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Abstract

In recent years, relating gene expression to cancer development and treatment has received a lot of
attention. Unfortunately, the availability of e�ective analysis tools lacks far behind the availability of
data. In this paper, we present the Gene Expression Analyzer (GEA) for performing cluster analysis on
gene expression data. In particular, the GEA is developed to support the reality that cluster analysis is
typically a multi-step process. The underlying model of the GEA provides a set of algebraic operators
for manipulating the data, as well as the intermediate results. Moreover, the GEA provides facilities to
help the user to identify candidate genes for further clinical analysis. Last but not least, the GEA is
optimized to handle the high dimensionality of gene expression data.

1 Introduction

Currently gene expression data are being produced at a phenomenal rate. The general objective is to try to
gain a better understanding of the functions of cellular tissues. In particular, one speci�c goal is to relate
gene expression to cancer diagnosis, prognosis and treatment. However, a key obstacle is that the availability
of analysis tools, or lack thereof, impedes the use of the data, making it diÆcult for cancer researchers to
perform analysis eÆciently and e�ectively. The Gene Expression Analyzer (GEA) presented in this paper
is designed and developed to provide better data mining and analysis support for gene expression data. It
makes three key contributions:

1. Amongst all data mining paradigms that have been proposed and studied, clustering is the most widely
adopted paradigm for analyzing genomic data. Examples include the studies conducted by Eisen et
al [3], Alon et al [1], and Den-Dor et al [2]. However, all these studies regard cluster analysis as a
one-step process. That is, there is the assumption that one needs to apply a clustering algorithm
only once to the data in order to get the desired outcome. Unfortunately, real data mining and cluster
analysis is rarely a one-step process; it involves repeated manipulation of the data, as well as the results
of previous manipulations. The proposed GEA attempts to model this reality by providing a set of
operations for cancer/biology researchers to conduct cluster analysis more e�ectively. Underlying the
GEA is an algebraic framework that allows the output of one operation to become the input of another.

2. A key objective for performing cluster analysis on gene expression data is to identify candidate genes
for further analysis, including clinical studies in a more traditional laboratory setting. But conventional
clustering techniques, such as the k-means algorithm, CLARANS [7], CLICK [11], and OPTICS [8],
do not provide too much help in identifying such genes. In contrast, the proposed GEA provides
various facilities to accomplish this task. One example is the integrated support for �nding fascicles,
as proposed by Jagadish et al [5].

3. There are two general types of data essential to e�ective gene expression analysis. As discussed above,
the �rst type is the actual gene expression data, e.g., produced by the microarray technique [10], or
the SAGE technique [12]. The second type is auxiliary meta data, such as for mapping tags to genes
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Figure 1: The GEA Model

Library Name Tag1 : : : Tagn

Library1 expr-level1;1 : : : expr-level1;n
: : : : : : : : : : : :

Librarym expr-levelm;1 : : : expr-levelm;n

Figure 2: The Structure of an ENUM Table

(UNIGENE), for mapping genes to proteins (SWISSPROT), for classifying proteins into functional
families (PFAM), or even for identifying scienti�c publications studying a particular gene or protein
(PUBMED). From a database standpoint, the second type of data is more traditional in that the main
operations on the data are search, retrieval and archival. The �rst type of data is somewhat di�erent,
in that the main operation on the data is analysis. Thus, the key challenge here is how to design
and develop a system that can support these diverse requirements, preferrably on top of a relational
DBMS. As summarized above, the GEA allows for mining and analysis on the one hand. It supports
search and retrieval operations on the auxiliary databases on the other hand.

2 The GEA Model and Structures

Figure 1 shows the model underlying the GEA, within which gene expression data and intermediate clus-
ters/fascicles can take on dual identity. In [6], the 3W model was proposed by Johnson et al. to capture the
fact that data mining is often a multi-step process. The 3W stands for the three worlds for data mining in
general [6]. For the kind of analysis to be supported here, the framework underlying the proposed GEA is a
specialization of the general 3W model in at least three key aspects. First, there need only be two worlds,
not three. Second, the structures are tailor-made for the GEA, namely the SUMY and GAP structures to be
introduced shortly. Finally, there are additional operators, such as di�(), that are included. The following
sections elaborate on these aspects.

