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ABSTRACT

This paper presents two standard machine learning algo-
rithms, one used in a non-standard way, for predicting the
biological functions of essential genes in a systematic and
comprehensive manner. We used gene expression and phe-
notype data from Saccharomyces cerevisiae. Determining
gene function is simplified to a series of binary classification
problems and one of the challenges of this learning task lies
in the extremely small number of positives, compared with
large amounts of negatives samples. We develop a method
based on unsupervised hierarchical clustering used with la-
beled data to search for regions of high concentrations of
positives and make predictions for the unlabeled genes. We
also investigate the supervised logistic regression classifier
as a baseline for comparing to our technique. Both of these
methods are based on different views of the data and we
found that depending on the biological processes being pre-
dicted, one or the other of these approaches performs better,
although our method makes more confident predictions for
more biological processes. The outcomes of the research are
twofold: first we build a new biological data mining method
based on existing machine learning tools that are readily
accepted in the biological community. Second we make bio-
logical predictions of gene functions, each associated with a
level of confidence and all above 50% precision.

1. INTRODUCTION

This paper investigates data mining and machine learning
techniques for predicting, in a systematic and comprehensive
manner, the possible functions of all putative and known
genes (a gene may have several biological functions) in a
yeast organism called Saccharomyces cerevisiae. We focused
more intensely on making predictions for unlabeled genes,
and decided to analyze the predictions of labeled genes in
the future. Unlabeled genes are genes for which no function
has yet been determined, whereas labeled genes are known
to have at least one function. Systematic approaches for
identifying the biological functions of genes, especially the
unlabeled, are needed to ensure rapid progress from genome
sequence to directed experimentation and applications (such
as drug discovery).

The functions we learned are biological processes. Since rel-
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atively few genes are involved in a typical biological process,
there are far more negatives than positives (as little as 0.01%
of positives in the genome for certain biological processes),
although some biological processes involve up to 60% of the
genes in the genome. The learning task is made even harder
by the fact that the samples we have comprise only about
10% of the genes in the genome (but required tremendous
amounts of biological work to obtain nonetheless), 15% of
which are unlabeled. So the number of positives available
in our samples can be extremely small for some biological
processes.

We examined two different methods based on two views of
the data. The first view is that the positives and negatives
can be separated by a hyperplane, which we fit using logistic
regression. In the second view, the data constitutes as a sea
of negatives with some small islands of positives of unknown
size and number. We identify these concentrations of posi-
tives using hierarchical clustering on labeled data, which is
not the standard unsupervised way of using this algorithm.
‘We found that for some biological processes, one or the other
method performs better, although our hierarchical method
produces more confident predictions for more biological pro-
cesses. Also, the method we develop allows the analysis of
biological processes for which we have as little as 5 positive
samples, unlike logistic regression which was unable to make
predictions when the number of positives was below 20.

In this application, the cost associated with experimentally
testing predictions lead us to performing leave-one-out cross-
validation, not only to control how well the classifiers are
behaving and draw ROC curves, but really to build decision
rules for classifying samples. This is a main point in our
methodology and we will explain it’s details later.

Our analysis uses two types of data, gene expression from
cDNA microarrays and growth phenotype data. Whole-
genome expression profiling, facilitated by the development
of DNA microarrays [12; 21], represents a major advance in
genome-wide functional analysis. A single assay can mea-
sure the transcriptional response of thousands of genes, and
often a full genome, to a change in cellular state such as dis-
ease, cell-cycle, cell division, response to stress and chemical
compounds, or genetic perturbation and mutations. The sci-
entific community agrees that gene expression alone cannot
give a full picture of the cell state, because transcripts such
as mRNAs need to be translated into proteins which some-
times need to be activated and each of these steps can be
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regulated. Therefore more data types are needed to analyze
regulation of the cell at a finer level of granularity. This is
another reason why we chose to include sources of phenotype
data in this study.

A lot of the classification work using machine learning has
been done in cancer classification [1; 2; 9; 14; 15; 17; 19; 24]
rather than predicting ontologies. This task is investigated
in [5] but only for 6 classes (which were not defined by the
Gene Ontology). Our approach is designed for making pre-
diction for any of the classes in the Gene Ontology (on the
order of a thousand different classes).

