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ABSTRACT

Classification problems in bioinformatics solved by Sup-
port Vector Machine (SVM) learning algorithms may re-
sult in kernel matrices with very large diagonal elements.
This structural characteristic of the kernel matrix leads to
overfitting. A method for reducing large diagonals based
on the use of Semi-Definite Programming (SDP) is pro-
posed. The kernel matrix generated by SDP is guaranteed
to be positive semidefinite. The preliminary experimental
performance of the new kernel is encouraging.

Keywords

Support Vector Machine, Semidefinite Programming, Large
Diagonals, Kernel Methods

1. INTRODUCTION

Kernel methods are a class of state-of-art learning algo-
rithms that give favorable performance in comparison to
traditional learning methods. The support vector ma-
chine is a well known example [5; 11; 14]. A chief building
block of these methods is an entity known as the kernel.
A nonlinear function maps the input points into a higher
dimensional feature space so that a linear classifier can be
trained in that space. The kernel trick provides an effi-
cient way to construct such a linear classifier by the use of
an inner product between mapped points in the feature
space. Accordingly, one does not need to actually con-
sider the mapped points explicitly. This non-dependence
of the kernel on the dimensionality of the input space and
the flexibility of using any kernel make the kernel method
one of the most popular approaches for classification in
bioinformatics applications [2; 8; 15].

However, when data are represented as sparse vectors,
the kernel matrix based on dot products usually has a
so-called large diagonals, i.e., the diagonal elements of
the matrix are much larger than the off-diagonal terms.
Kernel matrices from certain sophisticated kernels, e.g.
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the string kernel and the motif kernel considered for pro-
tein sequence encoding, also possess this structural char-
acteristic [2; 8; 12]. To encode a protein sequence as a
vector, the kernel map is designed to generate a sparse
vector, where each component corresponds to a “word”
or a “motif” in the given sequence. Whenever the related
“word” or “motif” occurs in the sequence, the component
is set to one or another appropriate specified number.

To achieve better prediction in the presence of such a
characteristic in the kernel matrix, Schoelkopf et al. [12]
proposed a method based on the application of functional
calculus to the kernel matrix in order to reduce the dy-
namic range of the matrix. Generally, this mapping will
not guarantee that the new matrix will remain positive
definite, one of the properties required by a kernel ma-
trix. This issue was resolved by the introduction of an
empirical kernel map [12]. This approach leads to a ker-
nel matrix which is the Gram matrix of the modified ker-
nel matrix. This kernel matrix can then be used with a
standard SVM for training. Preliminary computational
results have shown that the method can improve perfor-
mance on kernels that naturally generate matrices with
large diagonals [12]. However, the precise role and the
choice of the function applied to reduce the dynamic range
have yet to be understood.

In this paper, we propose a new reduction method of diag-
onals based on semidefinite programming [10]. The main
features of this method are that the generated kernel is
still positive definite and that the similarity measure for
a pair of points in the feature space remains unchanged.
We applied this kernel with SVM for the classification
of two datasets of gene expression values generated from
the microarray experiments for cancerous and normal tis-
sues. The experiment shows the effectiveness of this new
method for the reduction of diagonal elements.

2. SUBPOLYNOMIAL KERNEL METH-
ODSFORLARGEDIAGONALS IN KER-
NEL MATRICES

Support vector machines are supervised approximators
that can be considered as an approximate implementation
of the structure minimization principle suggested by Vap-
nik [5; 14]. When used for classification, SVMs map the
input space into a higher dimensional feature space that
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separates a given set of binary labeled training data with
an optimal hyperplane. The optimal hyperplane found
by the SVM learning algorithm is the one that maximizes
the separating margin between the binary classes of the
training data. The motivation for mapping the data into
a higher dimensional feature space is that linear decision
boundaries constructed in the high dimensional feature
space correspond to nonlinear decision boundaries in the
input space.

