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ABSTRACT

This paper studies an empirical feature selection heuristics
for classifying high-dimensional bio-medical data. A fea-
ture’s discriminating power can be measured by its entropy
value. Based on this idea, we do not consider those features
that are ignored by the entropy idea. Such a selection can
usually reduce the dimensionality of the data by 90-95%.
Then we rank the remaining features, and select features
whose entropy is smaller than the average of all the remain-
ing features’ entropies. This round of selection can usually
further reduce two thirds of the features. So, we can achieve
a reduction from tens of thousands of features to only hun-
dreds of important features. Furthermore, we also observe
that learning algorithms, including our new tree-committee
classifier, generally improve their accuracy after the feature
selection. This heuristics appears to be more systematic
than the prevailing use of specific numbers of top-ranked
features for classification.
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1. INTRODUCTION

Many bio-medical applications are supervised learning prob-
lems. Clinical diagnosis is to classify whether a sample is
normal or abnormal [1]; prognosis is to predict, at the time
of diagnosis, whether a patient will relapse or not after treat-
ing with an existing standard therapy [18]; subtype distinc-
tion is to identify correct sub-classes of patients who suffer
from one heterogeneous disease [18]. With the advances in
wet-experimental technologies, the data become ever larger,
and a more challenging part of the data is the large number
of features or dimensions. For example, the microarray gene
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expression profiling technology can simultaneously measure
the expression levels of tens of thousands of genes, trans-
lating to a relational data set that is described by tens of
thousands of features.

Feature selection is therefore crucial for analysing high di-
mensional bio-medical data. Reasons include: (1) It is im-
possible for biologists or doctors to examine the whole fea-
ture space (e.g. the genes in human genome) by laboratory
experiments at one time. A small percentage of the features
should be recommended by computational algorithms to be
focused on in the laboratory experiments. Then, the concen-
tration on these recommended features may help experts to
understand better and deeper about some biomedical mech-
anism. (2) Many features are irrelevant to the classification.
Taking such features into account during classification in-
creases the dimensionality of the problem, raises many com-
putational difficulties, and potentially introduces noise ef-
fect on the classification accuracy [2; 12]. So, how to select
important features for classification is a problem that has
been attracting tremendous research effort previously and
currently.

In this paper, we suggest a method for feature selection
and for rule discovery. This method differs from the use of
‘user-favorate’ numbers of top-ranked features in the anal-
ysis on high-dimensional gene expression profiling data and
proteomic mass/charge profiling data. Those numbers were
very specific—for example, 50, 100, 200, or 1000, and so
on—different from one research to another [1; 11; 18].

Our idea is to use entropy-discretized features whose en-
tropy value is smaller than the mean entropy value of all the
entropy-discretized features. Note that we define entropy-
discretized features as features that are discretized into at
least two intervals by an entropy-discretization method [9].
In our method, we do not consider features that are ig-
nored by the entropy method. Our selected features are
called mean-entropy discretized features. According to our
experience, this idea can filter out 90% - 95% of the orig-
inal features for different data sets, significantly reducing
the dimensionality of the problems. This idea can also pin-
point ideally discriminating features— those features can be
individually used to make 100% clear distinction between
classes.

