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ABSTRACT
The goal of the knowledge discovery and data mining is to
extract the useful knowledge from the given data. Visu-
alization enables us to �nd structures, features, patterns,
and relationships in a dataset by presenting the data in var-
ious graphical forms with possible interactions. Recently,
DNA microarray technology provides a board snapshot of
the state of the cell by measuring the expression levels of
thousands of genes simultaneously. Such information can
thus be used to analyze di�erent samples by the gene ex-
pression pro�les. Last few years saw many cluster analysis
and classsi�cation methods extensively be applied to capture
the similarity pattern of gene expressions. A novel interac-
tive visualization approach, VizCluster, was presented and
applied to classify samples of two types. It combines the
merits of both high dimensional projection scatter plot and
parallel coordinate plot, taking advantage of graphical visu-
alization methods to reveal the underlining data patterns. In
this paper, we expand VizCluster to classify multiple types
of samples. First, we identify genes which are di�erentially
expressed across the sample groups. Then we apply Viz-
Cluster to build classi�ers based on those genes. Finally,
classi�ers were evaluated by either hold out or cross valida-
tion. Five gene expression data sets were used to illustrate
the approach. Experimental performance demonstrated the
feasibility and usefulness of this approach.

1. INTRODUCTION

Background

Knowledge of the spectrum of genes expressed at a certain
time or under given conditions proves instrumental to under-
stand the working of a living cell. Recently introduced DNA
microarray technology allows measuring expression levels for
thousands of genes in a single experiment, across di�erent
conditions, or over the time. The raw microarray data (im-
ages) can then be transformed into gene expression matrices
where usually rows represent genes and columns represent
samples. The numeric value in each cell characterizes the
expression level of the particular gene in a particular sam-
ple. Microarray technology has a signi�cant impact on the
�eld of bioinformatics, requiring innovative techniques to ef-
�ciently and e�ectively extract, analysis, and visualize these
fast growing data.

Information in gene expression matrices is special in that
the sample space and gene space are of very di�erent di-
mensionality. Typically, there are between 1; 000 to 10; 000
genes comparing with only 10 to 100 samples in a gene ex-
pression data set. Furthermore, it can be studied in both
sample dimension and gene dimension. Samples are clas-
si�ed by the gene expression patterns while genes can be
grouped by the similarity across the samples. By systemati-
cally investigating thousands of genes in parallel, microarray
technology o�ers great promise for the study of the classi�-
cation of di�erent samples based on global gene expression
pro�les. Last few years saw large amount of literatures ad-
dressing this issue [10; 1; 15; 23; 11]. They intended to
identify malignant and normal samples, distinguish samples
before and after the treatment, or discover subtypes of some
disease samples.

Related Work

It is natural to apply clustering techniques to group sam-
ples or genes together by their similarities. During recent
years, traditional or newly developed clustering (or clas-
si�cation) methods were applied on gene expression data
analysis. Jiang et al. [14] presented a detailed survey for
those methods. Visualization supports �nding structures,
features, patterns, and relationships in data by presenting
the data in various forms with di�erent interactions which
enable human involvement and incorporate the perceptiv-
ity of humans. Multivariate visualization techniques have
been developed rapidly and some visualization tools have
also been adapted to perform analysis on microarray data
[8; 20; 9].

Most visualizations have been served mainly as graphical
presentations of major clustering methods. For instance,
TreeView [8], provides a computational and graphical en-
vironment but the visualization (the dendrogram) is the
graphical format of hierarchical clustering output. A novel
interactive visualization approach to classifying samples was
presented based on the framework of VizCluster [25]. Viz-
Cluster uses a nonlinear projection which maps the n-dimen-
sional vectors onto two-dimensional points. This mapping
e�ectively keeps correlation similarity in the original input
space. It combines the merits of both scatter plot and par-
allel coordinate plot, introduces zip zooming viewing and di-
mension tour methods to compensate the information lost
by the mapping, and o�ers user interactions. The framework
of VizCluster is suitable for microarray data analysis. The
scatter plot is suitable for viewing dense data sets with low
dimensions in sacri�cing the loss of information while the
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parallel coordinate plot is eÆcient in displaying low quantity
of data with high dimensions at the cost of the presentation
clarity. Zip zooming viewing method serves as the bridge
between the two and provides a multiresolution information
preservation.

