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ABSTRACT

We focus on the problem of predicting gene deletion exper-
iments. In order to build a model that describes the under-
lying biological system well, our goal is to effectively utilize
all data sources that are available, including unlabeled data,
relational data, and abstracts of research papers. We study
the effectiveness of transduction and co-training for exploit-
ing unlabeled data. We investigate a propositionalization
approach which uses gene interaction data. We study the
benefit of text classification and information extraction for
utilizing scientific abstracts. The studied task is one of the
two data mining problems of the KDD Cup 2002; the solu-
tion that we describe achieved the highest score in one of
the two subtasks and received an “Honorable Mention” for
the overall task. Our results shed light on the benefits and
limitations of several machine learning techniques for this
large-scale application.

1. INTRODUCTION

DNA microarray technology allows to measure the gene ex-
pression of several thousand genes in parallel. These expres-
sion vectors are generally viewed as the functional state of
a cell; the state-trajectories contain information about the
regulatory system underlying the cellular processes. A cen-
tral goal of computational biology is to understand — i.e.,
to build models of — these underlying systems, using data
obtained in microarray experiments.

We focus on learning to predict gene deletion experiments
[19] which relate to regulation of the aryl hydrocarbon re-
ceptor (AhR) signaling pathway. In a gene deletion experi-
ment, a single gene is knocked out; the problem is to predict
whether this will have an effect on a particular target sys-
tem. This problem constitutes one of the KDD Cup 2002
tasks [4].

The available data contains attributes that describe prop-
erties of a protein as well as relational data that describes
interactions among proteins. Both, labeled and unlabeled
data are available. Furthermore, there is a large body of
relevant scientific publications available in the MEDLINE
repository. Focusing on the goal of building as accurate a
model of the biological system as possible, we explore the
effectiveness of several approaches that allow us to utilize
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these available sources of unlabeled, multi-relational, and
textual data.

Traditional, propositional machine learning algorithms re-
quire the instances to consist of a fixed set of attributes.
This requirement, however, is not met by intrinsically rela-
tional data such as gene interactions. Since relational learn-
ing (e.g., [6]) involves several computationally hard prob-
lems, approaches have been studied which propositionalize
relational data — i.e., cast a controlled amount of relational
information into attributes (e.g., [11; 13]). This approach
allows to use efficient and accurate learning algorithms such
as the Support Vector Machine.

For the focused problem, unlabeled data is inexpensive and
readily available. Here, an unlabeled instance is a gene, the
deletion of which has an unknown effect. Approaches to
learning from both labeled and unlabeled data that have
been studied include active learning algorithms (e.g., [3]),
the EM algorithm [16], transduction [8] and the multi-view
framework [1].

Abstracts of scientific papers that are available in the MED-
LINE collection, contain large amounts of relevant infor-
mation that can be helpful for model building. Many re-
searchers have studied algorithms that extract information
from literature (e.g., [14; 7]). Most popular are dictionary-
based extractors (e.g., [7]), but other approaches such as
rule learning [5] and hidden Markov models [14] have also
been explored.

The rest of this paper is organized as follows. Section 2 dis-
cusses the task and data in more detail and describes the
experimental setting. In Section 3, we describe our proposi-
tionalization approach. Section 4 focuses on our studies on
using text mining techniques to exploit information from the
scientific abstracts, while Section 5 presents results on using
unlabeled data. A discussion of our competition results and
lessons learned is provided in Section 6.

2. PROBLEM DESCRIPTION AND EX-

PERIMENTAL SETTING

The experimental data for the KDD Cup 2002 [4] deals with
the characterization and regulation of the aryl hydrocarbon
receptor (AhR) signaling pathway. The AhR is a basic helix-
loop-helix transcription factor with the ability to bind both
synthetic chemicals such as dioxins and naturally-occurring
phytochemicals, sterols and heme breakdown products. This
receptor plays an important developmental and physiologi-
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Figure 1: The data provided for KDD Cup 2002: tables (structured rectangles with table names above and column names
below) and text files (simple rectangles with file names), with solid arrows representing foreign key relationships between
tables and dashed arrows representing quasi-foreign key relationships between tables and file names (abstracts) or text

contents (others)

cal role. In AhR-null mice, altered liver pathology and ac-
celerated rates of apoptosis are observed.

