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ABSTRACT 
Massive publicly available gene expression data consisting of 
different experimental conditions and microarray platforms 
introduce new challenges in data mining when integrating 
multiple gene expression data. In this work, we proposed a meta-
classification algorithm, which is called MIF algorithm, to 
perform multi -type cancer gene expression data classification. It 
uses regular histograms for gene expression levels of certain 
significant genes to represent sample profiles. Differences 
between profiles are then used to obtain dissimilarity measures 
and indicators of predictive classes. In order to demonstrate the 
robustness of the algorithm, 10 different data sets, which are 
individually published in 8 publications, are experimented. The 
results show that the MIF algorithm outperforms the simple 
majority-voting meta-classification algorithm and has a good 
meta-classification performance. In addition, we also compare our 
results with other researchers’ works, and the comparisons are 
impressive. Finally, we have confirmed our findings with 
cancer/testis (CT) immunogenic gene famili es of heterogeneous 
samples.  
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1. INTRODUCTION 
Although DNA microarray techniques bring breakthroughs to 
cancer study, massive publicly available gene expression data, 
which are conducted by different laboratories with various 
experimental conditions and microarray platforms, introduce new 
challenges to conduct data mining with an integration of multiple 
and heterogeneous gene expression data. For gene expression data 
in cancer study, the advance of data mining leads to the discovery 
of global cancer profili ng, patient classification, tumor 
classification, tumor-specific molecular marker identification and 
pathway exploration [15]. Different mining algorithms have been 
proposed, and significant findings are exploited corresponding to 
different algorithms. For most cases, validations of findings are 
done by a series of biological experiments or laboratorial works. 
However, in terms of efficiency and effectiveness of mining 
algorithms with respect to clinical applicabilit y and robustness, 
the validations are mainly restricted by cross-validation or sub-
sampling within a single data set [4], [11]. This validation scheme 
is not suff iciently to draw conclusions because of the problems of 
over-fitting and homogeneity within a single data set. To avoid 
these problems, there are two potential solutions: (1) it is required 
to validate mining algorithms with heterogeneous data sets 
consisting of different microarray platforms and experimental 
conditions, and (2) meta-analysis is performed with a number of 
heterogeneous data sets so that it can make meta-decisions with an 
integration of these data sets, rather than with individual data sets 
[5], [19]. 

To perform classification of heterogeneous data consisting of 
multi -type cancer, some common features (i.e. significant genes) 
must be founded in various cancer types. Subsets of genes, which 
are called cancer/testis (CT) immunogenic gene famili es, are 
recently proposed to have associations with one or more than one 
cancer type. Van der Bruggen et al. [23] suggested an approach to 
identify the molecular definition of tumor antigens recognized by 
T cells, and this approach leads to the discovery of various human 
tumor antigens, such as MEGEA1 and BAGE. Discovered tumor 
antigens are recently grouped into distinct subsets, and the subsets 
are named as cancer/testis (CT) immunogenic gene famili es. 
Currently, researchers have discovered 44 CT immunogenic genes 
famili es consisting of 89 individual genes in total [20]. 

In our previous works, we proposed a measure called “ impact 
factors (IFs)”  to improve the classification performance of 
heterogeneous gene expression data [7], [8]. In this paper, we 
extend the works and propose a meta-classification algorithm, 
which is called Majority-voting with Impact Factors (MIF) 
algorithm, to classify multi -type cancer gene expression data 
consisting of both different cancer types and microarray 
platforms. In order to validate the reliabilit y and robustness of the 
MIF algorithm, 10 gene expression data sets, which are published 
in 8 different publications, are experimented, and the 
classification performance of the MIF algorithm is not only 
compared with the simple majority-voting meta-classification 
algorithm, but also with results of other researchers in [2]. 

2. RELATED WORKS 
Recent progress in mining gene expression data is to discover 
knowledge from multiple and heterogeneous gene expression 
data. Some works are concerning theoretical flexibilit y to 
integrate gene expression data with various microarray platforms 
and technologies. Lee et al. [10] and Kuo et al. [9], respectively, 
described different approaches based on simultaneous mutual 
validation of large numbers of genes using two different 
microarray platforms. They used the NCI-60 data sets consisting 
of spotted cDNA arrays and Affymetrix oligonucleotide chips. 
Choi et al. [5] proposed a systematic integration of gene 
expression data based on normalizing data with an estimated 
means of other data sets.  

For application level, classification is one of the common areas in 
data mining of gene expression data. Ng et al. [13] proposed a 
method to perform subtype classification with six different gene 
expression studies on Saccharomyces cervisiae. Recently, Bloom 
et al. [2] conducted a study of multi -platform, multi -type and 
multi -site classification on cancer gene expression data. In the 
study, 15 cancer types, published in 4 different publications, are 
experimented.  