We present experimental results to show that classification
accuracy can be constantly improved, sometimes significantly,
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if these entropy discretized features are used in classification
algorithms, instead of the whole feature space. This is a sig-
nificant result because we use much less features but we get
better accuracy. We also compare our accuracy results with
those when specific numbers (20, 50, 100, and 200 are stud-
ied in this paper) of top-ranked features are considered for
classification. We found that the accuracy of a learning algo-
rithm on different data sets fluctuated in contrasting curve
shapes when different numbers of top-ranked features are
used. So, it is hard to observe a regular guideline for select-
ing a fixed number of top-ranked features for best results.
An important purpose in the analysis of biomedical data is
to discover interactions or causal relationships among fea-
tures. This paper proposes a rule-based classifier that can
capture this kind of knowledge patterns from data. This
classifier is a new ensemble method [15], named CS4, con-
sisting of a committee of cascading decision trees. Each tree
is constructed by using one of the top-ranked features as its
root node. So, in a cascading manner, we can build & trees
by using top k features as root node. In high-dimensional
data sets, a small k£ number (e.g. 20) of top-ranked features
usually have almost the same merit such as similar entropy
values or gain ratios. So, it is reasonable and fair to use
different top-ranked features as root node. The cascading
trees are voted in a weighted manner to make a final de-
cision when a test sample is presented. CS4 differs from
the traditional Bagging [4] and Boosting [10] ideas because
they use bootstrapped data in the construction of commit-
tee trees. However, we always use the same original training
data throughout the construction of the committee. We use
experimental results to show that the performance of CS4
is better than the Bagging and Boosting algorithms.

The remainder of the paper is organized as follows: Section 2
presents our feature selection ideas and reviews a core dis-
cretization algorithm [9] that is used in our method for the
first round of selection. Section 3 describes our a newly pro-
posed committee classifier consisting of k cascading decision
trees. Section 4 outlines five state-of-the-art classifiers and
15 high-dimensional biomedical data sets. Section 5 reports
our experimental results to show that our feature selection
method is effective for improving the classifiers’ accuracy.
In addition, we also discuss the stability, comprehensibility,
and wrapped features of the classifiers.

2. USING MEAN ENTROPY VALUES AS
SPLITTER FOR FEATURE SELECTION

This section presents our idea and steps for feature selection.
The main algorithm is the entropy discretization method [9],
which is also reviewed in this section.

2.1 Our Feature Selection Idea

Our idea is to first rank all individual features according to
their entropy value, then we use the average entropy value
as a splitter to cut off all the lower ranked features. The
steps are as follows:

1. Rank all features into an ascending order according
their entropy values [9],

2. Remove those features that are ignored (not discretized)
by the entropy-discretization method,

3. Calculate the average of the entropy values of the re-
maining features, and
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Figure 1: Distributions of a range of points with two class
labels.

4. Select those features that have smaller entropy values
than the average for classification.

Note that features with a smaller entropy are more discrim-
inating. The feature reduction rate on 5 high-dimensional
data sets is shown in Table 1. (The description of the data
sets is given in Section 4.) Usually, our idea can reduce
about 90%-95% of the dimensionality of the problems in
the first round of selection as per Step 2, and reduce about
two thirds of the remaining features in the second round of
selection as per Step 4.

2.2 The Entropy Discretization Method

We first explain the basic idea of the entropy-based dis-
cretization method [9]. For a range of real values in which
every point is associated with one of two class labels, the
distribution of the labels can have three main basic shapes
as shown in Figure 1: (1) Big intervals each containing the
same class of points; (2) Big intervals but not all of them
containing a same class of points; (3) Class points randomly
mixed over the range. Using the middle point between the
two classes, the entropy method partitions the range in the
case of Figure 1(1) into two intervals. The entropy of such
a partitioning is 0. For the case of Figure 1(2), the method
partitions the range in such a way that the right interval
contains as many C2 points as possible and contains as few
C1 points as possible. This is to minimize the entropy of
this feature. For the case of Figure 1(3), the method ignores
the feature as mixed points over a range do not provide rules
for reliable classification. That a range is partitioned into
at least two intervals is called discretization. In general,
ideally discriminating features (as shown in Figure 1(1)),
sub-optimal features (as shown in Figure 1(2)), and those
features with random class distributions can be effectively
identified by the entrop-based discretization method.

Next we present an example [14] of ideally discriminating
features discovered by the entropy method from a gene ex-
pression profiles. The data is to differentiate one subtype
(E2A-PBX1) from the other subtypes of the heterogenious
childhood leukemia disease [18]. The training data consist
of 18 E2A-PBX1 cells and 197 cells of other subtypes; the
test data consist of 9 E2A-PBX1 cells and 103 cells of other
subtypes. This data set have 12558 features each describing
the expression range of a gene.

