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ABSTRACT

Visualization techniques can enable the exploration and de-
tection of patterns and relationships in a complex data set
by presenting the data in a graphical format in which the key
characteristics become more apparent. A new visualization
technique, the first Fourier harmonic projection (FFHP) was
introduced to translate the multi-dimensional data into a
two dimensional scatter plot where the spatial relationship
of the points reflects the structure of the original data set.
FFHP has been shown capable of visualizing various gene
expression data sets. However, dimension arrangement is
crucial for the effectiveness of FFHP and certain data, such
as time series, prevents dimensions (time points) from being
freely rearranged. In this paper, we present an alternative
approach through higher Fourier harmonic projections to
enhance the visualization. Our algorithm takes advantage
of the theoretical meaning of the Fourier harmonics and
“reshuffles” the dimensions of the data set without physi-
cally rearranging them. The experimental results demon-
strated significant improvement of the visualizations.
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1. INTRODUCTION

Knowledge of the spectrum of genes expressed at a certain
time or under given conditions proves instrumental to un-
derstand the working of a living cell. DNA microarray tech-
nology allows measurements of expression levels for thou-
sands of genes simultaneously [8]. Extensive research has
been conducted on the study of temporal patterns of gene
expressions [1; 4; 11]. Visualization may provide more in-
sightful information than traditional numerical methods. By
visualization, we hope to gain some intuition regarding the
data, but more importantly, we would like to understand
the relationships among data points and detect the intrin-
sic structure, or possible cluster tendencies. Visualization is
especially important in the early stages of data analysis in
which qualitative analysis is primary to quantitative. Early
success will enhance the users’ performance in the remaining
stages of analysis.
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Visualization of microarray data is challenging because of
its high dimensionality, noisy environment, and pattern va-
rieties. We have presented a mapping for multi-dimensional
data that is based on the first harmonic of the discrete
Fourier transform — first Fourier harmonic projection, or
FFHP in short [12; 14; 13]. It attempts to map high di-
mensional data points into a two dimensional space while
preserving to the maximum possible extent the semantics of
the data points and the intrinsic structure of the data set.
FFHP has been applied on both sample and gene spaces.
Our results indicated that it was capable of separating mul-
tiple types of samples [12]. Furthermore, temporal patterns
were well reflected in the visualizations [13].

Dimension arrangement is crucial for the effectiveness of
FFHP. Improper dimension ordering compromises the sep-
aration of substructures. For sample space visualization, a
canonical dimension ordering algorithm was proposed [12].
However, certain data, such as time series, prevent dimen-
sions (time points) from being freely rearranged. In this
paper, we apply higher harmonic projections to enhance the
visualization. Our algorithm takes advantage of theoreti-
cal meaning of the Fourier harmonics and “reshuffles” the
dimensions of the data set without physically rearranging
them. The proposed method was tested using three pub-
lished, array-derived gene expression time series data sets.
The results demonstrated significant improvement of the vi-
sualizations.

The remainder of this paper is organized as follows. Section
2 introduces the model of Fourier harmonic projections. The
following section presents the higher harmonic approach. In
Section 4, we show our experimental results. The last section
discusses other issues in our approach.

2. FIRST FOURIER HARMONIC PROJEC-
TION

Mapping

Mapping converts multi-dimensional data to two-dimensions
for visualization. Time series data in its simplest form is
merely a set of data {y:,t = 0,..., N — 1} where the sub-
script t indicates the time at which the datum y; was ob-
served [6]. On the other hand, a discrete-time real signal
on N evenly distributed time points [3] is represented as an
indexed sequence of N real numbers 0,..., N — 1 denoted
by x[n] and each term of x[n] is denoted by z[n]. The deno-
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tation similarity between time series and digital signal sug-
gests that we may view each data point in a time series as a
discrete-time real signal (it is not necessary for the signal’s
time index to comply with the actual time points). In this
scenario, the problem of a two dimensional visualization of
the time series is transformed into the problem of finding a
two-dimensional point characterization for signals.