While in the extensional world, a cluster is represented by an explicit enumeration of all the libraries
contained in that cluster. Alternatively, while in the intensional world, a cluster is represented by a de�nition
(i.e., a set of conditions) that are satis�ed by all the libraries contained in the cluster. This is the key to
capturing the multi-step nature of a cluster analysis process, which often involves manipulations of previous
intermediate results/clusters. Below we �rst introduce the structures in the two worlds. In the next section,
we will show how these structures can be manipulated. And in section 5, we will give comprehensive examples
of these manipulations.

A cluster in the extensional world is represented as a relation. In particular, we call such a relation
an ENUM table (as in \enumeration") with its structure shown in Figure 2. The columns represent the
(compact) tags, and the rows correspond to the libraries. For instance, if cluster/fascicle A consists of the
1st, 2nd, 3rd and 4th libraries, then there are four rows in the corresponding ENUM table, with the columns
representing the compact tags of the fascicle. To continue, the ENUM table for another cluster B may have
a di�erent number and a di�erent set of columns (because the sets of compact tags are di�erent), as well as
a di�erent number of rows (even though the same library may be included in multiple clusters).

Because an ENUM table is nothing more than an instance of an ordinary relation, the extensional world
also supports any other ordinary relation. More speci�cally, the original SAGE data set can be stored in an
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Tag Name Range Average Standard Dev.

Tag1 [min1, max1] avg-level1 dev-level1
: : : : : : : : : : : :

Tagn [minn, maxn] avg-leveln dev-leveln

(a) A SUMY Table

Tag Name Gap

Tag1 gap-level1
: : : : : :

Tagn gap-leveln

(b) A GAP Table

Figure 3: Structures in the Intensional World

ENUM table as shown in Figure 2, as a \degenerate" cluster. And there may be auxiliary data associated
with each library, such as the tissue type, cancerous or normal, the number of tags, etc. These pieces of
auxiliary data are stored in ordinary relations; see section 6 for a more comprehensive discussion.

Whereas in the extensional world a cluster is represented by an explicit enumeration of all the libraries
it contains, in the intensional world, a cluster is represented by its de�nition - the set of compact tags and
their ranges. This leads to the SUMY table (as in \summary") shown in Figure 3(a). The rows correspond
to the compact tags of the cluster. The columns give the range, the mean and the standard deviation of the
mRNA expression levels for that tag in the cluster. Additional columns, such as those representing other
aggregate values, may also be included.

In the intensional world, apart from the SUMY table, there is another structure called the GAP table.
As will be shown in the next section, a Gap table is used to summarize the \di�erence" between two
SUMY tables. This is particularly useful for distinguishing candidate genes that may have di�erent levels of
expression in di�erent clusters.

3 Algebraic Operations of the GEA

So far, we have introduced the basic structures within the GEA. In this section, we describe how these
structures can be manipulated, with an emphasis on algebraic operations beyond the standard ones.

3.1 Moving between the Worlds

Let us �rst consider the primary operation of data mining. In the general case, the mine() operator basically
takes a data set from the extensional world and produces an intermediate result represented in the intensional
world. Speci�cally for this paper, the mining operation is cluster/fascicle production, with the input being
the SAGE data set (or any ENUM table) and the output being a cluster represented in a SUMY table.
This is shown in Figure 1. Note that in the general case, the mining operation can be something other than
fascicle production. But for simplicity, we focus only on fascicles here.

Recall that a SUMY table only stores the de�nition of the cluster. To obtain an explicit enumeration
of all the libraries satisfying the de�nition, the populate() operator takes a data set (or any ENUM table)
and a SUMY table, and �nds all rows in the input data set satisfying the conditions laid out in the SUMY
table. In other words, the populate operator converts a cluster from its intensional/SUMY form to its
extensional/ENUM form, with respect to a given data set.

Finally, to complete the discussion of the operators shown in Figure 1, the aggregate() operator can be
regarded as an inverse operation to the populate operator. It converts a cluster from the extensional/ENUM
form to the intensional/SUMY form.

