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ABSTRACT

A novel method is presented for the prediction of protein
subcellular localization from sequence using Fourier analy-
sis and support vector machines. To extract the features of a
protein sequence, each amino acid is replaced by a value rep-
resenting its scale of hydrophobicity and then a fast Fourier
transform is applied to the numerically encoded sequence.
The transformed sequence data are then used as the input
for the training of support vector machines to predict sub-
cellular localization. The motivation for this method of en-
coding resides fundamentally on (1) the fact that period-
icities are critically important factors in protein structure
and (2) the ability of this method to capture information
about long-range correlations and global symmetries which
are completely missed by approaches based on global amino
acid composition. Our method is evaluated against the in-
tegrated system PSORT-B for the prediction of subcellular
localizations of proteins in Gram-negative bacteria. It is
demonstrated that the new method outperforms PSORT-B
in prediction for the inner membrane, the outer membrane,
and extra cellular localizations in a 5-fold cross-validation.
It is expected that integrated systems such as PSORT-B
may benefit from inclusion of the advanced individual pre-
dictor presented in this paper.
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1. INTRODUCTION

Advances in proteomics and genome sequencing are generat-
ing enormous numbers of genes and proteins. The develop-
ment of automated systems for the annotation of protein
structure and function has become extremely important.
Since many cellular functions are compartmentalized in spe-
cific regions of the cell, subcellular localization of a protein
is biologically highlighted as a key element in understanding
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its function. Specific knowledge of subcellular localization
can inform and direct further experimental studies of pro-
teins.

Several methods and systems have been developed during
the last decade for the predictive task of protein localization.
Machine learning methods such as Artificial Neural Net-
works, the k-nearest neighbor method, and Support Vector
Machines (SVM) have been utilized in conjunction with var-
ious modalities of feature extraction from protein sequences.
Most of the early approaches employed the amino acid com-
position and the di-peptide frequency [7; 13; 26] to rep-
resent sequences. This method may miss the information
on sequence order and the inter-relationships between the
amino acids. In order to overcome this shortcoming, it has
been shown that motifs, frequent-subsequences, and func-
tional domains, which are obtained from various databases
(SMART, InterPro, PROSITE) or extracted using Hidden
Markov Models and data mining techniques, can be used for
the representation of protein sequences for the prediction of
subcellular localizations [2; 3; 6; 28; 29]. Methods have also
been developed based on the use of the N-terminal sorting
signals [1; 5; 10; 20; 22; 23; 24] and sequence homology
searching [21].

It has become clear that no single method of prediction can
achieve high predictive accuracy for all localizations. There-
fore, most robust methods adopt an integrative approach by
combining several methods, each of which may be a suitable
predictor for a specific localization or a generic predictor for
all localizations. PSORT is an example of such a successful
system. Developed by Nakai and Kanehisa [23], PSORT,
recently upgraded to PSORT II [12; 22], is an expert system
that can distinguish between different subcellular localiza-
tions in eukaryotic cells. It also has a dedicated subsystem
PSORT-B for bacterial sequences [9]. Obviously, further im-
provement of the quality of such an integrated system relies
on advances in the individual predictors, namely, improve-
ments that arise from the employ of sophisticated protein
encoding schemes and powerful machine learning and data
mining techniques.

In this study, we describe a new approach for the prediction
of protein subcellular localization from protein sequences us-
ing Fourier analysis as the feature extracting tool and sup-
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port vector machines as the learning framework. In order
to extract the features from a given protein sequence, each
amino acid is replaced by a value representing its scale of
hydrophobicity and a fast Fourier transform is subsequently
applied to the numerically encoded sequence. These trans-
formed data are then trained by support vector machines.

Fourier analysis has been used for (1) the recognition of
protein folds [27] and gene-encoding regions of DNA se-
quences [8; 30] and (2) the detection of periodic patterns
and tandem repeats of residues in both DNA and protein
sequences [25]. The motivation for this method of encod-
ing resides fundamentally on the observation that period-
icities are critically important factors in protein structure
[27]. The approach based on the Fourier transform analysis
is capable of capturing information about long-range corre-
lations and global symmetries; both are completely missed
by approaches based on global amino acid composition. For
comparison, we also present another encoding method based
on the tri-peptide frequency. This encoding scheme is an ex-
tension of the method using the amino acid decomposition
and has been used for the prediction of protein folds [18].

Our method is evaluated against PSORT-B for the predic-
tion of subcellular localizations for Gram-negative bacte-
ria [9]. It is demonstrated by the result of a 5-fold cross-
validation that the new method outperforms PSORT-B pre-
dictions associated with the outer membrane, the inner mem-
brane, and extra cellular localizations. It is expected that
PSORT-B may benefit from the integration of this new pre-
dictor into the system.