For example, gene 32063_at is an ideally discriminating fea-
tures discovered from the above training data. The cut
point for this feature is 4068.7, which partitions the expres-
sion range of this gene into two intervals, [0,4068.7) and
[4068.7, +00). Note that this gene’s expression of all E2A-
PBX1 samples were > 4068.7, falling into the right interval;
however its expression of any other subtype samples was
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Table 1: Feature reduction rates on high-dimensional bio-data sets.

Data sets Number of features Reduction rates
(Training data) | original | entropy discretized | mean-entropy discretized | 1st, 2nd round
T-ALL 12558 1309 415 89.6%, 68.3%
E2A-PBX1 12558 718 235 94.3%, 67.3%
BCR-ABL 12558 84 31 99.3%, 63.1%
ALL-AML 7129 866 350 87.9%, 59.6.%
Lung cancer 12533 2173 7 82.7%, 64.2%

less than 4068.7, falling into the left interval. The entropy
of this partitioning for this feature is the minimal value of
0. This cut point also clearly separates the reserved 112 test
samples with no mistakes.

The discretization method also discovered 713 sub-optimal
features from this data set, and ignored about 11840 fea-
tures (94.28% of the whole feature space) that had a random
expression distribution without any interval covering a suf-
ficient percentage of the two classes of samples. Obviously,
these features are irrelevant for classification.

Using our mean-entropy idea as discussed earlier, we can
further remove 483 features from the 713 sub-optimal fea-
tures. Overall, we reduced a total of 12558 features to only
235 features.

A formal description of the discretization method can be
found in [8; 9].

3. OUR CS4 CLASSIFIER

The widely-used C4.5 decision trees [17] can derive rules and
feature interactions from data. Another advantage of tree-
based classifiers is: The features involved (wrapped) in a
tree is far less than the number of the features describing
the training data. For non-linear classifiers such as support
vector machines or k-nearest neighbours, the entire feature
space must be used in the learning models. However, single
C4.5 decision trees have been found to be difficult to often
maintain a good performance on test data when handling
high-dimensional bio-medical data [15]. In this paper, we
introduce a new ensemble classifier of decision trees, called
CS4 [15], that can derive many decision trees, and thus many
true and significant rules from training data, and that has
very good test accuracy.

The learning phase of the CS4 classifier is to construct a
certain number of trees. Suppose n number of features de-
scribe a given data. To construct £ (k < n) number of trees,
we use the following steps:

Step 1: Use gain ratios to rank all the features into an or-
dered list with the best feature at the first position.

Step 2: ¢ =1.

Step 3: Use the ith feature as root note to construct the
ith tree.

Step 4: Increase 7 by 1 and goto Step 3, until 7 = k.

Usually we set the number of trees k as 20. Note that there
are no changes to the original training data throughout the
k iterations. So, all our rules are true when applied to the
training data. This is an advantage of our method over
Bagging and Boosting for their rules are not always true.
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Steps 1 and 3 reflect our cascading idea: the root node of
the trees shifts from the most important feature to the kth
most important feature. We use C4.5 [17] to build the first
tree; the construction of the remaining trees uses a method
that is slightly different from C4.5: the root node selection
is forced, but all the other nodes are selected normally as
in traditional C4.5. The number 20 is a heuristic choice.
It may be controlled by the gain ratio trend of top-ranked
features. This will be one of our future research topics.

To share the discriminating power of the k trees, we propose
to use our previous PCL idea [16; 14] to summarize the in-
dividual decisions. This sharing idea differs from the simple
equal voting approach as adopted by Bagging [4].

‘We examine the accuracy change trend of this new classifier
when the whole feature space, the all entropy-discretized
features, or the mean-entropy discretized features are ap-
plied. We also examine whether CS4 is resistant to feature
selection—whether it can keep good and stable accuracies
with little variance after feature selections.

