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ABSTRACT

Massve pubicly available gene expresson dcata @nsisting of
different experimental condtions and microarray platforms
introduce new challenges in data mining when integrating
multi ple gene expresson cata. In this work, we proposed a meta-
clasdficaion agorithm, which is cdled MIF agorithm, to
perform multi-type cacer gene expresson data dassficaion. It
uses regular histograms for gene expresson levels of certain
significant genes to represent sample profiles. Differences
between profiles are then used to obtain disgmilarity measures
and indicators of predictive dasss. In order to demonstrate the
robustness of the algorithm, 10 different data sets, which are
individually pulished in 8 publicéions, are experimented. The
results sow that the MIF algorithm outperforms the simple
majority-voting meta-classficaion algorithm and hes a good
meta-classification performance In addition, we dso compare our
results with other researchers works, and the comparisons are
impressve. Finally, we have confirmed ou findings with
cance/testis (CT) immunagenic gene families of heterogeneous
samples.
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1. INTRODUCTION

Although DNA microarray techniques bring breakthroughs to
cance study, masdve pubicly available gene expression chta,
which are condwted by different laboratories with various
experimental condtions and microarray platforms, introduce new
challenges to conduct data mining with an integration d multiple
and heterogeneous gene expresson data. For gene expression chta
in cancer study, the alvance of data mining leads to the discovery
of global cancer profiling, patient clasdficaion, tumor
clasgficaion, tumor-spedfic moleaular marker identification and
pathway exploration [15]. Different mining algorithms have been
proposed, and significant findings are exploited corresponding to
different agorithms. For most cases, validations of findings are
dore by a series of biologicd experiments or laboratorial works.
However, in terms of efficiency and effediveness of mining
algorithms with resped to clinicd applicability and robustness
the validations are mainly restricted by crossvalidation or sub-
sampling within a single data set [4], [11]. This validation scheme
is nat sufficiently to draw conclusions becaise of the problems of
over-fitting and hamogeneity within a single data set. To avoid
these problems, there ae two paential solutions: (1) it is required
to validate mining algorithms with heterogeneous data sets
consisting of different microarray platforms and experimental
condtions, and (2) meta-analysis is performed with a number of
heterogeneous data sets so that it can make meta-dedsions with an
integration d these data sets, rather than with individual data sets
(], [19].
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To perform classificaion o heterogeneous data nsisting of
multi-type cancer, some common feaures (i.e. significant genes)
must be founded in various cancer types. Subsets of genes, which
are cdled canceltestis (CT) immunogenic gene families, are
recently proposed to have asciations with ore or more than ore
cancer type. Van der Bruggen et al. [23] suggested an approac to
identify the moleaular definition of tumor antigens recognized by
T cdls, and this approac leads to the discovery of various human
tumor antigens, such as MEGEA1 and BAGE. Discovered tumor
antigens are recently grouped into distinct subsets, and the subsets
are named as cancer/testis (CT) immunogenic gene families.
Currently, reseachers have discovered 44CT immunagenic genes
famili es consisting of 89 individual genesin total [20].

In our previous works, we proposed a measure cdled “impad
factors (IFs)” to improve the clasdfication performance of
heterogeneous gene expresson cata [7], [8]. In this paper, we
extend the works and propose a meta-classfication algorithm,
which is cdled Mgjority-voting with Impad Fadors (MIF)
algorithm, to clasdfy multi-type cancer gene expression chta
consisting of both different cance types and microarray
platforms. In order to validate the reliability and robustnessof the
MIF agorithm, 10 gene expresson data sets, which are publi shed
in 8 different publications, are eperimented, and the
clasdfication performance of the MIF agorithm is not only
compared with the simple majority-voting meta-classfication
algorithm, but also with results of other researchersin [2].

2. RELATED WORKS

Recent progressin mining gene expresson chta is to discover
knowledge from multiple and heterogeneous gene expression
data. Some works are concerning theoreticd flexibility to
integrate gene expresson dhta with various microarray platforms
and technologies. Lee et al. [10] and Kuo et al. [9], respedively,
described different approaches based on simultaneous mutual
vaidation o large numbers of genes using two dfferent
microarray platforms. They used the NCI-60 data sets consisting
of spotted cDNA arrays and Affymetrix oligonucleotide cips.
Choi et d. [5] proposed a systematic integration o gene
expresson ceta based on nomalizing data with an estimated
means of other data sets.

For application level, classficaion is one of the common areas in
data mining of gene expresson data. Ng et a. [13] proposed a
method to perform subtype classification with six different gene
expresson studies on Saccharomyces cervisiae. Recantly, Bloom
et al. [2] conducted a study of multi-platform, multi-type and
multi-site dasdficaion on cancer gene epression ceta. In the
study, 15 cancer types, published in 4 different pubdicaions, are
experimented.

