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ABSTRACT

In many natural language tasks, such as information extrac-
tion and semantic lexicon building, individual entities and
relations of interest may be found in multiple contexts within
the corpus. In deciding which putative entities and relations
should be extracted, a key problem is how to combine evi-
dence across the multiple occurrences of these entities and
relations. We present a novel statistical approach to ad-
dress this issue, and evaluate it in the context of extracting
protein names and protein-protein interactions from MED-
LINE abstracts. We experimentally compare our method
against a number of intuitive and simpler baselines. Our
experimental results suggest that the issue of combining ev-
idence is indeed important in these tasks. Furthermore, we
show that our proposed method outperforms the baselines
considered in a variety of settings.
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1. INTRODUCTION

There has been much recent interest in applying text-mining
methods to the on-line, biomedical literature [5]. These
methods have great potential to assist scientists in key tasks
such as curating genome databases [19] and annotating high-
throughput experiments [16]. One interesting, yet largely
unexplored, aspect of mining the biomedical literature is
that information of interest usually occurs redundantly. Con-
sider the task of information extraction (IE) which involves
automatically extracting instances of specified classes, re-
lations or events from text sources. For example, suppose
we are interested in extracting information about pairs of
proteins that physically interact. In this case, a particular
protein-protein interaction might be described in multiple
articles, and even in multiple places within each article. The
problem that we consider in this paper is how to combine ev-
idence, across different passages of text, for several biomed-
ical text-mining tasks. We present a formal definition of
the problem, describe a statistical method for addressing it,
and empirically compare our approach against several sim-
pler, ad-hoc methods. Our experiments involve two tasks
using a corpus consisting of MEDLINE abstracts [10]. Our
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experiments indicate that all of the considered methods for
combining evidence result in improved extraction accuracy.
Furthermore, our experiments show that our approach re-
sults in more accurate extractions than the baselines.

To better illustrate the task we are addressing, let us con-
sider the protein-protein interaction case in more detail.
Given the text of scientific articles (or just their abstracts),
we would like to extract instances of a binary relation that
represents the physical interaction of pairs of proteins. For
example, given the first or the second sentence shown in
Table 1, an accurate IE model would extract the relation
instance protein-interaction(STE7, FUS3). For pedagog-
ical simplicity, we assume here that protein names consist of
single words. We can then denote a particular candidate ex-
traction by b;,;, where w; and w; refer to the words naming
the proteins in the relation (assuming some unique num-
bering for the words in the vocabulary). For a given b;;,
there might be multiple passages of text in which w; and wj
occur together. As illustrated in Table 1, some of these co-
occurrences might correspond to assertions in text that con-
firm the relation, whereas others do not support the relation.
For example, sentences 1 and 2 in Table 1 are examples of
sentences that assert the interaction between STE7 and FUS3
(called positive occurrences hereafter), whereas sentence 3
does not (negative occurrence).

For many applications of text-mining methods to the biomed-
ical literature, we do not need to be especially concerned
about the accuracy of our model on isolated passages of
text, such as the sentences in Table 1. Instead the primary
concern is the corpus-wide accuracy of our model. For ex-
ample, consider the case in which a model mistakenly does
not extract a relation instance from Sentence 2 in Table 1.
As long as the model does correctly extract the relation in-
stance from Sentence 1, this mistake is not costly because
we will have extracted it from somewhere.

For each occurrence of w;, w;, the IE tool will make a pre-
diction whether it considers the occurrence to be positive
or negative. The IE tool is likely to make mistakes, both
false positive predictions (i.e., calling a negative occurrence
positive) and false negative predictions (i.e., calling a pos-
itive occurrence negative). If we had access to “the truth”
about each sentence, then it would be easy to determine if
a candidate protein-interaction assertion is true: it suffices
to have at least one positive occurrence to call an assertion
positive. Our goal, since we do not have access to the truth,
is to predict how likely it is that an assertion b;,; is positive

page 25



Sentence

Target Extraction

1  From this data, we argue that STE7 is a physiological activator of FUS3.
Here we report that STE7 is a dual-specificity kinase that modifies FUS3...

