n5, f6, w7, n8
2561    c1, f4  ->  p0, y2, y3, n5, f6, w7, n8
2563    c1, y2  ->  p0, n5, f6, w7, n8

SUPPORTIMPLICATIONCONCEPT

Figure 7: Rules with two attribute antecedents that denote
poisonous mushrooms.

that if � = 1%, min sup = 81, so only one of these rules
would have been discovered by frequent set analysis.

4. IMPRECISE DATA
Closed set mining is discrete and deterministic; it presumes
perfect data. But unfortunately, sometimes scienti�c obser-
vation is imprecise. We can use frequency, as indicated by
the support of each closed set, to help us in two di�erent
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ways.

First, suppose in a study of animal characteristics we have
the implication

\nurse young00 ) \give live birth00 .
This association is supported by thousands of observations.
Then we observe a duck-billed platypus, which nurses its
young but lays eggs. Scienti�c enquiry often includes sur-
prises! Our procedure can be programmed so that when
an association with high support would be changed by a
single observation, ok, it is 
agged for latter scrutiny and
not processed. The observation may be in error; or like the
platypus, it may be the exception that tests the rule. In
either case, it deserves special attention.
Second, suppose that property a implies properties b; c and
d. That is, logically a ) abcd. But, suppose the test for d
is suspect; it is only 95% accurate. Because a only implies
bc in a deterministic fashion, the resulting closed set lattice
will have the structure shown in Figure 8. Attribute d is

abcd

abc
m

n

d
ab ac

abd acd

a

ad

Figure 8: A concept lattice fragment showing only two
closed sets.

sometimes associated with a. Here we have labeled the face
d and indicated the support by m and n. By Theorem 2.1,
the face d gives rise (correctly) to its place in the generator
ad of abcd. By the strength of a face we mean the di�erence
n�m. When this strength is relatively small it makes sense
to combine the two closed sets, as in this case
If one expects substantial experimental error or probabilistic
associations, closed set mining is not appropriate. But, by
using the support of each concept, which one would want in
any case, it can be made resistent to minor imprecisions.

5. SUMMARY
Experimental studies of deterministic scienti�c phenomena
can take hours, days, or years. It is not like collecting point-
of-sale data where response time is essential. Data that is
painstakingly collected deserve a careful, thorough analysis
that can reveal unusual, even rare, associations. Closed set
mining provides a tool to do this.

Closed set data mining accommodates closed sets of great
length; it �nds all associations, but even then far fewer than
frequent set mining; it supports the incremental observation
of additional objects as well as additional attributes; and
it creates a permanent lattice structure that can be easily
researched for speci�c associations. For the knowledge dis-
covery niche that it �lls, we believe closed set mining is the
most e�ective tool to date.
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