Meta-clasdficaion approaches are mainly divided into three
caegories [21]. The first caegory is to average individual
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Figure 1. Process overview of the MIF algorithm.

decisions of different element classifiers without altering the
origina learning algorithms of the element classifiers. The second
category is to predict the right learning algorithm or classifier for
a particular problem from a set of element classifiers based on
analyzing the fitness of the characteristics of testing data sets. The
last category is to take a sub-sample of the entire data set and try
each algorithm on this sub-sample. Among these three categories,
the category of model averaging draws more attention in the
literatures. For gene expression data, most works aso belong to
the category of model averaging. Some works include majority-
voting [3], Bayesian combination [4], weighted-voting [4] and
neural network ensembles [26].

3. MIF ALGORITHM

In this work, we proposed a meta-classification algorithm, called
Majority-voting with Impact Factors (MIF) agorithm, to perform
multi-type cancer gene expression data classification. It uses
regular histograms for gene expression levels of certain significant
genes to represent the profiles of samples. Differences between
profiles are then used to obtain dissimilarity measures and
indicators of predictive classes. The regular histograms are
constructed by the uniform partitioning technique with maximum
and minimum expression levels of the significant genes as upper
and lower bounds. It aims at estimating densities of expression
levels of significant genes in terms of relative positioning with
respect to the upper and lower bounds. For a new sample, it
compares its histograms with the histograms of individua classes
in training sets. The classes with smaller dissimilarity measures
are set as predictive classes for the new sample. As the same time,
the majority-voting meta-classification algorithm is performed
with the new sample too. If the decisions derived from the regular
histogram comparisons and the mgjority-voting agorithm are the
same, weighted scores corresponding to individua classes, which
are based on the impact factors (IFs), are accumulatively adjusted
the dissimilarity measures of the corresponding classes. On the
other hands, if their decisions are different, there are no such
weighted scores, and the dissimilarity scores are increased
according to the results of the majority-voting algorithm. Figure 1
shows the process overview.

Here, we describe the MIF agorithm in details. First of all,
individual regular histograms of every sample in each class in
training sets are constructed [12]. Suppose that there are m
training sets represented by the vector X=(Xy, Xs, ..., Xy), and
Xi= (X1 %20 oo Xigy Xij+1, .- Xin) be the training set i with |
norma samples and (n-1) cancer samples. The expression levels
of gene g in X; be represented by a vector g=(&,1, €2, --- €.n)s
where g ; represents the expression level of g in samplej of set i
(i.e. %), and c={Normal ,Cancer} be the class vector such that x j.c

BIOKDD: 4™ Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

representing the classes of samplej in set i. The agorithm for the
regular histogram construction for training samples is shown in
figure 2.

Inputs. aligned training samples sets X, number of bins n,
number of significant genes ng

Outputs: pairs of regular histograms for al training samples sets
Hnorma @d Heancer, SEtS Of significant genes for al training sets G

1 variables:

2. teMpPnormal @Nd teMPcance be the temporary sets of regular
histograms for each candidate of X;, tempg be the temp set
of significant for X;, a be the percentage of bin candidates

to betrimmed
3 for i = 1to size(X)
4. teMPrormal = @
5. teMPcancer = @
6. tempgg = find_sig_genes (X));
7 G = G+ tempgg;
8. for j = 1to size(X)
9. if (x;.c = Normal)
10. teMPrormal = t€MPNormal + hist_Proc(x;j, Ny, tempsg);
11. dse
12. teMPcancer = t€MPcancer + hist_proc(x j, Ny, temMpsg);
13. end if
14, end for
15. Hnormal = Hormal + NOrmalize (tempyorman, @),
16. Hcancer = Heancer + NOrmalize (tempeancer, @);
17. endfor

Figure 2. Algorithm for calculating regular histograms for

training samples sets.
In figure 2, for ead training set X;, where X;L{X}, significance of
genes in X; is cdculated and ranked acardingly in the function
“find_sig_genes’ at code line 6. The common and widely used
statisticd method t-test is used to rank significance of the genes
[6]. In the t-test, its $gn is determined by the numerator.
Therefore, the t-values are positive if the mean of normal classis
larger than that of cancer classand regative if the mean of normal
classis smaler than that of cancer class Hence, taking genes
from both tails from the sorted list, including positive ad
negative t-values, can asaume that the same propartions of genes
from both classes are mnsidered. Extraded significant genes sets,
G={G;, Gy .., Gy}, where G; is the significant gene set in
training X;, are later used to construct and compare the histograms
of testing samples.