Our aim is to generate a model that is able to predict
whether deleting a gene will have an effect on AhR sig-
naling in the cell. In order to generate the model, exper-
imental data is available that has been obtained in recent
experiments with a set of S. cerevisiae (yeast) strains using
a gene deletion array. Each instance in the data set rep-
resents a trial in which a single of several thousand genes
is knocked out and the activity of target system (AhR sig-
naling) is measured. The model is to discriminate between
genes that, when being knocked out, affect the target sys-
tem (class “change”), affect the entire cell (“control”), and
those which do not have an effect on the target system (“no
change”).

The available data describes 6,397 genes. 3,018 of these are
labeled training instances. Another 1,489 of the whole set
of genes serve as test examples (the class labels have been
withheld until the end of the competition). The class distri-
bution for this classification problem is highly skewed: for
the majority class no change, 2,934 instances are available;
there are 38 instances for class change and 45 instances for
control.

Figure 1 illustrates the available attributes and relations.
The functions of proteins encoded by genes are described by
a hierarchical attribute with five levels of function names.
The localization of proteins is a hierarchical attribute with
two levels of loci. Protein classes are encoded by four hier-
archical levels of protein class names. A list of pairs of gene
identifiers describes gene interactions. A table relates genes
to 15,235 relevant abstracts in the MEDLINE repository;
for roughly half the genes, at least one relevant abstract is
available. We find many missing values in the tables: for
all 6,397 genes described by the database, we have informa-
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tion about functions for only 3,831, about localizations for
2,357, about protein classes for 999, interactions for 1,447,
and abstracts for 3,329 cases.

The hypotheses are assessed by their area under the ROC
curve. The Receiver Operating Characteristic (ROC) curve
[2; 18] details the performance of a decision function in terms
of the rates of true positives and false positives that are ob-
tained by comparing the decision function for the positive
class against decreasingly large threshold values. The area
under the ROC curve is equal to the probability that, when
we draw one positive and one negative example at random,
the decision function assigns a higher value to the positive
than to the negative example. Hence, the area under the
ROC curve (the AUC performance) is a very natural mea-
sure of the ability of a decision function to separate pos-
itives from negatives. The task here is to maximize two
AUC values: for the classification task change vs. control
and no change (the “narrow positive class” problem) and
for change and control vs. no change (the “broad positive
class” problem).

After some initial cross validation experiments with
SVM'ight [8] and J48 from the WEKA library [20], we se-
lected the Support Vector Machine SVM'9"*¢ with linear ker-

. : bi 1
nel and parameter settings ¢ = 2, j = %

as core machine learning algorithm. SVM'9" requires the
training data to comsist of (potentially high dimensional)
numerical attribute vectors.

In the following experiments, we study the influence of ap-
proaches of creating new attributes from the available data
on the performance of the resulting classifiers. By comparing
several attribute configurations using cross validation on the
3,017 training data, we obtained an apparently optimal con-
figuration X* that maximizes the sum of AUC performances
for both classification problems on the training data. In or-
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der to study the benefit of some attribute x generated by one
of the discussed approaches, we compare the performance of
the configuration X* U {z} to configuration X* \ {z} on the
withheld test data — i.e., we compare the configuration with
highest cross validation performance with and without the
focused attribute. Note that we used cross validation on the
training data to select an attribute configuration; but we use
the test data to evaluate the benefit of various attributes.
In order to estimate the standard deviation of the AUC per-
formance, we used the Wilcoxon statistics [2] based on the
test set performance.

