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ABSTRACT
In the domain of gene expression data analysis, various
researchers have recently emphasized the promising ap-
plication of pattern discovery techniques like association
rule mining or formal concept extraction from boolean
matrices that encode gene properties. To take the most
from these approaches, a needed step concerns gene prop-
erty encoding (e.g., over-expression) and its need for the
discretization of raw gene expression data. The impact
of this preprocessing step on both the quantity and the
relevancy of the extracted patterns is crucial. In this pa-
per, we study the impact of discretization parameters by
a sound comparison between the dendrograms, i.e., trees
that are generated by a hierarchical clustering algorithm,
computed from raw expression data and from the vari-
ous derived boolean matrices. Thanks to a new similarity
measure and practical validation over several gene expres-
sion data sets, we propose a method that supports the
choice of a discretization technique and its parameters
for each specific data set.

1. INTRODUCTION
Thanks to a huge research effort and technological break-
throughs, one of the challenges for molecular biologists is
to discover knowledge from data generated at very high
throughput. For instance, different techniques (includ-
ing microarray [13] and SAGE [24]) enable to study the
simultaneous expression of (tens of) thousands of genes
in various biological situations. The data generated by
those experiments can be seen as expression matrices in
which the expression level of genes (rows) are recorded in
various biological situations (columns). A toy example of
some microarray data is the matrix in Tab. 1a.

Exploratory data mining techniques are needed that can,
roughly speaking, be considered as the search for inter-
esting bi-sets, i.e., sets of biological situations and sets
of genes that are associated in some way. Indeed, it is
interesting to look for groups of co-regulated genes, also
known as synexpression groups [19], which, based on the
guilt by association approach, are assumed to participate
in a common function, or module, within the cell. A set
of co-regulated genes and the set of biological situations
that gives rise to this co-regulation is called a transcrip-

tion module. Discovering transcription modules is one of
the main goals in functional genomics.

Various techniques can be used to identify a priori inter-

1 2 3 4 5
a -1 6 0 12 9
b 3 -2 3 -3 1
c 0 5 -1 6 6
d 4 -1 2 -2 -1
e -3 9 1 10 6
f 5 -3 3 -6 0
g 4 -4 3 -7 0
h -2 2 -2 8 5

(a)

1 2 3 4 5
a 0 1 0 1 1
b 1 0 1 0 1
c 0 1 0 1 1
d 1 0 1 0 0
e 0 1 0 1 1
f 1 0 1 0 1
g 1 0 1 0 1
h 0 0 0 1 1

(b)

1 2 3 4 5
a 0 0 0 1 0
b 1 0 1 0 0
c 0 0 0 1 1
d 1 0 0 0 0
e 0 0 0 1 0
f 1 0 0 0 0
g 1 0 0 0 0
h 0 0 0 1 0

(c)

Table 1: An example of gene expression matrix (a) with
two derived boolean matrices (b and c)

esting bi-sets. Biologists often use clustering techniques
to identify sets of genes that have similar expression pro-
files (see, e.g., [14]). Statistical methods can be used as
well (see, e.g., [16; 4]). It is also possible to look for these
putative synexpression groups by computing the so-called
frequent itemsets from boolean contexts that encode gene
expression properties [1]. Deriving association rules from
frequently co-regulated genes has been studied as well [3;
10]. Furthermore, putative transcription modules can be
provided by computing the so-called formal concepts (see,
e.g., [25]) in this kind of boolean data [21; 22].

A key issue for using these pattern discovery techniques
from boolean data concerns gene expression property en-
coding. Let O denotes a set of biological situations and
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P denotes a set of genes. The expression properties can
be encoded into r ⊆ O×P. (oi, gj) ∈ r denotes that gene
j has the encoded expression property in situation i. Dif-
ferent expression properties might be considered like, e.g.,
over-expression, up or down regulation, strong variation.
Generally, encoding is performed according to some dis-
cretization operators that, given user-defined parameters,
transform each numerical value from raw gene expression
data into one boolean value per gene property. Many
operators can be used that typically compute thresholds
from which it is possible to decide wether the true or the
false value must be assigned. For instance, in Tab. 1b, an
over-expression property has been encoded and genes a,
c, and e are over-expressed together in situations 2, 4 and
5.