4. OTHER CLASSIFIERS AND DATA SETS

We also examine the accuracy change trend of the state-
of-art classifiers such as support vector machines (SVM),
Naive Bayes (NB), k-nearest neighbours (k-NN), and C4.5
(Bagging and Boosting). This is aimed to get a fuller picture
about the effect of our feature selection method on different
classification methods.

SVMs [5; 6] are a kind of blend of linear modeling and
instance-based learning. A SVM selects a small number
of critical boundary samples from each class and builds a
linear discriminant function that separates them as widely
as possible. In the case that no linear separation is possi-
ble, the technique of “kernel” is used to automatically inject
the training samples into a higher-dimensional space, and to
learn a separator in that space. The SVM used in this paper
is a version that uses polynomial kernels. The k-NN clas-
sifier [7] is a long-studied instance-based prediction model.
By k-NN;, the class label of a test sample is decided by the
majority class of its k closest neighbors based on their Eu-
clidean distance. In our experiments, k is set as 3. Naive
Bayes [13] is a probabilistic learner based on Bayes’s rule.
It is among the most practical approaches to certain types
of learning problems. Bagging [4] and Boosting [10], the
two most widely used ensemble approaches, can improve the
performance of a single base classifier. In this paper, we use
C4.5 [17] as the base classifier.

The softwares used in this paper is Weka version 3.2. Its
Java-written open source codes are available at http://
www.cs.waikato.ac.nz/"ml/weka/ under the GNU General
Public Licence. Note that we revised a base Java class to
discretize a feature: Instead of using boundary points as cut-
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ting points, we use the middle points of two classes’ bound-
ary points. In implementing our new algorithm CS4, we
called some classes in weka.classifiers and also some other
APIs. For the committee classifiers—Bagging, Boosting,
and our CS4 classifier, we set the number of base classifiers
as 20.

The data sets used in this study all come from our Kent
Ridge Biomedical Data Sets Repository at http://sdmc.
lit.org.sg/GEDatasets/Datasets.html.

Most of the data sets are described by more than 10,000
features. This characteristics is in contrast to the widely-
used data sets stored at the UCI Machine Learning Repos-
itory [3], where many of the data sets are described by less
than 20 features. Table 2 gives the basic information of the
data sets.

5. RESULTS REPORT

We report our experimental results in three aspects. Firstly,
we report error numbers of six classifiers (SVM, NB, k-NN,
CS4, C4.5 Bagging, and C4.5 Boosting) on the 15 data sets
when the whole feature space, all entropy-discretized fea-
tures, and all mean-entropy discretized features are used.
We define an error number as the number of samples that
are wrongly classified by a classifier. Secondly, we report er-
ror numbers of four classifiers on 4 data sets when four spe-
cific numbers (20, 50, 100, and 200) of top-ranked features
are used for classification. Thirdly, we study the stability of
the classifiers—to test whether they are resistant to feature
selection; we also study the number of wrapped features in
a learning model and the comprehensibility of the learning
models.

5.1 The Trend of the Error Numbers of the
Six Classifiers

Table 3 reports the classification errors on the 15 data sets of
SVM, NB, and k-NN when the three scenarios of features—
all the original features, all the entropy-discretized features,
and only the mean-entropy discretized features—are used in
the 10-fold cross-validation (except the last 4 data sets in
Table 3). We can see that:

e SVM made much less numbers of mistakes after the
feature selections (either in the first round or after the
second round) on the data sets BCR-ABL, MLL, Sub-
type lynphoma, Stjude testing, and ALL-AML testing.
On the other data sets, SVM maintained its perfor-
mance. From the first round to the second round of
feature selection, SVM often decreased or maintained
the errors.

e NB almost constantly improved its performance very
much on most of the data sets. In general, the trend
of the error numbers goes to a lower level when less
numbers of features are used.

e Similar to NB, k-NN also improved its performance
very much on most of the data sets. In general, the
trend of the error numbers goes to a lower level when
less numbers of features are used.

