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ABSTRACT

DNA microarray provides a powerful basis for analysis of
gene expression. Data mining methods such as clustering
have been widely applied to microarray data to link genes
that show similar expression patterns. However, this ap-
proach usually fails to unveil gene-gene interactions in the
same cluster. Association rule mining and loglinear models
have been used for this purpose, but their inherent limita-
tions as well as information loss due to discretization limit
the applicability of the results. Here we propose the use of
a Graphical Gaussian Model to discover pairwise gene in-
teractions. We have constructed a prototype system that
permits rapid interactive exploration of gene relationships;
results can be validated by experts or known information, or
suggest new experiments. We have tested our methodology
using the yeast microarray data. Our results reveal some
previously unknown interactions that have solid biological
explanations.
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1. INTRODUCTION

With the description of complete genome sequences, DNA
microarray technology has become a powerful means for
genome-wide expression profiling and analysis. It allows the
simultaneous examination of thousands of genes in a single
experiment. The raw microarray images are transformed
into gene expression matrices where the rows usually denote
genes and the columns denote various samples, conditions,
or time points. The uniqueness of microarray data is that
genes in rows are of very high dimensionality (e.g., 10% -
10" genes) while samples in columns are of relatively low
dimensionality (e.g., 10" - 10? samples). The challenge is
to rapidly and efficiently extract useful information and dis-
cover knowledge from the data, such as gene functions, gene
interactions, regulatory pathways, metabolic pathways, and
effects of environmental factors.

Clustering algorithms (e.g., CAST [3], MST [31], HCS [10],
CLICK [24]) have been quite successful in the molecular
profiling of human cancers. Gene clusters from these meth-
ods can be interpreted as a network of co-regulated genes,
which may encode interacting proteins that are involved in
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the same biological processes such as cell cycle, metabolic
pathway, signaling transduction pathway, and genetic regu-
latory pathway. However, clustering methods cannot iden-
tify molecular networks or analyze high level function, i.e.,
the gene expression changes in the context of biological path-
ways; this is because the clustering methods do not take into
account relationships between genes within each cluster and
those across different clusters. Additionally, clustering tech-
niques assign a gene to a single cluster, while it is known
that a gene, such as the p53 protein, can function in multi-
ple physiological pathways. Therefore, there is a great need
for new tools to perform gene interactions and pathway-
based analyses of gene expression data, which can present
the knowledge embedded in the microarray data in a manner
that is intuitive and familiar to biologists.

Association rule mining [4; 2] and k-way interaction log-
linear modeling [30] have been investigated for identifying
gene interactions. To apply association rule or loglinear
modeling we need to discretize the gene expression values
into expression categories, e.g., under-expressed and over-
expressed, depending on whether the expression level is sig-
nificantly lower than, or higher than control'. It is clear
that by discretizing the measured expression levels we lose
information. Also, as the number of genes significantly ex-
ceeds the number of samples, it may be inaccurate to apply
association rule (where the number of items is assumed far
less than the number of transactions) or loglinear modeling
(where the size of samples is expected to be five times as
large as the size of cells in contingency tables).

In this paper we study gene interactions using Graphical
Gaussian Models (GGMs) which assume a family of normal
distributions for underlying data constrained to satisfy the
pairwise conditional independence restrictions inherent in
the independence graph. It is clear that this method does
not suffer from the information loss caused by discretization.
The microarray expression data, which are log transformed
from the raw microarray images, satisfy near multivariate
normal distribution due to the nature of experimental errors.
We also present our framework of interactive gene interac-
tion analysis prototype system. The core components of
the system is pairwise gene interactions using GGM and
multiple-way gene interactions using loglinear modeling. We
subject the input data of GGM to the output of other data
mining techniques (e.g., clusters from hierarchical cluster-

IThe control expression level of a gene can be either deter-
mined experimentally, or it can be set as the average expres-
sion level of the gene across experiments.
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ing, frequent item sets from association rule mining), prior
to analyzing gene interactions. Our system enables domain
users to interactively explore gene interactions by adding or
removing genes based on domain knowledge.