Given a training set of m input vectors {x1, ..., €m } with
known class labels {y1,...,ym} € {+1,—1}, a new point x
is assigned a label by the SVM according to the decision
function

f(a) = sign(}_ yiaik(zi, ) +b), 1)
i=1

where k(z,x') = (¢(x), #(z')) is the kernel function that
implicitly defines the feature space. ¢(x) is a nonlinear
function from input space to feature space, (-,-) denotes
the inner product of two vectors, and a; (¢ = 1,...,m)
are coefficients determined by the SVM. A kernel has to
belong to the class of positive definite kernels [3]:

Zaiajk(a!i,wj) >0, (2)

i,
for all a;,a; € R and all z;,z; (3,7 = 1,...,m). The
matrix K;; = (¢(xs), d(x;)) (4,7 =1,...,m) is called the
Gram matrix. In some cases, the dot product of two
different vectors takes a value which is much smaller than
the dot product of a vector with itself. That is, given the
training inputs {1, ..., ®m }, we have

k(xi, i) >> |k(xs, ;)| for i#j5 (4,j=1,..,m).
®3)
In this case, the associated Gram matrix is said to have
large diagonal elements.

In practice it has been observed that the SVMs with this
kind of kernel matrix do not perform well [12]. To deal
with the problem of larger diagonal elements, Schéelkopf
et al. [12] proposed a nonlinear transformation to reduce
the dynamic range of the elements of the matrix. They
used a so-called subpolynomial kernel, defined as

k(zi, ;) = sign({(p(:), () [{(x:i), d(x;))°,
(0<p<1),
(4)
from the given kernel k(x;,x;) = (¢(x:), d(x;)). How-
ever, this method will lead to a matrix which may no
longer be positive semidefinite. A procedure was then
proposed by Schoelkopf et al. [12] to resolve this issue
based on the use of the empirical kernel map [13] :

B (@) := (k(z, 1)), ..., k(x, )" (5)
and to train the following SVM :

min. [la®
st p@n@)a) 40 >1 (i=1..m), ©

where a € R™. This SVM operates in an m-dimensional
feature space with the standard SVM regularizor ||al|®.
The SVM is trained simply by an SVM with the kernel

km (@, 2') = (B (@), B (2')), (7
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and
Kn=KKT, (8)

where K denotes the Gram matrix of the original kernel.
Equation (8) shows that when employing the empirical
kernel map, it is not necessary to use a positive definite
kernel, since KK7 is always positive definite for any ker-
nel matrix. This will be useful for the problem of kernel
matrices with large diagonal elements, since the subpoly-
nomial kernel can be considered as K.

3. REDUCING LARGE DIAGONALS
THROUGH SEMIDEFINITE
PROGRAMMING

In this section we propose a method using a different ap-
proach to reduce the large diagonals in the kernel matrix.
Our formulation is based on the use of Semidefinite Pro-
gramming (SDP), which is a generalization of linear pro-
gramming, see e.g. [10]. SDP deals with the optimization
of convex functions over the convex cone of semidefinite
matrices, or subsets of those cones. The general form of
a SDP is given as follows:

min. c¢fz

st. F(z)=Fo+z1Fi+-- -+ 2,F, >0,
Az =0,

where ¢,z € RP, b € R, A € R**?, F; = FT ¢
R™*™ (4 = 0,1,...,p) are given and F(z) is restricted
to be contained in the positive semidefinite cone. We de-
note this condition as F(z) > 0. In a recent paper of
Lanckriet et al. [7], SDP was used to learn an optimal
kernel matrix from both the training and testing data.
The learning is transductive, i.e., using the labeled part
of the data to learn an “optimal” embedding also for the
testing part. From the embedding, the reduced similar-
ity, defined as the inner products between testing points
is learned.

In this study, we wish to specify a convex cost function
of the SDP that will enable us to learn from the original
kernel matrix a new matrix whose diagonals are no longer
large. The motivation for the formulation is to subtract a
certain amount from each diagonal element of the kernel
matrix to reduce the diagonal dominance, while keeping
the new matrix positive semidefinite. The amount of the
subtraction can be controlled by using different objective
functions in the SDP. Here, we consider the following sim-
plest form.