Visualized Classification

Our visualized classi�cation model works as follows: �rst,
we identify informative genes (genes which signi�cantly dif-
ferentially expressed across di�erent sample classes). Then
we use VizCluster to build classi�ers based on the visual
data distribution of di�erent classes. Finally, the classi�ers
are evaluated by either hold out or cross validation. We
started analysis with a 4-dimensional real data set iris to il-
lustrate the framework of VizCluster. Our primary objective
focused on the classi�cation of samples on gene expression
data. We then performed binary classi�cation using two
gene expression data sets: leukemia-A and multiple sclero-
sis. VizCluster clearly separated two group of samples and
in the evaluation process, assigned most unlabelled samples
into the correct groups. Next came the multiple classi�ca-
tion. Three data sets were analyzed: 3-class leukemia-B,
3-class BRCA, and 4-class SRBCT. In all tasks, the perfor-
mance was satisfactory.

Contribution of This Paper

In [25], only binary classi�cation, i.e., classifying two sample
types was performed. In this paper, we expand VizCluster
to classify multiple types of samples. The projection map-
ping is slightly modi�ed. The way of identifying informa-
tive genes is changed from neighborhood analysis to SAM
approach. Dimension arrangement issue is addressed and
an algorithm for obtaining a canonical dimension ordering
is brie
y discussed. Some of the e�ects of di�erent orderings
are given. The strategy of constructing classi�ers { straight
lines to separate the data class, is discussed. Compared with
[25], three new gene expression datasets are analyzed.

The rest of this paper is organized as follows. Section 2
presents the model of visualized classi�cation. In section 3,
we show the analyzing results on �ve gene expression data
sets. The last section discusses some issues in this paper.

2. METHODS
Our approach treats both binary classi�cation and multiple
classi�cation uniformly. In both cases, we started with in-
formative gene identi�cation, then built classi�ers based on
those genes and �nally performed the evaluation of those
classi�ers. Figure 1 illustrates the process.

0

5

10

15

20

25

30

35

40

45

50

East West North

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5

Informative
Gene Selection

Visual
Classification

Classifier
Evaluation

Figure 1: Schematic illustration of visualized classi�cation pro-
cess. Binary and multiple classi�cation are treated uniformly.

2.1 Identify Informative Genes

Our statistical method of identifying informative genes is a
slight variation of SAM, Signi�cance Analysis of Microarrays
[22; 5]. SAM assigns a score to each gene on the basis of
change in gene expression relative to the standard deviation
of repeated measurements. For genes with scores greater
than an adjustable threshold, SAM uses permutations of the
repeated measurements to estimate the percentage of genes
identi�ed by chance. When there are only two sample types,
standard t test can be used to assess each gene's change over
the two conditions. However, with so many genes in each
microarray, the control of the false positive rate becomes an
important issue. Even for a traditionally acceptable p-value,
say 0:01, in a microarray with 5,000 genes would identify
about 50 genes by chance. One strategy is to perform per-
muted t test and calculate the adjusted p-values [22; 7]. in
the permutation t test, the standard t statistic was com-
puted. Next, sample labels were randomly permuted and
the t statistic for each gene in the permuted data set was
computed. Repeat this process 100{10,000 times. Finally, a
critical value of the t statistic was determined for each gene
based on the empirical distribution of t from permuted data
sets for that gene. If the t statistic for a gene in the original
labelling of samples was larger than its critical value, the
gene is considered as di�erentially expressed. The permuta-
tion F test is similar and is used when there are more than
two groups. SAM algorithm is listed in the Appendix.
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Figure 2: SAM scatter plot of the observed relative di�erence

d(i) versus the expected relative di�erence d(i). The solid line

indicates the line for d(i) = d(i), while the dotted lines are drawn
at a distance � = 1:27. In this case, 400 genes are called signi�-
cant among 7129 genes with false discovery rate, FDR = 1:33%.
More signi�cant positive genes (red, in the upper left) than neg-
ative genes (green, in the lower right) are selected.