2. OVERVIEW OF THE DATA AND PRE-
PROCESSING

The data used in this paper was gathered at Hughes Lab at
the Banting and Best Department of Medical Research in
the University of Toronto. In order to investigate the func-
tion of essential genes, which are required for survival and
therefore cannot be knocked out, Hughes lab constructed
a particular type of mutant yeast strains for two thirds of
all the essential genes [16]. Construction was suspended be-
cause of project deadlines and financial reasons. These 602
mutants allow direct experimentation on the essential genes.
There is a one-to-one correspondence between an essential
gene and a mutant strain. The following datasets were col-
lected and used for predicting gene function :

e gene expression from DNA microarrays measuring the
abundance of gene transcripts of the mutant cells rela-
tive to the wild-type strain for the entire genome. The
291 samples, corresponding to 218 essential genes with
replicates (out of the 602 constructed mutants), are
publicly available on NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) through accession
number GPL1229. After quantification, hybridized
samples were normalized using background subtrac-
tion, followed by a LOWESS smoother to correct for
dye discrepancies and by a high pass filter to remove
any sorts of spatial artifacts (scratches, dust, gradient
across the array or red corners ...) After investigat-
ing several techniques for imputing missing values, we
used BPCAfill [18], which performed the best (using
normalized root mean squared error as the measure of
goodness of fit) on simulated datasets with the same
proportion of missing data (approximately 13%). In
the end the dimensionality of the data was reduced
from 6307 genes on the arrays to 20 using principal
components analysis (PCA) [11; 20] by selecting the
eigenvectors associated with the 20 largest eigenvalues
of the covariance matrix.

e size distribution measures the distribution of cell sizes
for 591 of the 602 mutant strains. Normalization pro-
cedure: strains were grown by batches and this dataset
was normalized so as to make the median of the me-
dian distribution of strains grown on the same batch
to coincide for all batches. Validation of this nor-
malization was done by verifying that the distribu-
tion of control wild-type strains grown in all batches
coincided. The distributions were measured at 256
points, and the dimensionality was reduced to 8 by
PCA. All growth phenotype datasets are available at
http://hugheslab.med.utoronto.ca/Mnaimneh.
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e Drug Response looks at the sensitivity of the mutant
strains to different chemical compounds in 27 experi-
mental conditions. 685 mutant strains, corresponding
to 585 mutant strains with replicates, were grown on
plates with one drug and the size of the colonies were
compared to wild-type grown with the same drug. The
value reported in the dataset was the log P-value that
a difference existed between the two groups.

e Morphology represents the morphological features of
the mutant cells which were visually inspected for 17
different characteristics such as elongated, budded or
pointed cells. This data is the only type which is cat-
egorical. A 1 indicates that the feature was slightly
observed for all mutant cells, a 0 indicates it was not.
On rare occasion other types appear, 0.5 means the
feature was slightly observed but the phenotype was
not penetrant, 2 moderately observed for all cells, 2.5
moderately observed but the phenotype was not pen-
etrant, 3 severely observed for all cells.

Each dataset covers a different set of the 602 constructed
mutants , although these sets intersect, and the number of
positive samples for a particular biological process depends
on the dataset being used. A simple solution was to use
these datasets independently.

Finally the gene labels we learned, which are organized in
a hierarchical manner according to the Gene Ontology (GO)
[23], were downloaded from the (SGD) Saccharomyces Genome
Database [6; 7]. We used the biological process type of the
GO database as our labels for gene function because the bi-
ologists we work with were interested in these rather than
molecular function or cellular component. Almost 40% of the
genes in the genome have no label for all of the the biological
processes, we call these genes unlabeled. 15% of the 602 con-
structed mutants were uncategorized. Some GO biological
processes are so broad and general that they involve thou-
sands of genes, such as protein metabolism [GO:0019538]
or cell organization and biogenesis [GO:0016043]. In fact,
large top-level (high in the GO hierarchy) categories involv-
ing hundreds of genes are often not specific enough to verify
experimentally. Therefore we have restricted this study by
not showing biological processes that clearly involved too
many genes to be interesting.

3. CLASSIFICATION BY HYPERPLANE

In this section we examine the case where the two classes
are separable by a hyperplane. This is a strict assumption
about the data, but it leads to predictions with high level
of confidence for some biological processes nonetheless and
represents a baseline for comparing the results obtained with
the second view which we describe in the next section. We
choose to fit the hyperplane using logistic regression [11] be-
cause of it’s simplicity and also because it is well understood,
and accepted in the biology community [3]. In 3.1 we inves-
tigate a method by which we can easily build decision rules
customized to a particular biological process for classifying
samples, precision being the only user-defined parameter.
We apply these decision rules to the unlabeled samples in
3.2

Each gene can be involved in several biological processes and
therefore this is not the classical machine learning approach
in which samples can belong to one class only, and of course
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several genes can be involved in a biological process. We
learned biological processes independently, which simplified
the problem to discriminating between two classes for each
biological process: either a gene is involved or it is not.