The frequency domain representation of discrete-time sig-
nals is through discrete-time Fourier transform, or DFT [10].
The DFT of a N-point signal x[n] is a frequency sequence
with N complex values: F(x[n]) = [Fi(x[n])], each term is
called a harmonic:

fk(x[n]):i:x[n]wz’“, k=0,...,N—1, (1)
n=0

Wy = e /N ig called twiddle factor. Each harmonic,
Fr, is a measurement of the kth sinusoidal frequency com-
ponent in the signal: the zero harmonic is the mean value;
the first harmonic, 7, measures the base frequency compo-
nent; the second harmonic, F2, measures the component in
the signal that is twice the base frequency, and so forth. Be-
cause Fourier harmonics are complex numbers, they provide
the two-dimensional point estimation for mapping a multi-
dimensional signal. For this reason, we refer to the mapping
as the Fourier harmonic projections. In particular, the first
Fourier harmonic projection (FFHP) is:

Fi(x[n]) = Z_ z[n]|Wh = Z_ z[nle 2™/N . (2)
n=0 n=0

The time complexity of Fourier harmonic projections is
O(Nlog N). This is achieved by the fast Fourier transform
algorithm (FFT), originally discovered by Cooley and Tukey
[5]. The complex number of F; (x[n]) in Equation (2) can be
expressed in terms of magnitude r and phase 6 to provide
a useful geometric interpretation of the mapping illustrated
by Figure 1 [13].

Figure 1: A geometric interpretation of the FFHP. A nor-
malized 6-dimensional data point is shown by the stem plot.
The twiddle factor divides the unit circle, centered at the
origin, into 6 equal angles and each dimension of the data
point is projected onto a different radial angle (open circle).
The 6 projections are taken complex number sum to give a
2-dimensional image (filled circle).

For a normalized data point (the range of values of each
dimension across the data set was 0 to 1) with N dimen-
sions, the complex exponential divides a unit circle centered
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at the origin of the complex plane into N equally spaced
angles. The value of the first dimension is projected on the
radial line corresponding to § = 0 and similarly, the value
of the kth dimension is projected on to the radial line cor-
responding to the § = 2m(1 — k)/N radians. The overall
two-dimensional FFHP mapping is the complex sum of all
N projections from a data point. In this paper, all figures
of FFP visualization are two dimensional scatter plot. The
z-axis is labeled Re[F'1] and represents the real part of the
first Fourier harmonic and the y-axis is labeled Im[F'1] be-
cause it represents the imaginary part of the first Fourier
harmonic. The units for both axes are those of the input
gene expression values.

Properties of FFHP

The FFHP has useful properties that preserve the corre-
lation between dimensions in the multi-dimensional data
point. We summarize them as propositions listed below.
Equation (3) provides insight into substructure delineation
capabilities of the FFHP. Points within the substructure are
likely to map close to each other in the visualization. We will
demonstrate that the relative locations of temporal profiles’
mapping can be predicted by those propositions.

1. Data points with equal values for all the dimensions
are mapped to the origin. If x[n] = [a,...,a], then
Fi(x[n]) = 0.

2. Data points with “amplitude-shift” by a constant are
mapped to the same point. If y[n] = x[n] + a, then
Fi(y[n]) = Fi(x[n]). Ilustrated in the left panel of
Figure 2A.

3. Data points whose dimension values differ due to the
amplitude multiplying a constant are mapped to the
two points on a line through the origin. If y[n] =
ax[n], then Fi(y[n]) = a F1(x[n]). Illustrated in the
right panel of Figure 2A.

4. Two data points whose dimension values are trans-
posing each other, i.e. symmetric regarding the mid-
dle time point, are mapped to the points symmet-
ric to the real axis. If y[n] = x[N — n — 1], then

Fi(y[n]) = F1(x[n]).

5. Data points that “time-shifted” by d dimensions rela-
tive to each other are mapped to the circumference of
the circle concentric with the unit circle and the angle
between them is ¢ = 2wd/N. If y[n] = x[n — d], then
Fi(y[n]) = Fi(x[n])WE. Tllustrated in Figure 2B.

6. Let win] = x[n] — y[n] be the difference between the
two N-dimensional points, x[n] and y[n]. The distance
between these two points in the visualization is:

|FL(w[n])[|* = goN <1 +2 2 Tk Cos(27rk/N)> (3)
k=1

Detailed mathematical derivations of proposition 5 and 6
are listed in the appendix. For more discussions about those
properties see [13].

3. HIGHER FOURIER HARMONIC PRO-
JECTIONS
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Figure 2: (A) Ilustration of amplitude shifting and scaling effect of FFHP. (B) Illustration of time shifting effect of FFHP.
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Figure 3: The effect of the second harmonic twiddle power index. (A) Two signals cos(t) and sin(¢) on t = [0, 4] before and
after being rearranged by the second harmonic twiddle power index. (B) Proportion of each of the harmonic for the original
cos(t) signal. Clearly the second harmonic is the dominant component. (C) The proportion of each of the harmonic after the
cos(t) signal being reordered by the second HTPI. It makes the first harmonic the most dominant component.