At code lines 10 and 12 in figure 2, the function “hist_proc” is
invoked to construct the regular histograms. The maximum and
minimum expresson levels among those etraded significant
genes are set as the upper and lower bounds of the histograms.
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Samples belong to the same classes of the same training sets may
have different values for upper and lower bounds. However, we
are only interested in the densities of expression levels with
respect to sample-based maximum and minimum expression
levels, which is in relative positioning. Therefore, if the absolute
differences of a sample between two bounds are smaller than
other samples, their global differences among significant genes
will be smaller in a similar ratio as the bounds aso. As a result,
the effects of the absolute differences can be eliminated.

The uniform partitioning technique is used to evenly divide the
distance between the upper and lower bounds into a required
number of bins n,. Each bin width is defined by (upper-lower)/n;,
Each data set should have | and (n-) different regular histograms
for normal and cancer samples, and all histograms should have n,
bins because of the uniform partitioning. For example, figure 3
shows an example. Assume that there are 100 significant genes, n,
is 10 bins, and the upper and lower bounds are 4917 and -652. By
applying the uniform partitioning technique, each bin width is
[4917-(-652)]/10=557 to nearest integer. Expression levels of
identified significant genes are then mapped to different bins with
respect to their expression levels, and the results are shown in
figure 3. At the end, the regular histogram of the illustrated
sample is represented by the vector of (0.11, 0.76, 0.07, 0.02,
0.01, 0, 0,0.01, 0, 0.02).

| |

. | | | | | | I
bin 0 | 1 | 2 | 3 | 4 19 ) 6 L7 8 | 9
80 | 76 | | | | | | | I
70 | | | | | | | | I
60
ot | | | | | | | | |
o0 T T T T B B
30 | | I | | | | | I
201 99 | | ; I | | | | | I
10 | | 211 1lolo 1 1ol 2
0+ |_| t t = [ — 1 t t t | —
652 95 462 1019 1576 2133 2689 3246 3803 4360 4917

Expression Levels

Figure 3. Example of regular histogram’s construction for
expresdgon levels of significant genes.

After all the histograms corresponding to the same class of the
same training sets (i.e. the for loop a code line 8) have been
computed, a% candidate bins with highest and lowest bin values
are trimmed to eliminate the effects of outliners. Remaining bins
are then accumulated to form a representative histogram of
individual classes in the data sets. Since some entries are
trimmed, the value of the sum of al bin vaues a the
representative  histograms can be unbounded. It causes
inconsistent scaling when comparing with other histograms. In
order to have consistent comparisons, normalization is done so
that the sum of all bin values in a single representative histogram
to have the sum equalsto 1. Finally, all representative histograms
for individual training sets are added t0 Hyorma @d Heanee- TO USE
the same example in figure 3, the resultant vector becomes (0.76,
0.07, 0.02, 0.01, O, 0, 0.01, 0) after 5% of candidate bins with
highest and lowest bin values are trimmed. In addition, the
normalized vector becomes approximately (0.87, 0.09, 0.02, 0, O,
0.02, 0) in order to have sum equalsto 1.

With the computed Hyoma and Heane, COMparisons of the
histograms between training and testing samples can be
performed. Figure 4 shows the algorithm of the comparisons.
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Inputs: pairs of regular histograms for al training sample sets
Hnorma @1d Heanca» Sets of significant genes for al training sets G,
testing sample s, number of bins n,

Outputs: predictive classes by the regular histogram comparisons
Chis
variables:

1
2. H; be the temporary variable of the regular histogram of the
testing sample

3. fori= 1tosize(Hyorma)

4, Hs = hist_proc(s, ny, G);

S. if (dIS(H51 HNorrmJ, i) < diS(HS, HCance, I))
6. Chig = Chig + {Normal};

7. else

8. Chig = Chig + {Cancer};

9. end if

10. endfor

Figure 4. Algorithm for the mmparisons of regular
histogr ams between testing and training samples.

First of all, regular histogram of the testing sample s with respect
to the significant genes set G of the training sets is computed.
Then, dissimilarity measures between the testing sample and
individual classes of training sets are computed, respectively.
Assume that Hy(b) be the regular histograms of the testing sample
with bin b, and H(b) is the regular histograms of the classesin the
training sets with bin b, where c={Normal,Cance’}. Now, the
dissimilarity measures, dis, between two histograms are calculated
as.

[Hy(b)—H(b) @

dis(H,,H JcO{Normal,Cancer}) = Eb‘H ©)7H.0)

The second step is to compare the histogram of the testing sample
to pairs of the histograms in each training set and determine
predictive classes of the new sample with respective to individual
training sets in the code segment from line 5 to line 9 in figure 4.
For each training set, there are two histograms corresponding to it,
one for each class. The dissimilarity measures of norma and
cancer classes are compared, and the classes with smaller values
of the measures are set as the predictive classes of the testing
sample, and assigned as anew element in set Cyy4. Sincethereisa
single prediction for each training set, so there are m elements in
Chig for m different training sets.

