A New Approach to Protein Structure Mining and
Alignment’

Hongyuan Li, Keith Marsolo, Srinivasan Parthasarathy and Dmitrii Polshakov f
The Ohio State University
Columbus, Ohio, USA

1i.274@osu.edu, {marsolo,srini}@cse.ohio-state.edu, dpolshak@chemistry.ohio-state.edu

ABSTRACT

One of the largest areas of focus in bioinformatic and data
mining research has been on the protein domain. These
research efforts have included protein structure prediction,
folding pathway prediction, sequence alignment, ab initio
simulation, structure alignment, substructure detection and
many others. In this work, we deal with substructure detec-
tion and sequence alignment. Substructure detection is gen-
erally defined as the mining of a molecule’s 3D structure in
order to find interesting/frequent domains. Sequence align-
ment involves determining the similarity of two (or more)
protein molecules based on the how well their amino acid
sequences “match.” There are potential pitfalls when trying
solve both of these problems, however. In the case of sub-
structure mining, focusing solely on structural information
can lead to the discovery of biologically irrelevant substruc-
tures. With sequence alignment, the alignment results can
vary greatly, depending on the substitution matrix used. In
this paper we describe a method that combines the ben-
efits of both substructure mining and sequence alignment
in an attempt to determine the similarity between protein
molecules. In the absence of biological information, our work
will quickly and efficiently mine a protein molecule in order
to determine frequent local structures. With the addition
of biological sequence information, however, our algorithm
provides a way to align proteins with similar local struc-
tures and sequence, yielding a global alignment between
molecules. We present a novel structure mining/alignment
algorithm as well as some additional work into a new cluster-
ing metric for amino acids based on several different physio-
chemical properties. This metric is used with our alignment
algorithm in order to provide a mechanism for globally align-
ing protein molecules.
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1. INTRODUCTION:

With the ever-increasing power and storage capacities of

computers comes the ability to process larger amounts of in-

formation. Through endeavors such as the Human Genome

Project [36] and the Sloan Digital Sky Survey [41], the amount
of potential data has increased exponentially, to the point

where new techniques are needed to analyze and compre-

hend it. One of the fastest-growing areas in computer sci-

ence is that of data mining, or the process of deriving useful

relationships and patterns from large stores of data. Data

mining has been increasingly applied to problems in the sci-

entific domain, especially bioinformatics, which involves the

application of data mining techniques to biological datasets.

One of the richest research areas in bioinformatics has been

in the protein domain. Proteins are often studied because

they play an important role in a countless number of biolog-

ical processes, yet there is still a great deal about proteins

that is not understood. For instance, a protein can fold

spontaneously and reproducibly into a three-dimensional struc-
ture when placed into aqueous solution. This transformation
occurs in a fraction of a second, yet researchers still have not
been able to determine the exact sequence of steps that cause
a protein to fold. It is known that a protein’s amino acid
sequence uniquely determines its three-dimensional struc-
ture and that this structure influences the protein’s biolog-
ical function. Thus, if two proteins share a similar struc-
ture, they may have a similar biological function. While
researchers have found that sequence influences structure,
they have not yet determined the exact nature of the link
between the two.

Substructure detection involves the mining of a protein’s
three-dimensional graph in order to find “interesting” (or
possibly just frequent) structural motifs [4-6,9, 12, 18, 25,
30,33,43]. By determining whether an previously unclassi-
fied protein contains certain structural motifs, one can make
inferences as to the role it might play biologically. The prob-
lem with substructure detection algorithms is that the anal-
ysis methods are often quite complicated and require large
amounts of time, memory, and computational resources to
execute. With protein sequence mining, there has been a
great deal of success in determining the similarity between
proteins based on their amino acid sequence, yet through
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evolution, it is possible for a protein’s sequence to mutate.
These mutations may not have any influence over a protein’s
structure or function, yet may lead to false notions of sim-
ilarity between molecules. As a result, one would like to
create a program that is able to combine the best of both
worlds: have the ability to find interesting structural motifs
within a protein, and then, using those motifs and a pro-
tein’s amino acid sequence, construct an alignment between
proteins that can be used to determine the similarity be-
tween molecules. In this paper we present work that is able
to provide such functionality. By adding domain-specific
extensions to a previously developed substructure mining
algorithm [7,8,29,37] our work makes the following contri-
butions to research in the protein domain:

1. The ability to quickly and efficiently find local sub-
structures within a protein molecule.

2. With the inclusion of biological sequence information,
the ability to align local substructures to determine a
global alignment between protein molecules.