3.1 Cross Validation For Customized Decision
Rules

We trained logistic regression classifiers by leave-one-out
cross-validation on the labeled samples of each of the bio-
logical processes we chose to learn. Each time we computed
the posteriors P(Y = 1|X = z) where z was the sample set
aside, Y denotes the class label (which takes the value 1 if a
gene is involved in the biological process, and 0 otherwise).
We had little choice but to use leave-one-out cross validation
because, having so few positives in our samples (as little as
5 positives), we could not afford to waste labeled data by
separating it into training and test sets.

In order to classify a sample we need to build a decision
rule. One very simple rule could be to classify as positive
any sample for which the posterior probability is above 0.5.
Here we are faced with a decision making problem which
needs a little more attention because of the cost associated
with making false predictions. In molecular biology, run-
ning experiments is very expensive and we want to be very
confident about the prediction being true before testing it in
wet lab. All the cost of decisions is biased toward false pre-
dicted positives in this application and false negatives aren’t
given as much importance. As a result to increase our confi-
dence on the predicted positives, we computed conservative
thresholds for discriminating between classes, each depend-
ing on the particular biological process. A sample will be
classified as positive if it’s posterior is above that threshold
P(Y = 1|X = z) > t. In the logistic regression setting,
the classes are separated by the hyperplane defined by the
equation 87z = 0. When the input z is on the hyperplane,

PY=1X=2)=PY =0|X=2)=05 (1)

Raising the threshold, corresponds to translating that hy-
perplane in the direction of 8 (or —f). Our procedure con-
sists of translating the hyperplane toward the positive sam-
ples until the ratio of true positives to false positives is suf-
ficiently high. Therefore we use cross validation, not only to
control how well the classifiers are performing, but really to
build decision rules for classifying the unlabeled samples.
The measure of satisfaction we used for translating the hy-
perplane is precision, which is the ratio of true positives to
predicted positives, i.e.

true positives =~ TP
predicted positives TP + FP

(2)

Predicted negatives cannot be confirmed experimentally (at
least at Hughes Lab which is providing us with the data),
so knowledge is gained only when predicted positives are
confirmed and it is indeed precision biologists are interested
in and not overall classification performance.

For a particular biological process, one approach could be to
choose the threshold that leads to the maximum precision
computed using all labeled samples, but we prefer to take a
more conservative approach by setting a user-defined preci-
sion. That way predictions will only be made for biological
processes for which the classifier reaches that precision at
some threshold. For biological processes for which logistic
regression performed poorly, no predictions will be made.

precision =
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Because precision is not a monotonic function in ¢, we chose
the lowest threshold leading to the desired precision since
this solution maximizes the recall (also known as sensitivity
in the signal processing and biological worlds), which is the
percentage of positives which are predicted positives:

true positives TP

1l = =
reca all positives TP + FN

3)

We computed five thresholds for each GO biological process,
corresponding to precision levels of 100%, 85%, 75%, 60%
and 50% based on the labeled data. The precision level used
to classify a sample, along with the distance of that sample
to the translated hyperplane leads to different of confidence
levels.

3.2 Predicting functions for the unlabeled genes

For classifying the unlabeled samples, we trained a logistic
regression classifier per biological process using all the avail-
able labeled samples and then computed the posterior prob-
abilities P(Y = 1|X = z) where = were the unlabeled sam-
ples. Unlabeled samples were classified as positive whenever
their posterior was greater than the threshold, and predicted
positives were reported.

Predictions were grouped by the precision level used and by
biological process and are separated into batches depend-
ing on which dataset was used. Each prediction has four
fields: a GO biological process, a systematic gene name,
the precision level used for computing the threshold and fi-
nally the difference between the gene’s posterior probability
and the threshold which characterizes the distance from the
translated hyperplane. All this data was assembled in tab
delimited files available as supplementary data.

For increasing the significance of the precisions computed,
we forced them to be based on a minimum of 10 predicted
positives. We call confident prediction one that satisfies that
constraint. We only reported confident predictions based
on thresholds corresponding to 50% precision and above,
this means that we can never make predictions for biological
processes involving fewer than 5 genes.