Table 4 reports the error change trend of three rule-based
committee classifiers—our CS4 classifier, Bagging(C4.5) and
Boosting(C4.5). We can see that:
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e The three committee classifiers did not change as much
in their performance, before and after feature selection.
Nonetheless, there was still a slight decrease in total
errors after the feature selections (See the last row of
Table 4). Such a trend is different from the changes oc-
curred in SVM, NB, and k-NN where the total errors
are significantly reduced after the features selections
(See the last row of Table 3). This interesting phe-
nomenon is an issue about the stability of classifiers in
relation to feature selections, and also an issue about
wrapped features in a classifier. We discuss these two
points later with more details to see why a classifier is
more resistant to feature selection, and why another
classifier is more sensitive.

o Compared to the classical Bagging and Boosting, our
newly proposed CS4 committee classifier outperformed
them with only one exception case on the Hyperdip>50
data set where Boosting made 14 errors, but CS4 made
15 errors.

From both Table 3 and Table 4, we can see that the feature
selections have constantly helped the classifiers to improve
their performance though only 2-10% of the original features
are used. From the results achieved by the first round of
feature selection and the results achieved after the second
round of selection, we did not see much difference in the error
numbers. So, we suggest to select mean-entropy discretized
features for classification as the second round of selection
can usually reduce two thirds of the features selected in the
first round.

Next, we discuss which classifier wins the best performance.

e If using the whole feature space without any selection,
CS4, SVM, Bagging, k-NN, Boosting, and NB respec-
tively made 85, 99, 119, 178, 185, and 395 total errors
on the 15 data sets;

o If using all the entropy discretized features, SVM, CS4,
k-NN, Bagging, NB, and Boosting respectively made
51, 75, 85, 113, 115, and 174 total errors;

e If using only the mean-entropy discretized features,
SVM, CS4, k-NN, NB, Bagging and Boosting respec-
tively made 47, 75, 77, 98, 113, and 162 total errors
on the 15 data sets.

So, SVM and our CS4 classifier are the best two classifiers
irrespective of whether there is feature selection or not.

5.2 When Specific Numbers of Features are
Used

Our next set of experiments are aimed to see the error num-
ber trend of the classifiers when specific numbers of top-
ranked features are changed from a small number to a big-
ger number. In this paper, we study top 20, 50, 100, and
200 features. Figure 2 depicts the change curves of the per-
formance of SVM, C4.5, k-NN, and CS4 when the different
numbers of top-ranked features are used on four data sets
(ALL-AML, BCR-ABL, MLL, and Hyperdip>50).

Let’s focus our discuss on the performance of SVM first (See
Figure 2(1)). The error curve on the Hyperdip>50 data
set goes stable when the feature number increases from 20
to 50 and then to 100, but the curve goes up when the
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Data sets # classes | # samples | # features | Usage

T-ALL 2 327 12558 Subtype distinction of leukemia
E2A-PBX1 2 327 12558 Subtype distinction of leukemia
TEL-AML1 2 327 12558 Subtype distinction of leukemia
BCR-ABL 2 327 12558 Subtype distinction of leukemia

MLL 2 327 12558 Subtype distinction of leukemia
Hyperdip>50 2 327 12558 Subtype distinction of leukemia
Ovarian cancer 2 253 15154 Ovarian disease diagnosis

Prostate cancer 2 102 12600 Prostate disease diagnosis

Colon tumor 2 62 2000 Colon tumor diagnosis

ALL-AML 2 72 7129 Two subtypes classification of Leukemia
Subtype lymphoma 2 47 4026 Subtypes classification of lymphoma
Stjude testing 2 112 12558 Six subtypes classification of Leukemia
Lung cancer testing 2 149 12533 Lung cancer diagnosis

ALL-AML testing 2 34 7129 Two subtypes classification of Leukemia
Armstrong testing 3 15 12582 Three subtypes classification of Leukemia

Table 2: Data set description. The total number of samples for each of the first 11 data sets are shown in the 3rd column
and for 10-fold cross-validation. For the remaining 4 data sets, only test samples are shown here.