Meta-classification approaches are mainly divided into three 
categories [21]. The first category is to average individual 
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decisions of different element classifiers without altering the 
original learning algorithms of the element classifiers. The second 
category is to predict the right learning algorithm or classifier for 
a particular problem from a set of element classifiers based on 
analyzing the fitness of the characteristics of testing data sets. The 
last category is to take a sub-sample of the entire data set and try 
each algorithm on this sub-sample. Among these three categories, 
the category of model averaging draws more attention in the 
literatures. For gene expression data, most works also belong to 
the category of model averaging. Some works include majority-
voting [3], Bayesian combination [4], weighted-voting [4] and 
neural network ensembles [26]. 

3. MIF ALGORITHM 
In this work, we proposed a meta-classification algorithm, called 
Majority-voting with Impact Factors (MIF) algorithm, to perform 
multi-type cancer gene expression data classification. It uses 
regular histograms for gene expression levels of certain significant 
genes to represent the profiles of samples. Differences between 
profiles are then used to obtain dissimilarity measures and 
indicators of predictive classes. The regular histograms are 
constructed by the uniform partitioning technique with maximum 
and minimum expression levels of the significant genes as upper 
and lower bounds. It aims at estimating densities of expression 
levels of significant genes in terms of relative positioning with 
respect to the upper and lower bounds.  For a new sample, it 
compares its histograms with the histograms of individual classes 
in training sets. The classes with smaller dissimilarity measures 
are set as predictive classes for the new sample. As the same time, 
the majority-voting meta-classification algorithm is performed 
with the new sample too. If the decisions derived from the regular 
histogram comparisons and the majority-voting algorithm are the 
same, weighted scores corresponding to individual classes, which 
are based on the impact factors (IFs), are accumulatively adjusted 
the dissimilarity measures of the corresponding classes. On the 
other hands, if their decisions are different, there are no such 
weighted scores, and the dissimilarity scores are increased 
according to the results of the majority-voting algorithm. Figure 1 
shows the process overview. 

Here, we describe the MIF algorithm in details. First of all, 
individual regular histograms of every sample in each class in 
training sets are constructed [12]. Suppose that there are m 
training sets represented by the vector X=(X1, X2, …, Xm), and  
Xi=(xi,1, xi,2, …, xi,l, xi,l+1, …, xi,n) be the training set i with l 
normal samples and (n–l) cancer samples. The expression levels 
of gene g in Xi be represented by a vector g=(ei,1, ei,2, …, ei,n), 
where ei,j represents the expression level of g in sample j of set i 
(i.e. Xi), and c={Normal,Cancer} be the class vector such that xi,j.c 

representing the classes of sample j in set i. The algorithm for the 
regular histogram construction for training samples is shown in 
figure 2. 

Inputs: aligned training samples sets X, number of bins nb, 
number of significant genes ng 

Outputs: pairs of regular histograms for all training samples sets 
HNormal and HCancer, sets of significant genes for all training sets G 

1. variables:  
2.    tempNormal and tempCancer be the temporary sets of regular 

histograms for each candidate of Xi, tempSig be the temp set 
of significant for Xi, α be the percentage of bin candidates 
to be trimmed 

3. for i = 1 to size(X) 
4.    tempNormal = φ; 
5.    tempCancer = φ; 
6.    tempSig = find_sig_genes (Xi); 
7.    G = G + tempSig; 
8.    for j = 1 to size(Xi) 
9.       if (xi,j.c = Normal) 
10.          tempNormal = tempNormal + hist_proc(xi,j, nb, tempSig); 
11.       else 
12.          tempCancer = tempCancer + hist_proc(xi,j, nb, tempSig); 
13.       end if 
14.    end for 
15.    HNormal = HNormal + normalize (tempNormal,α); 
16.    HCancer = HCancer + normalize (tempCancer,α); 
17. end for 

Figure 2. Algorithm for calculating regular histograms for 
training samples sets. 

In figure 2, for each training set Xi, where Xi∈{X}, significance of 
genes in Xi is calculated and ranked accordingly in the function 
“ find_sig_genes” at code line 6. The common and widely used 
statistical method t-test is used to rank significance of the genes 
[6]. In the t-test, its sign is determined by the numerator. 
Therefore, the t-values are positive if the mean of normal class is 
larger than that of cancer class and negative if the mean of normal 
class is smaller than that of cancer class. Hence, taking genes 
from both tails from the sorted list, including positive and 
negative t-values, can assume that the same proportions of genes 
from both classes are considered. Extracted significant genes sets, 
G={G1, G2, …, G m}, where Gi is the significant gene set in 
training Xi, are later used to construct and compare the histograms 
of testing samples. 

At code lines 10 and 12 in figure 2, the function “hist_proc” is 
invoked to construct the regular histograms. The maximum and 
minimum expression levels among those extracted significant 
genes are set as the upper and lower bounds of the histograms. 