The remainder of the paper is structured as follows. In Sec-
tion 2, we formally introduce how to analyze gene pairwise
interactions using GGMs and present a prototype system
for interactive gene interaction analysis. In Section 3, we
present experimental results based on published yeast data
and provide interpretation. The conclusion and future work
are summarized in Section 4.

2. METHODS

Let S = {s1, 82, ,8m} be the set of samples or conditions
and G = {g1,92, -+ ,gn} be the set of genes. The microar-
ray data can be represented as X = {z;;|li = 1,--- ,n,j =
1,--+,m}(n > m), where z;; corresponds to the expression
value of the sample s; on gene g;. Our goal here is to iden-
tify the interactions among subsets of genes which can be
discovered by other data mining techniques or specified by
domain users.

In Section 2.1 we present GGMs and formalize partial corre-
lations. Here we assume the number of genes in each subset
is less than the size of samples. In Section 2.2 we present
our interactive interaction analysis framework. We compare
GGMs with other graphical models such as bayesian net-
works and loglinear modeling in Section 2.3.

2.1 Graphical Gaussian Models

Graphical gaussian model [19; 27], also known as covariance
selection model, assumes multivariate normal distribution
for underlying data and satisfies the pairwise conditional
independence restrictions which are shown in the indepen-
dence graph of a jointly normal set of random variables.
The independence graph is defined by a set of pairwise con-
ditional independence relationships that determine the edge
set of the graph. A crucial concept of applying GGM is that
of partial correlation. That is, measuring the correlation
between two variables after the common effects of all other
variables in the genome are removed.

Teoy — TaxzTyz (1)
(I—=rz)(1—r§)

Equation 1 shows the form for partial correlation of two
genes g, and gy while controlling for a third gene variable
g-, where r;, denotes Pearson’s correlation coefficient. The
partial correlation (prazy..) of genes g» and g, with respect
to gene g, may be considered to be the correlation (rzy)
of g, and g, after the effect of g. is removed. If there is
no difference between pryy.. and rsy, we can infer that the
control variable g, has no effect. If the partial correlation
approaches zero, the inference is that the original correlation
is spurious (i.e., there is no direct causal link between the
two original gene variables because the control gene variable
is either common anteceding cause, or intervening variables).
Partial correlations that remain significantly different from
zero may be taken as indicators of a possible causal link.

It is important to note that partial correlation is different
from standard correlation, and provides better evidence for
regulatory genetic links than standard correlation. For ex-
ample, Figure 1 shows the correlation and partial correlation

Pray.z =
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graph over a subset of genes. We omit the values for pair-
wise correlation and pairwise partial correlation due to space
limitation. Figure 1(b) shows pairwise correlations with cor-
relation coefficient greater than 0.65, which indicates posi-
tive correlations between any pair of genes. However, par-
tial correlations in Figure 1(a) indicates no interaction be-
tween 15 pairs of genes (genes with high correlations may
be controlled by a common gene and not directly linked in
the pathway) and even negative interactions between three
pairs of genes. The partial correlation agrees with biological
interpretation.

With a set of genes g, the partial correlation can be com-

puted by prey.g = —\/;%%yy, where s;y is the xy-th element

of the inverse of variance matrix (S = V™'). Tt is known that
conditional independence constraints are equivalent to spec-
ifying zeros in the inverse variance [27]. The method can be
sketched as follows:

e Compute the variance matrix V where v;;,4,5 =1,--- ,n,

corresponds to covariance between gene g; and g;.
e Compute its inverse S = V1.

e Scale S to have a unit diagonal and compute partial
correlations Pro,z;.g-

e Draw the independence graph according to the rule
that no edge is included in the graph if the absolute
value of partial correlation coefficient is less than some
threshold.

e Fitting GGMs by maximum likelihood estimation.