There are two main reasons we choose SAM over previ-
ous used neighborhood analysis for identifying informative
genes. First, unlike neighborhood analysis only working for
two-class case, SAM can be applied on both two and mul-
tiple classes. Second, SAM is a robust and straightforward
method that can be adapted to a broad range of experi-
mental situations and proved to be superior to conventional
methods for analyzing microarrays [22]. In practice, SAM is
in favor of selecting signi�cant positive genes. See Figure 2.
We allowed more signi�cant negative genes to be included
when there were overwhelmingly positive genes in the list.
In practice, we balanced three factors: (1) the number of
signi�cant called genes was between 1% and 5% of total
number of genes. (2) FDR � 10%. (3) The ratio of positive
and negative signi�cant was between 0:2 and 5:0.
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2.2 Visualization

The Mapping and Dimension Arrangement

One of the key obstacles in visualizing microarry data is
the high dimensionality. VizCluster proposed an interactive
visualization framework combining the merits of both high
dimensional scatter plot and parallel coordinate plot. A
nonlinear projection is used to map the n-dimensional vec-
tors onto two-dimensional image points. This mapping has
the property of keeping correlation similarity in the original
space [25]. First, a global normalization was performed on
the data set to ensure that each dimension has value between
0 and 1. Let P be a n-dimensional data set of m entities and
vector ~Pg = (xg1; xg2; : : : ; xgn) represent a data entity in the
n-dimensional space (also called input space). Formula (1)

describes the mapping 	 : Rn ! C , which maps ~Pg onto a

point ~Q�
g in a two-dimensional complex plane C :

~Q�
g = 	( ~Pg) =

n�1X
k=0

(�k � xgk+1)ei 2�n k �k 2 [�1; 1] (1)

where �k (default value is 0:5) is an adjustable weight for
each dimension, n is dimensions of the input space, and i is
the imaginary unit. Essentially, ~Q�

g is the vector sum of all
its dimensions on n directions.

Figure 3: Mapping from n-dimensional input space onto 2-

dimensional complex plane. Each dimension of ~Pg is mapped
onto an evenly divided direction. The sum of n complex numbers

is ~Q�
g , the �nal image of ~Pg.

This non-linear mapping (1) preserves correlation relation-
ship in the input space onto the two-dimensional images.
Notice, all data entities having the format of (a; a; : : : ; a) will
be mapped to the center (assuming all dimension weights are

the same). If ~X and ~Y have the same pattern, i.e., ratios of

each pair of dimensions of ~X and ~Y are all equal (~Y = � ~X ,
� is a scaler), under the mapping, they will be mapped onto
a straight line across the center. All vectors with same pat-
tern as ~X and ~Y will be mapped onto that line. Points with
similar pattern of ~X or ~Y will be mapped onto a narrow
strip region around that line.

In the original VizCluster paper [25], the issue of dimension
ordering and arrangement was not addressed. The mapping
(1) is a�ected by the order and arrangement of dimensions.
Here, we proposed a canonical dimension ordering. Details
will be published in a separate report. The basic idea is
to order genes according to their similarity to a prede�ned
sample class pattern which allows the better class separa-
tion. The sketchy algorithm is described in Appendix.

Zip Zooming View and Dimension Tour

Since mapping (1) could not preserve all the information in
the input space, the scatterplot is a lossy visualization rep-
resentation. By contract, parallel coordinate plot allows the
information of all dimensions to be visualized. In VizClus-
ter a zip zooming (parallel coordinate) viewing method was
proposed extending circular parallel coordinate plots. In-
stead of showing all dimensional information, it combines
several adjacent dimensions and displays the reduced di-
mension information. The number of dimensions displayed,
called granularity setting, can be set by the user. A series of
such views would allow user to inspect information at dif-
ferent levels from coarse to �ne. Closer look at zip zooming
view method reveals that circular parallel coordinate plot
and high dimensional scatterplot are the two extreme cases
while other granularity settings are in between. Their com-
bination allows a simple and intuitive presentation of the
data set and yet preserving all the information at di�erent
levels.

Another viewing method in VizCluster is dimension tour, an
interactive projection-pursuit-guided grand tour [2; 4; 6] like
viewing method. By adjusting the coordinate weights of the
dataset, data's original static state is changed into dynamic
state which may compensate the information loss from the
mapping. Each dimension parameter can be adjusted from
�1 to 1. The result of parameter adjustment in scatterplot
will cause the redistribution (sometimes dramatically) of the
2-dimensional image points. Dimension tour is a sequence
of either scatterplots or zip zooming views in which each
frame has a speci�c dimension parameter settings.

A Non Gene Expression Example

Figure 4: Iris data visualized in VizCluster. Color blue was as-
signed to Setosa species, red to Versicolor, and green to Virginica.
(A) through (E) show the scatter plots under di�erent dimension
parameter settings.