At the same time, the mgjority-voting meta-classification
algorithm is performed. In [8], we proposed an empirically-driven
model averaging method to integrate individual classification
decisions to form meta-decisions. Suppose that there is a data set
D, and the data are arisen from k possible models (i.e.
combinations of classifiers and data sets), M=(My, .., My). If Ais
the quantity of interest (i.e. classification performance), then its
posterior distribution of Aindataset D is:

P(AID)=pr(AIB....B.D)= Y (B, % pr(4]M, D) @

, where (3 is the quantity of pre-knowledge for model M;, and it is
defined as:
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acc(D,M,) xS,(DM, )xS,(DM,) ®)

Zacc(D, M,)xS,(D, M, )xS,(D,M,)

, Where acc(D,M;), S,(D,M;) and S,(D,M;) are the dassification
acairacy, spedficity and sensitivity of model M; with dataset D.

To perform the majority-voting algorithm, K is st to 1in equation
2. Therefore, we only consider a single model ead time, and
finaly there ae k individual dedsions for k different models.
Hence, the equation is rewritten as:

Pr(4ID)=pr(41B,D)= 3 (B *pr(AIM,.D) “)

If there ae m and k different training sets and classfiers, there
will be (mxk) individual dedsions for the testing sample (i.e. each
model produce adedsion). For each dedsion, it is determined by
apair of A. Sincewe ae interested in predictive dasses of testing
sample s, represented as s.c, one way to make the prediction is to
compare the values of pr(s.c=Normal|D) and pr(s.c=Cancer|D),
where c[{Normal, Cancer}. If pr(s.c=Normal|D) is larger than
pr(s.c=Cancer|D), asdgned predictive dasses are normal.
Otherwise, it is asdgned as cancer. In order form meta-dedsions
among individual dedsions, the majority-voting agorithm in
equation 5 asdgns predictive dasss, Cyqye, Which are the most
often predictive dasses of individual dedsions s.c;.

_ argmax 5
(sclseO{Cuocl)= cO{ Normal ,Cancer } 21 ©

i{sG=c}

21, Cpeg = Cpreg + {Normal};
22. ese

23, Cprey = Cpreg + {Cancer};
24. endif

Inputs: testing sample s, sets of significant genes for al training
sets G, number of bins ny, predictive classes by the regular
histogram comparisons Cy;g, predictive dasses by the magjority-
voting agorithm Cyqe, impact factors for normal and cancer
clases |Fnorma @Nd 1Fcancer, Pairs of regular histograms for all
training sample sets Hyormar @Nd Heaneer, Pre-knowledge measures
corresponding to training sets S3.

Outputs: meta-dedsions Cpyeq

1. variables:

2. Onormar @Nd deancer b€ the dissmilarity values to namal and

cancer classes, dac norma aNd dace cancer D€ the acaimulative
dissmil arity values to normal and cancer clases

3. fori=1tosize(Cyig)

4. if (Cuig,i = Cvote i)

5. if (Cyis; = Normal)

6. Onormal = ﬁ X ”_:Normal,i I IFcancer, i % dis (hist_proc(s, ny,
Gi)y |'|Normaj, i) / dIS(hISJ)I’OC(S, Np, Gi)y HCancer, i);

7. else

8. deancer = B % |Fcancer, i / |Fnormal, i % dis (hist_proc(s, ny,

Gi), Heancer, 1) / dis (hist_proc(s, np, Gi), Horma, i);
9. end if

10. edse

11 if (CHiSl,i = Normal)

12, ClNormaJ = ﬁ o I':Canoer,i / ”:Norrmj,i;
13 else

14. deancer = B X 1Fnormay, i / 1F cancer, is
15. end if

16. endif

17. dAcc_nornnI = dAcc_nornnI + 1092 (dnorma);
18. dAcc_canoer = dAcc_canoer + 1092 (deancer);
19. endfor

20. _if (dace norma < ace cancer)
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Figure5. MIF algorithm.

Figure 5 shows the MIF (Majority-voting with Impad Fadors)
algorithm. It is an adoption of the dedsions of the regular
histogram comparisons, impact factors and majority-voting
algorithm. In the figure, the dmmbined meta-dedsions are Cpeq. IN
the regular histogram comparisons, there ae m indvidua
dedsions snce there is a single dedsion corresponding to eat
training set. In contrast, there ae (mxk) individual dedsions from
the magjority-voting algorithm since there is a single dedsion
corresponding to ead training set together with a type of
clasdfiers. Therefore, the dedsions of the regular histogram
comparisons are compared k times with that of the majority-
voting algorithm of the same training set. | Fyorma aNd [Feancer are
measures proposed in [7]. They define inter-experimental
variations of a heterogeneous testing sample to namal and cancer
classes of training samples, and they are expressed as | Fygrma @nd
|FCancer-

Individual dedsions of the regular histogram comparisons and the
majority-voting algorithm are cmpared in the code segment from
line 4 to line 16 in figure 5. If they are in the same dedsions,
equation 6 and 7 are goplied for dedsions of normal and cancer.