It is worth underlying the fact that precision levels reported
are minimums. A sample being predicted positive at a preci-
sion level could also have been predicted positive at a higher
precision level. Summaries of these predictions are shown in
Table 1-3. In these tables we report the number of unlabeled
genes predicted grouped by biological process and by preci-
sion level. We indicate the number of known genes involved
in each biological process as well as the number of positive
samples available in the dataset used.

We observed that the procedure of fitting a hyperplane us-
ing logistic regression converged only for biological processes
having more than 10 positive in our samples. In fact we ob-
served that no confident predictions were made for biological
processes involving fewer than 20 positives in our samples.
The method we develop in the next section does not have
this limitation.

4. HIERARCHICAL CLUSTERING ON LA-
BELED DATA

In this section we investigate a method based on a different
view of the data. We consider here that positive samples
represent small islands among a sea of negatives, but we
don’t know how many islands there are nor their size. One

page 50



Number of predictions for GO-BP: known in GOBP | # pos in samples | precision .6 | precision .5
transcription [GO:0006350] 534 39 6
transcription, DNA-dependent [GO:0006351] 505 39 6
cell proliferation [GO:0008283] 571 37 5 8
RNA metabolism [GO:0016070] 336 34 10
cell cycle [GO:0007049] 494 33 4 6
RNA processing [GO:0006396] 297 33 4
biosynthesis [GO:0009058] 803 30 5
mitotic cell cycle [GO:0000278] 288 30 5
ribosome biogenesis and assembly [GO:0042254] 186 26 18
ribosome biogenesis [GO:0007046] 151 24 17
macromolecule biosynthesis [GO:0009059] 449 21 1 1
protein biosynthesis [GO:0006412] 442 21 1 1
DNA replication and chromosome cycle [GO:0000067] 219 20 1
transcription from Pol I promoter [GO:0006360] 149 20 7 8

Table 1: Summary of confident predictions made by logistic regression on the gene expression data

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5
transcription [GO:0006350] 534 142 4
transcription, DNA-dependent [GO:0006351] 505 141 4
RNA metabolism [GO:0016070] 336 128 4 15
RNA processing [GO:0006396] 297 127 17
cell proliferation [GO:0008283] 571 116 5
ribosome biogenesis and assembly [GO:0042254] 186 85 3 15
ribosome biogenesis [GO:0007046] 151 79 3 15
transcription from Pol I promoter [GO:0006360] 149 76 14
rRNA processing [GO:0006364] 121 65 12
organelle organization and biogenesis [GO:0006996] 550 61 2

Table 2: Summary of confident predictions made by logistic regression on the cell size distributions

possibility would be to use k-nearest neighbors (KNN), but
unfortunately we have no idea what to expect for k, and
a simple majority vote would not work because of the high
number of negatives almost everywhere (including regions of
relatively high concentrations of positives). We develop an
algorithm based on hierarchical clustering that circumvents
these problems.

Clustering has been used extensively in functional genomics
to analyze gene expression data [2; 4; 8; 13; 22] and is prob-
ably what biologists use and trust most. Biologists often
use hierarchical clustering on gene expression data. For ex-
ample, they usually display the resulting dendrogram imme-
diately beside the gene expression data from which it was
derived, and label the leaves of the dendrogram with gene
names and/or biological processes. The method we develop
here is based on this methodology, but extends it to an au-
tomated process. It also has the advantage of using all of
the known functions of the genes in the hierarchical tree and
not just their main function.

Our method looks for regions in the data space of high con-
centrations of positives. All that is required is some notion
of “distance” between all pairs of elements. In contrast, lo-
gistic regression does not work for the morphology dataset
because, although the data is technically real valued, it is
still too categorical for the fit to converge.

4.1 Details of the Procedure

We first build a hierarchical tree on all available labeled and
unlabeled samples using hierarchical agglomerative cluster-
ing [10] with average linkage. In constructing the tree, we
ignore the labels on the data. In this way, we can include
both labeled and unlabeled data in the tree, and more im-
portantly, we can use the same tree for each biological pro-
cess, thus saving on computing time, since the tree need
only be built once. Thus, the construction of the tree can
be viewed as a preprocessing step whose cost is amortized
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over all the biological processes. However, after the tree is
constructed, it is not possible to add new unlabeled samples
to the data.