We consider that mining boolean gene expression data
sets is extremely useful thanks to the patterns that can
be extracted now with efficient algorithms (e.g., frequent
closed set [7; 20; 26] or concept extractors [5]). In this con-
text, the critical step of gene expression data discretiza-
tion has not been studied enough while its impact on both
the quantity and the relevancy of the extracted patterns
is crucial. For instance, the density of the discretized
data depends on the discretization parameters and the
cardinalities of the resulting sets (collections of itemsets,
association rules or formal concepts) can be very different.

In this paper, we propose a method that supports both
the choice for a discretization technique and an informed
decision about its parameters. We cooperate with molec-
ular biologists that are used to collect important informa-
tion about putative synexpression groups and transcrip-
tion modules by using the hierarchical clustering tech-
nique that has been popularized by the Eisen software
[14]. We decided to study the impact of discretization
parameters by a sound comparison between the dendro-
grams that are generated by the same hierarchical clus-
tering algorithm applied to both the raw expression data
and various derived boolean matrices. Comparing trees
by means of ad-hoc similarity measures has been studied
a lot, including in the bioinformatics domain for the anal-
ysis of phylogenies (see, e.g., [18; 23; 15]). Other measures
evaluate the quality of partitions w.r.t. a reference par-
tition of the data set. The difficulty is then to identify
on dendrograms the cut levels at which we can compare
the partition on the real data set with the one on boolean
data set.

The contribution of this paper is twofold. First, we pro-
pose a new similarity measure for binary trees (such as
dendrograms generated by any hierarchical clustering al-
gorithm), that is level independent, and depends for each
node on its subtree structure. Next, we have studied the
behavior of our measure on several gene expression data
sets in order to support the choice a discretization tech-
nique and the discretization parameters that have to be
used when encoding boolean gene expression properties
in order to perform efficient pattern discovery techniques
like association rule mining or formal concept discovery.

In Section 2, we define our similarity measure between
two binary trees. In Section 3, we study the behavior of
this measure for different gene expression data sets. Fi-
nally we consider in Section 4 the impact of our technique
on a KDD process which finds biologically relevant infor-
mation in a well-studied gene expression data set. Section

5 concludes.

2. COMPARING BINARY TREES
The problem of finding the best comparison method for
trees is still open even though it has been considered in
various application domains. Considering the analysis of
phylogenies, distance measures between both rooted and
unrooted trees have been designed to compare different
phylogenetic trees concerning the same set of individu-
als (e.g., different species of animals having a common
ancestor). Various distance metrics between trees have
been proposed. The nni (nearest neighbor interchange)
and the mast (maximum agreement subtree) are two of
the most used metrics. nni has been introduced inde-
pendently in [18] and [23] and its NP-completeness has
been recently proved [11; 12]. mast has been proposed in
[15], and [9] describes an efficient algorithm for computing
this metrics on binary trees. These two approaches are
tailored for the problem of comparing phylogenies where
the goal is to measure some degree of isomorphism be-
tween two dendrograms representing the same species of
biological organisms.

In our data mining problem, we have sets of objects (vec-
tors of expression values for genes in various biological sit-
uations), that we want to process with a hierarchical clus-
tering algorithm. Depending on the different discretiza-
tion operations on raw expression data, a same clustering
algorithm working on encoded boolean gene expression
data can return (very) different results. We are looking for
a method that supports the comparison of these various
gene and/or situation dendrograms obtained on boolean
data w.r.t. the common reference dendrogram that has
been computed from the raw data. We need to measure
both the degree of similarity of their structures and the
similarity between the contents of their associated collec-
tions of clusters. We designed a simple measure which is
also easy to compute. Intuitively, it depends on the num-
ber of matching nodes between the two trees we have to
compare.

