
 

BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference)  page 49 

E-CAST: A Data Mining Algorithm For Gene Expression Data 
 
 

Abdelghani Bellaachia and David Portnoy* 
The George Washington University 
Department of Computer Science 

801 22nd St NW 
Washington, DC 20052 

Yidong Chen and Abdel. G. Elkahloun 
NIH/NHGRI/CGB 

National Institute of Health 
Bethesda, MD 20892-4470 

 
All correspondences should be sent to Dr. Abdelghani Bellaachia at: 

 
E-mail: bella@seas.gwu.edu 

Phone: (202) 994-8166 
 

* This work was supported by National Institute of Health (NIH). 
 
 

Abstract 
Data clustering methods have been proven to be a successful 
data mining technique in the analysis of gene expression data. 
The Cluster affinity search technique (CAST) developed by 
Ben-Dor, et. al., 1999, which has been shown to cluster gene 
expression data well, has two drawbacks. First, the algorithm 
uses a fixed initial threshold value to start the clustering. As 
stated in the original paper, this parameter directly affects the 
size and number of clusters produced. Second, the algorithm 
requires a final cleaning step, which takes O(n2), to relocate n 
data points among the existing clusters.  

In this paper, we have developed and enhanced CAST 
algorithm, called E-CAST, that uses a dynamic threshold. 
The threshold value is computed at the beginning of each new 
cluster.  

We have implemented both CAST and E-CAST 
algorithms and tested their performance using three different 
data sets.  The datasets are real gene expression data from 
melanoma, pheochromocytoma and brain cell tissue samples 
generated using micro-arrays technology. The results of both 
implementations were compared to the output from the 
hierarchical clustering program, written by Michael Eisen, 
with very comparable results. Not only did the final results 
compare favorably with the hierarchical approach, but they 
also indicate that the cleaning step of the original CAST 
algorithm may be unnecessary.  
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1. Introduction 

Several data mining solutions have been presented for 
Bioinformatics [ALTM02], [ZHAN02], [KANK02], 
[THIM95], and [WWW01]. Clustering analysis has received  

 
 
 
 
 
 

significant attention in the area of gene expression. It allows 
the identification of the structure of a data set, i.e. the 
identification of groups of similar objects in multidimensional 
space.  Clustering procedures yield a data description in terms 
of clusters or groups of data points that possess strong internal  
similarities.  Some possible methods of clustering are: 

Divisive or Partitional Clustering: these methods start 
with each point as a part of a random or guessed cluster 
and iteratively move points between clusters until some 
local minimum is found with respect to some distance 
metric between each point and the center of the cluster it 
belongs to. 
 Hierarchical Clustering: These methods start with each 
point being considered a cluster and recursively combine 
pairs of clusters (subsequently updating the inter-cluster 
distances) until all points are part of one hierarchically 
constructed cluster. 
Graph Theoretic Methods: These methods are 
partitioning methods that partition the space into sub-
graphs with respect to some geometric properties. 
 
In this paper we study a graph-based clustering algorithm 

that uses a divisive approach. This approach uses top-down 
analysis. It starts with a large cluster and split into smaller ones 
until each sub-cluster contains only one data point. Examples 
of this approach are the Two-way clustering binary tree 
[ALON99], the Coupled Two-way clustering [GETZ00], the 
Cluster affinity search technique (CAST) [Ben99], and the 
Gene shaving [HAST00]. 

In bio-informatics, these techniques are used to analyze 
data expression generated using micro-array technologies. 
They try to identify groups of genes that have similar patterns.  
For instance, the genes that govern chromosome function or 
meiosis may be more tightly linked to each other than to the 
genes involved with another function, such as apoptosis 
[WWW01].  