Recall that there are two key objectives of the GEA: (i) to support the multi-step nature of cluster
analysis; and (ii) to help to identify candidate genes for further clinical analysis. So far, we have seen how
the GEA achieves the �rst objective. That is, it uses algebraic operators to manipulate the data and the
clusters. Output from one operator can be input for another operator. With respect to the second objective,
so far fascicle production is the only avenue, because typically the number of compact tags in a fascicle is
smaller than the original number of tags. Having said that, however, the number of compact tags can still
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Figure 4: Gap Level De�nition: Non-overlap (left) Overlap (right)

Tag Name Range Avg. SD.

Tag1 [5,5] 5 0
Tag2 [0,7] 3 1
Tag3 [10,120] 70 15
Tag4 [0,20] 10 4

(a) Table SUMY1

Tag Name Range Avg. SD.

Tag1 [0,14] 7 1
Tag3 [10,130] 60 25
Tag4 [0,12] 3 1
Tag5 [0,50] 20 15

(b) Table SUMY2

Tag Name Gap

Tag1 -1
Tag3 null
Tag4 +2

(c) Table GAP

Figure 5: An Example: GAP = di�(SUMY1, SUMY2)

be too large (e.g., tens of thousands) for further clinical analysis. This motivates some of the operations
presented next for manipulating the SUMY and GAP tables in the intensional world.

3.2 From SUMY Tables to GAP Tables

One key reason for identifying candidate genes is to capture the di�erences between libraries in di�erent
tissue types, and/or di�erences between libraries in the same tissue type but in di�erent categories (e.g.,
cancerous or normal). This comparative analysis provides the opportunities to discover the potentially
interesting information between the libraries. Within the GEA, the key operation in this regard is the di�()
operator that takes two SUMY tables to produce one GAP table, i.e., GAP = di�(SUMY1, SUMY2). For
instance, the �rst SUMY table may correspond to a cluster containing only cancerous breast tissues, whereas
the second SUMY table corresponds to normal breast tissues.

Many de�nitions of a gap value/level are acceptable. In the sequel, we use the following de�nition that
appears to be meaningful in practice. For each tag common in both SUMY tables, the gap level is de�ned
as: gap level = (�(hi) - �(hi)) - (�(lo) + �(lo)), where �(hi) and �(hi) represent the average and the standard
deviation of the tag in the SUMY table having a higher average, and �(lo) and �(lo) are the counterparts
for the SUMY table having the lower average. Figure 4 shows the two cases depending on whether there
is overlap. In the �rst case, for the given tag, there is no overlap, and the gap level is positive if the �rst
SUMY table is having a higher average, negative otherwise. In the second case, there is overlap, and the
gap level is de�ned to be null.

Let us consider the situation of the two SUMY tables shown in Figure 5. First, the resultant table GAP
consists of rows corresponding to Tag1, Tag3 and Tag4, because these are the common tags between the two
SUMY tables. For Tag1, the gap level is (7-1) - (5+0) = 1. But the sign of the gap level is negative because
table SUMY1 has a lower average. For Tag3, there is an overlap and the gap level is null. Finally, for Tag4,
the gap level is (10 - 4) - (3+1) = 2, with a positive sign.

3.3 Other Operations in the Intensional World

Towards identifying candidate tags, a GAP table may still have too many rows. To further reduce the
number of tags, the selection operator becomes handy. It takes as input a GAP table and produces a GAP
table satisfying the speci�ed selection conditions, as usually done in relational algebra. Just as easy, the
selection operator can be applied to a SUMY table to produce another SUMY table. In this case, because a
SUMY table contains range values (e.g., [min,max]), range selection conditions such as overlap are allowed.
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Figure 7: Fascicle vs Normal: Ribosomal Protein L12

Figure 8: Fascicle vs Normal: Alpha Tubulin

cancerous libraries not in the cluster are also shown for reference.
While Figure 7 corresponds to a positive gap situation, Figure 8 corresponds to a negative gap scenario.

The expression levels of Alpha Tubulin are much lower in the cancerous libraries (e.g., close to 0 for those
in the cluster) than in the normal libraries (i.e., the average being close to 90).

5 Implementation and EÆciency Issues

The GEA is implemented in Java. The system details are all encapsulated inside the Java classes, each
of this class responsible for a component of the system. One of the reasons for using Java is the simple
integration and portability. The commercial database tool DB2 is used for providing the basic relational
database support. The GEA has a tight coupling with the underlying DBMS to ensure eÆcient data access,
storage and retrieval. For a discussion on some of the complications encountered during the development of
the GEA, see [9]. In the following, we discuss some of the key optimization issues.