Harmonic Equivalency

The reason we focus specifically on the first Fourier har-
monic projection is due to a so called “harmonic equiva-
lency”. It can be shown that for any harmonic (> 1), there
exits an equivalent first harmonic of the original discrete
signal being properly rearranged. The proof is based on a
concept which we call harmonic twiddle power index: for
an N-point signal, the k-th harmonic twiddle power index
(HTPI in short) is a permutation of the N time indices from
0,...,N — 1. It corresponds to the sequence that a partic-
ular time index mapped on the ascending sorted powers of
twiddle factors W,..., WX ™! by the k-th harmonic.

For a simple illustration, given any 5-point signal, the first
harmonic twiddle power index (HTPI) is [0,1,2,3,4], the

second HTPI is [0, 3, 1,4, 2], and the third HTPI is [0, 2,4, 1, 3].

Take a closer look at the second HTPI: since Fz2(x[n]) =
Zg;ol z, W3F, we have Fa(x[n]) = z[0)W?2 + z[1]W2 +
z[2]WE + 2[3)WE + 2[4]WE = z[0)WE + 2[1]W2 + z[2] W3 +
z[3]W3 + z[4]W3. Sort by the power of W5, we have
Fa(x[n]) = z[0]W2 + z[3| W3 + 2[1]W? + z[4] W3 + 2 [2] W7.
The sequence of the time index [0,3,1,4,2] is the second
harmonic twiddle power index.

HTPI is always a permutation of 0, ..., N — 1 even if certain
harmonic does not use all powers of Wy for the calculation.
For example, let N = 4, F2(x[n]) = z[0]W? + z[1]W} +
T2]WG + 2[3]W] = 2[0]W3 + z[2]WQ + z[1]W] + z[3]W].
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The second HTPI is [0, 2, 1, 3] even though W} and W3 were
never used.

The relationship between the k-th harmonic of the original
signal and the first harmonic of the rearranged signal can be
concluded easily: any k-th harmonic of a signal (1 < k < N)
s equivalent to the first harmonic of the the original signal
whose time index be rearranged by the k-th harmonic twiddle
power indez.

Effects of Harmonic Twiddle Power Index

Each harmonic is the measurement of the corresponding fre-
quency component in the signal. The “shape” of a signal
determines the contribution of its harmonics. Intuitively,
very flat signal is dominated by the zero harmonic while a
signal with 2 cycles, or roughly 2 peaks, is the sign of sec-
ond harmonic dominance. The rearrangement of the time
indices will reshape the signal and thus redistribute the con-
tribution of its harmonics. However, a theorem discovered
by Parseval stated that signal’s total energy was preserved
under DFT [9].

3 lelnl? = = 3 el
n=0 k=0

Since SN |z[n]|? is invariant to the order of n, Parseval’s
theorem suggests that signal’s total sum of harmonic norms
is fixed regardless the arrangement of its time indices. The

(4)
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Figure 4: The rat kidney data set. (A) Idealized temporal gene expression profiles. The groups were named 1 through 5 based
on the timing of their peak expression during development. 7 time points were 13, 15, 17, 19 embryonic days; N, newborn; W,
1 week old; A, adult. (B) Visualization in parallel coordinates for the entire data set and each of the gene groups. Patterns of
genes in each group comply to the profiles depicted in (A). (C) Visualization under FFHP. Five gene groups were represented
by blue plus symbols, red circles, green triangles, magenta stars, and black cross symbols.

arrangement of time indices affects only the proportion of
each harmonic.

Harmonic equivalency suggests that higher harmonics can
be considered as a systematical “reshuffling” of the dimen-
sions rather than physically rearranging them. Figure 3
gives an insightful view of the effects of second harmonic
twiddle power index. A 25-point signal simulating cos(t)
on t = [0,4n] is depicted by a blue curve with circle marks
in Figure 3A. This signal has a dominant second harmonic
component (Figure 3B). Rearranging this signal by the sec-
ond harmonic twiddle index results in a signal resembling
cos(t/2) which is drawn as a red curve with star marks.
The most dominant component in this newly generated sig-
nal is the first harmonic. Figure 3C verifies this. Since
cos(t) = sin(t + 7 /2), the situation is similar for sin(t).
Figures 3B-C give a concise view of the contribution of each
harmonic in one signal. For a set of signals, we take the
histogram of such distribution to measure the harmonic dis-
tribution in this set. We call it the harmonic spectrum.