Anormar= 3 X1 Fnormaif | F cancer, Xdi S(0, Horma i)/di S(0, Heancer i) (6)
, Wwhere a=dis (hist_proc(s,n,,G;)

Aeancer= B X Fcancer,i /1 Frorma,i X dis(0H cancer,)/diS(@,Hnormar,) — (7)
, Where a=dis (hist_proc(s,n,,G;)

For both equations, [ is the magnitude of pre-knowledge for
model M;, which is cdculated by equation 3. The fadors of
(IFc,i/1Fe2;), given that cl1,c2C{Normal, Cancer} and cl#c2, are
linea scding fadors which minimize variations between two
clases among different training sets. In fact, d./s, where
c[{Normal, Cancer}, are measures with respea to overall gene
expresson levels in various training sets, but the ratio of gene
expresson levels between two classes in individual training sets
are varied. Hence, d.'s shoud be rescded acordingly in order to
reduce the impads of differential ratios between the two classes
among various data sets. As a result, individual dedsions are
insensiti ve to bias of either classand variations of gene expresson
levels among training sets.

For the ratio of two dfferent dis's, it weights the results of the
majority-voting algorithm by taking the similarity of shapes
between two histograms. Remind that candidate i in the set Cyig;
is defined as:

Chisi = (c1| dig(cl,s) <disg(c2,s)Ocl,c2{ Normal ,Cancer } Ocl# c2) (®

Hence, the fador of dis(cl,s)/dis(c2,s) makes 5 become smaller,
and thus a higher degree of similarity is contributed to meta-
dedsions becaise of similarity of the regular histograms.

In contrast, if the two dedsions are different, the fadors,
representing the similarity of the regular histogram comparisons,
are ecluded. The fadors of (IFq;/IF;) a@m a minimizing
variations between classes and hias of either class Therefore, the
factors are dso used to adjust the values of . However, the
factors of dis(cl,s)/dis(c2,s) are weighted fadors which give
higher ranks to dedsions becaise of similarity of the regular
histograms. For the cae of different dedsions between two
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algorithms, the previous method is not appropriate. In fact, the
histograms are constructed by a set of significant genes, which are
selected and extracted after the accession numbers alignment.
Also, the significant genes are ranked in terms of their differential
gene expression levels between two classes, which is independent
on variations of gene expression levels among different data sets.
Therefore, it is possible that (1) some significant genes are
omitted during the accession numbers alignment, and (2) selected
and extracted significant genes, based on training sets, may cause
misleading results. As a result, we use another method and have
the following eguations for the case of different decisions:

CINormal = ﬁ o IFCancer,i/IFNormaJ,i (9)
deancer = B X 1Fnormal, i / 1F cancer, i (10)

Finaly, calculated dnorma @8Nd deancer @€ adjusted on log2 scale,
and individual results corresponding to their training sets are
added together, expressed as dac norma @Nd dace cancer fOr NOrmal
and cancer classes. Their magnitudes are compared, and the
classes with smaller magnitudes become meta-decisions of the
testing sample.

Table 1. Infor mation of data sets.