To illustrate the visualization under VizCluster, we used a
4-dimensional real data set, the famous Fisher's iris. The
data has 50 plants of each species of iris: Setosa, Versicolor,
and Viginica. It contains four attributes, sepal length, sepal
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width, petal length, and petal width which are ordered by
the above algorithm. The visualization clearly indicates the
separation of the three classes.

2.3 Classifier Construction and Evaluation
A classi�er should allow the class assignment of newly ar-
rived unlabelled data. The data on which the classi�er was
built is called training data while the unlabelled data for
class assignment is called testing data. After visualizing
training data in VizCluster, we constructs a classi�er which
consists of straight lines to separate the data based on the
visual data distribution. Initially, data are displayed in scat-
terplot view using default dimension parameter setting. If
the current scatterplot does not indicate a clear separation,
we adjust dimension parameters either manually or auto-
matically through dimension tour.
Classi�cation points even on 2-dimensional space is a non-
trivial issue. We adapted oblique decision trees [16] ap-
proach. Oblique allows the hyperplanes at each node of
the tree to have any orientation in parameter space thus
constructs straight lines with arbitrary slope to separate
known data classes. Algorithm OC1 [17] was applied to
construct oblique decision trees. OC1 combines determin-
istic hill-climbing with two forms of randomization to �nd
a good oblique split at each node of a decision tree. The
overview of the OC1 algorithm for a single node of a deci-
sion tree is given in Appendix. In VizCluster, user is allowed
to adjust those lines.

Classi�er's accuracy is judged by the correctness of its class
prediction for the testing data. There are two commonly
used methods: hold out and leave one out cross validation.
In hold out method, the data is divided into mutually exclu-
sive training and testing sets, the class prediction errors on
the testing data is counted using the classi�er built on the
training data. However, when data set is small, the separa-
tion of training and testing data may result in insuÆcient
training data for constructing the classi�er. In this case,
cross validation is applied. All but one data entity are used
to build the classi�er and the last one is withheld as testing
data. This process is repeated in a round robbin way, i.e.,
each data entity is withheld once, and the cumulative errors
are counted.

3. RESULTS

3.1 Two Sample Classes

Leukemia-A

We started with binary classi�cation, i.e. samples coming
from two classes. Usually this task involves distinguish ma-
lignant samples from healthy control, samples before and
after some treatment, or two subtypes of tumors. Two gene
expression data sets were analyzed: leukemia-A andmultiple
sclerosis. The well-known Golub's leukemia-A microarray
set [10] often serves as benchmark [19] for microarray ana-
lyzing methods. It contains measurements corresponding to
ALL and AML samples from bone marrow and peripheral
blood. The data involves 72 leukemia samples of 7129 genes
and it has been divided into two groups: training group with
27 ALL and 11 AML samples; testing group of 20 ALL and
14 AML samples. We �rst selected 50 informative genes,
genes which most di�erentially expressed between ALL and

AML samples in the training group. These 50 genes were
then used to build a classi�er. Next, we performed hold out
evaluation on the classi�er using the testing group (based on
the same 50 genes) and counted the errors. The result was
that �ve samples were misclassi�ed (out of 34), one ALL and
four AML. The accuracy was 85%. Most misclassi�ed sam-
ples were close to the line of the classi�er. Figure 5 shows
the classi�cation.

Figure 5: Binary classi�cation of leukemia-A data set. (A) A
classi�er was built using all 27 ALL and 11 AML training samples.
Blue was assigned to ALL samples and AML samples were in red.
(B) The evaluation of the classi�er in (A). Green circles stood for
20 ALL samples and magenta circles standed for 14 AML testing
samples. Overall, the classi�er failed to predict one ALL and four
AML samples.