‘We used the correlation coefficient between two samples as a
measure of the distance between them rather than Euclidean
distance. This is because the actual level of expression of
two genes is less important than their profiles being corre-
lated among a set of experiments. For example, the mea-
sured expression of a gene might be twice that of another
gene in the same pathway because of experimental factors
such as oligonucleotide probe quality (folding into a stable
secondary structure, melting temperature etc).

Following the construction of the tree, we use it to build a
classifier for each biological process. Recall that each such
process provides a different set of labels for genes. Since the
leaves of our tree represent genes, each leaf is assigned the la-
bel of the gene it represents. Leaves for unlabeled genes are
labeled as negative, since it is likely that an unlabeled gene
is not involved in any particular biological process. (We also
flag such leaves, so as to remember that they are unlabeled).
We can now look in the tree for regions of high concentra-
tions of positive leaves, after which we assign labels to all the
unlabeled genes that fall in such regions. These assignments
represent our classifiers predictions.

To make these assignments, the algorithm computes a score
o for each internal node in the tree, reflecting the concen-
tration of positives at the leaves under the node.

o= # of positives at leaves y (1 e ot positives) (4)
# of leaves

The first factor in this formula is the proportion of positive
leaves under the node, it reflects the concentration of posi-
tives in the region of the data space in which the leaves are.
The second factor tends to one when the number of posi-
tives raises, and tends to zero as the number of positives
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Number of predictions for GO-BP: known in GOBP | # pos in samples | precision .6 | precision .5
RNA metabolism [GO:0016070] 336 140 1
RNA processing [G0O:0006396] 297 139 1
cell proliferation [GO:0008283] 571 127 3 5
ribosome biogenesis and assembly [GO:0042254] 186 93 5
ribosome biogenesis [GOQ:0007046] 151 86 6
rRNA processing [G0:0006364] 121 71 3

Table 3: Summary of confident predictions made by logistic regression on the drugs dataset

Build hierarchical tree on all labeled and
unlabeled samples.
For each GO biological process GO-BPi do {
Label the leaves according to GO-BPi.
Label unlabeled samples as negatives.
For each sample Sj do {
Relabel Sj as negative.
Compute the score of all internal nodes.
Compute the score of Sj as maximum score of
all it’s ancestors.
}
Find lowest threshold that achieves
user-specified precision.
Classify unlabeled samples using this threshold.
Report predicted positives.

Figure 1: Algorithm Pseudo-code

decreases. It gives more importance (higher score) to nodes
with more positive leaves, i.e., to larger regions of positive
concentration, since we regard such regions to be more sta-
tistically significant. We have used @ = 0.5 and haven’t
investigated tweaking this parameter nor using other func-
tions for the second factor of this equation. We then define
the score of a leaf to be the maximum score of all it’s an-
cestors (internal nodes). Since unlabeled samples are leaves
in the tree, they automatically receive a score, which we use
to classify them.

Before building decision rules, we use a technique similar to
the cross validation of the previous section. At each itera-
tion, we effectively remove a labeled sample by treating it as
unlabeled. The scoring process described above is repeated
each time. This provides a score for the labeled sample be-
ing treated as unlabeled. Each labeled leaf is scored in this
way.

It is now easy to build a decision rule. We simply set a
threshold, and a leaf is classified as positive if its score is
above the threshold. To evaluate the rule, we apply it to
labeled leaves, and compare each leaf’s true label to its pre-
dicted label. A threshold that achieves a user-specified pre-
cision is then chosen. Finally, using this threshold, we use
the decision rule to classify all the unlabeled data.

The pseudo-code for this algorithm is given in Figure 1. A
toy example of how the tree is reused for each biological pro-
cess is given in Figure 2. Our method is very fast, the whole
process from building the tree to reporting predicted posi-
tives in all biological processes took a few seconds for each
dataset on a Pentium IV 2GHz. This should be contrasted
with the logistic regression methodology which required ap-
proximately a half hour for each dataset.
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Figure 2: Toy hierarchical tree reused with labels from two
biological processes

4.2 Results

Predicted positives were reported for all four datasets and
assembled in tab delimited files. A prediction has four fields:
a GO biological process, the gene systematic name, the
difference between the score of the unlabeled leaf and the
threshold used, and the precision corresponding to that thresh-
old. The precision and the difference between the score and
the threshold represent the confidence we have in the pre-
diction. Summaries of these predictions (except for the mor-
phology dataset) are shown in Table 4-6. We did not show
the summaries for the morphology dataset, the number of
confident predictions made were approximately the same as
in Tables 5 and 6.