[\V]

protein-interaction(STE7, FUS3)
protein-interaction(STE7, FUS3)

3  None of the mutations increased the affinity of STE5 for STE11, STE7, or FUS3.

Table 1: Three sentences that contain occurrences of STE7 and FUS3. We would want our IE model to extract the relation
protein-interaction(STE7, FUS3), from Sentences 1 and 2. Since Sentence 3 does not assert that the two proteins interact,
we would not want our model to extract a relation instance from it.

Assertion Pos. Preds Neg. Preds Total

bro 1 2 3
bis 1 999 1000
bis 5 5 10

Table 2: A hypothetical case showing three candidate
protein-interaction assertions and the number of sentences
classified as positive and negative.

given the predictions of the IE tool about the co-occurrences
of w; and w;.
We can define the task we are addressing as follows.

Given:
® 3 test corpus to be processed by an information-
extraction model,

e estimates of the true-positive and false-positive
rates of the model,

o passage-level predictions made by the model,
Return: corpus-level predictions ranked by confidence.

By passage-level predictions here, we mean predictions made
on small passages of text, such as the sentences in Table 1.
By corpus-level predictions we mean the predictions made by
aggregating the predictions made across all passages in the
corpus. Note that the crux of the task is to rank the corpus-
level predictions using information about the IE model and
the corpus itself.

Table 2 shows a hypothetical situation in which we have
three candidate assertions along with the number of occur-
rences classified by our model as positive and negative for
each assertion. Based on these numbers, we try to decide
which assertion is more likely to be positive. By compar-
ing b1,2» and b1,3 we can conclude that bi» is more likely
to be a true protein interaction than bi,3. For both asser-
tions there is a single positive prediction, but for by 3 it is
more likely to be a false positive prediction (making some
assumptions such as that all predictions are independent)
due to its many more total occurrences. In a similar way,
we may conclude that by 4 is more likely to be positive than
b1,2, since it is highly unlikely that all five positive predic-
tions are false positives, especially when the total number
of occurrences is ten. These examples show that to predict
the class of an assertion we must take into account issues
such as the number of positive and negative predictions on
individual occurrences and the error rates of the IE method.
Our formulation of this problem has the following character-
istics. (i) Instances can be grouped into bags. In the example
in Section 1, an instance is an occurrence of a word pair in a
sentence and a bag is the collection of all occurrences of the
word pair. (ii) A bag is considered positive if and only if it
contains at least one positive instance, and negative other-
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wise. With respect to the running example, a pair of words
represents a protein-interaction assertion if there is at least
one sentence in the corpus which states that the proteins
do interact. (iii) The classes of the bags correspond to the
solutions of the problem. In other words, we are interested
in predicting the class of each bag in the corpus. In the
protein-interaction task, all bags classified as positive cor-
respond to protein-interaction assertions extracted from the
corpus. (iv) We are given a tool that can predict the classes
of individual instances. Our goal is to predict the classes of
the bags based on the instance predictions.

Many natural language tasks can be mapped to this prob-
lem definition. In addition to the protein-interaction task,
we also consider here a task that involves constructing a lex-
icon of protein names given a corpus of biomedical papers.
We refer to this as the protein-lezicon task. In this task,
a bag b, corresponds to a word w that is a candidate for
inclusion in the lexicon, and the instances in a bag repre-
sent the occurrences of the word in the corpus. For example
all nouns and adjectives (e.g., Stellp-binding) in the cor-
pus might be considered as candidates for inclusion in the
lexicon. A positive occurrence (instance) of w is one where
the sentence asserts that w is a protein. It suffices to have
at least one positive instance of w to conclude that it is a
protein.