3. PROPOSITIONALIZATION

The gene interaction data contains pairs of names of inter-
acting genes. In order to integrate this information into our
solution, we have to generate attributes from these relations.
This situation is rather typical as relational databases usu-
ally contain more than one table. We use the RELAGGS
algorithm [13] that implements ideas of extending the usual
framework of propositionalization [11] with the application
of SQL aggregation functions.

The RELAGGS algorithm takes as input a set of database
tables, with one attribute of one table being marked as tar-
get. The target table is to describe one instance per line. In
addition, the algorithm exploits foreign key relationships to
compute (user selected) joins that always include the target
table. Note that, while in the target table each instance was
represented by a single line, the result of a join will generally
contain multiple lines per instance; the lines representing an
instance may differ in several attributes. The algorithm now
summarizes these lines in one single line per instance, col-
lapsing the set of values of non-unique attributes into one
single value by means of aggregation functions.

In order to understand this process, consider the following
example. In the application at hand, we have a table train-
class with attributes gene-i¢d and the target attribute class.
Furthermore, we have a table interaction with gene-id! and
gene-id2 and, slightly simplified, a table localization with at-
tributes gene-id, mitochondria, cytoplasm, and one attribute
for all other possible localizations. Assume that gene “1” in-
teracts with genes “2” and “3”, where “2” has value 1 for at-
tribute mitochondria and 0 for cytoplasm, and “3” has value
1 both for mitochondria and cytoplasm. After joining the
three tables, we obtain two lines starting with gene-id “1”;
the first has value 1 for mitochondria and 0 for cytoplasm,
the second has value 1 for both these attributes.

We can now collapse these two lines into one by applying
aggregation functions such as min, maz, avg, or sum,; in this
case, sum is appropriate. This leads to one line with values
2 and 1 for attributes mitochondria and cytoplasm, respec-
tively, indicating that gene “1” interacts with two genes lo-
calizing in the mitochondria and one gene localizing in the
cytoplasm.

We handle set-valued attributes by introducing one attribute
per value (such as for the example of localization which
could, for instance, be both mitochondria and cytoplasm for
a single gene. Furthermore, we enrich table interaction by
making symmetry explicit; i.e., we introduce an entry (B, A)
for every (A, B) in the original table. We experiment with
“n-th level” interactions; an n-th level interaction exists be-
tween genes A and B if we have to traverse n interaction
relations to reach B from A. For the problem at hand,
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the RELAGGS output consists of a single table with more
than 1,000 columns. This rather high number of columns
is caused first of all by the number of different values for
functions, localizations, and protein classes.

We compare the performance of the classifier without and
with attributes that reflect first, second, and third level in-
teractions. Table 1 shows the resulting AUC values; Figure
2 plots the corresponding ROC curves. We see that first
level interactions perform best for the narrow, second level
interactions are best for the broad positive class. A signif-
icant improvement (p =~ 0.05) is achieved for the narrow
class, we see no significant improvement for the broad class.

4. TEXT MINING

It seems likely that the archive of more than 15,000 scientific
abstracts contains information that is relevant to predicting
the behaviour of the focused proteins. We study two ap-
proaches to exploiting the information in the abstracts. We
use a text classifier to learn the relation between abstracts
relating to a gene and the effect of that gene being deleted,
and we use an information extractor to identify additional
gene properties in the abstracts.

4.1 Information Extraction

The attributes of the original data set contain very many
missing values. We therefore want to study whether an in-
formation extraction algorithm can effectively be used to
search for missing information in the abstracts. We follow
a dictionary-based approach [7]. From the hierarchical text
files that contain possible values for the attributes function,
localization, and protein class, we manually define a the-
saurus that lists, for each of the possible values of these
attributes, a number of plausible terms that can be used to
refer to this value. These terms have to be so specific that
they are not used with different meanings in the abstracts
than those searched for. At the same time, they have to be
general enough to have a chance to occur in the abstracts.
The terms were constructed according to a few principles
that proved to be useful according to some preliminary in-
vestigations into the search results produced.