 
Figure 1. Process overview of the MIF algorithm. 
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Samples belong to the same classes of the same training sets may 
have different values for upper and lower bounds. However, we 
are only interested in the densities of expression levels with 
respect to sample-based maximum and minimum expression 
levels, which is in relative positioning. Therefore, if the absolute 
differences of a sample between two bounds are smaller than 
other samples, their global differences among significant genes 
will be smaller in a similar ratio as the bounds also. As a result, 
the effects of the absolute differences can be eliminated.  

The uniform partitioning technique is used to evenly divide the 
distance between the upper and lower bounds into a required 
number of bins nb. Each bin width is defined by (upper-lower)/nb. 

Each data set should have l and (n–l) different regular histograms 
for normal and cancer samples, and all histograms should have nb 
bins because of the uniform partitioning. For example, figure 3 
shows an example. Assume that there are 100 significant genes, nb 
is 10 bins, and the upper and lower bounds are 4917 and -652. By 
applying the uniform partitioning technique, each bin width is 
[4917-(-652)]/10=557 to nearest integer.  Expression levels of 
identified significant genes are then mapped to different bins with 
respect to their expression levels, and the results are shown in 
figure 3. At the end, the regular histogram of the illustrated 
sample is represented by the vector of (0.11, 0.76, 0.07, 0.02, 
0.01, 0, 0, 0.01, 0, 0.02). 

 
Figure 3. Example of regular histogram’s construction for 

expression levels of significant genes. 

After all the histograms corresponding to the same class of the 
same training sets (i.e. the for loop at code line 8) have been 
computed, α% candidate bins with highest and lowest bin values 
are trimmed to eliminate the effects of outliners. Remaining bins 
are then accumulated to form a representative histogram of 
individual classes in the data sets.  Since some entries are 
trimmed, the value of the sum of all bin values at the 
representative histograms can be unbounded. It causes 
inconsistent scaling when comparing with other histograms. In 
order to have consistent comparisons, normalization is done so 
that the sum of all bin values in a single representative histogram 
to have the sum equals to 1. Finally, all representative histograms 
for individual training sets are added to HNormal and HCancer. To use 
the same example in figure 3, the resultant vector becomes (0.76, 
0.07, 0.02, 0.01, 0, 0, 0.01, 0) after 5% of candidate bins with 
highest and lowest bin values are trimmed. In addition, the 
normalized vector becomes approximately (0.87, 0.09, 0.02, 0, 0, 
0.02, 0) in order to have sum equals to 1. 

With the computed HNormal and HCancer, comparisons of the 
histograms between training and testing samples can be 
performed. Figure 4 shows the algorithm of the comparisons.  

 

Inputs: pairs of regular histograms for all training sample sets 
HNormal and HCancer, sets of significant genes for all training sets G, 
testing sample s, number of bins nb 

Outputs: predictive classes by the regular histogram comparisons 
CHist 

1. var iables: 
2.    Hs be the temporary variable of the regular histogram of the 

testing sample 
3. for i = 1 to size(HNormal) 
4.    Hs = hist_proc(s, nb, Gi); 
5.    if (dis(Hs, HNormal, i) < dis(Hs, HCancer, i)) 
6.       CHist = CHist + {Normal}; 
7.    else 
8.       CHist = CHist + {Cancer}; 
9.    end if 
10. end for 

Figure 4. Algor ithm for the compar isons of regular 
histograms between testing and training samples. 

First of all, regular histogram of the testing sample s with respect 
to the significant genes set G of the training sets is computed. 
Then, dissimilarity measures between the testing sample and 
individual classes of training sets are computed, respectively. 
Assume that Hs(b) be the regular histograms of the testing sample 
with bin b, and Hc(b) is the regular histograms of the classes in the 
training sets with bin b, where c={Normal,Cancer}. Now, the 
dissimilarity measures, dis, between two histograms are calculated 
as: 

∑ +
−

=∈
b

cs

cs
cs (b)H(b)H

(b)H(b)H
)ncer}{Normal,Ca|c,Hdis(H

 (1) 

The second step is to compare the histogram of the testing sample 
to pairs of the histograms in each training set and determine 
predictive classes of the new sample with respective to individual 
training sets in the code segment from line 5 to line 9 in figure 4. 
For each training set, there are two histograms corresponding to it, 
one for each class. The dissimilarity measures of normal and 
cancer classes are compared, and the classes with smaller values 
of the measures are set as the predictive classes of the testing 
sample, and assigned as a new element in set CHist. Since there is a 
single prediction for each training set, so there are m elements in 
CHist for m different training sets. 