3. The incorporation of a new classification for amino
acids based on physio-chemical properties that allows
for partial matching and partial alignment between
molecules.

2. RELATED WORK AND BACKGROUND

2.1 Sequence Alignment

The idea of using alignment to determine protein similarity
is not a new one. Programs like BLAST [15] and its re-
finements PSI-BLAST and gapped BLAST [16] have been
used to align proteins based on their amino acid sequence.
With the completion of the Human Genome Project [36] and
other genome mapping initiatives, there is obviously a great
need for such an alignment method. However, the number of
new protein structures is growing enormously as well. The
Protein Data Bank (PDB) [3] currently holds over 22,000
protein structures and is growing by almost 4,000 structures
every year.

Much information about the structure of proteins can be
found in the Structural Classification of Proteins (SCOP)
database [34]. The SCOP database provides ”a detailed
and comprehensive description of the structural and evolu-
tionary relationships of proteins,” including information on
a protein’s secondary and tertiary structure. This informa-
tion is derived by the visual inspection of the proteins in
the PDB. The SCOP database is arranged into four differ-
ent hierarchical levels: Class, Fold, Superfamily and Family.
Proteins in the same Class share similar secondary struc-
ture information, while proteins within the same Fold have
similar secondary structures that are arranged in the same
topological configuration. Proteins within the same Super-
family show clear structural homology and proteins within
the same Family exhibit a great deal of sequence similarity
and are thought to be evolutionarily related.

2.2 Structure Alignment

There have been a number of methods proposed to compare
protein structures. Some methods compare the secondary
structures of the proteins; others try to align proteins based
simply on their backbone configuration. A number of public
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tools exist that provide some type of alignment/similarity
function, including DALI, STRUCTAL and LOCK. A brief
description of each follows.

DALI [21] is based on the alignment of two-dimensional dis-
tance matrices, with the matrix values representing the dis-
tances between the C, atoms of a protein. The algorithm
attempts to find patterns of similar distances within two
matrices. These patterns are combined with the intention of
maximizing the number of atoms and minimizing the root
mean square distance (RMSD) between them. DALI also
uses a Monte Carlo optimization [32] to prevent the algo-
rithm from quickly reaching a local minimum.

The STRUCTAL [17] algorithm uses an iterative dynamic
programming [2] approach to align two proteins. The prin-
cipal behind the algorithm is to minimize the RMSD be-
tween two protein backbones. First, the distance between
all C, carbons is computed. These distances are converted
into a scoring matrix. Standard dynamic programming is
employed to compute the optimal alignment of the two pro-
teins. Since the solution to this algorithm depends heavily
on the starting alignments of the two proteins, several dif-
ferent starting configurations are used.

LOCK [39] attempts to align proteins by using hierarchical
structure superposition. A protein is decomposed into its
secondary structures, which are represented as a series of
vectors. A scoring matrix is created based on the vectors
of the two proteins being aligned. Dynamic programming is
then used to find the best local alignment between the vec-
tors. Next, the algorithm attempts to iteratively minimize
the RMSD between pairs of nearest atoms. Finally, a core
of well-aligned atoms is created and the algorithm attempts
to minimize the RMSD of the core.

2.3 Substructure Analysis

Discovering important structures in molecular datasets has
been the focus of many recent research efforts in scientific
data analysis [4-6,9,12,18,25,30,33,43]. These efforts have
targeted substructure analysis in small molecules, material
defect analysis in molecular dynamics simulations, and more
recently in macromolecules such as proteins and nucleic acids
[21, 24, 46].

Several methods for secondary level motif finding in pro-
teins have been proposed in the past. An algorithm based
on subgraph isomorphism was proposed in [33]; it searches
for an exact match of a specific pattern in a database. The
search for distantly related proteins using a graph to rep-
resent the helices and strands was proposed in [25]. An
approach based on maximally common substructures be-
tween two proteins was proposed in [18]; it also highlights
areas of structural overlap. SUBDUE [9] is an approach
based on Minimum Description Length for finding patterns
in proteins. Another graph based method for structure dis-
covery, based on geometric hashing, was presented in [43].
Recent work on graph data mining is also related to this
effort [9, 18,2527, 33,43,45].