2.1 Definition of similarity scores
Let O = {o1, . . . , on} denote a set of n objects. Let T

denote a binary tree built on O. Let L = {l1, . . . , ln}
denote the set of n leaves of T associated to O for which,
∀i ∈ [1 . . . n] , li ≡ oi. Let B = {b1 . . . bn−1} denote the set
of n− 1 nodes of T generated by a hierarchical clustering
algorithm starting from L. By construction, we consider
bn−1 = r, where r denotes the root of T . We define the
two sets:

δ (bi) = {bj ∈ B | bj is a descendent of bi} ,

τ (bi) = {lj ∈ L | lj is a descendent of bi} .

An example of a tree for a set containing 8 objects (i.e.,
the genes from Tab. 1a) is given in Fig. 1. In this example,
τ (b3) = {b, d, f, g} and δ (b3) = {b1, b2}.

We want to measure the similarity between a tree T and a
reference tree Tref built on the same set of objects O. For
each node bi of T , we define the following score (denoted

BIOKDD04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 25



Figure 1: An example of binary tree

SB and called BScore):

SB (bi, Tref ) =
∑

bj∈δ(bi)

aj

aj =







1

|τ(bj)|
, if

∃bk ∈ Tref | τ (bj) = τ (bk)
0, otherwise

(1)

In other terms, for a node b in T , its score depends both
on the number of its matching nodes in Tref (bk ∈ Tref

is a matching node for b if τ (b) = τ (bk)) and |τ(b)|. To
obtain the similarity score of T w.r.t. Tref (denoted ST

and called TScore), we consider the BScore value on
the root, i.e.:

ST (T, Tref ) = SB (r, Tref ) (2)

As usually, it is interesting to normalize the measure to
get a score between 0 (for a tree which is totally different
from the reference) and 1 (for a tree which is equal to
the reference). For the TScore measure, since its max
value depends on the tree morphology, we can normalize
by ST (Tref , Tref ):

ST (T, Tref ) =
ST (T, Tref )

ST (Tref , Tref )
(3)

ST (T, Tref ) = 0 means that T is totally different from
Tref , i.e., there are no matching nodes between T and
Tref . Indeed, ST (T, Tref ) = 1 means that T is totally
similar to Tref , i.e., every node in T matches with a node
in Tref . Given two trees T1 and T2 and a reference Tref ,
if ST (T1, Tref ) < ST (T2, Tref ), then T2 is said to be more
similar to Tref than T1 according to TScore.

Let us now provide a constructive definition to compute
the BScores for every node of the tree, and retrieve its
value for the whole tree. Assume that functions cl (bi)
and cr (bi) respectively return the left and the right child
of bi. In Fig. 1 cl (b7) = b3 et cr (b7) = b6. The BScore

measure can be redefined as follows:

SB (bi, Tref ) = σ (cl (bi) , Tref ) + σ (cr (bi) , Tref ) (4)

where

σ (bk, Tref ) =







1
|τ(bk)|

+ SB (bk, Tref ) , if

∃bj ∈ Tref | τ (bk) = τ (bj)
SB (bk, Tref ) , otherwise

σ (lk, Tref ) = 0, ∀lk ∈ L

This definition emphasizes that the BScore for each node
depends on the BScore values of its children. The fact
that each node “inherits” the similarity information of its
children is useful when comparing two trees that result
from a hierarchical clustering algorithm.

2.2 Comparison between gene dendrograms
Tab. 1a is a toy example of a gene expression matrix. Each
row represents a gene vector, and each column represents
a biological sample vector. Each cell contains an expres-
sion value for a given gene and a given sample. In this
example, we have O = {a, b, c, d, e, f, g, h}. A hierarchical
clustering using the Pearson’s correlation coefficient and
the average linkage method (see, e.g., [14]) on the data
from Tab. 1a leads to the dendrogram in Fig. 1.