A number of factors render these tasks challenging. (i) Pos-
itive bags may also contain negative instances; thus the
number of positive predictions in a bag is not necessarily
a good indicator of the likelihood that the bag is positive.
(ii) Negative bags may contain multiple instances and as
a result there is a high probability for false-positive errors
when making predictions for bags, as opposed to individual
instances. On the contrary, the fact that positive bags may
often contain more than one positive instances decreases the
likelihood of false-negative errors.

2. RELATED WORK

For the most part, research in IE has focused on developing
methods that operate on relatively short passages of text,
such as sentences [1; 3; 8; 12; 14; 17; 18]. These meth-
ods treat the corpus as a collection of independent passages.
Thus, they are unable to exploit the redundancy inherent in
large corpora. The work that we describe here does not con-
stitute a novel IE algorithm. Instead we present a general
method for combining evidence that can be used in conjunc-
tion with any IE approach.

The problem of evidence combination in information-extraction

has been explored by only a few groups. Roth and Yih
have developed an approach for IE tasks that uses evidence
about potential entities to influence relation extractions, and
similarly evidence about potential relations to influence en-
tity extractions [15]. This approach takes advantage of de-
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pendencies among entities and relations of interest. Our
work is complementary to theirs in that we focus on com-
bining evidence across multiple contexts for a single task in
isolation. The problem of evidence combination has been
touched upon by Riloff’s work in semantic lexicon building
[13; 14]. Also, Magnini et al. [7]. exploit the inherent re-
dundancy of the web the improve the accuracy of question
answering, by judging the connection of a candidate answer
to the question by the number of web documents in which
they co-occur. In contrast to these two efforts, we present a
method that is more principled and more general.
Krauthammer et al. have proposed a statistical model that
characterizes how assertions about molecular interactions
entered and are amplified in scientific articles [6]. Their
model also includes several parameters that describe how
likely an information-extraction system is to extract some-
thing about a particular assertion, and how likely it is to
be correct about such an extraction. Unlike the work pre-
sented herein, however, they have not yet operationalized or
empirically evaluated this component of their model.

Also, we note that there is a connection between our problem
formulation and that of multiple-instance learning tasks [4].
Multiple instance learning focuses on learning from training
data that is organized into bags. On the contrary, we focus
on making better inferences by grouping instances into bags.
Finally, there is some relationship between our work and
multi-view learning [2; 9]. As in multi-view learning, our
work assumes that there are multiple, independent views
that can be used to make a decision about a given candi-
date extraction. In particular, we can think of the different
occurrences of each candidate extraction as corresponding to
views since each one occurs in a different context. However,
unlike multi-view learning, we do not use different represen-
tations for the multiple views and we are not focused on
the learning task. Instead, we are interested in using the
multiple views at test time in order to get more accurate
predictions.

3. BAYESIAN EVIDENCE COMBINATION
OF INSTANCE PREDICTIONS

In this section we present an approach, called Bayesian Ev-
idence Combination of Instance Predictions (BECIP), for es-
timating the probability that a bag is positive given the
classifier’s predictions on the instances of the bag. We as-
sume that for a bag b we are given: (i) the number np of
instances in the bag (bag size), and (ii) the number k; of in-
stances for which the classifier predicted the positive class.
We also assume that we can estimate: (i) the false positive
rate f of the classifier, that is the probability of incorrectly
predicting the positive class for a negative instance, (ii) the
true positive rate t of the classifier, that is the probability of
correctly predicting the positive class for a positive instance,
and (iii) the prior probability of positive and negative bags
given the bag size. Our goal is to compute the probabil-
ity of bag b being positive. This is equal to the probability
P(myp > 0|np, k) that the number of positive instances m;*
in the bag is larger than zero, since by definition a bag is