Let K be the original kernel matrix obtained from the
training data. Assume that {1,...,m} is divided into p
subsets of approximately equal size. Let

KP = diag(Ki1, ..., Kmm)

be a diagonal matrix where K7 = Kj;. Letc = {—1,...,—1}7

€ R? (1 <p <m)and Fy = K. There are two ways

to construct constraints in order to reduce the diagonal
elements. First, let —F; be a diagonal matrix with only
1’s at the positions corresponding to the ith block :
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—
ith block

0
0
1
_F =
1
0
0
(i=1,..,p)
Then —(Fy + - - - + F}) is the unit matrix.
Second, let
K
K’L'lil
—Fl = 0 ) bl
0
0
—-F, = 0
Ki, 141,141
kmm

Obviously, —K” = F; 4+ --- + F,. In both cases, the
constraint set Az < b does not exist.

Based on the above two definitions of F; (i = 1,...,p),
two SDP modified kernel matrices can be obtained by
solving the SDPs. Since all the off-diagonal elements re-
main unchanged in the modified kernels, the original ker-
nel function can be used in the decision function (1) for
the testing. The optimal number of blocks should be the
one that generates a kernel matrix giving the best accu-
racy. In practice it can be determined empirically through
the procedure of cross-validation.

Since the subpolynomial kernel changes all entries in the
original kernel matrix, the similarity of a pair of points
in the mapped feature space is completely altered. It
is hard to measure how suitable the new kernel is for
the specific application domain. In contrast, the SDP
modified kernels only change the diagonal elements in the
original kernel matrix, the similarity for every off-diagonal
element remains unchanged.

4. EXPERIMENTAL RESULTS AND DIS-
CUSSION
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We employed the method of SDP kernel modification de-
scribed in the previous section in conjunction with an
SVM for classification. The evaluation of the method was
conducted on the following two data sets.

4.1 Datasets

Alon’s Microarray Data with Added Noise : Alon;go
Using Affymetrix oligonucleotide arrays, expression levels
for 40 tumor and 22 normal colon tissues are measured for
6500 genes (features). Of these genes, the 2000 with the
highest minimal intensity across the tissues are selected
for classification [1]. One must distinguish between can-
cerous and normal tissues given the expression values of
the genes. In order to obtain the larger diagonal elements
in the kernel matrix, noise was added as described in [12]:
10,000 features with values 0 were added to each tissue
and a randomly chosen group of 100 out of these features
was then set to be random values in (0,1). The ratio of
the average off-diagonal elements to that of the diagonal
elements in the linear kernel matrix of these data is 0.025
(see Table 3).

Golub’s Microarray Data : Golub

The data set of Golub et al. [6] consists of gene expression
values of samples from 27 acute lymphoblastic leukemia
(ALL) and 11 acute myeloid leukemia (AML). Gene ex-
pression levels were measured using Affymetrix oligonu-
cleotide chips containing 6817 human genes. However,
the set only has 3051 genes that were filtered out through
the pre-processing steps. The objective is to discrimi-
nate the two types of leukemias. The ratio of the average
off-diagonal elements to that of diagonal elements of the
linear kernel matrix of these data is 0.019 (see Table 3).

4.2 Experiments and Discussion

For each dataset, six types of kernels were used in the
experiments : (i) linear, (ii) radial basis function kernel
(RBF), (iii) polynomial kernel, (iv) subpolynomial kernel
proposed in [12], (v) SDP modified kernel by the type 1
constraint (SDP-1), and (vi) SDP modified kernel by the
type 2 constraint (SDP-2). The values of p in the subpoly-
nomial kernel were changed in the range of [0.1, 0.9] with
an incremental size 0.1. The block sizes p in the SDP
modified kernel were set as 1, 2,4,10,30,62 for Alonigo
and 1,2, 4,8,19, 38 for Golub. SDPA (ver6.0) [9] was used
for the solution of SDP. The SVM solver libsvin (ver.2.4)
[4] was modified to test the performance of the SVM with
our new kernels. A 10-fold cross-validation was employed
in experiments. The two criteria used to evaluate the
classification accuracy are given as follows:

# correctly predicted points
# total number of points

accuracy =

and

balanced loss

1 #{gy=1n§=-1} +1 #yy=—1Ag=1}
2 #{yy=1} 2 #{yy=-1}

where y denotes the true label and § presents the pre-
dicted value. The balanced loss takes into account the
unequal numbers of positive and negative labeled train-
ing points.
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The generalization performance of an SVM is controlled
by the trade-off parameter C' and parameters associated
with the kernels. The optimal values of C* and g* in the
RBF kernels (k(x,y) = exp(—g|lz — y||*)) which maxi-
mize the accuracy were chosen. More precisely, the val-
ues for C* and ¢g* were determined as follows. For the
linear, polynomial, and subpolynomial kernels, we took
C = 0.001,0.01,0.1 and the values in the range of [1,10]
with an incremental size 1; and took g = 0.001,0.01,0.1
and the values in [1,10] with an incremental size 1. The
degree p of the polynomial kernel was set at d = 2, 3,4, 5.
The values of C in the SDP modified kernels were set at
1 for all tests.

Tables 1 and 2 present the results of the experiments. The
average accuracy and balanced loss are taken as the av-
erage results from 10 runs of the 10-fold cross-validation
for each fixed parameter pair, respectively. The num-
bers in the parentheses are the standard deviations. The
best results are presented in bold face. In general, the
subpolynomial and SDP modified kernels exhibit the im-
proved generalization performance over the linear, poly-
nomial, and RBF kernels with these two datasets. How-
ever, the SDP modified kernels show better results than
the subpolynomial kernels for Golub, while the opposite
is observed for Alonigo. In order to provide a possible ex-
planation for this outcome, we calculated the ratios of the
kernel matrices resulting from these two different meth-
ods.

Table 3 presents the ratios, i.e., the average of the off-
diagonal elements over that of the diagonal elements, cor-
responding to the kernel matrices of the linear, the sub-
polynomial, and the SDP. The ratios are shown only for
the matrices which generated good results for the latter
two kernels. The ratios corresponding to the SDP meth-
ods are much larger for Alonigpo compared with those of
the subpolynomial method. However, the ratios for both
methods are about the same for Golub.

This result can be explained as follows. Since some of the
off-diagonal elements are less than 1 for Alonigo, as shown
in K; in Figure 1, the subpolynomial operation actually
has the effect of increasing the values for those elements.
Therefore, this results in a substantial reduction of the
difference between the diagonal and off-diagonal elements
in the subpolynomial kernel matrix for this data set (see
Figure 2).

On the other hand, the SDP methods only reduce the
magnitude of the diagonal elements. This is why the ra-
tios remain small in the SDP kernel matrices for the same
dataset. As for Golub, since all elements are great than
1, as shown in K>3 in Figure 1, the subpolynomial method
can not have the effect described above.

36.9545 0.71564 0.685017 1.32080
0.71563 34.7406 0.667553 1.58186
0.68501 0.66755 34.50790 0.73551
1.3208 1.58186 0.735511 37.1586
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3108.16 159.557 43.0674 54.7271
159.557 3044.70 143.160 53.5596

K2=1 430674 143160 3072.59 148.006 |
54.7271 53.5506 148.006 3038.89
and
1 0.00032 0.00038 0.00047
wrer _ | 000032 1 0.00032  0.00040
RBF _

0.00038 0.00032 1 0.00046
0.00047 0.00040 0.00046 1

Figure 1 : The first 4 X 4 entries of the kernel matrices K; and
K of the linear kernel on Alonjgo and Golub, respectively, and
the first 4 x 4 entries of the kernel matrix of the RBF kernel
K{"’BF (g =1 )of Alonjoo.