Formally, a set of genes can be viewed as a set of vectors 
V = {v1, v2, v3,…, vm} with each expression level of a given 
experiment, xj, being the components in the vector vi = (x1, x2, 
x3,…, xn), where m is the number of genes in the experiments 
and n is the number of experiments. (This works equally well 
when the experiments form the vectors.) These vectors can 
then be viewed as points in n dimensional space and a 
similarity measurement between points can be calculated and 
stored in a m-by-m similarity matrix M. Where Mij is the 
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distance (similarity) measure between gene i and gene j. There 
are several similarity measures, e.g., Euclidean distance and 
Pearson correlation. Then one of many algorithms used for 
clustering is run on the similarity matrix to group the members 
of V into clusters, which attempts to maximize the intra-cluster 
similarity and minimize the inter-cluster similarity. 

Several clustering techniques have been applied to 
the analysis of gene expression data. But each method has 
shortcomings. These shortcomings include problems of cluster 
boundaries, as for Hierarchical techniques, where the output is 
a tree depicting the relation of each object to every other object 
in the dataset. And, the requirement for knowing the number of 
expected clusters, as for Self-Organizing Maps. 

The Cluster affinity search technique (CAST) developed 
by Ben-Dor, et. al., 1999, appears to address both of these 
issues [Ben99]. Its output is of discrete clusters, as apposed to 
the dendrogram produced by hierarchical methods, and the 
number of clusters produced does not have to be 
predetermined. But, it requires an input parameter, which 
ultimately determines the size and number of clusters 
produced. This parameter, the so-called, affinity threshold, is 
used to determent what the minimum similarity between an 
object and a cluster is required for that object to be a member. 
Leading us back the to the problem of requiring information 
about the clusters before we can cluster them. 

In this paper we discuss a threshold assignment function 
that can be used to determine the threshold parameter based 
solely on the data to be clustered. Further, we show that using 
the threshold function before each new cluster is formed 
obviates the need for a step in the CAST algorithm with has a 
time complexity on the order of O(n2). 

The paper is organized as follows. The next section 
reviews related work. Section 3 presents the CAST algorithm 
and our enhanced version of CAST, E-CAST. Our clustering 
results and the data sets we have used are presented in Section 
4. Finally, Section 5 concludes the paper. 
 
2. Related Work 

 Several clustering techniques have been studied for 
analyzing expression data [HEDE01], [GETZ00], and 
[EISE98]. Hedenfalk et al., 2001, used an agglomerative 
hierarchical clustering algorithm to investigate any relation 
among discriminator genes in hereditary breast cancer 
[HEDE01]. The discriminator genes were found using three 
methods, the modified F tests and t-tests, a weighted gene 
analysis, and mutual-information scoring (InfoScore). They 
concluded that gene-expression technology can increase the 
specificity of the molecular classification of breast cancer. 

Bittner et al., 2000, used an average linkage hierarchical 
clustering algorithm with a dissimilarity measure of one minus 
the Pearson correlation in combination with multidimensional 
scaling (MDS) plots to successfully cluster and predict the 
spreading and migration of closely related malignant 
melanomas [BITT00]. A non-hierarchical clustering algorithm, 
CAST , was used to define experimental clusters [Ben99]. 
They found that the classification of melanoma on the basis of 
gene expression pattern is possible and believe that their 
identification of genes ‘weighted’ for their ability to 
discriminate a subset of melanomas should provide a sound 
basis for the dissection of other subsets of the melanoma 
tumor. 

Ben-Dor et al., 2000, compared three classification 
techniques, Nearest Neighbor, Support Vector Machines 
(SVM) (Cortes et al., 1995), AdaBoost (Freund et al., 1997), 

and Cluster Affinity Search Technique (CAST) [Ben99], in the 
classification of two sets of tumor and normal clinical samples, 
which consisted of 62 colon samples and 32 ovarian samples 
[Ben00]. Their results indicated that clustering using CAST 
can be very useful in the classification of cancers. It also 
highlights the complications in classifications due to the fact 
that clinical samples are likely to contain a mixture of cells and 
that there is an inherent genomic instability in tumor samples 
which may lead to random fluctuations in the gene expression 
patterns. 