2.4 MotifMiner Toolkit

Our own attempts at substructure detection have resulted
in the development of an extensible prototype toolkit, Mo-
tifMiner [7,8,29,37], that detects frequently occurring struc-
tural motifs. We have conducted a fairly in-depth evalua-
tion of MotifMiner on various datasets, from pharmaceu-
tical data [7], to tRNA data, to protein data (from the
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PDB) [7,37] to data obtained from molecular dynamics sim-
ulations [6]. As stated previously, MotifMiner was designed
to be extensible and here we present several extensions to the
toolkit, some domain-neutral, others targeted specifically to
proteins.

3. ALGORITHMS

The work described here is based on the MotifMiner project
introduced in Section 2.4. A discussion of the general algo-
rithm can be found in Section 3.1. Several basic extensions
to the MotifMiner toolkit have been implemented and are
presented in Section 3.2. A number of domain-specific con-
straints for the mining and alignment of proteins have also
been developed. They are discussed in Section 3.3.

3.1 Background

MotifMiner represents the interaction between a pair of nodes
A; and A;, as a mining bond. A node can be an atom, an
amino acid, a secondary structure, etc., depending on the
resolution desired. A mining bond M (A;A;) is a 3-tuple of
the form:

M(A;A;) = {Astype, Ajtype, AttributeSet(A;, A;)}

The information contained in AttributeSet(A;, A;j) can vary
depending on the resolution of the structure being repre-
sented. For instance, if the resolution of the structure is
at the atomic level, AttributeSet(Ai, A;) could contain the
distances between atoms A; and A;. At the secondary struc-
ture level, AttributeSet(A;, A;) might contain the secondary
structure type (a-helix or S-sheet), the number of residues
within the secondary structure and so forth. Using the above
definition, a k-nodeset is a substructure containing k con-
nected (within a user-specified range) nodes, and is repre-
sented as:

X = {SX7A17A27 .- 'aAk}v

where A; is the i** node and Sx is the set of mining bonds
describing the nodeset. By defining pairs of nodes with min-
ing bonds, the graph is completely represented, such that
two nodesets X and Y are considered to be the same sub-
structure if Sx = Sy. Since we only deal with atoms in
this work, we will refer to nodesets as atomsets. In addi-
tion, atomsets with a similar set of mining bonds are said
to belong to the same atomset family, or motif.
Additionally, MotifMiner uses the following principles to
generate frequent substructures: 1) Range pruning to limit
the search for viable strongly connected sub-structures, 2)
Candidate pruning [1], for pruning the search space of possi-
ble frequent structures, 3) Recursive Fuzzy Hashing for rapid
matching of structures (to determine frequency of occur-
rence), and finally 4) Distance Binning and Resolution to
work in conjunction with recursive fuzzy hashing to deal
with noise in the input data.

Range pruning and candidate pruning reduce the candi-
date search space, thereby reducing the memory footprint
and significantly improving the scalability of the algorithm.
The biological motivation behind range pruning is that even
though molecules are made up of atoms that interact with
one another, there is only a finite distance over which such
an interaction can occur. At a larger distance, the inter-
action between two atoms is essentially negligible and two
atoms can be considered independent. As a result, by hav-
ing a user-specified range parameter, it is possible to cut
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1. Prune infrequent atoms (1-atomsets)
2. Generate candidate 2-atomsets

from frequent atoms
3. Prune infrequent 2-atomsets
4. k=3
5
6

. while (| frequent k-atomsets |> 0)
Generate candidate k-atomsets
from frequent (k-1)-atomsets
Prune infrequent k-atomsets
k=k+1

Figure 1: Local substructure discovery algorithm

down on the number of potential atomsets.

Recursive fuzzy hashing, which is similar in principle to ge-
ometric hashing [28, 44], was designed to efficiently handle
noise effects in data [37]. The idea behind distance binning
and resolution is the data mining principle of discretiza-
tion [13]. The raw Euclidean distance between two atoms is
discretized by binning; This task is accomplished by choos-
ing a resolution value and dividing the inter-atom distance
into equi-width bins based on this value, represented effi-
ciently as bits in the mining bond. Binning of the data
simplifies calculations and helps MotifMiner handle minor
fluctuations in distance.