'"We emphasize the difference between mj;, the number of
positive instances in b, and kp, the number of positive pre-
dictions made by the classifier for b. The latter includes the
false-positive and false-negative errors that the classifier can
make and will often have a different value than my.
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positive if and only if it contains at least one positive in-
stance.
‘We make the assumption that the class predicted by the IE
tool for an instance e; € b is independent of the predictions
for the other instances in b. Given f and ¢t and the assump-
tion of independent predictions, we can model the behavior
of the classifier on a single instance e as a Bernoulli trial,
with “success” being equivalent to predicting the positive
class for e. If e is negative, then the probability of success
is f. If e is positive, the probability of success is t. The
behavior of the classifier on the set of positive instances of
a bag b can be modeled with a binomial distribution with
probability of success t, denoted as B(ms,t). Similarly, for
the set of negative instances of b we have B(ny — mp, f).
Refining this model to use a multinomial distribution, with
possible outcomes being predictions with varying levels of
confidence (i.e., high confidence positive, medium confidence
positive, high confidence negative, etc.) is straightforward,
provided that the classifier can assign confidences to its pre-
dictions.
Assuming that there are m;, positive instances in b, the prob-
ability of making k; positive predictions based on our bino-
mial model is:

kp
P(kslms,m5,8) = > P(i; B(my, t))P(ks — i; B(n — ms, f))

i=0

3 [(4 Yoo »

i=0
ky —1 (ky—1) (np—mp+i)
(nb_mb)f (1-1)

where P(i; B(mp,t)) is the probability of the 4 of k; suc-

cesses (positive predictions) coming from the positive in-
stances and P(ky — i; B(n —my, f)) is the probability of the
rest of the positive predictions being false positive predic-
tions. 6 denotes that this probability estimate is based on
the true and false positive rates of the classifier.

Using Bayes’ rule we express the posterior probability P(mp >
0|ne, ks, 0) as:

P(kp,mp > 0,m5,6)
P(ky,np)
P(kylmp > 0, 14,0)P(myp > 0,15)
E?:"O P(kp,mp =i, mp)
21 Plky|my = j, e, ) P(my = jlny)
Z?:bo P(kb|mb = i, nb,G)P(mb = z|nb)

P(mb > 0|nb,kl,,0) =

(1)

P(mp > 0|np, ks, 0) is our estimate for P(my > 0|np, kp)
based on the abstraction of the binomial to model the clas-
sifier’s behavior. We can view this probability estimate as
a confidence Cy(b) that bag b is positive. Depending on an
application’s recall and precision requirements, we can use
a threshold d to assign the positive class only to bags for
which C4(b) > d.

The assumption that the classifier’s predictions on the in-
stances of a bag are independent is often violated. For in-
stances that have lexical and grammatical similarities (e.g.,
a word that appears in two very similar contexts) the clas-
sifier’s decisions are likely to be correlated. The extent to
which the independence assumption is violated can play a
key role in the accuracy of BECIP’s estimates. This issue
must be kept in mind when applying BECIP.
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3.1 Estimating the False Positive and
True Positive Rates

The false positive f and true positive ¢ rates of the classifier
can be estimated using a held-out portion H of the labeled
corpus, D. The classifier is trained on the rest of the labeled
set D — H and then tested on H, for which the class labels
are known. With sufficiently large H accurate estimates for
f and t can be acquired. If the classifier is hand-constructed
then all of D can be used to estimate ¢ and f.

3.2 EstimatingthePriors

The use of Equation 1 requires estimating P(mp, = i|np),
the prior probability of a bag of size n; having i positive in-
stances. We estimate P(my = i|np) using P(mp > 0|np) and
making assumptions about the number of positive instances
in positive bags. For instance, for the protein-interaction
task we assume a uniform distribution for the number of pos-
itive instances in a positive bag: P(my = i|np) = W
for ¢ > 0. This reflects our belief that any number of positive
instances is possible. For the protein-lexicon task we assume
that in most cases if word w is a protein name then all its
occurrences are positive’: P(mp = np|ny) = P(my > 0|np)
and P(my = i|ny) = 0 for ¢ = 1,...,m3 — 1. The above
assumptions are based on conclusions drawn from looking
at the distribution of positive instances in positive bags in
the training set.