Alon et al., 1999, used a two-way deterministic -annealing 
algorithm to separate cancerous from non-cancerous tissues 
[ALON99]. The data set was composed of 40 colon tumor 
samples and 22 normal colon tissue samples and was analyzed 
with an oligonucleotide array. The data-clustering algorithm 
was used to build a dendrogram. Each gene, k, was represented 
by a vector, vk = (x1, x2, x3,…, xn), whose components, xn, 
corresponded to expression levels in each sample. The vectors 
were then normalized such that the sum over their components 
equaled zero, ∑m xm = 0, and the magnitude equaled one, |vk| = 
1. The clusters were split into two groups by first defining two 
cluster centroids, Cj, where j= 1, 2. A probability of belonging 
to each cluster was then determined for each gene:  
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which was solved by iterations. For β = 0 there is only 

one cluster C1 = C2. β was increased in small steps until two 
distinct, converged centroids were formed. Each gene was then 
assigned to a cluster with the larger Pj(vk). The process was 
then repeated to split each one of the new clusters. The 
algorithm was then run against the tissue samples, where each 
tissue sample, k, was represented by the vector, vk. They found 
that gene grouping can be achieved on the basis of variation 
between tissue samples from different individuals and that 
displaying the data with both samples and gene clustered 
revealed wide-scale patterns that hint at an extensive underling 
organization of gene expression. 

Getz et al., 2000, used a coupled two-way clustering 
(CTWC) algorithm on colon cancer and leukemia [GETZ00]. 
And, were able to discover partitions and correlation that were 
masked and hidden when the full data set was used in the 
analysis, by identifying relevant gene and sample subsets and 
focusing on them. The method stems from the idea that only a 
limited number of genes in each experiment have any useful 
information. And, the same may be true for the samples. So 
one should look for stable submatrices within the expression 
matrix to find the genes and or samples to be studied. Because 
the time complexity of a brute force implementation of this 
analysis would be too great, they developed a iterative 
heuristic. The iterative process is initialized with the full 
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matrix – i.e. the set of all genes (g0) and of all samples (s0) are 
used as (both) features and objects, to perform standard two-
way clustering. The stable clusters of the genes and samples 
found in the first step are denoted by g1,i and s1,j. The process 
is repeated until some criteria (such as stability or critical size) 
are reached. Any clustering algorithm can be used in 
combination with CTWC to find stable clusters. The study 
used a hierarchical algorithm, SPC (Blatt et al., 1996). 
 
3. Enhanced CAST Algorithm  

The Cluster Affinity Search Technique, or CAST, 
clustering method takes a graph theoretic approach that relies 
on the concept of a clique graph and uses a divisive clustering 
approach. A clique graph is an undirected graph that is the 
union of disjoint complete graphs. Thus, the model assumes 
that there is a “true biological partition of the genes into 
disjoint clusters bases on the functionality of the genes” 
[Ben99]. The clique graph would then be composed of clusters 
(cliques) of genes (vertices) whose interconnections (edges) 
are present or not present corresponding to their respective 
similarity measures (i.e. if two genes are similar there is an 
edge between them). So, ideally, the genes would form sub-
graphs (cliques) where every gene would be completely 
similar to every other gene in the clique and completely 
dissimilar to every gene not in the clique. Thereby, producing 
a clique graph G of U = {u1, u2, … , un} vertices partitioned 
such that every clique Si contains edges connecting every 
vertex u ∈ Si to every other u ∈ Si and no edges connecting 
any u ∈ Si to any u ∈ U\Si. This, model can be applied just as 
easily to experiments instead of genes. Where, the experiments 
become the vertices and one experiment is linked to another 
based on the similarity of their respective patterns. 

Given that it is very probable that a set of gene (or 
experiment) vectors will tend to have a similarity gradient 
across other vectors and the high incidence rate of errors in 
micro-array technology, the ideal clique graph would be 
impossible to generate, or, at the very lease, would create very 
small clusters. So small, in fact, that many would contain 
single data points, and therefore defeat the purpose of the 
algorithm. Thus, an approximation of the preceding model is 
called for.   