At the same time, the majority-voting meta-classification 
algorithm is performed. In [8], we proposed an empirically-driven 
model averaging method to integrate individual classification 
decisions to form meta-decisions. Suppose that there is a data set 
D, and the data are arisen from k possible models (i.e. 
combinations of classifiers and data sets), M=(M1, …, M k). If ∆ is 
the quantity of interest (i.e. classification performance), then its 
posterior distribution of ∆ in data set D is: 

( )∑
=

×==
K

1i
kik1 )D,M|(pr)D,,...,|(pr)D|(pr ∆βββ∆∆  (2) 

, where βi is the quantity of pre-knowledge for model Mi, and it is 
defined as:  
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∑
=

=
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inipi
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)(D, M)x S(D, M) x Sacc(D, M

)(D,M)x S(D,M) x Sacc(D,M
β

 (3) 

, where acc(D,Mi), Sp(D,Mi) and Sn(D,Mi) are the classification 
accuracy, specificity and sensitivity of model Mi  with data set D. 

To perform the majority-voting algorithm, K is set to 1 in equation 
2. Therefore, we only consider a single model each time, and 
finally there are k individual decisions for k different models. 
Hence, the equation is rewritten as: 

( )∑
∈

×==
Ki

iii )D,M|(pr)D,|(pr)D|(pr ∆ββ∆∆  (4) 

If there are m and k different training sets and classifiers, there 
will be (m×k) individual decisions for the testing sample (i.e. each 
model produce a decision). For each decision, it is determined by 
a pair of ∆. Since we are interested in predictive classes of testing 
sample s, represented as s.c, one way to make the prediction is to 
compare the values of pr(s.c=Normal|D) and pr(s.c=Cancer|D), 
where c∈{Normal, Cancer}. If pr(s.c=Normal|D) is larger than 
pr(s.c=Cancer|D), assigned predictive classes are normal. 
Otherwise, it is assigned as cancer. In order form meta-decisions 
among individual decisions, the majority-voting algorithm in 
equation 5 assigns predictive classes, CVote, which are the most 
often predictive classes of individual decisions s.ci.  

{ }( ) ∑
=∈=∈

}cc.s{:i
Vote

i

1
}Cancer,Normal{c

maxarg
Cc.s|c.s  (5) 

Inputs: testing sample s, sets of significant genes for all training 
sets G, number of bins nb, predictive classes by the regular 
histogram comparisons CHist, predictive classes by the majority-
voting algorithm CVote, impact factors for normal and cancer 
classes IFNormal and IFCancer, pairs of regular histograms for all 
training sample sets HNormal and HCancer, pre-knowledge measures 
corresponding to training sets β. 

Outputs: meta-decisions CPred 

1. variables: 
2.    dNormal and dCancer be the dissimilarity values to normal and 

cancer classes, dAcc_normal and dAcc_cancer be the accumulative 
dissimilarity values to normal and cancer classes 

3. for i = 1 to size(CHist) 
4.    if (CHist, i = CVote, i) 
5.       if (CHist, i = Normal) 
6.          dNormal = βi × IFNormal, i / IFCancer, i × dis (hist_proc(s, nb, 

Gi), HNormal, i) / dis (hist_proc(s, nb, Gi), HCancer, i); 
7.       else 
8.          dCancer = βi × IFCancer, i / IFNormal, i × dis (hist_proc(s, nb, 

Gi), HCancer, i) / dis (hist_proc(s, nb, Gi), HNormal, i); 
9.       end if 
10.    else 
11.       if (CHist, i = Normal) 
12.          dNormal = βi ×  IFCancer, i / IFNormal, i; 
13.       else 
14.          dCancer = βi × IFNormal, i / IFCancer, i; 
15.       end if 
16.    end if 
17.    dAcc_normal = dAcc_normal + log2 (dNormal); 
18.    dAcc_cancer = dAcc_cancer + log2 (dCancer); 
19. end for 
20. if (dAcc_normal < dAcc_cancer)  

21.    CPred = CPred + {Normal}; 
22. else 
23.    CPred = CPred + {Cancer}; 
24. end if 

Figure 5. MIF algorithm. 
Figure 5 shows the MIF (Majority-voting with Impact Factors) 
algorithm. It is an adoption of the decisions of the regular 
histogram comparisons, impact factors and majority-voting 
algorithm. In the figure, the combined meta-decisions are CPred. In 
the regular histogram comparisons, there are m individual 
decisions since there is a single decision corresponding to each 
training set. In contrast, there are (m×k) individual decisions from 
the majority-voting algorithm since there is a single decision 
corresponding to each training set together with a type of 
classifiers. Therefore, the decisions of the regular histogram 
comparisons are compared k times with that of the majority-
voting algorithm of the same training set. IFNormal and IFCancer are 
measures proposed in [7]. They define inter-experimental 
variations of a heterogeneous testing sample to normal and cancer 
classes of training samples, and they are expressed as IFNormal and 
IFCancer.  