We have stated that points within substructure are likely
to map close to each other in the visualization. However,
overlapping may occur due to the “opposite cancellation” ef-
fect. Recall in Figure 1, each dimension value is sequentially
mapped onto the vector defined by the sequential powers of
the twiddle factor. A multiple cycle-liked pattern will cause
the dimension values mapped cancel each other. The first
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harmonic projection can minimize this “opposite cancella-
tion” thus maximize the separation.

We conclude this subsection with one more fact: due to sym-
metry, not all harmonic projections have a distinct layout.
In fact, half of them do not: Fi(x[n]) and Fn_x(x[n]) are
conjugate each other. In other words, they are symmetric
to the real axis, Fi(x[n]) = Fn_k(x[n]).

Higher Harmonic Projection Approach

Our visualization paradigm is finding two-dimensional point
characterization for a signal, in this case, discrete Fourier
harmonics. From the above discussion we conclude that ap-
plying first Fourier harmonic projection is more appropriate
if the proportion of the first harmonic is significant and if
possible, a canonical dimension ordering should be adopted
to make the first harmonic dominant.

There are situations where index order has to be fixed, such
as in a time series. Our approach uses in three steps: (1)
calculate the harmonic spectrum of the data set, (2) find
the dominant harmonic &, and (3) apply the kth Fourier
harmonic projection for the visualization.

4. RESULTS
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Figure 5: The Yeast-A data. (A) Visualization using first Fourier harmonic projection. Five temporal patterns are represented
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Figure 6: The detail of Yeast-A data. (A) Parallel coordinates for the 5 gene groups of the original data set. (B) The
harmonic spectrum of those gene groups in (B). (C) Parallel coordinates for the gene groups in (A) reordered by the second

harmonic twiddle power index. (D) The harmonic spectrum of corresponding gene groups in (C).

Data Sets for Visualization

Our approach was tested using three published array-derived
data sets. The rat kidney array data set of Stuart et al. [11]
contains measurements of gene expressions during rat kidney
organogenesis. The data were downloaded from
http://organogenesis.ucsd.edu/data.html. It consists of 873
genes which vary significantly during kidney development
at 7 different time points: gestational day 13, 15, 17, 19;
newborn (N); 1 week (W); and nonpregnant adult (A).
The yeast-A data set of Alter et al. [1] is the result of a
study of the yeast S. cerevisiae over two cell-cycle periods
at 7-min intervals for 119 min (18 time points). We used a
subset of 77 genes classified by traditional methods into five
cell-cycle stages (by the author): MyGl1, G1, S, SyG2, and
G2yM. The data set were downloaded from http://genome-
www.stanford.edu/GSVD /htmls /pnas.html.
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The yeast-B data set from the report of Cho et al. [4] is
about genome-wide characterization of mRNA transcript
levels during the cell cycle of the budding yeast S. cere-
visiae. It consists of 416 genes containing 17 time points.
Five groups of genes are reported by the author. The data
were download from http://171.65.26.52/yeast_cell_cycle/
cellcycle.html.

Rat Kidney Dataset

To illustrate the visualization under FFHP and the roles its
propositions played, we applied a 7-time point rat kidney
data set. There are 5 discrete patterns or substructures of
gene groups. Figures 4A-B show the idealized and actual
gene expression profiles. Figures 4C shows the visualization
under FFHP: colorized scatter plot reflecting the structure
of the data. There are 5 sets of colored symbols for each of
the 5 gene groups. Each symbol represents one gene across
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Figure 7: The Yeast-B data. (A) Parallel coordinates for the entire data set and each of the groups. (B) Visualization using
first Fourier harmonic projection. Five colored letters represent genes in each of the 5 groups. (C) Visualization using second
Fourier harmonic projection. (D) The harmonic spectrum reveals the dominance of the second harmonic.

7 time points. As proposition 6 suggested, genes from each
group are aggregated.

Two large clusters, symmetric to the real axis, are clearly
apparent from the visualization. Propositions of FFHP sug-
gest the reason of their formation. Groups 1 and 2 with
genes which have very high relative levels of expression in
early development are quite different from groups 3, 4, and
5 of genes that have a relatively steady increase in expres-
sion throughout development. Temporal profiles of groups
1 and 4 suggest that they are somewhat symmetric to the
middle time point (gestational day 19). By Proposition 4,
they should be mapped to points symmetric to the real axis.
On the other hand, groups 4 and group 5 are mapped closely
since they have similar profiles except for the significantly
up-regulated in the last time point. Similar arguments can
be applied to the case of group 1 vs. group 2, or group 3 vs.
group 4.