Table 3: The change trend of the error numbers of SVM, NB, and k-NN after the feature selections. Here, “all” represents
a classifier considered all the features; “entropy” represents the entropy discretized features; and “M-entropy” represents the
mean-entropy discretized features.

Data sets SVM NaiveBayes k-NN
all | entropy | M-entropy || all | entropy | M-entropy || all | entropy | M-entropy

T-ALL 1 0 0 29 0 0 8 3 0
E2A-PBX1 1 1 1 25 0 0 1 1 1
TEL-AML1 4 3 4 62 6 4 14 4 4
BCR-ABL 12 8 8 15 20 14 15 9 10
MLL 7 5 2 19 5 3 9 5 4
Hyperdip>50 11 9 11 57 15 17 21 13 16
Ovarian 0 0 0 19 16 14 15 11 10
Prostate 7 8 6 40 15 8 18 10 8
Colon Tumor 11 9 8 25 18 14 19 9 11
ALL-AML 1 2 2 2 0 2 10 2 1
Subtype lymphoma || 6 3 2 10 3 3 13 5 5
Stjude testing 32 1 2 82 14 16 20 5 2
Lung cancer 1 1 0 7 2 2 3 1 1
ALL-AML testing 5 1 1 3 1 1 10 6 2
Armstrong 0 0 0 0 0 0 2 2 2
Total Errors [99] 51 ] 47 [395] 115 98 [178 ] 8 ] 77

BIOKDD03: 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2003

page 21



Table 4: The change trend of the error numbers of the three rule-based committee classifiers.

Data sets CS4 Bagging Boosting
all | entropy | M-entropy || all | entropy | M-entropy || all | entropy | M-entropy
T-ALL 1 1 1 1 1 1 1 1 1
E2A-PBX1 1 1 1 1 1 1 1 1 1
TEL-AML1 6 6 6 12 11 10 9 13 14
BCR-ABL 8 7 6 13 12 12 22 18 15
MLL 7 5 6 10 9 8 13 14 18
Hyperdip>50 14 14 15 19 19 20 23 24 14
Ovarian 0 0 1 7 6 5 10 9 8
Prostate 9 9 8 10 9 10 14 10 8
Colon Tumor 14 11 12 12 10 12 12 10 12
ALL-AML 1 2 2 5 6 5 13 11 12
Subtype lymphoma || 5 5 5 6 6 7 11 11 10
Stjude testing 12 7 6 14 12 9 26 22 19
Lung cancer 3 3 3 4 5 5 27 26 26
ALL-AML testing 4 4 3 3 4 4 3 3 3
Armstrong 0 0 0 2 2 2 0 1 1
[ Total Errors |8 ] 7 | 75 [ 119] 113 | 111 [ 18] 174 [ 162 |

feature number increases to 200. However, on the ALL-
AML data sets, the error curve goes up when the feature
number changes from 20 to 50, but goes down when the
number changes to 100, and down again when it increases
to 200. The error curves on the BCR-ABL and MLL data
sets are even more fluctuated, showing contrasting shapes
one another.

The situations for the other three classifiers are similar: The
curve shapes are contrasting and fluctuated. This indicates
that top 20 features can achieve the best performance only
sometimes by a classifier on a certain application; top 50,
100, or 200 features can also achieve the best performance
sometimes on some other data sets. We did not find a regular
performance trend of the classifiers.

In term of total errors on the 15 data sets, SVM made 75,
72, 50, and 59 mistakes respectively when the top 20, 50,
100, and 200 features are used; these results are not bet-
ter than its performance when the mean-entropy discretized
features are used. Our CS4 classifier made 99, 83, 72, and
71 mistakes respectively when the top 20, 50, 100, and 200
features are used. The latter two results are close to the
performance when the mean-entropy discretized features are
used. As sometimes the number of mean-entropy discretized
features is less than 200 or 100, our feature selection method
shows advantage once again.