Daltg set  Cancer Authors Acc_on Norma_l sample Cancer sample Training dateTesting date
type annotation size size
1 Bladder Ramaswamy et al. [18] Hu35K 7 11 v
2 Brain Pomeroy et al. [16] Hu35K 4 10 v
3 Colon Notterman et al. [14] GenBank 4 4 v
4 Lung Bhattacharjee et a. [1] U95A 17 126 v v
5 Lung Ramaswamy et al. [18] Hu35K 7 8 v v
6 Ovary Welsh et al. [25] Hu35K 3 30 v
7 Prostate Singheta. [22] U95A 9 25 v v
8 Prostate Welsh et al. [24] U95A 50 52 v v
9 Prostate ~ Ramaswamy et al. [18] Hu35K 9 10 v
10 Uterus Ramaswamy et a. [18] Hu35K 6 10 v
Table 2. Number of common genes between training and testing data sets.
Testing data set ID
1 2 3 5 6 7 8 9 10
4 | 7091 | 6153|6045 | 12599 | 7091 | 6153 | 12249 | 12599 | 12249 | 7091
Training data set 1D 5 [ 137748391 | 7840 | 7091 | 13774 | 8391 | 6808 | 7091 | 6808 | 13774
7 | 6808 | 5949 | 5841 | 12249 | 6808 | 5949 | 12625 | 12249 | 12625 | 6808
8 | 7091 | 6153 | 6045 | 12599 | 7091 | 6153 | 12249 | 12599 | 12249 | 7091
Table 3. Experimental results compared wit the majority-voting meta-classification.
'I;:t: Bg Type Approach Accuracy (%) Sensitivity (%) Soecificity (%) COSIQ;: ﬁgrsnl ng
1 Bladder Majority-voting 73.61+9.49 39.29+31.68 95.45+5.25 5+3.92
MIF algorithm 84.72+2.78 60.71+7.14 100.00+0 8.5+1
2 Brain Maj ority-vpti ng 75.00£7.14 25.00+£35.36 95.0045.77 1.5+2.38
MIF algorithm 83.93+3.57 68.75+12.5 90.00+£8.16 4.5+0.58
3 Colon Majority-v_oting 87.50+0 75.00+0 100.00+0 610
MIF algorithm 87.50+0 75.00£0 100.00+0 60
4 Lung Majori ty-vpti ng 96.50+0.81 94.12+0 96.83+0.92 28+1.15
MIF algorithm 94.76+1.21 97.06+5.88 94.44+1.71 26+1.83
5 Lung Maj ority-vpti ng 75.00+3.21 42.86+£20.2 95.45+9.09 5.5+1.91
MIF algorithm 91.67+3.56 85.71+0 95.45+9.09 11.5+1
6 Ovary Maj ority-vpti ng 80.30+5.25 0.00+0 88.33+5.77 -3.5£1.73
MIF algorithm 84.85+2.47 33.33+0 90.00+2.72 -1+0.82
7 Prostate Majori ty-vpti ng 100.00+£0 100.00+0 100.00+0 18
MIF algorithm 96.32+2.82 91.67+5.56 98.00+2.31 16+£1.41
8 Prostate Majori ty-vpti ng 63.16+11.37 33.33£39.54 90.00+£14.14 5+5.72
MIF algorithm 57.11+5.85 15.50+12.58 97.12+1.11 14+12.25
9 Prostate Majori ty-vpti ng 75.00£3.21 42.86+20.2 95.45+9.09 5.5+1.91
MIF algorithm 68.42+11.37 52.78+29.22 82.50+15 7.75£4.57
10 Uterus Majority-vpting 81.25+5.1 66.67+23.57 90.00+11.55 7+2
MIF algorithm 81.25+0 75.00+9.62 85.00+5.78 7.5+0.58
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4. EXPERIMETNS & DISCUSSIONS

To meaure the dasdficaion performance, four measurements are
used as peformance indicaors. Classficaion acaracy,
sensitivity, spedficity and leaning cost savings are defined in
terms of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN), and their definitions are [4], [13]:

+ Accuracy (acc) — acc= (TP+TN)/(TP+TN+FP+FN)
* Sensitivity (S)) — S, =TP/TP+FN)
* Spedficity (S;) — S=TN/(TN+FP)
+ Leaning cost savings (sav) — sav=[ (FN+TP)*2]-(FP+2*FN)

4.1. Data sets

In order to demonstrate the robustness of the MIF agorithm, 10
different data sets, which are individually published in 8
publicaions, are experimented. They are heterogeneous sncethey
were ondwted by different laboratories with dfferent
experimental objedives, microarray platforms and human genome
arrays. Table 1 shows their information. Among all of them, two
lung cancer (Bhattacharjee and Ramaswamy) and two prostate
(Singh and Welsh) cancer data sets are abitrarily seleded as
training data sets for extension and continuity of our previous
worksin[7], and all of them are used for testing.

As dated in table 1, there ae three different acaesson numbers
annaations, and therefore aprocessof standardization is reguired.
We map the Hu35K and GenBank annotations into the U95A
annotation acording to the mapping table done by Ramaswamy
et a. [17]. In fad, the mapping is not simply one-to-one mapping.
There may be dupicaed accesion numbers in the mapped data
set. Thus, an extra pre-processng step is performed to combine
the expresdon levels by averaging al expression levels of the
same acesgon numbers. After the standardization, it is required
to find out those commonly existed genes for pairs of
heterogeneous data sets and align their expresson levels. In fact,
the numbers of gene among different data sets are varied.
Unavoidably, some expresson levels are omitted becaise of
missing data in ether data set of pairs. Hence the number of
genes in aligned sets is either smaller or equals to the number of
genes in the origina data sets. Finaly, we have table 2, which
shows the number of commonly existed genes between training
andtesting data sets.