As shown in Figure 1, atomsets of size (i+1) are derived by
combining two frequent atomsets of size i that differ by one
atom. Once an atomset has been generated, its frequency is
determined using the following metrics:

o atomsetSupport- The number of atomsets in the atom-
set family.

e coverRate- The percentage of molecules that contain
at least one atomset from the atomset family.

The minimum support thresholds for both parameters can
be specified by the user.

3.2 Basic Extensions

In this section we present several basic improvements to
the original MotifMiner algorithm. These extensions are
domain-independent and can be applied to bio-molecular
data of any type. These extensions were borne out of exper-
imental testing of the original MotifMiner algorithm. They
represent ways to improve both the running time and the
quality of the results.

3.2.1 Variable Resolution

In the original version of MotifMiner, the resolution param-
eter is used to handle noise in the input data. One drawback
with resolution in the original version is that the parameter
is not flexible and cannot handle modulation in structure.
The differences between two substructures can be very small
in the short range, but as the substructures become larger,
those differences are accumulated and magnified. Thus, the
resolution is now variable. As the distance between two
atoms increases, so does the resolution. This allows for the
identification of larger similar structures. Figure 2 shows
an example of this principle. With a sliding resolution, it
is possible to identify an a-helix and a smaller helix from
a helix-bundle as similar. Without variable resolution, the
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Figure 2: The twisted a-helices found in 1A02_J and 1A02_F
(subunits of nuclear transcription complex).

1. Generate candidate atomset A

2. If atomCounts < minLinkage then
3. Vatomsi€ A

4. Y atoms j € A (j # 1)

5. if dist(atom i, atom j) > Range then
6. discard A

7. Else

8. Vatomsi€ A

9. Y atoms j € A (j # 1)

10. count = count + 1

11. if count < minLinkage then
12. discard A

Figure 3: Local Structure Linkage Algorithm

bend in helix on left would have prevented it from being
matched with the helix on the right.

3.2.2 Boundary Conditions

Another potential problem when dealing with noise in the
input data is the handling of boundary conditions. For in-
stance, if the range is specified to be 5A, and the distance
between two atoms % and j is 4.99A, a mining bond will be
created between the atoms. If the distance between them is
5.01A, however, no bond will be created, which can cause
problems when trying to determine substructure frequency.
As a result, a mining bond will be created when the distance
between two atoms is just over the range value.

3.2.3 Local Structure Linkage

The notion behind Local Structure Linkage is that an atom-
set should contain a minimum number of “close” points.
In this case, “close” means that the distance between two
atoms is less than the user-specified Range value. The min-
imum number of points is a user-specified parameter desig-
nated minLinkage. In most experiments, minLinkage was
set to four.

The Local Structure Linkage algorithm is presented in Fig-
ure 3. The effect of the algorithm is to ensure that every
atom in an atomset is within a distance Range of at least
minLinkage atoms. Additionally, Local Structure Linkage
makes use of another parameter: initialRange, where
initial Range < Range (see Figure 4). The effect of ini-
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1. V atomsets A with atomCount = 2:

2. for atoms i,j € A (j # 1)

3. if dist(atom i, atom j) > initialRange then
4 discard A

Figure 4: Effect of initialRange Parameter

Figure 5: Examples of 6-atom local structures. Left, an
unspecified local structure. Middle, partial a-helix. Right,
partial anti-parallel 8-sheet. Each of these three substruc-
tures occurs more than 100 times among the 23 molecules.

tialRange is to guarantee that each atom has at least one
close neighbor and to eliminate many meaningless substruc-
tures. The results of an experiment testing the minLinkage
algorithm are shown in Figure 5. Twenty-three molecules
from each of the four major SCOP [34] fold classes (5-a,
7-B, 6-a + B, 5-a\B) were mined looking for substructures
with a minimum coverage of three molecules (a coverRate of
13%). Several substructures were found and are presented
in Figure 5.

3.3 Domain Constraints

One of the most important contributions of this work is the
incorporation of domain constraints into the original Mo-
tifMiner algorithm. Recall that MotifMiner was intended to
be a general framework that could be used across multiple
domains. By incorporating domain constraints, [35,40], it is
possible to increase the utility of the original framework.
Such constraints enable the researcher to interrogate the
data while incorporating specific domain knowledge in the
process. We have identified several such constraints which
are described below.