Yeast-A Dataset

When the first harmonic is not the dominant component,
applying FFHP may yield undesirable result. This is il-
lustrated in Figure 5A: overlapping occurred in the visu-
alization and the separation of different temporal patterns
was very poor. The harmonic spectrum in Figure 5C in-
dicated that the dominant component was the second har-
monic. Closer inspection of the temporal patterns in Figure
6A revealed that evenly spread 2-peak shapes were appar-
ent (especially in the first and fourth panel). This was the
signature of a signal dominated by the second harmonic.
The observation was confirmed by the harmonic spectrum
of those gene groups (Figure 6B).

Based on the harmonic spectrum, the second Fourier har-
monic projection was applied to the Yeast-A data set, shown
in Figure 5B. Compared with Figure 5A, the group separa-
tion improved significantly. Figures 6B-C gave an insightful
view of the “scene behind”. Recall in the previous section,
we have shown that applying the second harmonic projec-
tion is equivalent to applying the first harmonic projection
on the data set whose dimensions reordered by the second
HTPI. Figure 6C showed the Yeast-A data set with rear-
ranged dimensions (time points) by the second HTPI. Pre-
vious 2-peak shapes turned into 1-peak like shapes. This
was the sign of the first harmonic dominance. As confirmed
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in Figure 6D, the first harmonic indeed became much more
dominant.

Yeast-B Dataset

A similar situation occurs in Yeast-B data set. It exhibits
second harmonic dominant patterns shown in Figure 7A.
The harmonic spectrum graph (Figure 7D) confirms this.
As expected, second harmonic projection greatly improves
the gene group separation illustrated in Figures 7B-C.

Third Harmonic Projection

‘We conclude the experiments with a situation using the third
harmonic projection. A 17-time point synthetic data set is
generated which has 3 patterns (20, 30, and 25 data points
each). Figure 8A shows the data set in parallel coordinates.
Applying the first harmonic projection (Figure 7B), the vi-
sualization has noticeable overlapping. However, applying
the third harmonic projection, shown in Figure 8C, the sep-
aration is improved dramatically.

5. DISCUSSION

Dimension arrangement affects a large number of visualiza-
tion techniques. Previous work demonstrated that the de-
sirable condition for applying FFHP to achieve maximized
separation of substructures was when the data set had low
fluctuation — the first harmonic was the dominant compo-
nent. If possible, dimensions should be reordered to make
the first harmonic dominant.

Ankerst et al. have shown that the general problem of find-
ing the optimal one- and two-dimensional arrangement is
NP-complete [2]. In this paper, we propose using higher
Fourier harmonic projections to enhance visualization of time-
series. Our method can be viewed as a heuristic approach
for optimal dimension arrangement with a sound theoretical
basis even though dimensions are not physically moved.
The first harmonic projection (FFHP) does not require an
implicitly underlying assumption such that data set has some
periodicity. In fact, it works better when no such periodic-
ity exists. As long as patterns are relatively distinct, the
first harmonic is dominant, and with little noise, FFHP can
yield good visualization layout. Higher harmonic projec-
tions significantly improve the substructure separation when
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Figure 8: Synthetic data set. (A) Parallel coordinates for the entire data set and each of the groups. Data has 3 peaks
indicating third harmonic is the dominant component. (B) Visualization using first Fourier harmonic projection. Blue plus
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patterns are basically periodic. Even though the improve-
ments were not measured numerically, the visualization lay-
outs provided overwhelming evidence.

The results illustrate some of the weakness of Fourier har-
monic projections. When the data set has large number of
patterns, the sheer complexity of the data would make the
visualization difficult to interpret. In more complex situa-
tions such as a set of data is made of different experiments
and each experiment has a different time scale, or a subset
of the data is a time series and other subset are not, or data
are not necessarily measured in evenly separated time pe-
riod, directly applying FHPs may not produce satisfactory
results. More preprocessing steps are needed.
Two-dimensional visualizations under FFHP mapping are
identical to those of radial coordinate visualization tech-
niques, e.g., RadViz [7]. However, rather than the vector
notation and the spring paradigm of RadViz, substantive
reformulation of the mapping provides valuable theoretical
insights not only allows properties of the mapping to be eas-
ily derived but also offers possible extensions.