The core of the method is to compute the inverse of covari-
ance matrix. We apply singular value decomposition (SVD)
to compute the inverse of matrix in our prototype system.
The SVD method decomposes a m X n matrix X into two
orthogonal matrices U, V and a diagonal matrix A where
UTU = VIV = 1, and A = diag(A1,- -, ), Mi > 0
fori =1,---,r;, iy =0 fori=r+1,--- ,n. The SVD
has the optimal truncation property: if we discard all but
the r largest singular values and the corresponding singular
vectors, the product of U'S'V' is the best rank-r approx-
imation of X in the least-squares sense. In general, SVD
needs O(mn) space and O(nm?) (or O(mn?) depending on
which one is smaller) computation.

2.2 Interactive Analysis of Gene I nteractions

Our goal is to explore inter-relationships among genes. To
make this process intuitive and efficient, we propose to inte-
grate interactive techniques and information visualization to
interaction modeling. Figure 2 shows the framework of our
proposed prototype system for interactive gene interaction
analysis, consisting of the following three major phases:

e Preprocessing: Microarray expression data is input
to hierarchical clustering or association rule mining,
resulting in a set of gene clusters.

e Data Modeling:

— Subsets of genes (clusters or frequent itemsets)
are analyzed for pairwise gene interaction using
graphical gaussian models.
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Figure 1: Gene interactions using partial correlation vs. correlation, the threshold for partial correlation is 0.2 while the

threshold for correlation is 0.65. Note dashed lines indicate a negative partial correlation and solid lines indicate a positive
partial correlation.
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Figure 2: The framework of prototype system of gene interaction analysis
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— The independence graph from graphical gaussian
models is decomposed to obtain components. The
genes included in each component are then ana-
lyzed to get higher order effects using loglinear
models.

e Interactive Visualization/Analysis: The user may
interactively analyze, modify and explore the output of
both graphical gaussian models and loglinear models.

The microarray data is preprocessed via hierarchical clus-
tering or association rule mining prior to analyzing gene
pairwise interactions using GGMs, as (1) the large data size
makes it infeasible to apply the GGMs, and (2) the corre-
lation matrix is generally degenerate, as the matrix rank
is bounded by the sample size. The number of genes con-
tained in the resulting clusters or frequent itemsets is usually
less than the size of samples, thus avoiding the matrix rank
problem. The authors, in [17], propose multiple regression
procedures with variable selection to get approximate partial
correlations between any pair of genes. However, multiple
regression procedures are infeasible for microarray data sets
with thousands of genes because of high computational cost.
The independence graph generated by graphical gaussian
modeling can give domain users a basic understanding of
interactions among relatively large gene subsets. However,
The independence graph indicates only pair-wise gene inter-
actions, and is insufficient for pathway based analysis, which
require understanding higher order relationships.

To extract multi-way interactions of genes, we need to apply
loglinear modeling which assumes multinomial distributions
(For details see [30; 29]). However application of loglinear
modeling is constrained by the size of samples as loglinear
modeling requires the size of samples should be significantly
larger than the number of cells in the contingency tables.
For example, if the gene expression values are discretized
to 2 categories, e.g., under-expressed and over-expressed,
depending on whether the expression level is significantly
lower than, or higher than control?, the contingency table
built by 7 genes has 128 (27) cells which require more than
128 samples. Hence we propose to decompose independence
graph into components and apply loglinear modeling on each
component. It is worth pointing out k-way relationships
have the potential to reveal complex (and often hidden) gene
interactions, which cannot be discovered by other techniques
(e.g., association rule [1], bayesian network [11], graphical
gaussian model [19]).

Given the inaccuracies and limitations of clustering and as-
sociation rule mining, one cannot assume that the identified
subsets of genes are completely independent of the remain-
ing genes of the whole genome. Thus, we propose the use of
interactive techniques, whereby a user can interactively ana-
lyze gene interactions by adding or removing any number of
genes to/from one subset. To make this interactive explo-
ration intuitive and efficient, we applied information visu-
alization techniques, whereby visual representations present
the interface to interactive exploration. In this work, we
use automatic graph drawing algorithms [8] to display and
edit gene subsets and their 2-way relationships. We are also
working on interactive visual representations for cluster hi-
erarchies [25] as well as association rule mine sets [28], so as

2The control expression level of a gene can be either deter-
mined experimentally, or it can be set as the average expres-
sion level of the gene across experiments.
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Figure 3: The snapshot of prototype system of gene inter-
action analysis

to rapidly focus, view and interactively edit gene subsets of
interest. A log of a user’s analysis session can be easily kept
track of for review, or continuation from a previous session.
Figure 3 shows a preliminary snapshot of our prototype sys-
tem of gene interaction analysis.