A key characteristic of these natural language tasks is the
mismatch in the bag sizes between the labeled and the test
corpus. For instance, consider the case where we have a
labeled corpus of a few thousand abstracts and all of MED-
LINE as a test corpus. The number of co-occurrences of
two words w1 and ws will be a lot different in the two
corpora. Also, P(mp > 0|np), the prior probability that
a bag with size my is positive, will differ between the two
corpora. To estimate P(mp > 0O|ny), the prior probabil-
ity of a bag of size n, being positive we use Bayes’ rule:
P(my > Olny) = ElrelmezDBm>0 - p(p,), the probabil-
ity of bag b having size ny, is computed by counting the size
of all bags throughout the test corpus®. P(np|ms > 0),
the probability of a positive bag having size mp, can be
estimated by sampling the test corpus using the positive
bags of the labeled corpus (assuming there are common
bags between the two corpora, a reasonable assumption for
the tasks we consider). Finally, we need to estimate the
prior probability of a bag being positive P(my > 0). Let
B(D) and B(T) denote the collection of bags and I(D) and
I(T) denote the collections of instances of the labeled set
D and test set T. BT(D), BY(T), I'*(D) and I™(T) de-
note the collections of positive bags and instances. P(myp >
0) = |BT(T)|/|B(T)|- |B(T)| can be counted. We compute
[IH(T)| = |I(T)||IT(D)|/|I(D)|, assuming the same rate of
positive instances in the labeled and test corpus. Finally,

2Note that according to the task definition, a bag is positive
if and only if it contains at least one positive instance. The
use of P(my = npns) = P(mp > 0|ny) as the priors for
the number of positive instances in a bag simply reflects our
expectations about the particular application and does not
change the task definition.

3We note that this can be done without violating the stan-
dard machine learning assumptions about test sets (cor-
pora). Indeed, the labels of test instances may be unknown
but the test set can still be used in suitable ways. This prac-
tice is also common in the research field of transduction.
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Figure 1: Plots of the prior probability P(m; > 0|ns) of a
bag being positive versus the bag size n; for the protein-
interaction task and the protein-lexicon task. Note the dif-
ference in the x and y axes between the two plots. We only
show the priors for small bag sizes, and note that for larger
bags the prior probability of a bag being positive is negligi-
ble. For the protein-lexicon task only nouns and adjectives
are candidate bags, hence the relatively high P(my > 0|np)
probability for some np.

using P(np|mpy > 0) we estimate the number of positive
bags by solving |IT(T)| = ZLi;(T” P(ny = ilmy > 0)7 for
|B*(T)].

The use of priors P(my > 0|ny) estimated using this pro-
cedure is called the estimated class priors scheme. Because
the estimation of these probabilities is complex (and in some
rare cases even impossible), in our experimental evaluation
we also consider using P(mp > 0|ny) = P(mp = 0|ny) = 0.5,
a scheme which we call uniform class priors. Our empirical
results suggest that BECIP has high accuracy even with the
use of the inaccurate uniform priors. Thus, estimating the
priors can be avoided if needed.

Figure 1 shows plots of the estimated prior probability P(mp >
0|np) of a bag being positive versus the bag size used in
the experiments described in Section 4. The bag sizes for
which P(my; > 0|n) becomes large are those in the middle
of the = range. Small bag sizes represent bags with un-
common words that appear infrequently in the dataset and
hence the prior probability is small since we expect to find
a protein-interaction fact or a protein at least a few times
in the dataset. Large bags are mostly bags with common
words (such as “the” or “gene”), which are unlikely to be
positive.

An underlying assumption of these estimation procedures is
that statistics about the whole test corpus are available to
us. For most tasks this is easy to satisfy. For instance, in-
dexing all of MEDLINE is not trivial but is within the capa-
bilities of current indexing technology [10]. When faced with
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frequently changing corpora, such as news articles which are
extended on a daily basis, incremental indexing is required
to include new documents. Note that documents need not
be stored but may be discarded once indexed. Finally, ap-
plying our techniques on a collection of web pages is also
quite straightforward. In fact, to estimate the priors we
need statistics similar to those kept by search engines.