The GEA is intended to support interactive analysis. Thus, in the following, we discuss the complexity
of the various operations. First, let us consider the three inter-world operations shown in Figure 1. The
complexity of the mine() operator clearly depends on the exact nature of the mining operation. Speci�cally,
for clustering, there are algorithms of varying complexities, from linear to polynomial on the number of
libraries. In the case of fascicles, the complexity is linear with respect to the number of libraries and the
number of compact tags [5].

Next, for the creation of a SUMY table, the time taken to apply the aggregate() operator depends on
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the exact nature of the aggregation. If the aggregation on each tag simply amounts to �nding the range, the
average and the standard deviation, then one pass over the libraries is suÆcient. But if the aggregation is
more complex (e.g., �nding the median), the complexity can be higher (e.g., O(n log n)). As for the creation
of a GAP table, the time taken is linear on the number of tags.

Finally, for the populate() operator, its performance turns out to be non-trivial. Recall that for a given
SUMY table and an ordinary relation, the populate() operator �nds all tuples in the relation that satisfy all
the tag ranges contained in the SUMY table. On �rst sight, the operation is nothing more than a conjunction
of a number, say p, of range conditions. However, the problem here is that p is very large by the normal
standard of relational queries. For the case studies shown in the previous section, a SUMY table easily
contains p = 25; 000 or p = 30; 000 tags. Thus, the populate operation becomes extremely high-dimensional,
amounting to a conjunction of 25,000 or 30,000 range conditions.

Clearly, we cannot index each and every one of them. Thus, the �rst question is which ones to pick. One
natural strategy is to pick the most selective tags. Because a SUMY table is produced by a mining operation,
there is little that is known a priori as to which tags and what ranges will be included in the SUMY table.
Our heuristic is to pick the tags with the highest entropy, i.e., highest variation. More speci�cally, we seek
to build m indices for the tags with the top-m highest entropy.

The second, and more diÆcult, question is what an appropriate value of m is. To solve for m, we conduct
the following analysis. Let the total number of tags be n (e.g., 60,000), the number of tags in a SUMY table
be p (e.g., 25,000), and the number of indices built be m. Assume that there is a uniform distribution as
to which tags are included in the SUMY table. Then the probability that a tag in the SUMY table is not
indexed is:

Prob(a non�indexed tag selected) = (1�
m

n
)

Among the p tags included in the SUMY table, the probability that only non-indexed tags are picked is

Prob(none of the m indices hit) = (1�
m

n
)p

To generalize, let w be the number of indices hit. That is, among the p tags included in the SUMY table,
there are w tags with associated indices. Thus, the above equation corresponds to Prob(w = 0), and can be
generalized as follows:

Prob(exactly w indices hit) = Cp
w � (

m

n
)w � (1�

m

n
)p�w

We can then �x a probability threshold say 0.999 such that we solve for the smallest m that guarantees at
least a 99.9% chance of hitting at least w indices:

Prob(at least w indices hit) = [1 � �w�1
i=0 Prob(exactly i indices hit)] � 0:999

Based on n = 60; 000 total tags, and p = 25; 000 tags in a SUMY table, the solutions of m based on the
above equation are:

At Least w Indices Hit Number of Indices Required (m)

1 17
2 23
3 27
4 32
5 36

Finally, based on the SAGE data set used in the case studies, the following table shows the percentage of
time saved for the populate() operator if w indices are hit.

w Indices Hit 0 1 2 3 4 5
Time Saved 0% 45% 76% 78% 85% 85%

The two tables combined tell an interesting story. To save around 50% of time executing the populate()
operator, there is a 99.9% chance that if the top-17 highest entropy tags are selected for index creation, at
least 1 index will be hit (out of the 25,000 tags included in the SUMY table). Similarly, if a 85% time saving
is desired, then 32 indices are needed to guarantee that there is a 99.9% chance to have at least 4 indices hit.