2.3 Discussion

The graphical gaussian model method is statistically sound
and computationally tractable for analyzing microarray data
and inferring biological interactions from them. However, it
can only detect dependencies that are close to linear. In
particular, it is not likely to discover combinatorial effects
(e.g., a gene is over expressed only if several genes are jointly
over expressed, but not if at least one of them is not over-
expressed). On the other hand, loglinear modeling, which
assumes multinomial distribution, can reveal combinatorial
effects. However, loglinear modeling can only be applied to a
small set of genes due to small size of samples in microarray
data. Furthermore, loglinear modeling loses information due
to discretization [30]. We are currently trying to combine
graphical gaussian and loglinear modeling for gene interac-
tion analysis in our prototype system.

Both graphical gaussian and loglinear modeling are based on
correlation measure instead of causality measure. Bayesian
network, which is based on directed acyclic graph (DAG)
and can provide models of causal influence, has recently
been investigated for gene regulatory networks analysis [7;
21]. The bayesian network is a directed graph-based model
of joint multivariate probability distributions that captures
properties of conditional independence between variables.
The problem of applying bayesian network to the analysis
of microarray data is that learning the bayesian network
structure is a NP-hard problem as the number of DAGs
is superexponential in the number of genes and exhaustive
search is intractable.

Several public and commercial resources exist for pathway
based analysis, including the Alliance for Cellular Signal-
ing, BioCarta, EcoCyc [15], MetaCyc [14], KEGG[13] and
PathDBJ[18]. These databases contain large amounts of cu-
rated information; EcoCyc and KEGG allow viewing simple
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Table 1: Size of gene sets obtained using frequent itemset
and maximal frequent itemset mining with different support

support(%) | frequent itemset | maximal frequent itemset
12 130603 1635
13 22123 795
14 2735 298
15 1134 164
16 314 69
17 79 23
18 39 16
19 17 10
20 8 4
21 2 2

gene expression data over pre-existing pathways, and Gen-
MAPP [5] extends the capabilities of these pathways. How-
ever, all these tools only indicate pathways currently recog-
nized in textbooks and literature; it is beyond their capabil-
ity to identify/predict new gene interactions and pathways
from DNA microarray data.

3. EXPERIMENTAL RESULTS

In this section we show the results on yeast data [12] which
contains expression profiles for 6316 transcripts correspond-
ing to 300 diverse mutations and chemical treatments in
yeast. We use automatic graph drawing tools [8; 6] to rep-
resent gene networks. Our implementation is in C+4 on
Unix workstations using FLTK [26] for the user interface.
We apply frequent item set and maximal frequent item set
mining methods  to get gene subsets. In [4], this yeast data
set is transformed by binning an expression value greater
than 0.2 for the log base 10 of the fold change as being
up; a value less than -0.2, as being down; and a value be-
tween -0.2 and 0.2 as being neither up nor down. We apply
the same discretization strategy in our experiment. Table
1 shows the size of gene sets obtained using frequent item
set and maximal frequent item set mining method with dif-
ferent support. We can see the size of frequent item set
and maximal frequent item set under low support values is
large. How to further prune them while keeping relevant or
interesting gene sets remains an open problem.

Figure 4 demonstrates the pairwise interaction for one se-
lected gene group with 11 genes (We omit biological infor-
mation for each gene due to space limitation.). Briefly, nine
genes have known functions and seven genes encode proteins
that are involved in biosynthesis/metabolism. Some facts
that can be inferred from the interaction graph include:

e There are two groups of genes with known functions
where the partial correlation between genes within each
group is greater than 0.3. They are: 1) YMRO095C -
YMRO96W - YMR094W 2) YJR109C - YIL116W -
YIR034C - YDL198C - YJR109C. This indicates the

3A frequent itemset is called maximal if it is not a subset
of any other frequent itemsets. See [9] for an efficient algo-
rithm.