Assume now that we discretize the expression matrix by
applying two different methods used for over-expression
encoding [3]. The first one considers the mean between
the max and min values for each gene vector. Values that
are greater than the average value are set to 1, 0 otherwise
(Tab. 1b). A second method takes into account the max
value for each gene vector. Values that are greater than
90% of the max value are set to 1, O otherwise (Tab. 1c).

Assume now that we use the same clustering algorithm
on the two derived boolean data sets. The resulting den-
drograms are shown in Fig. 2. Fig. 2a (resp. Fig. 2b)
represents the gene dendrogram obtained by clustering
the boolean matrix in Tab. 1b (resp. Tab. 1c).

a)

b)

Figure 2: Gene trees built on two differently discretized
matrices

We can now use the similarity score and decide which
discretization is better for this gene expression data set,
i.e., the one for which ST (T, Tref ) has the largest value.
The common reference (Tref ) is the tree in Fig. 1. Let
Ta and Tb denote the trees in Fig. 2a and 2b respectively.
Using Equation 4, we obtain the results in Tab. 2.

To normalize the similarity scores, we just need to divide
the BScores of the root of the first two dendrograms,
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Ta
Node Match τ σ SB
b1 - {b, f} 0 0
b2 b2 {b, f, g} 0.33 0
b3 b3 {b, d, f, g} 0.58 0.33
b4 b4 {a, c} 0.5 0
b5 b5 {a, c, e} 0.83 0.5
b6 b6 {a, c, e, h} 1.08 0.83
b7 b7 O - 1.67

Tb
Node Match τ σ SB
b1 - {d, f} 0 0
b2 - {d, f, g} 0 0
b3 b3 {b, d, f, g} 0.25 0
b4 - {a, e} 0 0
b5 - {a, e, h} 0 0
b6 b6 {a, c, e, h} 0.25 0
b7 b7 O - 0.5

Tref
Node Match τ σ SB
b1 b1 {f, g} 0.5 0
b2 b2 {b, f, g} 0.83 0.5
b3 b3 {b, d, f, g} 1.08 0.83
b4 b4 {a, c} 0.5 0
b5 b5 {a, c, e} 0.83 0.5
b6 b6 {a, c, e, h} 1.08 0.83
b7 b7 O - 2.17

Table 2: BScore values. Nodes matching in Tref are in
the Match columns.

by the BScore of the root of the reference dendrogram
(Equation 3):

ST (Ta, Tref ) =
ST (Ta, Tref )

ST (Tref , Tref )
=

1.67

2.17
= 0.77

ST (Tb, Tref ) =
ST (Tb, Tref )

ST (Tref , Tref )
=

0.5

2.17
= 0.23

Since ST (Ta, Tref ) > ST (Tb, Tref ), the first discretiza-
tion method is considered better for this data set w.r.t.
the performed hierarchical clustering. In fact, in Ta, only
node b1 does not match (i.e., it does not share the same
set of leaves) with any node in Tref , while in Tb, there are
only two nodes (b3 and b6) that match with some nodes
in Tref .

The same process can be applied to situation dendro-
grams by considering now that the objects are the situa-
tions. In practice, we perform both processes to support
the choice of a discretization technique as illustrated in
the next section.

3. COMPARING DIFFERENT
DISCRETIZATION TECHNIQUES

Many discretization techniques can be used to encode
gene expression properties from expression values that
are either integer values (case for SAGE data [24]) or real
values (case for microarray data [13]). In this paper, we
consider for our experimental study only three techniques
that have been used for encoding the over-expression of
genes in [3]:

• “Mid-Ranged”. The highest and lowest expression
values are identified for each gene and the mid-range
value is defined. For a given gene, all expression
values that are strictly above the mid-range value
give rise to value 1, 0 otherwise.

• “Max - X% Max”. The cut off is fixed w.r.t. the
maximal expression value observed for each gene.
From this value, we remove a percentage X of this
value. All expression values that are greater than
the (100−X)% of the Max value give rise to value
1, 0 otherwise.