3.3.1 Abstraction Using a-carbons

All proteins contain a backbone that is formed by peptide
bonds. This substructure is very frequent and generates a
number of trivial atomset families. Using the a-carbon of
the amino acid as an abstraction of the peptide bond is a
good way to reduce the number of atoms that need to be
examined and enhance the speed of the algorithm. We do
lose information about the chemical linkage of the peptide
bond with such an abstraction, but compensate for the loss
by including information about the amino acid sequence.

3.3.2 Sequence-based Pruning of Motifs

We also incorporate domain constraints that integrate se-
quence information. This has useful possibilities for the
alignment of two proteins and also results in the detection of
biologically relevant motifs. Specifically, the algorithm has
an option wherein candidate atomsets can be pruned based
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on the relative sequence ordering of the atomsets. In terms
of implementation, this constraint is relatively straightfor-
ward. In addition to the mining bond information, informa-
tion about the sequence order is maintained in the Attribute-
Set parameter of the mining bond. When two substructures
are compared, we first compare the relative sequence or-
dering and then match the substructures. We demonstrate
the use of this constraint in our global alignment algorithm
(Section 3.4).

3.3.3 Approximate Matching of Amino-Acids Based
on Physio-Chemical Properties

As an additional extension, we now support approximate
sequence matches where a particular amino acid is replaced
by a label that represents amino acids which share similar
physio-chemical properties (hydrophobicity, helical propen-
sity, etc.). To implement this feature, we used a multi-
dimension description of the amino acid space that included
a large number (243) of physio-chemical properties that were
collected from a number of different sources. In addition, we
extended that list of physio-chemical properties with prop-
erties obtained from quantum chemical calculations. We
used the Gaussian 98" program to compute properties such
as ground state energy, dipole moment, and vibration fre-
quency for all 20 amino acids.

To reduce the inherent redundancy in the physio-chemical
property space, we relied on the technique of multi-scale
analysis [42]. This method involves the multi-dimensional
scaling of the high-dimension physio-chemical property space

to a lower dimensional space using a PCA-style reduction [23].

We found that the first five Eigenvectors sufficed to cap-
ture more than 95% of the total inertia of the data. Fig-
ure 6 shows the projection of the amino acids on the first
two principal-component dimensions (left), and the first and
third principal-component dimension (right). After comput-
ing the eigenvectors, we used the K-means clustering algo-
rithm [31] to group amino acids by Euclidean distance in 5D
space. The result of clustering is shown in Table 1.

Some of the clusters in Table 1 are similar to the results
found in [42]. When K=4, for example, residues I, V, L, F,
and M fall into the same cluster. This cluster consists of
hydrophobic amino acids. The cluster of amino acids W, Y
and C consists of polar residues. At high K values (K >5)
this cluster separates into two, one of which contains just
the aromatic residues W and Y. Another noticeable cluster
found in several different levels contains the small residues
N, D, S, T, G and P. As shown in Table 1, residues G and
P always fall into the same cluster. This result agrees with
experimental observation, as it is known that residues G
and P play an important role in the determining the 3D
architecture of a protein [38]. They are frequently located
in the linkage between secondary structures; for example,
between two a-helices or between an a-helix and a S-sheet.
To model the cost of a replacement we use the following
principle, depending on whether a coarse-grained or fine-
grained cost model is desired. For a coarse-grained level, the
cost of a replacement is 1 if two amino acids are in different
clusters and 0 if they are in the same cluster. At a more
fine-grained level we simply use the distances between amino
acids in the scaled dimensional space to quantify the cost of
replacement. A user-specified threshold determines whether

Yhttp://www.gaussian.com
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1. Generate i-atomsets using the local substructure
discovery algorithm and a coverRate of 100%
2. If there exists any ambiguity among atomsets then
3. Increment 4, go to step 1 and repeat until
the ambiguity is resolved.
4. Else
Begin alignment.

Figure 7: Ideal Alignment Preprocessing

1. Generate i-atomsets using the local substructure

discovery algorithm and a coverRate of 100%.
2. If there exists any ambiguity among atomsets then
3. If out-of-memory then
4. Force alignment.
5. Else
6. Increment 4, go to step 1 and repeat until

the ambiguity is resolved or out-of-memory.
7. Else
Begin alignment.