1. Simple words and word groups as names for functions,
localizations, or protein classes are entered as such into
the thesaurus, e.g., “nucleus”.

2. For central singular terms in the thesaurus, we also
introduce the plural form, and vice versa; e.g., “nuclei”
for “nucleus”.

3. Multiply occurring words in the hierarchy files are
equipped with some descriptive word derived from the
super-ordinate name before adding it to the thesaurus;
e.g., “alpha adaptin” instead of “alpha”.

4. Long word groups are split at connectives such as
“and”, “or”, and only the (possibly enhanced) splitting
results were entered into the thesaurus; e.g., “nitrogen
and sulfur utilization” becomes “nitrogen utilization”
and “sulfur utilization”.

5. Short word groups are also given in paraphrased vari-

ants to the thesaurus; e.g., in addition to “DNA repli-
cation” we introduce “replication of DNA”.

page 12



Table 1: Additional information from gene interactions

without first level second level third level
narrow | 0.617 £0.0592 | 0.707 £ 0.050 | 0.685 £ 0.0527 | 0.6546 £ 0.055
broad 0.599 + 0.040 0.598 £ 0.049 | 0.630 £ 0.039 0.597 + 0.040
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Figure 2: ROC curves with and without information from gene interactions.

Table 2: Additional information from information extrac- Table 3: Additional information from text classification
tion without with
narrow | 0.685 4+ 0.052 | 0.657 £ 0.055
without with IE onmly broad | 0.630 +0.039 | 0.618 & 0.039
narrow | 0.590 £ 0.061 | 0.685 £ 0.052 | 0.654 £ 0.055
broad 0.597 +0.040 | 0.630 +0.039 | 0.510 + 0.044

6. Explanations in brackets are extracted and dealt with
according to the previous points; e.g., for “amino acid
degradation (catabolism)”.

We concentrate on abstracts that are related to just one
gene according to table gene-abstracts to avoid ambiguity
problems. Here, we do not have to resolve to which of several
proteins that are mentioned in a paper each property refers.
Table 2 shows that the information extractor yields a sub-
stantial performance improvement (the base line “without”
is an attribute set without the extracted information). Sur-
prisingly, the problem can even be solved to some degree us-
ing only the information extracted from the abstracts (“IE
only”). Figure 3 shows the corresponding ROC curves.

4.2 Text Classification

For each protein that is mentioned in at least one abstract,
we first build a bag of abstracts that refer to that protein
(abstracts may occur in more than one bag). Hence, each
instance z is now a bag of abstracts, the corresponding class
label is the protein’s class label. Only roughly half of the
proteins are mentioned in at least one abstract. Therefore,
the training set is smaller and the resulting text classifier
can only be applied to proteins that are mentioned in at
least one paper.

In order to train text classifiers from the generated train-
ing sets, we first tokenize the bags, apply Porter’s stem-
ming algorithm [17], and infer the TFIDF vector from each
bag. Using the TFIDF vectors as training set, we train
an SVM classifier using SVM'*9"* with default parameters.
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The trained classifiers yield a prediction for the hold-out
instances that we would like to exploit. The value of the
decision function now serves as an additional attribute to
the top-level SVM that processes the categorical attributes
and propositionalized relational data.

Table 3 compares the performance of the SVM decision func-
tion with and without the additional attribute generated by
the text classifier. For both classification problems, we ob-
serve a decrease in accuracy. The differences are not signif-
icant, but we do not achieve an improvement by using the
text classification attribute.

5. UTILIZING UNLABELED DATA

Several approaches can exploit unlabeled examples available
in addition to labeled positive and negative samples. For the
Support Vector Machine (SVM), the transduction approach
[9] applies. Independent of the learning algorithm used, the
multi-view framework [1] can be applied in all cases in which
the attributes can be split into two independent and suffi-
cient subsets.