4. EXPERIMENTAL EVALUATION

In this section we present our experiments in order to deter-
mine (i) the accuracy of BECIP predictions compared to the
baseline methods, (ii) the accuracy of BECIP without using
estimated class priors, and (iii) the behavior of the various
evidence combination methods under different values for the
bag-size mean and variance in the corpus.

4.1 Experimental Setup

We evaluate our approaches on the two natural language
tasks described in Section 1: identifying protein interactions
and building a lexicon of protein names. We use the same
corpus for both tasks. The corpus is a collection of abstracts
of yeast-related scientific papers collected from MEDLINE.
It consists of 5,728 abstracts containing 47,473 sentences.
The dataset is labeled with 1,503 unique protein-interaction
assertions, with 8,088 total occurrences. Not all protein
names are labeled in the dataset, so we do not have accu-
rate estimates of their numbers. We manually reviewed the
words predicted as proteins by our classifier and found 4,382
protein names with approximately 60,000 total occurrences.
To recognize and extract protein interactions, we train hid-
den Markov models (HMMSs) which are given shallow-parsed
sentences as input [12; 17]. To extract protein names we
train decision-tree models using C5.0 [11]. The decision
trees classify each word in the corpus as positive (protein)
or negative (non-protein) using lexical and syntactic fea-
tures that represent the context in which it appears. The
features used in our representation include (i) the type of
phrase in which the candidate word occurs and the types
of neighboring phrases, (ii) the stem and part-of-speech of
neighboring words, and (iii) grammatical patterns learned
from each training set using the Autoslog algorithm [13].
After training each model, we run it on a test set, collect
the set of extractions made and assemble them into bags.
We then consider combining evidence for these predictions
using BECIP and several baseline methods. Each evidence-
combination method assigns a confidence C4(b) for each bag
b b. By varying a threshold on these confidence values we
construct precision-recall curves to compare the accuracy of
the various combination methods. Precision is defined as
the number of correct extractions (i.e. true positive bags)
divided by the number of extractions made. Recallis defined
as the number of correct extractions divided by the total
number of positives in the data set. We conduct a five-fold
cross-validation experiment and pool the results from each
test set to construct the precision-recall graphs.

Note that all of the evidence-combination methods work
with the same set of predictions. Therefore, all of the meth-
ods have the same endpoint precision and recall. However,
the evidence-combination methods may differ in the con-
fidences they assign to various predictions, and thus some
methods may have better precision than others for lower val-
ues of recall. The endpoint recall is normalized to one in our
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curves because the endpoint is the same for all evidence com-
bination methods. Moreover, for the protein-lexicon task,
we do not know the true recall level since we do not know
the true number of proteins in the data set,

The bags with at least one positive prediction for the protein-
interaction task have mean size of 6.8 and standard deviation
of 10.17. For the protein-lexicon task the mean bag size is
50.25 and the standard deviation is 153.72. The estimated
true positive and false positive rates of the classifier for the
protein-interaction task are ¢ = 0.39 and f = 0.0002. For
the protein-lexicon task they are ¢ = 0.35 and f = 0.019.

4.2 Baseline Methods for Evidence
Combination

We empirically compare BECIP against several baseline evidence-

combination methods. Some of these methods, such as Soft-0R
and Noisy-0R, are standard methods for combining evidence.
Others, e.g., Weighted-Majority and Soft-Count, are based
on our intuitions about what schemes may be effective for
evidence combination in the tasks we consider.

We assume that for each instance for which the classifier
predicts the positive class it also assigns a confidence C4 (e;)
between zero and one (to which we assign probability seman-
tics) which captures the classifier’s belief in that prediction.
b™ denotes the set of instances of b classified as positive.