Our experiments demonstrated that Fourier harmonic pro-
jections offers an alterative format of visualization. We be-
lieve that using projections alone or combining with heat
plot or parallel coordinates would give biologist more power-
ful tools for analyzing and visualizing microarray data sets.
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Appendix: Proof of Proposition 5 and 6

Lemma 1.

N-1 2 N—1N-k—1
(Za"> Zan+2z Z Qi O+ k-
n=0 k=1 t=0
N-1
Lemma 2. Let j € N, then Z e i2min/N _

n=0
N-1 N-1

Z cos(2mjn/N) = Z sin(2mjn/N) = 0.

n=0

Lemma 3. FFHP is homomorphic: Fi(ax[n] + by[n]) =
aFi(x[n]) + b Fi(y[n]).

PROPOSITION 5 (TIME SHIFTING). Two data points that
differ only because they are “time-shifted” by d dimensions
relative to each other are mapped to the circumference of
the circle that is concentric with the unit circle and the an-
gle between the points in the visualization is ¢ = 2xd/N. If
yln] = x[n — d), then Fi(y[n]) = F1 (x[n]) Wi

Proof: Assume 0 < n < N,letl =n —d, thenn =1+d.
Whenn =0, = —dand whenn =N -1, =N —-1—-d.
From the formula in Eq. (2),
N-1—-d
Filyln]) = Filxn—d) = >
I=—d
N-1-d N-1-d

_ Z x[l]e—'ﬂﬂl/Ne—'ﬂﬂd/N:W(Iiv Z w[l]e—iZ‘nl/N

I=—d I=—d

m[l]efi2ﬂ(1+d)/N

i2nn/N _ i2n(n+N)/N 04 z[n] =

However, e z[n + NJ,

N—-1-d -1
Z x[l]eﬂ'%l/N Z .'L'[l + N] efi21r(l+N)/N
I=—d I=—d

+ Z :E[l] e*iZ‘lrl/N

1=0

Let t = [ + N for the first summation and ¢t = [ for the
second summation,

N—-1—-d N—-1
Z x[l]e—i%rl/N _ Z x[t]e_m”/N
1= t=N—d
N—-1-d
+ m[t]e—zZ‘lrt/N
t=0
N-1

Fi(x[n])
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Therefore, Fi(y[n]) = Fi(x[n]) W. ]
Definition 1. The mean of a signal x[n] is defined as T =
ZTI:’;OI z[n]/N. The k-th sample autocovariance coefficient

of a signal x[n] is defined as g, = ZN 1=k (z[n] — Z) (z[n + k] — F)/N.

go is called the variance of x[n]. The k-th sample autocor-
relation coefficient is defined as rx = gx/go.

PROPOSITION 6  (GENERAL DISTANCE). Let w[n] = x[n]—

y[n] be the difference between x[n] and y[n]. The distance
between F1(x[n]) and Fi(y[n]) is

1F1(wn])|* = goN (1 +2 2_: Tk cos(27rk/N)) .

k=1

Proof: From Eq. (2),

IF(wlnl)ll = (1Y wln]e ™|
n=0
N-1
= | w[n] cos(2mn/N) — iw[n]sin(2rn/N)||
n=0
N-1 N-1
Let w = 2m/N, by Lemma 2, we have Z cos(nw) = Z sin(nw) =
n=0 n=0

0. Now add a term @, the mean of w[n],

172 (wln])|?

N-1 2
E wln] sin(nw)

(£
)

<Z_: w] ]cos(nw) +

n=0
(Z (wln] —
n=0

+ <Z_: (w[n] — @) sin(nw)

n=0

W) cos(nw)

Expending each squaring term by Lemma 1,

Z (w[n] — @)?(cos? (nw) + sin®(nw))
N-1N-1—k
+ 2 > [(wlt] — @) (wlt + k] — B)Q
k=1 t=0

where Q = cos(tw) cos((t + k)w) + sin(tw) sin((t + k)w).
By trigonometry identity cos 6 cos ¢+sin 0 sin ¢ = cos(¢—80),
we have Q = cos(kw). Now

|F1(wln])||> = i (wln] - @)*
n=0
N—1N-1-k
+ 2 z Z [(w[t] — W) (w(t + k] — @) cos(kw)]
k=1 t=0
= N(go+2 i gk cos(kw))
k=1
= goN (1 +2 i Tk COS(QW’?/N)> :
k=1
O
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