1.4347 0.9671 0.9629 1.0282

K Subvoly _ 0.9671 1.4259 0.9604 1.0469
! 0.9629 0.9604 1.4249 0.9697 |’
1.0282 1.0469 0.9697 1.4355
6.5564 0.7156 0.685 1.321
KSDP-1 _ 0.7156 4.340 0.6676 1.582
1 0.685 0.6676 4.166 0.7355 |’
1.321 1.582 0.7355 6.8170
5.142  0.7156 0.6850 1.321
KSDP-2 _ 0.7156 4.834 0.6676 1.582
. 0.6850 0.6676 4.356  0.7355
1.321 1.582 0.7355 4.691

Figure 2 : The first 4 X 4 entries of the subpolynomial mod-
ified kernel matrix K. "*P°'Y with p = 0.1 on the linear ker-
nel of Alonjgg, the SDP modified kernel matrices KISDP_1
and KigDP_Z of the linear kernel on Alonigp by SDP-1 with
p = 30, and SDP-2 with p = 30, respectively.

In order to investigate the noise resistance of the new al-
gorithm with increasing noise levels, we performed the
following experiments. In addition to the data Alonigo,
three more data sets with different noise levels were gen-
erated. That is, 10, 000 features with values 0 were added
to each tissue and randomly chosen groups of 50, 150,
and 250 out of these features were then set to be random
values in (0,1), respectively. The data files were named
Alonsg, Alonise, and Alonssg, respectively. Then the ex-
periments described above were performed on these data
sets. Table 4 shows the results. We could see that both
the subpolynomial and SDP modified kernels demonstrated
consistent improvement over the linear and RBF kernels,
which presented almost unchanged performance. How-
ever, the performance of the two former ones do get worse
when the noise level is increased. The predicting rates
from the SDP-1 modified kernels are slightly lower than
that of the subpolynimial one. This picture may change
if we tune the parameter C for the SDP-1 case, where the
value C was fixed at 1 during the experiment.

5. CONCLUSIONS

This paper has introduced a new SDP-based method for
the reduction of large diagonal elements in kernel matrices
generated from conventional kernel functions. The perfor-
mance of the proposed method was empirically tested on
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Table 1: Results of SVM with different kernels for Table 2: Results of SVM with different kernels for data
Alonloo. Golub.
Kernel Parameter Ave. Bal. Ave.
Loss Accuracy% Kernel Parameter Balanced Average
Tinear C* =2 | 0.465 (0.034) | 64.84 (0.01) Loss Accuracy (%)
RBF | C* =10, g =1 | 0.460 (0.039) | 64.52 (0.00) Linear C* =4 | 0.340 (0.042) | 71.05 (0.00)
Poly C* =10,p=15 | 0.460 (0.046) | 64.52 (0.00) RBF cC*=7 g*=3 0.375 (0.042) 71.05 (0.00)
p=4 | 0.485(0.034) | 64.52 (0.00) Poly C*=6,p=05 | 0.360 (0.052) | 71.05(0.00)
p=3| 0.480 (0.026) | 64.52 (0.00) P=4| 0.365(0.041) | 71.05 (0.00)
P =2 0.465(0.034) | 64.52 (0.01) P =3 | 0.345 (0.050) | 71.05( 0.00)
Sub C*=3,p=09 0.465 (0.021) 65.32 (0.01) P=2 0.380 (0.026) 71.05 (0.00)
-poly p=08 | 0.391(0.024) | 69.35 (0.02) Sub C*=10,p =09 | 0.405 (0.044) | 71.05 (0.00)
p=0.7 | 0.372(0.037) | 71.45 (0.01) -poly p=0.8 | 0.318 (0.046) | 74.21 (0.02)
p=0.6 | 0.316 (0.044) | 75.32 (0.02) P=07| 0179 (0.034) | 85.26 (0.03)
p=05 | 0.242 (0.031) | 79.52 (0.03) P =0.6 | 0.130 (0.055) | 87.63 (0.04)
p=04 0.222 (0.040) 81.29 (0.02) P =0.5 0.196 (0.051) 82.11 (0.04)
p=03| 0.186 (0.036) | 84.84 (0.02) P =04 | 0211(0.042) | 80.79 (0.02)
p=02 0.174 (0.037) 85.00 (0.03) P =03 0.215 (0.038) 79.47 (0.04)
p=20.1 | 0.130 (0.021) | 87.58 (0.02) P =02 0.204 (0.066) 77.63 (0.05)
SDP-1 c=1, p=1 0.455 (0.033) 65.16 (0.01) P=0.1 0.184 (0.074) 80.79 (0.08)
p=2| 0.429 (0.054) | 65.97 (0.02) SDP-1| C=1, p=1] 0.098 (0.04) | 88.42 (0.045)
p=4 | 0.232(0.069) | 78.23 (0.06) p=2| 0.145(0.03) | 86.05 (0.041)
p=10 0.181 (0.055) 81.45 (0.04) p=4 0.138 (0.04) 88.68 (0.029)
p =30 | 0.146 (0.041) | 83.06 (0.02) p=28| 0.148 (0.02) | 86.05 (0.029)
p=162 | 0.155(0.040) | 82.74 (0.05) p=19 | 0.112(0.04) | 86.58 (0.022)
SDP-2 | C=1, p=1 0.480 (0.022) | 65.00 (0.01) p=38 | 0.375(0.03) | 71.05 (0.000)
p=2| 0.455(0.027) | 65.16 (0.01) SDP2 | C=1, p=1] 0.143 (0.044) | 88.16 (0.02)
p=4| 0.205(0.054) | 79.03 (0.05) p=2| 0.110 (0.042) | 89.21 (0.04)
p=10 | 0.181 (0.032) | 80.32 (0.05) p=4 | 0.103 (0.037) | 90.79 (0.03)
p=30 | 0.164 (0.037) | 81.77 (0.04) p=28 0.110 (0.039) 89.74 (0.04)
p=162 | 0.171 (0.012) | 80.65 (0.03) p=19 | 0.283(0.121) | 75.44 (0.10)
p=38 | 0.355(0.035) | 71.05 (0.00)