Multiple Sclerosis

The second experiment was based on gene expression data
from a study of multiple sclerosis patients. Multiple sclero-
sis (MS) is a chronic, relapsing, in
ammatory of the brain
disease. Interferon-� (IFN-�) has been the most important
treatment for the MS disease for the last decade. The data
was collected from DNAmicroarray experiments in the Neu-
rology and Pharmaceutical Sciences departments at State
University of New York at Bu�alo. It consists of two parts:
one contains 28 samples where 14 MS patients are before
and 14 are after IFN-treatment, we call it MS IFN group.
The other, MS CONTROL group, contains 30 samples of
which 15 are MS patients and 15 are healthy controls people.
There are 4132 genes in each group. The task is to perform
two binary classi�cations and not one 3-class classi�cation.
The reason is that MS and IFN are paired groups but MS
and Control are not. Figure 6 illustrates the classi�cation.
The two classi�ers were build on 88 informative genes and
were evaluated by cross validation. (A) A classi�er was built
using 14 MS and 13 IFN samples. MS samples were col-
ored blue and IFN samples red. (B) Class prediction by
this classi�er. We used the IFN sample previously held to
test the classi�er. The green circle (indicated by an arrow)
stood for this testing sample. In this case, it was successful.
(C) A classi�er was built using 15 MS and 14 CONTROL
samples. (D) Class prediction of this classi�er. We used
the CONTROL sample previously withheld (indicated by a
green arrow) to test the classi�er. In this case, however, it
was unsuccessful. The classi�er wrongly predicted its class.
Overall, for the MS IFN group, samples in both IFN and MS
group were all predicted correctly. For the MS CONTROL
group, one sample in the MS group and two samples in the
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CONTROL group were wrongly classi�ed. The accuracy
was 90%.

Figure 6: Binary classi�cations on MS IFN and MS CONTROL
group of multiple sclerosis data set. Notice that in (C) there
were two misclassi�ed samples. Those training data errors were
not counted in the cross validation.

3.2 More Than Two Sample Classes

Leukemia-B

In [23], Virtaneva et al. studied global gene expression in
AML+8 patients, AML-CN patients, and normal CD-34+
cells. Their study showed that AML patients clearly distinct
from CD34+ normal individuals. The gene expression data
has 7129 genes and 27 samples. Among the samples, 10 are
AML+8, 10 are AML-CN, and 7 are CD-34+. We performed
multiple sample classi�cation on this data. 50 informative
genes were used to build a classi�er and cross validation was
used to evaluate it. Figure 7 shows the tertiary classi�cation
process. One classi�er was built with leave one AML-CN
sample out (indicate by the arraw). AML+8 samples were
colored blue, AML-CN samples were colored red (also use
un�lled circle), and CD-34+ samples were green. Here, CD-
34+ samples were clearly separated from AML samples but
AML+8 and AML-CN samples were tend to be mixed. In
this case, the AML-CN sample was misclassi�ed. Overall, 8
samples were misclassi�ed.

Figure 7: Tertiary classi�cation of leukemia-B data set. One
classi�er was built with leave one AML-CN sample out (indi-
cated by the arrow) and it was misclassi�ed. There were three
uncounted training errors, one AML-CN and two AML+8 in this
classi�er.

Breast Cancer

Another multiple classi�cation used the BRCA data set from
the work of Hedenfalk et al. [11]. They reported on a mi-
croarray experiment concerning the genetic basis of breast
cancer. Tumors from 22 women were analyzed, with 7 of
the women known to have the BRCA1 mutation, 8 known
to have BRCA2, and 7 labelled Sporadics. Each sample
had 3226 genes. We performed another tertiary classi�ca-
tion trying to distinguish these 3 subtype of breast cancer
samples. Cross validation was used to evaluate the classi-
�er. One classi�er is shown in Figure 8. It was built on 50
informative genes and 21 samples with one BRCA1 sample
out. BRCA1, BRCA2, and Sporadic samples were colored
with blue, green, and red. In this case, they were marginally
separated. The classi�er successfully assigned the class label
to the BRCA1 testing sample indicated by the blue arrow.
Overall, 100% accuracy was achieved.

Figure 8: Tertiary classi�cation of BRCA data set. The classi�er
successfully assigned the class label to the BRCA1 testing sample
indicated by the blue arrow.