• “X% Max”. For each gene, we consider the situa-
tions in which its level of expression is in X% of the
highest values. These genes are assigned to value 1,
0 otherwise.

We want to evaluate the relevancy of a discretization al-
gorithm and its parameters according to the preserved
properties w.r.t. a hierarchical clustering of the raw data.
So, we have to compare the dendrograms obtained from
the three different boolean matrices with the reference
dendrogram.

We have considered three gene expression data sets: two
microarray data sets and a SAGE data set. The first
data set (CAMDA [8]) concerns the transcriptome of the
intraerythrocytic developmental cycle of the plasmodium
falciparum, a parasite that is responsible for a very fre-
quent form of malaria. We have the expression values
for 3 719 genes in 46 different time points. The second
data set (Drosophila [2]) concerns the gene expression of
drosophila melanogaster during its life cycle. We have the
expression values for 3 030 genes and 81 biological sam-
ples, including both male and female adult individuals.
The third one (human SAGE data from NCBI, see also
[17; 22]) contains the expression values for 5 327 human
genes in 90 different cancerous and not cancerous cellular
samples belonging to different human organs.

In Tab. 3, we report the densities (i.e., the ratio of true
values) of the boolean matrices produced with the “Mid-
Ranged” method. In Fig. 3, we provide the density curves
for the three data sets and depending on different thresh-
olds for the “Max - X% Max” method (densities for the
“X% Max” method are quite similar).

Figure 3: Density values for different “Max - X% Max”
thresholds

We processed all the computed boolean matrices with a
hierarchical clustering algorithm based on the centered
Pearson’s correlation coefficient and the average linkage
method. The same algorithm with the same options has
been applied to the three original matrices. Finally, for
each data set, we have compared all the genes and situ-
ations trees derived from the boolean matrices with the
reference trees. The results in terms of TScore (Equa-
tion 4) for the “Mid-Ranged” method, are summarized in
Tab. 3. For the “Max - X% Max” and “X% Max” meth-
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ods we summarize the results depending on the variation
of the threshold X for the gene dendrograms in Fig. 4a
and Fig. 4c, for the situation dendrograms in Fig. 4b and
Fig. 4d. It is important to observe that, for each data
set, we obtained the highest values of similarity scores for
both the genes and the situations for almost the same
discretization thresholds.

Similarity score

Data set Density Genes Situations

CAMDA 0.313665 0.034155 0.746437
Drosophila 0.441146 0.059570 0.591343
SAGE 0.053958 0.110131 0.776736

Table 3: Similarity scores for clustering trees on Mid-
Ranged discretized matrices

We have also applied the same clustering algorithm on
various randomly generated boolean matrices based on
the same sets of objects. Then, we have compared the
resulting dendrograms with the reference. In the first
two data sets (CAMDA and Drosophila), the similarity
scores of the randomly generated boolean matrices are
always very low or equal to 0. In the SAGE data set,
given a density value, the gene scores resulting from ran-
domly generated matrices are always lower than the ones
obtained by any discretization method (while the situa-
tion scores are always negligible). One possible reason is
that the discretized matrices are here very sparse com-
pared to the first two data sets (see Fig. 3). Using a low
threshold to discretize such a matrix does not make sense:
obtained scores are similar to the scores which are com-
puted on random boolean matrices. Moreover, using a
high threshold value X for the “X% Max” discretization
method leads to similarity scores that are close to those
obtained for randomly generated matrices, though still
higher. We can observe the behavior of this particular
SAGE data set in Fig. 5.

To conclude this section, comparing dendrograms result-
ing from the clustering of different types of derived boolean
matrices enables to choose the “best” discretization method
and parameters for a given data set. If we analyze the
graphics of similarity scores w.r.t. the thresholds used
in the “Max - X% Max” and “X% Max” methods (see
Fig. 4), we observe the presence of either a max or an
asymptotic behavior. It means that the best choice for the
discretization threshold could be a trade-off between the
value for which we get the best similarity score, and the
value for which the data mining task remains tractable.