Soft-OR (SO) Under this approach, bag b is assigned the
positive class with confidence equal to the confidence
of the most confident instance predicted as positive:

C:+(b) = max{Cy(ei)},Yei € bt.

Noisy-OR (NO) This approach assumes that all predictions
are independent and assigns confidence to the bag class
equal to the probability of at least one of the instances
being positive:

Ci(0) = 1=]J[1 - Ci(es)], Vei €b*.

2

Soft-Count (SC) This approach, which is a soft version of
counting the number of positive predictions that also
takes into account their confidences, assigns the posi-
tive class to bag b with confidence equal to:

Ci(d) = > Cyles), Vei €b™.

Note that with this scheme, C+(b) does not have prob-
abilistic semantics.

Weighted-Majority (WM) The Weighted Majority approach
assigns confidence to the positive class equal to:

Cr(b) = [b7°/lol-

It is motivated by the simple Majority-Voting scheme
(C+(b) = |bt|/|b]), with the difference that the numer-
ator is multiplied by [b*| to increase the confidence
for bags with many positive predictions. The simple
Majority-Voting scheme performs poorly and is omit-
ted from the experimental section.

No evidence combination (NC) In this approach, the con-
fidence associated with the positive class for bag b is
equal to the confidence of a randomly chosen positive
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Figure 2: Precision-recall graphs for the protein-interaction
extraction and the protein-lexicon building tasks. 95% Con-
fidence Intervals are shown for the two best methods. Recall
has been normalized to one. For clarity, the key shows the
method titles in order of highest precision.

prediction for that bag. This baseline is useful for de-
termining the expected decrease in accuracy when ev-
idence is not combined across predictions using any
method.

The first three approaches, SO, NO and SC, ignore the size of
the bag and focus on the positive predictions. All three can
suffer from very large bags with many negative instances, as
the false positive predictions on those can inflate the confi-
dence assigned to that bag. They are expected to perform
well on tasks with small bag size mean and variance. WM
tries to balance the number of positive predictions and the
bag size and is better suited to applications with large bag
size mean and variance.

4.3 Accuracy of Becip

Figure 2 shows the precision-recall graphs for the protein-
interaction and the protein tasks. In the protein-interaction
task, BECIP achieves significantly higher precision (at the
95% level) from Soft-Count, the second best method, for
recall values between 0.38 and 0.94. For the protein-lexicon
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np BECIP Soft  Noisy Soft Weight

Maxz Mean StDev OR OR Count Maj.
5 3.42 1.67 0.66 0.69 0.69 0.69 0.7
10 5.34 3.61 0.71  0.67 0.70 0.70 0.69
20 7.96 7.12 0.71  0.66 0.68 0.68 0.69

30 9.75 10.17 0.71 0.65 0.67 0.67 0.69
50 12.17 15.22 0.72 0.65 0.65 0.65 0.70
100 15.86 25.09 0.71 0.62 0.63 0.63 0.69
200 19.86 39.62 0.72 0.61 0.63 0.63 0.69
300 22.41 51.46 0.72 0.61 0.62 0.62 0.69
500 26.02 71.20 0.71 0.61 0.62 0.62 0.69

(2) (®) © b & 6 (8) (h)

Table 3: The accuracy of the various evidence combination
methods in terms of the precision-recall break-even point
for different bag size averages and variances. Each line rep-
resents different bag size settings. Column (a) shows the
maximum bag size. The first three columns show the bag
size mean and standard deviation. The remaining columns
show the precision-recall break-even point of the various ev-
idence combination methods.

task, the precision of BECIP is identical to that of Weighted-
Majority. They both are significantly more accurate than
all other methods. For BECIP, we used the estimated class
priors scheme.