5.1 Transduction

The transductive SVM [9] uses unlabeled examples to re-
fine the weight vector that maximizes the margin between
separating hyperplane and labeled and unlabeled examples.
The optimization problem which the SVM learning proce-
dure solves is to find w and b such that y;(wz; + b) is posi-
tive for all examples (all instances lie on the “correct” side
of the plain) and the smallest margin (over all examples)
is maximized. Equivalently to maximizing yl(%w@ +b), it
is usually demanded that y;(wz; + b) > 1 for all (zi,y;)
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Figure 3: ROC curves with and without information from information extraction.

and |w| be minimized. The SVM"9"* software package [8]
implements an efficient optimization algorithm which solves
optimization problem 1.

OPTIMIZATION PROBLEM 1. Given data
((x1,91)s- -5 (Tm,Ym)); over all w, b, minimize |w|?,
subject to constraint Vil y;(wz; +b) > 1.

The transductive Support Vector Machine [9] (TSVM) fur-
thermore considers unlabeled data. This unlabeled data can
(but need not) be new instances which the SVM is to classify.
In transductive support vector learning, the optimization
problem is reformulated such that the margin between all
(labeled and unlabeled) examples and hyper-plain is maxi-
mized. However, only for the labeled examples we know on
which side of the hyper-plain the instances have to lie.
OPTIMIZATION PROBLEM 2. Given labeled data
((z1,91)y---, (Tm,ym)) and unlabeled data (z7,...,z%);
over all w, b, (yi,...,y}), minimize |w|?, subject to the
constraints Vit y;(wz; + b) > 1 and Vit y; (wz; +b) > 1.

The TSVM algorithm starts by learning parameters from
the labeled data and labels the unlabeled data using these
parameters. It iterates a training step (corresponding to
the “M” step of EM) and switches the labels of the unla-
beled data such that optimization criterion 2 is maximized
(resembling the “E” step).

The transductive SVM decreased the AUC for the broad
class from .063 (£0.039) to 0.60 (£0.04) and increased AUC
for the narrow class from 0.685 (£0.052) to 0.695 (+0.05).
Both differences are well below the standard deviations and
are therefore insignificant. Our data does not provide any
convincing evidence that transduction has an influence on
the quality of the resulting decision function at all. This
result is disappointing; in particular, as the transductive
SVM dramatically increases computation time.

5.2 Multi-View Learning

Blum and Mitchell [1] have proposed the multi-view ap-
proach. The available attributes V' are split into two disjoint
subsets Vi and V2. A labeled example (z,a) is then viewed
as (z1,x2,a) where z; contains the values of the attributes
in V1 and x> the values of attributes in V5.

The co-training algorithm is the most prominent multi-view
algorithm. The idea of co-training is to learn two classifiers
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Table 4: Co-training algorithm
Given positive examples (z1,z2,+), negative examples
(21,22, —) and unlabeled examples in two different views
Vi and Va; number of iterations k.

1. Loop for k iterations

(a) Train fi; and f» using the labeled positive and
negative examples.

(b) Let f1 and f2 select the positive and negative ex-
ample for which they make the most confident
prediction. Remove the examples from the unla-
beled data and add them to the labeled data.

2. Return the combined classifier f(z) = fi(z1)+ fo(x2).

fi(z1) and fa2(z2) which bootstrap each other by providing
each other with labels for the unlabeled data. Co-training
is applicable when either attribute set suffices to learn the
target f — i.e., there are classifiers fi and f» such that for all
z: fi(z1) = fa(z2) = f(x) (the compatibility assumption).
When the views are furthermore independent given the class
labels — P(z1|f(x),z2) = P(z1|f(x)) — then the co-training
algorithm labels unlabeled examples in a way that is es-
sentially equivalent to drawing labeled data at random [1].
However, empirical studies [15; 10] show that co-training can
improve classifier performance even when the assumptions
are violated to some extent.