4. AN APPLICATION TO A REAL
PROBLEM

We have applied the proposed preprocessing technique to
a real gene expression data set to validate our approach
throughout a complete KDD process. We have decided
to mine the data described in [2]. It concerns the gene
expression of the Drosophila melanogaster during its life
cycle. The expression levels of 4 028 genes are evalu-
ated for 66 sequential time periods from the embryonic
state till the adulthood. The total number of samples
is 81 since the gene expression during the adult state is
measured for male and female individuals. For our ex-
periment we have used only a set of 20 time periods for

adult individuals. This set is composed of 8 male adult
samples, 8 female adult samples, 2 male and 2 female tu-
dor samples. The set of genes we have used is derived
from the original set from which we removed those genes
that are under-expressed in all the 20 situations and over-
expressed in at least 11 biological situations. We have
obtained a 3 433 × 20 matrix which has been processed
according to our methodology. The raw expression matrix
has been discretized using the “Mid-Ranged” and “Max -
X% Max” methods. The resulting boolean matrices and
the original matrix have been processed with the same as-
cendant hierarchical clustering algorithm using Pearson’s
correlation coefficient and average linkage. Then, using
our tree comparison technique, we have compared the
gene and situation dendrograms. The similarity scores
are presented in Fig. 6.

Our goal was to identify a particular class of genes, the
so-called “male somatic genes”, that characterizes the
male adult individuals (see Table S30 in [2]). 31 of these
37 genes are present in our data set and we tried to
search them by mining formal concepts in the various
derived boolean matrices. Intuitively, formal concepts
are maximal rectangles of true values in boolean matri-
ces. For instance, in the boolean context from Tab. 1b,
({a,c,e},{2,4,5} is a formal concept, i.e., a strong asso-
ciation between two closed sets. We used the D-Miner

algorithm [5; 6]) which extracts all the concepts satis-
fying some user-defined monotonic constraints. We ex-
tracted all the concepts with at least 3 situations and
at least 20 genes. Then we have post-processed the ex-
tracted collection to keep those which concern only male
individuals. Finally, we measured the number of male
somatic genes which appear in the different sets of the
post-processed concepts. To better evaluate the results,
we also built two other sets of concepts: the collection of
concepts which concern only female individuals, and the
collection of concepts which involve at least one female
individual. We summarize the results in Fig. 7.

The discretization threshold that gives the best similar-
ity score and that we identify in both graphs from Fig. 6
(X = 54% for the “Max - X% Max” method), enables
to retrieve 25 of the 31 male somatic genes from the con-
cepts that concern only male individuals. Moreover, even
though higher thresholds enable to retrieve more somatic
genes, the slope of the curve, after the optimum, begins
to decrease, while the slope of the curves of male somatic
genes identified in concepts concerning female individuals
starts to increase. Choosing the discretization threshold
enables to control the trade-off between extraction com-
pleteness and noise impact.

5. CONCLUSION
We defined a new pre-processing technique that supports
the evaluation and assessment of different discretization
techniques for a given gene expression data set. The
evaluation is based on the comparison of dendrograms
obtained by clustering various derived boolean matrices
with the one obtained on the raw matrix while using the
same clustering algorithm. The defined metrics is simple
and we have validated its relevancy on different real data
sets and on a biological problem. This is a step towards
a better understanding of a crucial pre-processing step
when we want to apply the extremely promising pattern
discovery techniques based on set patterns.
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a)

b)

c)

d)

Figure 4: Similarity scores w.r.t. different thresholds for
“Max - X%Max” (a and b) and “X%Max” (c and d) dis-
cretization methods

Figure 5: Similarity scores depending on density for “Max
- X%Max”, “X%Max” and random discretization meth-
ods applied to SAGE data

Figure 6: Similarity scores depending on various thresh-
olds for “Max - X%Max” discretization method

Figure 7: Number of identified male somatic genes w.r.t.
discretization thresholds for different sets of concepts
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