two biological datasets. The experiments indicate that
the SDP modified kernels can produce better generaliza-
tion performance for certain classes of data. Extensive
experiments are required to compare further the subpoly-
nomial and the SDP kernels in order to understand their
roles. We are currently investigating the string kernel [§]
and the motif kernel [2] designed for protein sequences
involving the application of protein family prediction.
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Table 4: Results of SVM with different kernels for Alon’s
data with different noise levels(Only the best results are
shown. The parameter C in the SDP modified kernel was
fixed at 1. All other C* and p* were determined as above).

Kernel Parameter Balanced Average
Loss Accuracy (%)
Alonsg
Linear C* =1 [ 0.430 (0.037) | 65.97 (0.01)
RBF g* =0.01, C* =7 | 0.460 (0.032) | 64.68 (0.01)
sub-poly | C* =4, p* = 0.1 | 0.066 (0.012) | 93.87 (0.01)
SDP-1 C=1, p* =62 | 0.053 (0.022) | 93.71 (0.02)
Alonigo
Linear C* =3 [ 0.460 (0.046) | 64.84 (0.01)
RBF g*=1,C* =10 | 0.440 (0.061) | 64.52 (0.00)
sub-poly | C* =3, p* =0.1 | 0.130 (0.021) | 87.58 (0.02)
SDP-1 C=1, p* =30 | 0.147 (0.041) | 83.06 (0.02)
Aloniso
Linear C* =10 | 0.460 (0.046) | 64.52 (0.00)
RBF g* =3, C* = 0.01 | 0.445 (0.044) | 64.52 (0.00)
sub-poly | C* =3,*p=0.1 | 0.261 (0.025) | 74.68 (0.03)
SDP-1 C=1, p* =62 | 0.302 (0.035) | 69.52 (0.03)
Alonasg
Linear C* =8 | 0.455 (0.050) | 64.52 (0.00)
RBF g =1,C* =2 | 0.445 (0.037) | 64.52 (0.00)
sub-poly C* =9, p* =0.3 | 0.298 (0.046) 73.87 (0.03)
SDP-1 C=1, p*=2 | 0.287 (0.018) | 72.74 (0.03)
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