2. METHOD

This section introduces two sequence encoding methods. One
is the encoding method based on the Fourier analysis of
protein sequences; the other is based on the tri-peptide fre-
quency. The latter approach has been used in protein fold
recognition [18], but has never been evaluated for the pre-
diction of subcellular localizations. We also present a short
description of support vector machines, the machine learn-
ing method used in this study.

2.1 Feature Extraction based on the Fourier
Transform

There are many ways to describe amino acids, most of which
are correlated to some degree. For example, the AAindex
database contains indices representing 434 different physico-
chemical and biological properties of amino acids [16]. We
concentrate on the amino-acid hydrophobicity in this work,
as it is the one of major properties influencing the struc-
ture and function of a protein [14]. A simple three-state
hydrophobicity scale is used to map hydrophobic residues
to 1, hydrophilic residues to —1, and “neutral” residues to
0 [27]. More precisely,
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and
(G,P,S,T,W,Y) — 0.

Once a protein sequence has been encoded into the above nu-
merical format, it is converted to a sequence in the frequency
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domain with a Fourier transform. A common use of the
Fourier transform is the identification of frequency compo-
nents of a weak time-dependent signal buried in noise. Prior
to the application of the Fourier transform, the numerical se-
quences have to be lengthened by padding with zeros, since
the length of the input sequences is required to be a power of
two. Let n = 2™ denote the smallest number that is greater
than or equal to the length of the longest protein sequence
in a given set, where M is some integer. Let {z(1),...,z(n)}
be the numerically encoded sequence of a protein according
to the three-state hydrophobicity scale after padding. The
Fast Fourier Transform (FFT) will transform the encoded
sequence into another sequence {X(1),..., X(n)} in the fre-
quency domain. The procedure of the FFT used in this
research is based on the algorithm of Masters [19], which is
an implementation of the discrete Fourier transform (DFT)
given by
n
X(f) =Y () expli2ntf/n)] (f=1,..,n),

t=1

and
o(t) = %ZX(f) exp[—i(2ntf/n)] (t=1,..,n).
=1

Figures 1-3 present the encoded sequences before and after
the application of the FFT for two representative proteins
from extra cellular, inner membrane, and outer membrane
localizations, respectively. The sequences obtained from the
FFT display enhanced characteristics for each localization in
comparison with the sequences before the use of the FFT.

Another advantage of the FFT based feature extraction is
that the number of extracted features is almost the same as
the length of the longest protein sequence in the data. This
is a compact representation for protein sequences in contrast
to the features extracted based on the tri-peptide frequency
described below.

2.2 Feature Extraction based on the Tri-peptide
Frequency

In order to evaluate the FFT encoding method presented
above, an approach based on the tri-peptide frequency for
feature extraction has also been considered. This encoding
method extends the concept of the amino acid composition
and di-peptide frequency encoding methods. These have
been used intensively for the representation of protein se-
quences in numerous applications. These are, for example,
the prediction of (1) protein secondary structures, (2) pro-
tein folds, and (3) subcellular localizations, and the efficacy
of these encoding methods has been established.

In order to encode a protein sequence with the tri-peptide
frequency, a vector of 21% = 9261 dimensions is required.
Each entry of the vector is associated with a possible pattern
of three amino acids. Since the symbol “X” may appear
in some sequences, it is added to the set of the original
20 symbols of the amino acids to give a total of 21. A
window with a length of three is moved along the sequence
from the first amino acid to the third amino acid from the
end. Every 3-letter pattern that appears in the window is
recorded with increments of 1 in the corresponding entry
of the vector. Upon the termination of this procedure, the
vector provides the tri-peptide frequency of the sequence.
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The final vector is normalized by dividing the number of
window positions associated with that sequence. Note that
the resulting vector is sparse, as only a small collection of
the possible 3-letter patterns will appear in each protein
sequence.

2.3 Support Vector Machine

Suppose that we are given a set of m points &; (1 <7 < m)
in an n-dimensional space. Each point x; is labeled by y; €
{1, —1} denoting the membership of the point. An SVM is a
learning method for binary classification. Using a nonlinear
transformation ¢, it maps the data to a high dimensional
feature space in which a linear classification is performed. It
is equivalent to solving the quadratic optimization problem:

. 1 ™
w,b,%}l,l}.ém 5w-w+C;§,

yi((w:) - w+b) > 1-& (i=1,..,m),
&>0 (i=1,...,m),

subject to

where C is a parameter. The decision function is defined as
f(x) = ¢(x;) - w+ b, where w = 37" aip(e;) and o (i =
1,...,m) are nonnegative constants determined by the dual
problem of the optimization defined above. Therefore, the
function is

flx) = Zaid)(wi) co(x) +b= ZaiK(wi, x)+b

through the definition of the appropriate kernel function K.
For details of SVMs refer to Cristianini and Shawe-Taylor

[4].