4.2. Results

In this edion, we first compare the results of the MIF agorithm
with that of the majority-voting algorithm, and then the results are
compared with the works dore by Bloom et a. [2]. Bloom's
method is to perform multi-platform and multi-site microarray-
based tumor meta-classificaion, and they used the measurement
of classificaion acaracy as performance indicaor. For
parameters «ttings, the numbers of required hins n,, and
significant genes ng, are set as 25 and 100. In addition, a%, which
is the percentage of candidate bins to be trimmed, is st to 10%
for achieving the optimal performance after some empirica
studies. For clasdfiers training scheme, 70% of samples in ead
training data sets are seledion for individual training at random,
and al samples in testing data sets are used for performance
measurements. In order to estimate the standard deviation d the
performance, each training set is trained 100 times with dfferent
training candidates sleded randomly.
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In table 3, it shows that the MIF agorithm outperforms the
majority-voting algorithm in terms of classficaion acaracy,
sengitivity, spedficity and cost of leaning savings. Except for the
cases of prostate cancer, the MIF algorithm achieves around 8346
of accuracy, 65% of senstivity, 90% of spedficity and
comparatively higher savings on leaning cost.

For the dassficaion acairracy, the data sets of lung cancer have
the highest performance, but all cases of prostate cancer have littl e
performance reduction. For lung cancer, the acarragy is higher
than 90% for both cases (i.e. Bhattacharjee ad Ramaswamy).
Although there is 2% reduction for the data set Bhattacharjee, the
acalracy for the data set Ramaswamy is increased from 75% to
91%. However, al data sets of prostate cancer have different
degrees of performance degradation. There ae reductions of 7%,
6% and P for the acaracy of the data set Singh, Welsh and
Ramaswamy. In addition, it shows that two of them, which are
Welsh and Ramaswamy, perform worse than ather cases not only
with the majority-voting agorithm, but also with the MIF
algorithm. They only achieve aound 60% for the acaracy, which
is 20% lower than the average cases. For other cancer types,
including bladder, brain, colon, and uterus, their average accuracy
is around 8%%. For the standard deviations of the acaracy, the
MIF agorithm adchieves gnaller standard deviations for most
cases. For the cancer types of bladder, brain, ovary and uerus
cances, the improvement is more than 50%. For the cancer types
of lung and prostate cacers, the significanceresults are varied.

For the dasdfication senstivity and spedficity, the MIF
algorithm can have better balanced recdl rates between namal
and cancer samples, except for the caes of prostate cancer.
Clasdfication algorithms soud have similar recall rates for
samples in both classes so that the algorithms are unhiased to
either class Euclidean distance of sensitivity, S,, and spedficity,
S, can be used to show the balance of recdl rates between
samplesin two classs, and the distanceis:

Euclidean(S,, S,) =/S,” + S, (1)

In table 4, it shows that the MIF agorithm outperforms the
majority-voting algorithm for 6 cases (i.e. 1, 2, 5, 6, 8 and 10) and
maintains the same performance for 2 cases (i.e. 2 and 3). Similar
to the measurement of clasdfication acarracy, the data sets of
prostate cancer do nd have impresgve results. Testing set 7 and 9
show performance degradation (i.e. the majority-voting agorithm
outperforms the MIF algorithm.).

Table 4. Balanced recall rates between normal and
cancer sample.
Testingset ID  Type  Majority-voting MIF algorithm

1 Bladder 1.03 1.17
2 Brain 0.98 1.13
3 Colon 1.25 1.25
4 Lung 1.35 1.35
5 Lung 1.05 1.28
6 Ovary 0.88 0.96
7 Prostate 1.41 1.34
8 Prostate 0.96 0.98
9 Prostate 1.05 0.98
10 Uterus 1.12 1.13

In addition, we have dso compared ou results with bloom’s
results in [2]. In table 5, it shows that the MIF agorithm
outperforms Bloom's works for bladder and uerus cancers, and
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maintains the same performance for lung cancer. However, there
is performance reduction for prostate cancer.

Table 5. Comparison of resultswith other works.
Testing set ID Type Clasdfi cation accuracy (%)

Bloom's results  our results
1 Bladder 77 84
5 Lung 91 91
9 Prostate 94 68
10 Uterus 74 81

4.3. Cancer/testis (CT) immunogenic gene
families

Cancer/testis (CT) immunogenic gene families are subsets of
genes, which are commonly existed in various cancer types. Some
works show that most CT immunogenic gene families are
expressed in more than one cancer types, but with various
expression frequencies. In [20], Scanlan et a. have reviewed the
expression frequencies of them in numerous cancer types
consisting of bladder, brain, breast, colon, gastric, and etc. It
shows that lung and melanoma cancers contain a higher
percentage of CT genes examined at expression frequencies
greater than 20%. In contrast, prostate and brain cancers have a
relatively lower percentage of the CT genes examined at the same
frequencies.

Table 6. Comparisons of the cancer/testis (CT)
immunogenic gene familiesin various cancer types.