Individual decisions of the regular histogram comparisons and the 
majority-voting algorithm are compared in the code segment from 
line 4 to line 16 in figure 5. If they are in the same decisions, 
equation 6 and 7 are applied for decisions of normal and cancer.  

dNormal=βi×IFNormal,i/IFCancer,i×dis(α,HNormal,i)/dis(α,HCancer,i) (6) 
, where α=dis (hist_proc(s,nb,Gi) 

dCancer=βi×IFCancer,i /IFNormal,i× dis(α,HCancer,i)/dis(α,HNormal,i) (7) 
, where α=dis (hist_proc(s,nb,Gi) 

For both equations, βi is the magnitude of pre-knowledge for 
model Mi, which is calculated by equation 3. The factors of 
(IFc1,i/IFc2,i), given that c1,c2∈{Normal, Cancer} and c1≠c2, are 
linear scaling factors which minimize variations between two 
classes among different training sets. In fact, dc’ s, where 
c∈{Normal, Cancer}, are measures with respect to overall gene 
expression levels in various training sets, but the ratio of gene 
expression levels between two classes in individual training sets 
are varied. Hence, dc’ s should be rescaled accordingly in order to 
reduce the impacts of differential ratios between the two classes 
among various data sets. As a result, individual decisions are 
insensitive to bias of either class and variations of gene expression 
levels among training sets.   

For the ratio of two different dis’ s, it weights the results of the 
majority-voting algorithm by taking the similarity of shapes 
between two histograms. Remind that candidate i in the set CHist,i 
is defined as: 

( )2c1c}Cancer,Normal{2c,1c)s,2c(dis)s,1c(dis|1cC i,Hist ≠∧∈∧<=  (8) 

Hence, the factor of dis(c1,s)/dis(c2,s) makes βi become smaller, 
and thus a higher degree of similarity is contributed to meta-
decisions because of similarity of the regular histograms.  

In contrast, if the two decisions are different, the factors, 
representing the similarity of the regular histogram comparisons, 
are excluded. The factors of (IFc1,i/IFc2,i) aim at minimizing 
variations between classes and bias of either class. Therefore, the 
factors are also used to adjust the values of βi. However, the 
factors of dis(c1,s)/dis(c2,s) are weighted factors which give 
higher ranks to decisions because of similarity of the regular 
histograms. For the case of different decisions between two 
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algorithms, the previous method is not appropriate. In fact, the 
histograms are constructed by a set of significant genes, which are 
selected and extracted after the accession numbers alignment. 
Also, the significant genes are ranked in terms of their differential 
gene expression levels between two classes, which is independent 
on variations of gene expression levels among different data sets. 
Therefore, it is possible that (1) some significant genes are 
omitted during the accession numbers alignment, and (2) selected 
and extracted significant genes, based on training sets, may cause 
misleading results. As a result, we use another method and have 
the following equations for the case of different decisions: 

dNormal = βi ×  IFCancer, i / IFNormal, i (9) 

dCancer = βi × IFNormal, i / IFCancer, i (10) 

Finally, calculated dNormal and dCancer are adjusted on log2 scale, 
and individual results corresponding to their training sets are 
added together, expressed as dAcc_normal and dAcc_cancer for normal 
and cancer classes. Their magnitudes are compared, and the 
classes with smaller magnitudes become meta-decisions of the 
testing sample.  

  

Table 1. Information of data sets. 
Data set 

ID 
Cancer 

type 
Authors 

Accession 
annotation 

Normal sample 
size 

Cancer sample 
size 

Training data Testing data 

1 Bladder Ramaswamy et al. [18] Hu35K 7 11  √ 
2 Brain Pomeroy et al. [16] Hu35K 4 10  √ 
3 Colon Notterman et al. [14] GenBank 4 4  √ 
4 Lung Bhattacharjee et al. [1] U95A 17 126 √ √ 
5 Lung Ramaswamy et al. [18] Hu35K 7 8 √ √ 
6 Ovary Welsh et al. [25] Hu35K 3 30  √ 
7 Prostate Singh et al.  [22] U95A 9 25 √ √ 
8 Prostate Welsh et al. [24] U95A 50 52 √ √ 
9 Prostate Ramaswamy et al. [18] Hu35K 9 10  √ 

10 Uterus Ramaswamy et al. [18] Hu35K 6 10  √ 

Table 2. Number of common genes between training and testing data sets. 
  Testing data set ID 
  1 2 3 4 5 6 7 8 9 10 

4 7091 6153 6045 12599 7091 6153 12249 12599 12249 7091 
5 13774 8391 7840 7091 13774 8391 6808 7091 6808 13774 
7 6808 5949 5841 12249 6808 5949 12625 12249 12625 6808 