Accepting the extremely remote possibility of disjoint 
partitions CAST tries to approximate the model by just striving 
to maximizing the intra-cluster edges and minimizing the inter-
cluster edges.  

The CAST and E_CAST algorithms take as input an n-
by-n similarity matrix S where (S(i, j) ∈[1, 0]) and an affinity 
threshold T is defined. T is used to determine node 
membership to a cluster.  

 
Definition 1: The affinity of a node x to a cluster C is defined 
as follows: 

  a(x) = ∑
∈Ck

kxS ),(   

Definition 2: The connectivity threshold, χ, of a cluster C is:  
χ = T|C| where |C| is the cardinality of C. 

 
Definition 3: A high connectivity node is a node that will be 
included in a cluster. Its affinity satisfies the following:  
 a(i) ≥ χwhere a(i) is the affinity of i. 
Definition 4: A low connectivity node is a node that will be 
removed from a cluster. Its affinity satisfies the following:  
 a(i) < χ where a(i) is the affinity of i. 

Each cluster is formed by alternating between adding and 
removing nodes from the current cluster until such time that 
changes no longer occur or a maximum of iterations has been 
executed: 

 
Node Addition:Add nodes with high connectivity to the 
nodes in the open cluster. 
 
Node Removal: Remove any nodes in the open cluster 
with low connectivity to the other nodes in the cluster. 
  
Cluster Cleaning: Make sure all nodes are in clusters 
with highest affinity. 
 
CAST algorithm relies on the affinity  threshold, T, being 

an input variable defined by the user before initiating the 
clustering process. This is a problem because the size and 
quantity of the clusters produced by the algorithm is directly 
affected by this parameter [Ben99].  Implying that some 
knowledge of the data set is required before the clustering can 
be performed. We have enhanced the algorithm to calculate 
this threshold. Further, the threshold can be calculated 
dynamically based only on the objects in that have yet to be 
assigned a cluster, U’ = U\(C0 ∪ C1 ∪ … ∪ Cn), before each 
cluster is created. Thus, providing a means of fine-tuning while 
clusters are formed. The threshold parameter, T, is calculated 
based on the similarity values of the nodes left to be clustered. 
This dynamic threshold is computed as follows: 

 

T =

S(i, j) − 0.5
i, j ∈U ' and S ( i, j )≥ 0.5

∑
{u : u ∈ U '  and a(u) ≥ 0.5}

 

 

 
 
 

 

 

 
 
 

+ 0.5  

 
Currently, we have shown very good performance using 

the average scaled (0 to 1) similarity values above 0.5, on a 
number of data sets.  Varying methods can be used to 
determine T and is one area we would like to further research.  
 
The following provides pseudo-code for both CAST and 
E_CAST algorithms: 
 
Threshold: 
// T is an input parameter 
CAST: 
T= fixed value (for example 0.76) 
 
// executed before each new Copen  is created 
E-CAST:  
a = 0; 
count = 0; 
for all u ∈ U such that a(u) ≥ 0.5  { 

a += a(u)-0.5 
count++ 

} 
T = ( a/count ) + 0.5 

 
Cluster Formation:  
while ( U <> ∅ ){ 

E-CAST: Calculate Threshold, T 
for all u ∈ U set a(u) = 0 
create empty cluster Copen 
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Pick an element u ∈ U such that S(u,x)=max{S(w,x)|w and 
x ∈ U} 

Copen  = Copen ∪ u 
U = U \ u 
For all x ∈ U set a(x) = a(x) + S(x,u) 
while (changes in Copen occur) or (iterations < max 

iterations){ 
//Addition Step 
while max{a(w)|w ∈ U} ≥ χ { 

Pick an element u ∈ U such that a(u)=max{a(w)|w ∈ 
U}  

Copen ← Copen ∪ {u} 
U ← U \ {u} 
// Update affinity of all nodes 
For all x ∈ U ∪  Copen set a(x) = a(x) + S(x,u) 