All methods for evidence combination have significantly bet-
ter precision-recall curves than no evidence combination (NC).
Among the evidence combination methods, BECIP has the
highest precision for all values of recall in both tasks. WM
matches the precision of BECIP on the protein-lexicon task
but performs poorly on the protein-interaction task. On
the contrary, SC which is the best baseline for the protein-
interaction task has relatively poor precision on the protein
task. WM performs well in the protein-lexicon task because
its bias matches the fact that typically, most instances in
a bag have the same label as the bag. This is not true in
the protein-interaction task, in which WM is outperformed
by NO and SC whose biases are more appropriate for this
task. SO has overall mediocre precision as it is not aggres-
sive enough in combining evidence.

4.4 gectp with Uniform ClassPriors

‘We also apply BECIP using uniform priors (see uniform class
priors scheme in Section 3). Figure 3 shows the accuracy of
BECIP with estimated and uniform priors. The graphs also
show the best baseline for each task, for reasons of compari-
son. The lower precision of the uniform-prior variant is due
mostly to small bags with few positive predictions, for which
the estimated prior P(mp > 0|np) is small, something that
is not taken into account by the uniform priors. For large
bags, the positive and negative predictions overwhelm the
contribution of the priors in calculating P(my > 0|kp, np).
Indeed, for both tasks if bags with size less than or equal to
three (ny < 3) are ignored the precision of the two schemes
is practically identical, as shown in Figure 4.

45 Varyingthe Bag Size Mean and Variance

We also evaluate the behavior of the various evidence com-
bination methods under conditions of different average bag
size and bag size variance. We use the bags from the protein
extraction task to simulate different conditions. We did not
perform this experiment on the protein-interaction task as
the bag sizes have small mean and variance.
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Figure 3: BECIP’s accuracy with estimated and uniform pri-
ors for the two tasks. For comparison, the graphs also show
the best baselines for each task.

For each experiment, we set an upper bound m; on the bag
size (shown in column (a) of Table 3) and discard any extra
instances from bags with size greater than m;. This “trim-
ming” results in different values for the mean and standard
deviation of the bag sizes (shown in columns (b) and (c)
of Table 3). We evaluate each method using the Precision-
Recall break-even point (i.e., the point where precision and
recall are equal). Columns (d) to (h) of Table 3 show the
accuracy of each evidence combination method. BECIP used
the uniform class priors scheme.

Each line in Table 3 represents a different experiment. Re-
call is not the same for each experiment, because for some
of the bags it happens that all of the positive predictions are
discarded to satisfy the maximum size constraint. The larger
the bag size, the larger the recall for all evidence methods.
We have again normalized recall to one, since all methods
have the same recall for a given experiment. As a result,
only comparisons within rows are valid, but not compar-
isons within columns.

The observed results validate our hypotheses about the ex-
pected behavior of each method. BECIP outperforms all
other methods for most settings and has consistently the
best precision at each recall point. WM outperforms all

BIOKDD(3: 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2003
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Figure 4: BECIP’s accuracy with estimated and uniform pri-
ors, for bags with size larger than three (n, > 3) for the
two tasks. For comparison, the graphs also show the best
baselines for each task. Note that the y-axis for the protein-
lexicon task ranges from .5 to 1.

other baselines as the bag size mean and standard deviation
increase. SO, NO and SC have good accuracy for relatively
small bag mean (3-10 average bag size) and variance, while
their accuracy degrades for larger and more variable bag
sizes. BECIP did not perform well for maximum bag size
5, because the uniform priors are very inaccurate for this
setting.

5. CONCLUSIONS

In this paper we have addressed the issue of evidence com-
bination for natural language tasks. In such tasks, informa-
tion often appears in multiple contexts with different mean-
ing. Current practice employs methods that make decisions
based on document passages of limited length, resulting in a
need to combine these multiple decisions. We have presented
a formal definition of this problem and developed BECIP, a
theoretically sound method for combining evidence based
on abstracting the behavior of these natural language meth-
ods as Bernoulli trials. We have also considered a number
of simpler baseline methods. Our experimental evaluation
indicates that combining evidence can improve precision in
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these tasks. Furthermore, we have shown that BECIP out-
performs the baselines in the most cases, and we have iden-
tified situations where the use of the simpler baselines may
be more suitable.
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