5.3 Wrapped Features, Comprehensibility and
Stability
It is easy to understand our CS4 classifier. This classifier
consists of a set of cascading decision trees; each tree is a
set of rules; and each rule contains about 3 or 4 features. So,
in a broad sense, CS4 is a set of rules that are organized by a
cluster of decision trees. A typical rule is like the following:
If condition_1 = true and condition_2=true, then this sample
is positive. Suppose a data set have n number of features,
our CS4 classifier usually takes a small portion, sometimes
very small, of the n features to construct the trees. So, in
fact, CS4 conducts, in a wrapped manner, another round
of feature selection. See Table 5 to compare the number
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of wrapped features used in CS4 and the total number of
features of the data sets (original or reduced). For example,
in the original ALL-AML testing data [11] where have 7129
features, CS4 uses only 31 features of them to construct the
tree committee. Therefore the interpretation of the decision
trees of CS4 does not necessarily require all the features but
only the wrapped features to be involved.

However, the interpretation of the learnt models of k-NN,
SVM and NB must involve all the features. For example,
in k-NN, the calculation of Euclidean distance between two
points is the squared root of the sum of the squared dif-
ferences at all the dimensions. A learnt SVM model is a
non-linear function with variables equal to the number of
the features. The extraction of rules from these models is
difficult.

This model-structure difference between k-NN (or SVM,
NB) and our CS4 classifier can help us to explain the stabil-
ity of a classifier whether it is resistant to feature selection.
Our observation is that if a classifier uses almost the same
number of wrapped features before and after feature selec-
tion, then this classifier will be more or less resistant to
feature selection. Otherwise, the classifier will be sensitive
to feature selection as shown in k-NN, SVM or NB which
must use all features for interpretation.

CS4 is an example of classifiers that are resistant to feature
selection. From the last row, Total Errors, of Table 4, CS4
decreases its mistakes from 85, to 75, and maintains at 75 af-
ter the first round and the second round of feature selection.
The normalized variance of the performance is as small as
0.0096. Correspondingly, the number of wrapped features in
CS4 stands at the same level. For example, CS4 uses almost
the same number —31, 26, or 25—features for classification
on the original or reduced ALL-AML testing data; this also
similarly occurs to the Lung-cancer data. (See Table 5.)
For the sensitive classifiers such as k-NN, SVM, and NB,
their normalized performance variance are 0.1987, 0.1236,
and 0.3567 respectively, all much larger than CS4’s 0.0096
indeed.
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Table 5: CS4 wrapped features are far below the dimensionality of the data (original or after feature selection).

Data sets

Data dimension vs Number of wrapped features by CS4

original data

reduced data (1st round)

reduce data (2nd round)

ALL-AML testing

7129 vs 31

866 vs 26

350 vs 25

Lung-cancer

12533 vs 20

2173 vs 20

777 vs 20
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Figure 2: Error numbers when selecting specific numbers of
features
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6. CONCLUSION

We have studied a new heuristics to select important fea-
tures for classifying high-dimensional bio-medical data. There
are two rounds of selection in the process. In the first round,
our method ignores those features that are not discretized by
an entropy method; In the second round, we use the mean-
entropy values as filter to remove those less discriminating
features. This feature selection method can significantly re-
duce the dimensionality of the problems, and meanwhile it
can improve the performance of classifiers according to our
experiments on 15 data sets.

‘We have also studied the resistance of a classifier to feature
selection. Our proposed CS4 classifier is less sensitive to
feature selection, compared to SVM, k-NN, and NB. Our
reason is that CS4 is a decision-tree based classifier, it has
a built-in method to select, in a wrapped manner, a small
percentage of features from the whole feature space for the
construction of the trees. So, even when the whole feature
space is changed as by the feature selection methods, the
number of wrapped features in CS4 is usually maintained.
Thus, it should maintain its performance. The experimen-
tal results have also shown that CS4 is a highly accurate
classifier.
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