Kathy Herbert
BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference)

Kathy Herbert
page 69



6 Ongoing Work: Integrated Genomic Analysis

In this section, we describe ongoing work, speci�cally on how the GEA can be linked to other databases
for integrated genomic analysis. Recently, the BC Genome Sequence Centre has started a project to build
a repository integrating databases of various types. These databases include: (a) UNIGENE, which can
be used to map a tag to a gene; (b) SWISSPROT, which can be used to relate genes to proteins; (c)
PFAM, which classi�es proteins into functional families; (d) KEGG, which gives information on genetic and
biochemical pathway; (e) GENBANK, which contains information on nucleotides; and (f) PUBMED, which
is a literature and patent database.

In the following, we show a few examples as to how these databases can be linked with the GEA to
provide even more information to the user. The key point is that because the GEA model is consistent with
the relational model, all the linkages between the GEA and these other databases can happen in a traditional
querying environment, mainly through join queries. For example, to understand the biological meaning of
a tag, the �rst step is to use the UNIGENE database. To look up the gene corresponding to a tag, the
following relational algebraic expression suÆces: GeneRel = �Unigene:gene(�TagRel:tag=Unigene:tag (TagRel 1
Unigene)), where TagRel is a relation with a column on tags (e.g., a SUMY or GAP table), and Unigene

is the relation containing a mapping from tags to genes. To continue, the user can map the genes to protein
sequences. For example, ProtRel = �Swissprot:sequence(�GeneRel:gene=Swissprot:gene(GeneRel 1 Swissprot))
retrieves the associated proteins.

These examples can go on and on, but the �nal example is a less conventional one. For a particular gene
or protein sequence, many studies may have been published. It is important for the user to be linked to
these publications. To this end, the PUBMED database can be used. The result from querying this database
using the earlier relations GeneRel or ProtRel consists of a list of publications, linking the user to full-text
journal articles at the appropriate web sites.

References

[1] U. Alon, N. Barkai, D. A. Notterman, K. Grish et al. Broad Patterns of Gene Expression Revealed by Clustering
Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. In Proc. of National Academy
of Sciences USA, pp. 6745{6750, 1999.

[2] Amir Den-Dor, Ron Shamir, Zohar Yakhini. Clustering Gene Expression Patterns. In Proc. The Third Inter-

national Conference on Computational Molecular Biology, pp. 281{297, 1999.

[3] Michael Eisen, Paul Spellman, Patrick Brown, and David Botstein. Cluster Analysis and Display of Genome-
wide Expression Patterns. In Proc. of National Academy of Sciences USA, pp. 14863{14868, 1998.

[4] R. Heller, M. Schena et al. Discovery and Analysis of In
ammatory Disease-related Genes using cDNA Mi-
croarrays. In Proc. of National Academy of Sciences USA, pp. 2150{2155, 1997.

[5] H.V. Jagadish, Jason Madar, and Raymond T. Ng. Semantic Compression and Pattern Extraction with Fasci-
cles. In Proc. VLDB, pp. 186{198, September 1999.

[6] Theodore Johnson, Laks V. S. Laksmanan, and Raymond T. Ng. The 3W Model and Algebra for Uni�ed Data
Ming. In Proc. VLDB, pp. 21{32, September 2000.

[7] Raymond T. Ng and Jiawei Han. EÆcient and E�ective Clustering Methods for Spatial Data Mining. In Proc.

VLDB, pp. 144-155, September 1994.

[8] Raymond Ng, Jorg Sander, and Monica Sleumer. Hierarchical Cluster Analysis of SAGE data for Cancer
Pro�ling. In Proc. of BIOKDD Workshop on Data Mining in Bioinformatics, pp 65{72, August 2001.

[9] Jessica M. Phan. GEA: a Toolkit for Gene Expression Analysis. Master Thesis, Department of Computer
Science, University of British Columbia, May 2002.

[10] M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative Monitoring of Gene Expression Patterns with a
Complementary DNA Microarray. In Science, 270, pp. 467{470, 1995.

[11] Ron Shamir, and Roded Sharan. CLICK: A Clustering Algorithm for Gene Expression Analysis, 1999.

[12] V. E. Velculescu, L. Zhang, B. Vogelstein, K. Kinzler. Serial Analysis of Gene Expression. In Science, pp.

484{487, November 1995.

Kathy Herbert
BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference)

Kathy Herbert
page 70