Cancer type

Bla |Bra|Col | Lun |Oval|Pro

No. of included lowly-expressed
CT genes with alow expression | 17 | 5 [12| 29 |11 |11
frequency, <= 20%

No of included CT highly-
expressed genes with a high |11 |4 |3 | 17 | 7 | 6
expression frequency, > 20%

Proportions  of  commonly
existed highly-expressed genes |7/11|3/4 |2/3 |29/29|5/7 | 2/6
to lung cancer

Proportions  of  commonly
existed highly-expressed genes |4/11|1/4 |1/3 | 2/29 | 2/7 | 6/6
to prostate cancer

# Abbrevations: Bla, bladder; Bra, brain; Col, colon; Lun, lung;
Ova, ovary; Pro, prostate.

In our studies, we have analyzed how the proportions of shared
highly-expressed CT genes between training and testing samples
play a vital role in metaclassification performance of
heterogeneous data. We investigated how the number of included
lowly- and highly-expressed CT genes is varied with the
classification performance. Table 6 shows the number of included
lowly- and highly-expressed CT genes in various cancer types.
Lung cancer has the highest proportions of both types of CT
genes, and brain cancer has the lowest one. However, in [20], it
has mentioned that the studies of brain cancer to the CT genes are
insufficient in this moment. Therefore, brain cancer is exceptional
and hence prostate and ovary cancers belong to the same family of
having small proportions of both types of CT genes.

From our experiments, the data sets of prostate cancer only
achieve classification accuracy of 75% in average, but the data set
of ovary cancer can achieve 84% instead. Hence, it may be
deduced that there is no direct and linear relationship between the
number of included lowly- and highly-expressed CT genes and
the classification performance.

Further, we have investigated how the number of shared highly-
expressed CT genes between training and testing samples is in
relation to the classification performance. In table 6, the last two
rows show the proportions of the highly-expressed CT genes
between the corresponding samples, and both lung and prostate
cancers, respectively. If we consider the proportions together with
the corresponding classification performance, we will have figure
6. In the figure, the classification performance has the same
increasing and decreasing trends as the proportions of the CT
genes to lung cancer, but reversed trends for the proportions to
prostate cancer, except for the case of brain cancer.

Together with figure 6 and table 6, we can see that the proportions
of shared highly-expressed CT genes between training and testing
samples has impacts on classification performance, and the data
sets of lung cancer have dominated roles at meta-decisions
because of higher proportions of shared highly-expressed CT
genes between training and testing samples. In the figure, lung
cancer always has higher proportions of shared highly-expressed
CT genes with other cancer types, except for the prostate cancer.
The classification accuracy is higher than 80% in average.
However, the classification accuracy for prostate cancer has been
dropped significantly. It may be evidence to show that the
decrease of the performance for prostate cancer is caused by lack
of shared highly-expressed CT genes between training and testing

=% of shared highly-expressed CT genesto lung cancer
% of shared highly-expressed CT genes prostate cancer
classification performance

100% //\\
75%
0 / ¥ \
S 5%

25%

~

0%

Bladder Brain Colon

Cancer type

Lung Ovary Prostate

Figure 6. Relationship between shared highly-expressed CT genes and classification perfor mance.
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samples. Also, it is observed that the highly-expressed CT genes
of prostate cancer in training samples are compromised with the
lack of the genes between lung and prostate cancers. The possible
explanation is that the number of included lowly- and highly-
expressed CT genes in various cancer types. The fact is that the
number of both included lowly- and highly-expressed CT genesto
lung cancer is amost 3 times higher than that of prostate cancer,
causing that data sets of lung cancer may have higher weights at
meta-decisions. In addition, in figure 6, the decreasing rate of the
performance for prostate cancer is less than that of the proportions
of shared highly-expressed CT genes to lung cancer because of
the increase of shared CT genes in prostate cancer (i.e. the
ordinary type).

5. CONCLUSIONS

With the innovation of DNA microarray technologies, different
mining algorithms have been proposed to discover knowledge in
cancer gene expression data. Significant findings are recently
exploited. However, most works are done with asingle data set. In
terms of efficiency and effectiveness of mining algorithms with
respect to clinical applicability and robustness, it is too weak to
draw conclusions because of the problems of over-fitting and
homogeneity within asingle data set.

In this work, we proposed the MIF agorithm to perform multi-
type cancer gene expression data classification, which uses
differences of regular histograms for gene expression levels of
certain significant genes as parts of dissimilarity measures and
indicators of predictive classes. In the experiments, we have
intensively used 10 different data sets to show the reliability and
robustness of the MIF algorithm. The results are impressive. The
classification accuracy is around 85% in average for most cases,
except for the data sets of prostate cancer.

To investigate the frustrated performance for prostate cancer, we
have looked into the cancer/testis (CT) immunogenic gene
families. We have discovered that the numbers of shared highly-
expressed (i.e. expression frequencies > 20%) CT genes between
training and testing samples have impacts on the classification
performance of heterogeneous samples.
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