Comparing the two methods for identical datasets (Table 1
vs. 4, Table 2 vs. 5 and Table 3 vs. 6), we observe that
our method produces many more confident predictions, at
precision levels 50% and 60% ( even 75% with the drugs
dataset), and for more biological processes. In particular,
our hierarchical method made prediction for 18 biological
processes involving fewer than 20 positive in the samples
whereas logistic regression produced none.

In Figure 3 we show the ROC curves of a couple of the clas-
sifiers used for making predictions, obtained by the method
we developed. We clearly see that our method performs
better than guessing the majority class, i.e. classify as neg-
ative every time, and achieves very high true positive rates
at thresholds for which the false positive rates are still very
low. For example, the classifier used for predicting genes
involved in glycerophospholipid biosynthesis reaches a true
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Number of predictions for GO-BP: known in GOBP | # pos in samples | precision .6 | precision .5
transcription [GO:0006350] 534 39 18
transcription, DNA-dependent [GO:0006351] 505 39 18
RNA metabolism [GO:0016070] 336 34 9 11
RNA processing [GO:0006396] 297 33 11 11
ribosome biogenesis and assembly [GO:0042254] 186 26 19 21
ribosome biogenesis [GO:0007046] 151 24 12 19
protein modification [GO:0006464] 361 23 3
organelle organization and biogenesis [GO:0006996] 550 22 1
macromolecule biosynthesis [GO:0009059] 449 21 9
protein biosynthesis [GO:0006412] 442 21 9
transcription from Pol I promoter [GO:0006360] 149 20 11 11
rRNA processing [G0:0006364] 121 18 8
catabolism [GO:0009056] 276 16 2
cytoskeleton organization and biogenesis [G0:0007010] 255 14 2
mRNA processing [GO:0006397] 124 14 4
macromolecule catabolism [GO:0009057] 176 12 1
lipid metabolism [GO:0006629] 190 11 1
lipid biosynthesis [GO:0008610] 111 11 1
RNA splicing [GO:0008380] 112 10 4
mRNA splicing [GO:0006371] 92 10 4
microtubule-based process [GO:0007017] 94 8 1
microtubule  cytoskeleton organization and biogenesis 86 8 1
[GO:0000226]

M-phase specific microtubule process [GO:0000072] 62 8 1
membrane lipid metabolism [GO:0006643] 85 6 1
membrane lipid biosynthesis [GO:0046467] 62 6 1
phospholipid metabolism [GO:0006644] 64 5 1
phospholipid biosynthesis [GO:0008654] 48 5 1
glycerophospholipid metabolism [GO:0006650] 34 5 1
glycerophospholipid biosynthesis [GO:0046474] 30 5 1

Table 4: Summary of confident predictions made by our clustering method on the gene expression data

positive rate of 100% for less than 2% false positive rate.

5. CONCLUSION & FUTURE WORK

We developed a method based on hierarchical clustering
for labeled data to find regions in the data space of rela-
tively high concentration of positives. This technique allows
the analysis of biological processes involving very few genes.
With this method, we were able to make confident predic-
tions at precisions of 50% and above for biological processes
for which our samples contained as few as 5 positives. The
methodology developed here is not restricted to learning es-
sential genes, but could be applied to any set of genes.

We used correlation as a measure of similarity between pairs
of elements and average linkage to build the hierarchical
tree. It would be interesting to investigate different distance
metrics and especially other linkage strategies such as sin-
gle linkage, which produces clusters that aren’t necessarily
compact.

We focused on making predictions for unlabeled genes. How-
ever, it would be biologically interesting to report cases in
which a gene’s true label is negative but whose predicted
label is a confident positive. This is because negative labels
in our dataset are sometimes wrong. A more challenging
task would be to use datasets concurrently for the inter-
secting samples and independently for disjoint sets of sam-
ples. Also finding methods for learning biological processes
concurrently rather than independently is one of our future
goals. We are thinking of using the Gene Ontology hierar-
chy to propagate up the hierarchy predictions made lower
down, because if a gene is involved in a biological process,
it is also involved processes above it in the hierarchy. This
isn’t completely trivial because the hierarchy is not a tree
and a process can have several parents. More interestingly, if
a prediction is made in a biological process having children,
we would like to find methods for making the prediction
more specific by propagating it down the hierarchy as far as
possible.
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