Figure 8: Modified Alignment Preprocessing

a replacement or a series of replacements in a structure is
acceptable or not.

3.4 Global Alignment

The most significant contribution of this work is the devel-
opment of a global alignment method that aligns protein
molecules based on their structure as well as their sequence.
The alignment algorithm works by generating frequent lo-
cal substructures and then, starting with the largest local
structures discovered, attempts to assemble an alignment
between two molecules.

Alignment Preprocessing

Before the global alignment of two molecules can occur, sev-
eral preprocessing steps must be taken, starting with the
generation of local substructures. A high-level presentation
of the preprocessing steps is given in Figure 7.

In the ideal case, the substructure generation algorithm would
be able to execute as shown in Figure 7. In practice, how-
ever, the number of frequent atomsets is usually very large,
often to the point where they do not all fit into memory.
When this occurs, we say that the local substructure dis-
covery algorithm is out-of-memory. As a result, we must
modify the preprocessing steps we take before the alignment
can begin. The modified algorithm is shown in Figure 8.
In the algorithms presented in Figures 7 and 8, the term
ambiguity is used to denote when there are atomsets from
each molecule that belong to the same atomset family but
do not contain exactly the same types of atoms (this can
occur due to recursive fuzzy hashing). Thus, it is possible
for a single atom in an atomset to align with multiple atoms
in the other atomsets in the family. For example, given the
4-atomset families shown in the top table of Table 2, there
is ambiguity when aligning atom D. It can align with either
atom D’ or atom E.

In order to solve this problem, the substructures at the next
level are generated to see if they resolve the ambiguity. Since
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Figure 6: Multi-scale projection of amino acids on Components 1 and 2 (left) and Components 1 and 3 (right).

K]

Clusters |

2 {A7R1N7D7Q1E7G1H7K1P7S7T}{C7I7L1M7F7W7Y7V}

{A1R7Q7E!H7K}{N’D1G7P)S7T}{C7I’L7M)F7W7Y’V}

{AR,QEHK}HN,D,GPSTHCW,YH{ILMF,V}

{AEHR,QHKHN,D,G,PS,THC,LLMFE,VH{W,Y}

{AEHR,QHK}HN,D,S, THC,LLMF,VHG,PHW,Y}

{AEHR,QHKHN,D,S, THCOHG,PHLLM,F,VH{W,Y}

Q| | O O x| W

{AEHR,QHK}HN,D,S, THCHG,PHLM,VHLFH{W,Y}

Table 1: K-Means clustering of amino acids based on multi-dimensional scaling

| Family 1 | Family 2 |

ABCD ABCD

A’B’C’D’ A’B,C,E’
Level 4

ABCDF
A’B’C’D'F’
Level 5

Table 2: Ambiguity between Families. In the 4-atomsets,
atom D can possibly align with atoms D’ and E. By growing
the atomsets to the next level, the ambiguity is resolved.

the atom sequences of Family 2 differ, it will not be expanded
at the next level. The atomsets of Family 1 will be used in
the next level, however. After the next step of the the sub-
structure discovery phase, suppose Family 1 now contains
the atom sequences shown in the bottom table of Table 2.
There is no longer any ambiguity. D can align with D’ and
F will align with F’. In this manner, the ambiguity is re-
solved. As shown in Figure 8, the alignment preprocessing
algorithm runs until there are no ambiguous substructures
between the molecules or until the program runs out of mem-
ory, whichever comes first. Once this point is reached, the
assembly of the alignment between the molecules can begin.

Initial Alignment Assembly

When the alignment preprocessing algorithm finishes, we are
left with two possible cases. In the first case, the algorithm
is able to finish without any ambiguity among the atom-
sets. When this occurs, all of the atomsets at the highest
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level reached by the substructure generation algorithm (i.e.
the largest frequent substructures discovered) are used as
the basis for the starting alignment. This is considered to
be normal assembly. The other case occurs when the algo-
rithm runs out of memory before resolving all of the ambigu-
ities between atomsets (i.e. atomsets contained in the same
atomset family do not have exactly the same atom types).
When this occurs, the algorithm is said to start with forced
assembly. Before assembling the alignment, the algorithm
attempts to find the atomset families that have the fewest
conflicts with the other atomset families at the same level (in
this case, the highest level reached by the substructure gen-
eration algorithm before running out of memory). The total
number of conflicts is defined as the number of sequence
conflicts between atomsets in the same family. For example,
suppose an atomset family contained the 3-atomsets ABC
and ABD. This family would contain one conflict: the con-
flict between atoms C and D. Given the family of 3-atomsets
ABD and AEF, there would be two conflicts: atoms BD and
atoms EF. The algorithm attempts to find the atomset fam-
ilies with the smallest number of conflicts and use them as
the starting alignment.