Small Round Blue-Cell Tumors

We concluded our analysis with a multiple classi�cation of
a 4-class data set SRBCT. Khan et al. [15] studied the
diagnose of the small, round blue-cell tumors (SRBCTs).
SRBCTs include rhabdomosarcoma (RMS), Burkitt lym-
phomas (BL, a subset of Hodgkin lymphoma), neuroblas-
toma (NB), and the Ewing family of tumors (EWS). They
published a data sets with 2308 genes and 88 (63 training
and 25 testing) samples. The 63 training samples include
23 EWS, 8 BL, 12 NB, and 20 RMS. The testing samples
include 6 EWS, 3 BL, 6 NB, 4 RMS, and 6 other types. Here
we used 63 training samples with 100 informative genes to
build classi�ers and applied 19 (excluded 6 samples of other
types) testing samples to evaluate. Figure 9 illustrates the
process. Color blue, red, green, and magenta were assigned
to the sample class EWS, BL, NB, and RMS. Filled dots
were the training samples and un�lled circle were the testing
samples. All four classes of samples are grouped together.
The overall accuracy was 95%. One NB testing sample was
misclassi�ed as RMS.

3.3 Classification Summary
The summary of all classi�cations in this section is listed in
Table 1.
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Data Set Size Classes Size of Classi�er Evaluation Testing Size Errors Accuracy

Leukemia-A 7129�72 2 50 holdout 34 5 85%
MS IFN 4132�28 2 88 cv 28 0 100%
MS CON 4132�30 2 88 cv 30 3 90%

Leukemia-B 7129�27 3 50 cv 27 8 70%
BRCA 3226�22 3 50 cv 22 0 100%
SRBCT 2308�82 4 100 holdout 19 1 95%

Table 1: Summary of sample classi�cations: binary and multiple. cv stands for cross validation.

Figure 9: Quaternary classi�cation of SRBCT data set. Solid
circle were training samples and un�lled circles were testing sam-
ples. Four colors were assigned for each sample class.

4. DISCUSSION
Recent work demonstrated that samples can be classi�ed
based on gene expression using DNA microarray technology
[10; 1; 15; 23; 11]. Our approach is to utilize prior known
knowledge (class labels of the train data) and to take the ad-
vantage of graphical visualization. VizCluster uses a natural
scatter plot to view high dimension data sets and reveals the
underlining data patterns. In practice, the run time for the
mapping is O(mn), where m is the number of data enti-
ties (samples) and n is the number of dimensions (genes).
VizCluster does not allow missing value in the data set. It
implements weighted k-nearest neighbor (KNNimpute) algo-
rithm [21] to �ll the missing entries. The mapping (1) shares
the common spirit of radial coordinate visualization (Rad-
viz) [12; 13]. However, it does not lie in the same line as
multidimension scaling (MDS) methods. In MDS, a dissim-
ilarity stress function is proposed and later iterations are
used to optimize the stress function.

The mapping (1) is a�ected by the order arrangement of
dimensions. Since there are n! ways to arrange dimensions
for a n-dimensional data set, canonical dimension ordering
is proposed. Figure 10 shows the e�ects. To ensure that
canonical ordering does not create pseudo class, a random
data set is analyzed. See Figure 11.

Our approach to binary and multiple classi�cation is uni-
form. Unlike methods in [3; 18] which only work on two
sample groups, SAM's approach to informative gene identi-
�cation is similar for both two and multiple sample classes.

There are two popular ways to construct classi�ers for multi-
ple classes. One is to combine multiple binary classi�ers [24].
The other is to directly build classi�er for multiple classes.
Our approach adopted the second approach. In OC1, by
default, oblique decision trees are built by a combination of
oblique and axis-parallel methods. OC1 also supports other
modes: (1) axis parallel splits at each node which results in
axis parallel trees (2) using CART's deterministic perturba-
tion algorithm (3) only oblique splits at each node. Figure
12 shows an axis-parallel decision tree on BRCA data (com-
pare with Figure 8).

Figure 10: MS IFN data under di�erent dimension orders. (A)
Under canonical order. This is the same as in Figure 6. (B)
Under a permutated order.

Figure 11: E�ect of canonical ordering on a 50 � 100 random
data set. Two classes were arbitrarily created and 20 samples
were assigned to class 1 and rest to class 2. (A) Under a permuted
order. (B) Under canonical order. The result was slightly better
but no pseudo class was created by aggregating points in one class
together.
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Figure 12: Axis-parallel decision tree on BRCA data. This �gure
was generated by the original OC1 program. The sample layout
is di�erent from Figure 8 because x and y axis scales used here
are di�erent.