} 
//Removal Step  
while min{a(w)|w ∈ Copen} < χ { 

Pick an element u ∈ Copen such that a(u)=min{a(w)|w 
∈ Copen } 

Copen ← Copen \ {u} 
U ← U ∪ {u} 
// Update affinity of all nodes 
For all x ∈ U ∪  Copen set a(x) = a(x) - S(x,u) 

} 
} 

} 
 

Cleaning Step: 
 
while (changes in any Ci occur) or (iterations < max 

iterations){ // cleaning step may not converge 
for each c ∈ Ci and Ci ∈ C and Cj ∈ C{ 

Compute a normalized affinity of c to each cluster Cj such 
that aj(c)= (∑k∈Cj S(c,k))/(|Cj|)  

} 
 

if max{ aj(c) } > ai , for all Cj ∈ C and i ≠ j { 
Ci  = Ci \ c 
Cj  = Cj ∪ c  
} 

} 
 

The dynamic threshold assignment has been shown by 
our results to obviate the need for the “cleaning” step as 
proposed in the original algorithm. The cleaning step is used to 
move any vector from its current cluster to one that it may 
have a higher affinity for and has a time complexity on the 
order of O(n2).  

 
4. Experiments 

Three real gene expression data sets were used to 
compare the performance of E-CAST, CAST, and an average 
linkage hierarchical clusterer. The dataset will be referred to as 
melanoma, Thanhall and brain. The melanoma dataset [Bitt00] 
consists of expression for 38 samples, including 31 melanomas 
and 7 controls. Each profile consists of the expression levels of 
3,614 cDNA clones. Their conclusions relied on, in part, a 
dendrogram generated using an average linkage hierarchical 
clustering algorithm. They found a major cluster consisting of 
19 samples and, what was considered, a non-clustered group of 
12. This information was then used to aid the prediction that 
the tumors represented by the samples in the major cluster 

would have reduced motility and reduced invasive ability as 
compared to the melanomas outside the this cluster. The 
prediction was verified using a series of cellular assays.   

The Thanhalldataset is used for the first time for 
clustering analysis and has not been published yet. Expression 
profiles consist of 12,024 cDNA clones, for 
pheochromocytoma tumors. Pheochromocytomas are rare but 
clinically important tumors of chromaffin cells that arise 
typically in the adrenal gland and constitute a surgically 
correctable cause of hypertension. Acute catecholamine release 
by a pheochromocytoma not only can lead to malignant 
hypertension but also lethal arrhythmias, heart failure, 
myocardial infarction and sudden death. Most 
pheochromocytomas are sporadic, but some are familial, 
associated with von Hippel-Lindau(VHL) disease, multiple 
endocrine neoplasia type 2 (MEN2), or neurofibramatosis 1 
(NF1). Genes for these hereditary conditions have been 
identified. Somatic mutations of the same genes, or different, 
as yet unidentified genes may underlie sporadic 
pheochromocytoma. Pheochromocytomas that develop 
sporadically or in patients with hereditary predispositions 
differ in terms of their rate of growth, likelihood of recurrence, 
malignant potential, and catecholamine phenotype. The 
molecular mechanisms by which genotypic changes predispose 
to development of pheochromocytoma and the bases for the 
variable clinical presentation and course of the tumor remain 
unknown. About 10-20% of pheochromocytomas are 
malignant, with life expectancy 3-5 years. There is no known 
effective treatment for malignant pheochromocytoma. Out of 
the 22 samples included in this data set, 17 were predicted to 
be placed into 3 clusters. 

The third data set (not yet published), includes samples 
that consisted of brain cells and bone marrow T-cells treated as 
to become brain cells. Expression profiles consist of 12,024 
cDNA clones. Out of the 22 samples, 20 were predicted to be 
placed into 6 clusters.   

All samples for each of the datasets where compared to 
the same universal RNA source. The calibrated ratios represent 
the mean sample intensity over the mean intensity of the 
reference RNA. 