Alignment Assembly

Once the initial alignment has been determined, the align-
ment assembly can begin. Suppose that the largest substruc-
tures found by the initial alignment algorithm are of size n.
The assembly algorithm examines the atomsets at level n-1
and determines whether there are any conflicts (using the
measure of conflict defined above) between those atomsets.
If there are, the alignments with fewer conflicts are given a
higher priority. Any candidate atomset (i.e. non-conflicting
or a conflicting with a high priority) at this new level is
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[y

Determine the initial (existing) alignment from
level-n atomsets.
n=n-—1.
while n > minLevel
Determine conflicts among level-n atomsets.
Remove any atomset that conflicts with
the existing alignment.
6. Merge any remaining atomsets with
the existing alignment. The resulting
set becomes the new existing alignment.
7. m=n-1
8. Return the set of atomsets as the
global alignment.

Gl N

Figure 9: Alignment Assembly Algorithm

checked against the existing alignment (i.e. the larger atom-
sets). If there is any conflict between the candidate atom-
set and an atomset in the existing alignment, the candidate
atomset is removed. Once this step has completed, all of
the remaining candidate atomsets are added to the existing
alignment. The algorithm then examines the atomsets at
the next lower level. These steps repeat until the algorithm
reaches a lower limit of potential atomset size that is speci-
fied by the user. A pseudo-code description of the algorithm
is shown in Figure 9.

4. VALIDATION

In the following examples, we present the results of several
experiments that serve as a preliminary validation of our
global alignment algorithm.

4.1 Alignment of FHA Domains

The FHA domain is a phospho-protein binding domain. It
was originally identified using sequence alignment [20]. How-
ever, FHA domains have very few conserved residues (only
three residues are completely conserved) and sequence align-
ment only detected the core region. Later, after the struc-
tures of FHA domains were solved, the full domain was
demonstrated to cover a much larger region than the core
region. We used our global alignment to align the proteins
Radb3 and Chk2. The aligned result is very similar to those
obtained through manual alignment [14]. The results are
shown in Figure 10.

4.2 ,tb\l_ignment of Sequentially Distinct Pro-
eins

Pair-wise structural alignment generates a number of pos-
sible sequence alignments that are very hard to align using
just a scoring matrix. To give one example, we found that
proteins pdbla2y_B and pdbladj L give an alignment of 49
a-carbons. These corresponding residues have a very sim-
ilar substructure (Figure 11, top). The resulting sequence
alignment of the substructure is shown in Figure 11, bottom.
We attempted to align these proteins based on sequence in-
formation only, using the scoring matrices BLOSUM 62 [19]
and PAM 250 [10,11]. Neither scoring matrix was able to
give a clear result, however (Results omitted due to space
constraints).

Sequence alignment has two major difficulties: How to choose
scoring matrix and how to estimate gap cost. These two
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Figure 10: Structural alignment of two FHA domains.
FHA1 of Rad53 (left) and FHA of Chk2 (right)

74 pdblaZy B

2-VOLOES M SLST TCTVSAVNWVRQPEGKGLEWLiMARLSI SEMVELFMN T ARYYCARMYWGOGT TL- 112
113_pdbladi_L

2-LVMTQT*QASI SCRES* LHWYLORPEOS PKLLﬁYAEE‘SGSGAE‘TLKISALGVYE‘CSQATFGGGTKL— 108

Figure 11: Sequence alignment of pdbla2y B and pdbla4j_L
” ” indicates one space, ”"” indicates more than 2 spaces

problems no longer exist in structure-aided sequence align-
ment. We can give solid parameters to control the similari-
ties of the structures and if there is any gap in the sequence,
it is omitted by structure alignment. Thus, structure is
more conserved than sequence since all amino acids share
the backbone structure.