One should always be aware of making any claim in high
dimensional data analysis due to the curse of dimensional-
ity. This is particularly true on gene expression data sets.
By various constraints (available patients, money etc.), it is
hard to dramatically increase the number of samples. Here
we apply the classi�cation on di�erent data sets in order to
validate our approach. Visualization is not a substitute for
quantitative analysis. Rather, it is a qualitative means of fo-
cusing analytic approaches and helping users select the most
appropriate parameters for quantitative techniques. In this
paper, we have not attempted to claim this approach be-
ing superior to traditional data analysis methods. Instead,
from our experiments, it is demonstrated that visual classi�-
cation approach has the advantage of taking the global view
of the data. It is promising for analyzing and visualizing
microarray data sets.

APPENDIX
SAM Algorithm
Formally in [5], let data is xij , i = 1; 2; : : : ; p genes, j =
1; 2; : : : ; n samples, and response data yj , j = 1; 2; : : : ; n.
(1) compute a statistic

di =
ri

si + s0
i = 1; 2; : : : ; p: (2)

(2) compute order statistics d(1) � d(2) : : : � d(p).
(3) Take B permutations of the response values yj . For each
permutation b compute statistics d�bi and corresponding or-
der statistics d�b(1) � d�b(2) : : : � d�b(p).
(4) From the set of B permutations, estimate the expected
order statistics by d(i) =

1
B

P
b d

�b
(i) for i = 1; 2; : : : ; p.

(5) Plot the d(i) values versus the d(i). See Figure 2.
(6) For a �xed threshold �, starting at the origin, and mov-
ing up to the right �nd the �rst i = i1 such that d(i)�d(i) >
�. All genes past i1 are called signi�cant positive. Similarly,
start at the origin, move down to the left and �nd the �rst
i = i2 such that d(i) � d(i) > �. All genes past i2 are called
signi�cant negative. For each � de�ne the upper cut-point
cutup(�) as the smallest di among the signi�cant positive
genes, and similarly de�ne the lower cut-point cutdown(�).

(7) For a grid of � values, compute the total number of
signi�cant genes jGsig j, and the median number of falsely
called genes jGmfcj, by computing the median number of
values among each of the B sets of d�b(i),i = 1; 2; : : : ; p, that
fall above cutup(�) or below cutdown(�).
(8) Let �̂0 = min(#di 2 (q25; q75=(0:5p); 1), where q25 and
q75 are 25% and 75% points of the permuted d values.
(9)False Discovery Rate (FDR) is de�ned as �̂0jGmfcj=jGsig j.

Canonical Dimension Ordering Algorithm
Let data be xij , genes xi; i = 1; 2; : : : ;m and samples yj ,
j = 1; 2; : : : ; n. The total number of sample classes is K.
Ck = fj : yj = kg for k = 1; 2; : : : ; K. Let jCkj be the
size of Ck, xik =

P
j2Ck

xij=jCkj. Let B be the set of n!
sequences of all permutations of 1; : : : ; K.
(1) For each b 2 B, �nd set of genes xb = fxijxik(1) �
xik(2); : : : ;� xik(K) and b = k(1); k(2); : : : ; k(K)g.
(2) Let b� = argmaxb2Bjxbj. It is some permutation of
1; 2; : : : ; K, denoted as bk(1); : : : ; bk(K).
(3) Create a sample class pattern q based on b�

q = fbk(1); : : : ; bk(1)| {z }
jC1j

; bk(2); : : : ; bk(2)| {z }
jC2j

; : : : ; bk(K); : : : ; bk(K)| {z }
jCK j

g.

(4) For each gene xi, compute class coeÆcient
ri = �xiq=

p
�xi�q , i.e. Pearson's correlation coeÆcient with

class pattern q. Then sort these ris.
(5) The canonical order is de�ned as: i(1); i(2); : : : ; i(p) where
ri(1) � ri(2); : : : ;� ri(p).

OC1 Algorithm
The following is the overview of the OC1 algorithm for a
single node of a decision tree [17]. OC1 stands for Oblique
Classi�er 1.

To �nd a split of a set of examples T :
Find the best axis-parallel split of T. Let I be the impurity

of this split.
Repeat R times:
Choose a random hyperplane H.
(For the �rst iteration, initialize H to be the best axis-

parallel split.)
Step 1: Until the impurity measure does not improve, do:
Perturb each of the coeÆcients of H in sequence.
Step 2: Repeat at most J times:
Choose a random direction and attempt to perturb H in

that direction.
If this reduces the impurity of H, to to Step 1.
Let I1 = the impurity of H. If I1 < I, then set I = I1.
Output the split corresponding to I.
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