Training data set ID 

8 7091 6153 6045 12599 7091 6153 12249 12599 12249 7091 

Table 3. Experimental results compared wit the majority-voting meta-classification. 
Testing 
set ID 

Type Approach Accuracy (%) Sensitivity (%) Specificity (%) 
Cost of learning 

savings 
Majority-voting 73.61±9.49 39.29±31.68 95.45±5.25 5±3.92 1 Bladder 
MIF algorithm 84.72±2.78 60.71±7.14 100.00±0 8.5±1 
Majority-voting 75.00±7.14 25.00±35.36 95.00±5.77 1.5±2.38 

2 Brain 
MIF algorithm 83.93±3.57 68.75±12.5 90.00±8.16 4.5±0.58 
Majority-voting 87.50±0 75.00±0 100.00±0 6±0 

3 Colon 
MIF algorithm 87.50±0 75.00±0 100.00±0 6±0 
Majority-voting 96.50±0.81 94.12±0 96.83±0.92 28±1.15 

4 Lung 
MIF algorithm 94.76±1.21 97.06±5.88 94.44±1.71 26±1.83 
Majority-voting 75.00±3.21 42.86±20.2 95.45±9.09 5.5±1.91 

5 Lung 
MIF algorithm 91.67±3.56 85.71±0 95.45±9.09 11.5±1 
Majority-voting 80.30±5.25 0.00±0 88.33±5.77 -3.5±1.73 

6 Ovary 
MIF algorithm 84.85±2.47 33.33±0 90.00±2.72 -1±0.82 
Majority-voting 100.00±0 100.00±0 100.00±0 18 7 Prostate 
MIF algorithm 96.32±2.82 91.67±5.56 98.00±2.31 16±1.41 
Majority-voting 63.16±11.37 33.33±39.54 90.00±14.14 5±5.72 

8 Prostate 
MIF algorithm 57.11±5.85 15.50±12.58 97.12±1.11 14±12.25 
Majority-voting 75.00±3.21 42.86±20.2 95.45±9.09 5.5±1.91 

9 Prostate 
MIF algorithm 68.42±11.37 52.78±29.22 82.50±15 7.75±4.57 
Majority-voting 81.25±5.1 66.67±23.57 90.00±11.55 7±2 

10 Uterus 
MIF algorithm 81.25±0 75.00±9.62 85.00±5.78 7.5±0.58 
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4. EXPERIMETNS & DISCUSSIONS 
To measure the classification performance, four measurements are 
used as performance indicators. Classification accuracy, 
sensitivity, specificity and learning cost savings are defined in 
terms of true positive (TP), true negative (TN), false positive (FP) 
and false negative (FN), and their definitions are [4], [13]:  

• Accuracy (acc) – acc=(TP+TN)/(TP+TN+FP+FN) 

• Sensitivity (Sn) – Sn =TP/TP+FN) 

• Specificity (Sp) – Sp=TN/(TN+FP) 

• Learning cost savings (sav) – sav=[(FN+TP)*2]-(FP+2*FN) 

4.1. Data sets 
In order to demonstrate the robustness of the MIF algorithm, 10 
different data sets, which are individually published in 8 
publications, are experimented. They are heterogeneous since they 
were conducted by different laboratories with different 
experimental objectives, microarray platforms and human genome 
arrays. Table 1 shows their information. Among all of them, two 
lung cancer (Bhattacharjee and Ramaswamy) and two prostate 
(Singh and Welsh) cancer data sets are arbitrarily selected as 
training data sets for extension and continuity of our previous 
works in [7], and all of them are used for testing. 

As stated in table 1, there are three different accession numbers 
annotations, and therefore a process of standardization is required. 
We map the Hu35K and GenBank annotations into the U95A 
annotation according to the mapping table done by Ramaswamy 
et al. [17]. In fact, the mapping is not simply one-to-one mapping. 
There may be duplicated accession numbers in the mapped data 
set. Thus, an extra pre-processing step is performed to combine 
the expression levels by averaging all expression levels of the 
same accession numbers. After the standardization, it is required 
to find out those commonly existed genes for pairs of 
heterogeneous data sets and align their expression levels. In fact, 
the numbers of gene among different data sets are varied. 
Unavoidably, some expression levels are omitted because of 
missing data in either data set of pairs. Hence, the number of 
genes in aligned sets is either smaller or equals to the number of 
genes in the original data sets. Finally, we have table 2, which 
shows the number of commonly existed genes between training 
and testing data sets. 