We let V1 be the items of the database and V> the attribute
extracted from the abstracts together with the relational at-
tributes (referred to as the “natural” attribute split in the
following). fi(z1) and f2(x2) are trained from the same
positive and negative examples. Now f; selects two exam-
ples from the unlabeled data that it most confidently rates
positive and negative, respectively, and adds them to the la-
beled examples for f>. If the representations in the two views
are truly independent, then the new examples are randomly
drawn positive and negative examples for f>. Now f2 selects
two unlabeled examples for f;, the two hypotheses are re-
trained, and the process recurs. The algorithm is presented
in Table 4.

Our goal in this set of experiments is to validate whether
co-training can effectively exploit the information contained
in the unlabeled data and thereby increase the quality of the
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Figure 4: Co-training results

resulting decision function. As control strategy to the “nat-
ural attribute split”, we randomly partition the attributes
into two subsets. After each iteration in which each classifier
labels two unlabeled instances, we measure the performance
of the combined classifier using the test set.

Figure 4 (left) shows how the AUC develops over 200 it-
erations of co-training using the “natural” attribute split.
Unfortunately, the performance does not improve over the
co-training iterations; the standard deviations are around
0.05, the differences between initial and final AUC are in-
significant. Furthermore, the combined decision function
(which is the average of two decision functions based on the
two distinct attribute sets) is significantly worse than one
single decision function which can base its decision on all
attributes (this baseline classifier achieves 0.63 + 0.04 for
the broad and 0.685 £ 0.05 for the narrow class)! In case of
randomly partitioned attribute sets (Figure 4, middle, for
narrow and 4, right, for broad), the average AUC decreases
significantly over the co-training iterations (p < 0.05) for
the broad and seems to decrease (but not to a sufficient
significance level) for the narrow class.

Our experiments with co-training show interesting results.
In most (published) previous studies co-training has led to
an increase in accuracy for real-world data, even though
the underlying independence assumption has largely been
violated. While these findings raise the question whether co-
training can perhaps always increase performance to some
extent, our results clearly answer this question negatively.
Not only can the combination of the two initial decision
functions perform poorer than one single decision function
that accesses all attributes, but also the performance can
decrease further during co-training.

6. DISCUSSION AND LESSONS LEARNED

For the competition, we [12] used attributes generated by
RELAGGS with two interaction levels, and entries acquired
by information extraction. We did not include the text
classification attribute and did not use transduction or co-
training. The competition schedule was a limiting factor for
us. We only generated the classifier for the narrow class
problem (here we obtained the highest score), and used this
classifier for both, the narrow and broad positive class. Us-
ing the narrow classifier for the broad class, we still obtained
a third rank for the overall task. Figure 5 depicts a com-
parison of the solutions handed in by the different teams
[4].

Retrospectively, we can now obtain AUC performances of
0.707 for the narrow and 0.63 for the broad class using two
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different decision functions and the optimal attribute config-
uration — which is more than any team could achieve within
the competition time frame. From our experimental results,
we draw the following lessons learned.

1. In microarray data, the interactions between genes
play a crucial role. Propositionalizing the relational
data by computing joins of the tables, and collapsing
the joins by aggregation functions proved to be both
an effective and efficient means of utilizing this infor-
mation.

2. Semi-supervised learning techniques such as the trans-
ductive SVM and co-training are less generally appli-
cable than — at least we — expected. Our expectation
was that taking unlabeled data into account should
at least not decrease, and perhaps even modestly im-
prove, performance. For mining microarray data, this
assumption is not true.

3. MEDLINE abstracts contain important knowledge
that can help to build better models and thus to per-
form better on classification tasks. Our data not only
supports this hypothesis, but also shows that even
fairly simple, dictionary-based extractors can generate
attributes from abstracts that substantially improve
classification performance. We are confident that more
sophisticated extractors will further improve biological
models.
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