Each data set was clustered using E-CAST and CAST 
(with the threshold, T, set to the value calculated by E-CAST 
before the first cluster was formed). NIH/NHGRI’s 
GeneCluster tool was used to generate the dendrograms for the 
Thanhall and brain datasets, while the dendrogram published 
in Bittner, M., et. al., 2000 was used for the melanoma dataset.  

The pheochromocytoma samples were taken from tumors 
with know mutations, therefore it was possible to predict the 
cluster formations. Predictions of cluster formation for the 
brain cell data also could be made based on treatment type and 
cell line. For these two datasets, comparisons were made 
between the predicted clusters and the results generated by the 
three clustering algorithms. The performance was measured in 
misplaced experiments and misjoined clusters. Misplaced 
experiments refer to the number of experiments that were 
placed into a cluster for which they were not predicted to 
belong. While, misjoined clusters refer to the number of 
merges of clusters which were predicted to be disjoint. 

Because no cluster formation was anticipated for the 
melanoma dataset, misplaced experiments and misjoined 
clusters were measured from the major cluster of 19 samples 
as described. This appears to make the hierarchical approach 
100% accurate, but the validity of the major cluster’s 
components has not, as yet, been proven.  
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Figure 1 “Percentage of Correctly Placed Samples” 

 
Figure 1 shows the percentage of samples that were 

placed into their predicated clusters. As can be seen, E-CAST 
with dynamic threshold assignment without the cleaning step 
consistently outperforms static assignment. Cluster 
membership under E-CAST is not changed using the 
additional cleaning step. Figure 1 also shows that E-CAST 
equals or out performs the hieratical method for the 
BoneMarrow/Brain Cell and Thanhall datasets. The hieratical 
method performs slightly better than E-CAST for the 
Melanoma since the clusters were defined using the 
hierarchical method. 

 

 
Table 1 “Dynamic and Static Threshold Assignment 

Performance” 
 
Table 1 shows the number of misplaced experiment and 

misjoind clusters for the three datasets using static and 
dynamic threshold assignment with, and without the cleaning 
step. As can be seen the cleaning step never changes the 
cluster formation while using dynamic assignment, but does 
for static. In addition, it can be clearly seen that the 
performance of dynamic threshold assignment is consistently 
better than static. In only one case did the cleaning step 
improve the clusters created by the static method. And, these 
modifications did not improve performance over the dynamic 
method without cleaning. 
 
5. Conclusion 

In this paper we presented a data mining algorithm for the 
analysis of gene expression data. Cluster affinity search 
technique (CAST) has been successfully used in clustering 
gene expression data. However, CAST has two main 
drawbacks: (1) the threshold for clustering is fixed and 
assigned a value before clustering starts and (2) a very 
expensive cleaning step. We have introduced an enhanced 
CAST (E-CAST) algorithm that uses a dynamic threshold. 

This threshold is computed at the creation of each cluster. Our 
experimental results show that E-CAST does not necessarily 
requires the cleaning step.  

Three real datasets were used to evaluate our algorithm 
against the original CAST algorithm and the Eisen’s 
hierarchical algorithm. The first dataset is a melanoma set that 
has 38 samples, including 31 melanomas and 7 controls. This 
set has been previously clustered by other authors. 

The second set is a Thanhall dataset that we are used for 
the first time and it has not been published yet. The set has 22 
samples out of which 17 were predicted to be placed into 3 
clusters. 

The third data set (not yet published), includes samples 
that consist of brain cells and bone marrow T-cells treated as to 
become brain cells. This set has 22 samples out of which 20 
were predicted to be placed into 6 clusters.   

Our results show that E-CAST performs better than the 
original algorithm. The results also confirm that the cleaning 
step may not be required and thus an improvement in the 
overall clustering performance. The dynamic computation of 
the threshold indicates great promise for using this technique 
to glean information from gene expression profiles. We have 
also clustered these data sets using Eisen’s hierarchical 
algorithm. Overall, E-CAST has shown better performance 
than the hierarchical algorithm. 

Future work includes theoretical analysis of the 
determination of the threshold parameter. We are also 
investigating the performance of our E-CAST algorithm on 
labeled clusters.  
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