4.2. Results 
In this section, we first compare the results of the MIF algorithm 
with that of the majority-voting algorithm, and then the results are 
compared with the works done by Bloom et al. [2]. Bloom’s 
method is to perform multi -platform and multi -site microarray-
based tumor meta-classification, and they used the measurement 
of classification accuracy as performance indicator. For 
parameters settings, the numbers of required bins nb, and 
significant genes ng, are set as 25 and 100. In addition, α%, which 
is the percentage of candidate bins to be trimmed, is set to 10% 
for achieving the optimal performance after some empirical 
studies. For classifiers training scheme, 70% of samples in each 
training data sets are selection for individual training at random, 
and all samples in testing data sets are used for performance 
measurements. In order to estimate the standard deviation of the 
performance, each training set is trained 100 times with different 
training candidates selected randomly.  

In table 3, it shows that the MIF algorithm outperforms the 
majority-voting algorithm in terms of classification accuracy, 
sensitivity, specificity and cost of learning savings. Except for the 
cases of prostate cancer, the MIF algorithm achieves around 85% 
of accuracy, 65% of sensitivity, 90% of specificity and 
comparatively higher savings on learning cost. 

For the classification accuracy, the data sets of lung cancer have 
the highest performance, but all cases of prostate cancer have littl e 
performance reduction. For lung cancer, the accuracy is higher 
than 90% for both cases (i.e. Bhattacharjee and Ramaswamy). 
Although there is 2% reduction for the data set Bhattacharjee, the 
accuracy for the data set Ramaswamy is increased from 75% to 
91%. However, all data sets of prostate cancer have different 
degrees of performance degradation. There are reductions of 7%, 
6% and 7% for the accuracy of the data set Singh, Welsh and 
Ramaswamy. In addition, it shows that two of them, which are 
Welsh and Ramaswamy, perform worse than other cases not only 
with the majority-voting algorithm, but also with the MIF 
algorithm. They only achieve around 60% for the accuracy, which 
is 20% lower than the average cases. For other cancer types, 
including bladder, brain, colon, and uterus, their average accuracy 
is around 85%. For the standard deviations of the accuracy, the 
MIF algorithm achieves smaller standard deviations for most 
cases. For the cancer types of bladder, brain, ovary and uterus 
cancers, the improvement is more than 50%. For the cancer types 
of lung and prostate cancers, the significance results are varied.  

For the classification sensitivity and specificity, the MIF 
algorithm can have better balanced recall rates between normal 
and cancer samples, except for the cases of prostate cancer. 
Classification algorithms should have similar recall rates for 
samples in both classes so that the algorithms are unbiased to 
either class. Euclidean distance of sensitivity, Sn, and specificity, 
Sp, can be used to show the balance of recall rates between 
samples in two classes, and the distance is: 

2
p

2
npn SS), SSEuclidean( +=  (11) 

In table 4, it shows that the MIF algorithm outperforms the 
majority-voting algorithm for 6 cases (i.e. 1, 2, 5, 6, 8 and 10) and 
maintains the same performance for 2 cases (i.e. 2 and 3). Similar 
to the measurement of classification accuracy, the data sets of 
prostate cancer do not have impressive results. Testing set 7 and 9 
show performance degradation (i.e. the majority-voting algorithm 
outperforms the MIF algorithm.).  

Table 4. Balanced recall rates between normal and 
cancer sample. 

Testing set ID Type Majority-voting MIF algorithm 
1 Bladder 1.03 1.17 
2 Brain 0.98 1.13 
3 Colon 1.25 1.25 
4 Lung 1.35 1.35 
5 Lung 1.05 1.28 
6 Ovary 0.88 0.96 
7 Prostate 1.41 1.34 
8 Prostate 0.96 0.98 
9 Prostate 1.05 0.98 
10 Uterus 1.12 1.13 

In addition, we have also compared our results with bloom’s 
results in [2]. In table 5, it shows that the MIF algorithm 
outperforms Bloom’s works for bladder  and uterus cancers, and 
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maintains the same performance for lung cancer. However, there 
is performance reduction for prostate cancer.  

Table 5. Comparison of results with other works.  
Classification accuracy (%) 

Testing set ID Type 
Bloom’s results our results 

1 Bladder 77 84 
5 Lung 91 91 
9 Prostate 94 68 

10 Uterus 74 81 

4.3. Cancer/testis (CT) immunogenic gene 
families 
Cancer/testis (CT) immunogenic gene families are subsets of 
genes, which are commonly existed in various cancer types. Some 
works show that most CT immunogenic gene families are 
expressed in more than one cancer types, but with various 
expression frequencies. In [20], Scanlan et al. have reviewed the 
expression frequencies of them in numerous cancer types 
consisting of bladder, brain, breast, colon, gastric, and etc. It 
shows that lung and melanoma cancers contain a higher 
percentage of CT genes examined at expression frequencies 
greater than 20%. In contrast, prostate and brain cancers have a 
relatively lower percentage of the CT genes examined at the same 
frequencies.  

Table 6. Comparisons of the cancer/testis (CT) 
immunogenic gene families in various cancer types. 