3. RESULTS AND DISCUSSION

We employed the SVMs in conjunction with the features
extracted by the methods described above for training and
testing. The evaluation of the methods was conducted on
the following dataset.

3.1 Dataset

The set of proteins from Gram-negative bacteria used in
the evaluation of PSORT-B [9] was considered (available
at http://www.psort.org/) in this experiment. It consists
of 1443 proteins with experimentally determined localiza-
tions. The dataset comprises 1302 proteins resident at a
single localization site: 248 cytoplasmic, 268 inner mem-
brane, 244 periplasmic, 352 outer membrane, and 190 extra
cellular; it additionally contains a set of 141 proteins res-
ident at multiple localization sites: 14 cytoplasmic/inner
membrane, 50 inner membrane/periplasmic, and 77 outer
membrane/extracellular. In our experiment, we considered
only the 1302 proteins possessing a single localization. The
longest protein sequence in this dataset is about 4000 amino
acids, so the length of the final FFT encoded sequences is
approximately, 2000.

3.2 Experiment and Results

We have compared the performance of our new methods
with that of PSORT-B, a powerful tool for the prediction of
protein subcellular localization for Gram-negative bacteria.

The system PSORT-B was designed to seek precision other
than recall to allow for confident predictions, and prevents
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the propagation of erroneous predictions. It utilizes six mod-
ules for the generation of an overall prediction of a localiza-
tion site:

(1) BLAST search based predictor SCL-BLAST for all lo-
calizations [21];

(2) Motif based predictor Motif for all localization sites
[23];

(3) Hidden Markov Model based predictor HMMTOP for
the inner membrane localization [28; 29];

(4) Motif based predictor OPT Motif for the outer mem-
brane localization [9];

(5) Amino acid composition based predictor SubLocC for
the cyctoplasmic localization [13];

(6) Signal peptide based predictor Signal peptides for the
non-cyctoplasmic localization [9; 24].

Based on the output from each module, the system uses a
Bayesian network to generate a final probability value for
each localization site. The system achieved an overall pre-
diction accuracy of 756% for all localizations, a significant
improvement over the previous results of PSORT 1.

Besides the tri-peptide and the FFT based methods, we also
implemented the method based on the amino acid composi-
tion. The experiment was carried out using a 5-fold cross-
validation for each specific localization. Each time, the rel-
evant dataset consisting of the proteins with the specific
localizations was designated as the positive set; the remain-
der of the proteins was denoted as the negative set. The
radial basis function was chosen as the kernel function for
the SVM, since a preliminary experiment indicated this ker-
nel exhibited better performance.

As the sizes of the positive and negative sets are substan-
tially different, the performance of SVM was evaluated for
precision (or sensitivity):

tp
tp+ fp’
and recall (or positive prediction value):

tp
tp+ fn’

where tp (resp. tn) is the number of the predicted positive
(resp. negative) proteins which are true positive (resp. neg-
ative), and fp (resp. fn) is the number of the predicted
positive (resp. negative) proteins which are true negative
(resp. positive). The precision and recall of the 5-fold cross-
validation were computed as the averages of the values from
5 folds.

precision =

recall =

The generalization performance of an SVM is controlled by
the following parameters:

(1) the trade-off C between the training error and the class
separation;

(2) the parameter g in the radial basis function, i.e.,
exp(—gllz: —x;*);

(3) the biased penalty J for error from positive and negative
training points.
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Table 1: Results obtained from four different methods for the proteins from Germ-negative bacteria. (The numbers represent

percentages.

Method Composition tri-peptide FFT PSORT-B
Localization Precision Recall | Precision Recall | Precision Recall | Precision Recall
Cytoplasmic 83.38 69.22 83.43 50.53 61.20 68.00 97.6 69.4
Inner membrane 98.65 83.57 99.52 80.75 96.12 87.30 96.7 78.7
Periplasmic 91.36 54.56 90.37 50.34 50.00 54.20 91.9 57.6
Outer membrane 87.21 84.12 95.28 83.66 95.70 94.30 98.8 90.3
Extra cellular 88.38 53.68 92.57 50.53 92.10 80.70 94.4 70.0

Composition : the method using SVM with the features from the amino acid composition ;
tri-peptide : the method using SVM with the features from the tri-peptide frequencys;

FFT : the method using SVM with the features from the FFT of hydrophobicity encoding;
PSORT-B : the integrated predictor in [9]. The results are from Gardy et al. [9].