4.3 Alignmentusing Physio-Chemical Proper-
ties

Since the structural alignment algorithm in this paper uses
a-carbons only, the side chain information is ignored to
some extent. In many proteins, however, the side chain
plays an important role in their activity. Adding amino acid
constraints helps defray this loss and such constraints will
also help identify residues that contribute more than just
backbone linking in structure. Fewer a-carbons need to be
aligned which usually speeds up the program.

As a final example, in Figure 12 we show the results of align-
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| Cluster | # Proteins | Function |
1 23 Antibodies
2 11 Hydrolases
(mainly serine proteases)
3 7 Transferases
(mainly kinases)
4 6 Oxygen Transport
(including heme proteins)
5 5 Oxidoreductase
(Dehydrogenease)
5 5 Haloperoxidase

Table 3: Top six protein clusters based on the alignment of
312 non-redundant proteins and an alignment threshold of
at least 56 atoms

ing two calcium-binding proteins, 1AHR and 5CPV, with
the inclusion of physio-chemical properties (amino acid con-
straints) and without. Our alignment was comparable to
one obtained through DALI and it should be noted that we
able to verify the existence of the calcium-binding site in our
results.

4.4 Alignment-Based Clustering

As an experimental test of our alignment algorithm, we ran
an all-against-all alignment of 312 non-redundant (sharing
less than 20 amino acids in sequence) proteins and then clus-
tered the results based on the number of atoms that can be
aligned between the molecules. We set an alignment thresh-
old of 56 (meaning at least 56 atoms can be aligned between
the molecules) and were left with 218 clusters. Most of the
clusters contained a single protein molecule, however there
were several clusters that contained multiple proteins, and
even more striking, the cluster proteins showed functional
similarity in addition to their structural similarity. The clus-
ters containing more than five proteins are shown in Table 3.
As mentioned above, the dataset uses only non-redundant
proteins. Thus, most of the closely related proteins are re-
moved from the dataset. However, antibodies are generated
through gene shuffling, which leads to large sequence di-
versity. The clustering results shows that these antibodies,
though different in sequence, still share structural similarity.

4.5 Comparison with DALI

In this work we present a new method for the alignment
of protein molecules based on local substructures as well as
sequence information. There are a number of other publicly-
available protein alignment methods that work based on
structure, DALI being one of the most popular. We reran
several of our experiments using DALI and DaliLite (a stand-
alone version of the DALI Server) [22] to see how our re-
sults compared to the results returned by those programs.
We found that our results were comparable to what was
returned by DaliLite, differing by only a few amino acid
residues at most. Aligning proteins pdbla2y B and pdbla4j_L
(discussed in Section 4.2) with DaliLite yielded the same
amino acid sequence that our program found (Figure 11,
bottom). In addition, the running time of our algorithm
was equivalent to the running time of DaliLite (or faster).
Our algorithm runs in a completely different fashion than
DALI (and DaliLite), so it is difficult to compare running
times. DALI works by computing a pair-wise distance ma-
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trix for each protein and then uses a Monte Carlo optimiza-
tion procedure to try and minimize the distance between
the matrices. The resulting alignment is returned as the
best alignment between proteins. Our algorithm works by
mining local substructures and then using the underlying
sequence information to determine conflicts between struc-
tures. Structures that do not conflict are aligned. Those
that do are not. It is interesting to note that although both
methods are orthogonal in nature, they produce consistent
results, provided that we do not include physio-chemical
properties. When we do include such properties, we achieve
results that, while more concise, still retain their biological
relevance.

5. CONCLUSIONS

In this work we present extensions to MotifMiner that al-
low for the efficient detection of substructures in protein
molecules using both biological and structural information.
These extensions enable us to detect substructures that vary
due to the noise inherent in protein data and to approximate
a molecule’s amino acid sequence based on varying physio-
chemical properties. We have tested our algorithm against a
well-established structural alignment tool, DALI, and found
that our work performs favorably, even providing some ben-
efits not available in DALI. One benefit that our algorithm
has over DALI is that we are able to handle the chirality
inherent in some protein molecules. Chirality refers to the
“handedness” of a protein. By only dealing with pair-wise
distances, DALI is not able to distinguish between chiral
proteins. Our algorithm can make such a distinction. In
addition, we have the ability vary the physio-chemical prop-
erties in our cost analysis. With further testing, we hope to
provide more examples as to the usefulness of our algorithm
as well as a statistical metric that can be used to determine
the quality of the results returned by our program.
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