BIOKDDO03: 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2003

expression of those genes are highly correlated, which
agrees with laboratory data.

e YMRO029C is not connected with any other genes. As
this gene has no correlation with the remaining genes,
we may remove this gene from gene subsets though
this gene is included in the frequent itemset from as-
sociation rule mining.

e The negative correlation (e.g., between YMR095C and
YBR250C) in Figure 4 indicates that the functions of
each pair of genes may counteract with each other (ac-
tivators and repressors) of the biosynthesis/metabolism
pathways or their expression is negatively regulated by
the other gene in each pair.

Our results receive some solid biological explanations. For
example, SNZ1 (YMRO096W) belongs to three-membered
gene families SNZ1-3 whereas SNO1 (YMR095C) belongs to
another three-membered gene families SNO1-3 (Snz-proximal
open reading frame). The DNA sequences and relative po-
sitions of SNZ and SNO genes have been phylogenetically
conserved. SNZ-SNO gene pairs are co-regulated under var-
ious conditions [22; 20]. Recent studies indicated that SNZ1
and SNOL1 are involved in cellular responses to nutrient lim-
itation. Both of them are required for yeast to grow in
pyridoxine (vitamin B6) lacking media, indicating that they
are involved in pyridoxine metabolism [23].

Furthermore, our results reveal some previously unknown in-
teractions that have solid biological explanations. For exam-
ple, CTF13 (centromere transmission fidelity, CTF) encoded
by YM094W is an essential protein in the Cbf3 kinetochore
protein complex, which binds to the centromeres during mi-
tosis. CTF13 and SNZI, located adjacent to each other,
are situated proximal to the centromere on the right arm
of chromosome XIII. We project that the correlation of the
expression of these two genes might be caused by the con-
formational changes of chromosomal structure during tran-
scription activation even though the possibilities that they
are involved in the same biological process and/or they can
directly interact with each other are not excluded. YJR109C
and YIL116W encode Cpa2 and Hisb which are involved in
arginine and histitine biosynthesis, respectively. Arginine
restriction led to increased expression of HIS3, CPA1, and
CPA2 in Saccharomyces cerevisiae, which indicates that the
regulation of arginine biosynthesis pathway is related to that
of histidine biosynthesis pathway [16].

Our data also indicates that the expression of HIS5 (involved
in histidine biosynthesis pathway) correlates with that of
CPA2 and LYS1, which are involved in arginine and ly-
sine biosynthesis pathway, respectively. Yhm1l, encoded by
YDL198C, is a transporter which resides on mitochondrial
inner membrane. The correlation of YHM1 and CPA2/LYS1
indicate that Yhm1l might be a mitochondrial carrier in-
volved in arginine and lysine biosynthesis. In addition, since
the biological function of YKL218C and YOL118C are un-
known, we speculate that YKL218 might be involved in
NAD biosynthesis pathway since its expression correlates
with that of YJR025C, whereas YOL118C might be related
with vitamin B2 biosynthesis since its expression correlates
with that of YBR256C (RIB5).

4. CONCLUSIONS
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Figure 4: Pairwise gene interactions using GGMs for a selected maximal frequent gene set

In this paper we have applied graphical gaussian models to
find meaningful pairwise interactions among sets of genes in
gene expression data collected by microarrays. Graphical
gaussian modeling has the advantage of being able to model
conditional distributions of continuous variables. We have
shown that the application of the method to yeast microar-
ray data uncovers a set of interactions that can be explained
using biological arguments, and thus are meaningful. As
such, we believe that this method complements the typical
clustering approaches used to analyze microarray data.

We also present our framework of interactive gene inter-
action analysis system. Our combined interaction analysis
models will reveal complex gene interactions and the inter-
active visualization system allows efficient gene interaction
analysis and pathway exploration. We expect the proposed
work will complement the functionalities of currently avail-
able resources for pathway analysis, by providing a new tool
for the analysis of gene interaction and genetic networks.
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