 Cancer type 
 Bla Bra Col Lun Ova Pro 

No. of included lowly-expressed 
CT genes with a low expression 
frequency, <= 20% 

17 5 12 29 11 11 

No of included CT highly-
expressed genes with a high 
expression frequency, > 20% 

11 4 3 17 7 6 

Proportions of commonly 
existed highly-expressed genes 
to lung cancer 

7/11 3/4 2/3 29/29 5/7 2/6 

Proportions of commonly 
existed highly-expressed genes 
to prostate cancer 

4/11 1/4 1/3 2/29 2/7 6/6 

# Abbreviations: Bla, bladder; Bra, brain; Col, colon; Lun, lung; 
Ova, ovary; Pro, prostate.  

In our studies, we have analyzed how the proportions of shared 
highly-expressed CT genes between training and testing samples 
play a vital role in meta-classification performance of 
heterogeneous data. We investigated how the number of included 
lowly- and highly-expressed CT genes is varied with the 
classification performance. Table 6 shows the number of included 
lowly- and highly-expressed CT genes in various cancer types. 
Lung cancer has the highest proportions of both types of CT 
genes, and brain cancer has the lowest one. However, in [20], it 
has mentioned that the studies of brain cancer to the CT genes are 
insufficient in this moment. Therefore, brain cancer is exceptional 
and hence prostate and ovary cancers belong to the same family of 
having small proportions of both types of CT genes.  

From our experiments, the data sets of prostate cancer only 
achieve classification accuracy of 75% in average, but the data set 
of ovary cancer can achieve 84% instead. Hence, it may be 
deduced that there is no direct and linear relationship between the 
number of included lowly- and highly-expressed CT genes and 
the classification performance.  

Further, we have investigated how the number of shared highly-
expressed CT genes between training and testing samples is in 
relation to the classification performance. In table 6, the last two 
rows show the proportions of the highly-expressed CT genes 
between the corresponding samples, and both lung and prostate 
cancers, respectively. If we consider the proportions together with 
the corresponding classification performance, we will have figure 
6. In the figure, the classification performance has the same 
increasing and decreasing trends as the proportions of the CT 
genes to lung cancer, but reversed trends for the proportions to 
prostate cancer, except for the case of brain cancer.  

Together with figure 6 and table 6, we can see that the proportions 
of shared highly-expressed CT genes between training and testing 
samples has impacts on classification performance, and the data 
sets of lung cancer have dominated roles at meta-decisions 
because of higher proportions of shared highly-expressed CT 
genes between training and testing samples. In the figure, lung 
cancer always has higher proportions of shared highly-expressed 
CT genes with other cancer types, except for the prostate cancer. 
The classification accuracy is higher than 80% in average. 
However, the classification accuracy for prostate cancer has been 
dropped significantly. It may be evidence to show that the 
decrease of the performance for prostate cancer is caused by lack 
of shared highly-expressed CT genes between training and testing 
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Figure 6. Relationship between shared highly-expressed CT genes and classification performance. 
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samples. Also, it is observed that the highly-expressed CT genes 
of prostate cancer in training samples are compromised with the 
lack of the genes between lung and prostate cancers. The possible 
explanation is that the number of included lowly- and highly-
expressed CT genes in various cancer types. The fact is that the 
number of both included lowly- and highly-expressed CT genes to 
lung cancer is almost 3 times higher than that of prostate cancer, 
causing that data sets of lung cancer may have higher weights at 
meta-decisions. In addition, in figure 6, the decreasing rate of the 
performance for prostate cancer is less than that of the proportions 
of shared highly-expressed CT genes to lung cancer because of 
the increase of shared CT genes in prostate cancer (i.e. the 
ordinary type).  

5. CONCLUSIONS 
With the innovation of DNA microarray technologies, different 
mining algorithms have been proposed to discover knowledge in 
cancer gene expression data. Significant findings are recently 
exploited. However, most works are done with a single data set. In 
terms of efficiency and effectiveness of mining algorithms with 
respect to clinical applicability and robustness, it is too weak to 
draw conclusions because of the problems of over-fitting and 
homogeneity within a single data set.  

In this work, we proposed the MIF algorithm to perform multi-
type cancer gene expression data classification, which uses 
differences of regular histograms for gene expression levels of 
certain significant genes as parts of dissimilarity measures and 
indicators of predictive classes. In the experiments, we have 
intensively used 10 different data sets to show the reliability and 
robustness of the MIF algorithm. The results are impressive. The 
classification accuracy is around 85% in average for most cases, 
except for the data sets of prostate cancer.  

To investigate the frustrated performance for prostate cancer, we 
have looked into the cancer/testis (CT) immunogenic gene 
families. We have discovered that the numbers of shared highly-
expressed (i.e. expression frequencies > 20%) CT genes between 
training and testing samples have impacts on the classification 
performance of heterogeneous samples.  
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