The values of precision and recall of a 5-fold cross-validation
were computed for each triplet (C, g, J). The choices of the
parameters in the experiment for the composition and tri-
peptide encoding sequences are given as follows:

C: from 1 to 150 with an incremental size of 10;
g: 1 to 100 with an incremental size of 10;
J: from 0.1 to 3.0 with an incremental size of 0.2.

The FFT encoded sequences are dense, therefore, they de-
mand an intensive training time. Accordingly, a search over
the full range of parameters would be prohibited. In order
to deal with this problem, a two-step strategy for searching
was employed. In the first round, the procedure scanned
through all triplets (C, g,J) determined as follows.

C: from 278 to 27 with ¢ = 2 * ¢ for each step;
g: from 272 to 27 with g = 2 * ¢ for each step;
J: from 0.1 to 3.0 with j = j + 0.2 for each step.

After identifying the best g value ¢g* from the first round,
a more intensive search localized around g* was performed.
More precisely, it searched all triplets determined as follows.

C: from 1 to 21 with C = C + 3 for each step;
g: from 29" —1 to 29" 4+ 1 with g = g+ 0.003 for each step;
J: from 0.1 to 3.0 with J = J + 0.2 for each step.

The SVMLight package was used as the SVM solver [15].
The best values of precision and recall for each method are
given in Table 1, where the results for PSORT-B are taken
from Gardy et al. [9]. Note that we compare the perfor-
mance of the single predictor against the integrated predic-
tive results from PSORT-B.

The FFT based method demonstrated superior performance
over that of PSORT-B for the prediction of all three local-
izations: the inner membrane, the outer membrane, and the
extra cellular case. While maintaining similar levels of pre-
cision, the improvement on the corresponding recall is from
78.7 to 87.3 for the inner membrane localization, from 90.3
to 94.3 for the outer membrane localization, and from 70.0
to 80.7 for the extra cellular localization. The FFT based
method achieved substantial improvement in recall for the
inner membrane and extra cellular localizations as compared
with the remaining three methods. However, the FFT based
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approach provided inferior findings for the cytoplasmic and
periplasmic localizations.

On the other hand, the tri-peptide based method demon-
strated good predictive power for the inner membrane lo-
calization as compared with PSORT-B. However, its ability
for the other localizations did not surpass that of PSORT-B.
Notably, the prediction of the periplasmic localization seems
to be the hardest for all methods.

Although the FFT encoding method generates a compact
set of features, we experienced longer times for training and
testing in comparison with the tri-peptide encoding method,
even though the tri-peptide frequency approach has a signif-
icantly larger number of features. We propose the following
interpretation of this behavior. The FFT encoded sequences
have a full dense structure while the tri-peptide encoded se-
quences are very sparse, although the lengths are longer.
A feature selection scheme using a cut-off value to discard
lower frequency features in the FFT encoded sequences may
be able to achieve a similar level of predictive quality.

4. CONCLUSIONS

This work has introduced a novel Fast Fourier Transform
based method for the feature extraction of protein sequences
in conjunction with the use of support vector machines for
the prediction of subcellular localizations. In addition, a tri-
peptide based encoding method was considered in parallel.

The performances of these methods were empirically eval-
uated on a set of proteins with experimentally determined
localizations from Germ-negative bacteria. Compared with
the integrated system PSORT-B, the experimental results
demonstrated that the SVM learned from the FFT encoded
sequences exhibited superior performance for the prediction
of the inner membrane, the outer membrane, and the ex-
tra cellular localizations, but was inferior for the prediction
of cytoplasmic and periplasmic localizations. This implies
that the hydrophobicity alone can not properly represent the
sequence information which characterizes these two localiza-
tions. Combination with the tri-peptide based method may
improve the predictive performance. This can be realized by
using a kernel that combines the information from the FFT
encoded sequences and the tri-peptide encoded sequences.
The use of a different hydrophobicity index of amino acids,
for example, the index shown in Table 2 [17], may also im-
prove the quality of prediction.
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Table 2: Hydrophobicity index of amino acids in Kyte and Doolittle.

amino acid I A% L F C M A Z T S
index 45 42 38 28 25 1.9 1.8 -04 -0.7 -0.8
amino acid | W Y P H E Q D N K R
index -09 -13 -16 -32 -35 -35 -35 -35 -39 -45
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