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ABSTRACT

Machine learning approaches are frequently used to solve
name entity (NE) recognition (NER). In this paper we pro-
pose a hybrid method that uses maximum entropy (ME) as
the underlying machine learning method incorporated with

dictionary-based and rule-based methods for post-processing.

Simply using ME for NER, inaccurate boundary detection
of NEs and misclassification may occur. Some NEs are
partially recognized by ME. In the post-processing stage,
we use dictionary-based and rule-based methods to extend
boundary of partially recognized NEs and to adjust classifi-
cation. We use GENIA corpus 3.01 to conduct 10-fold cross-
verification experiments. To evaluate the performance, we
consider the longest NE annotations. We evaluate our ap-
proach using standard precision (P), recall (R), and F-score,
where F-score is defined as 2PR/(P+R). The precision, re-
call and F-score ([P, R, F]) of our ME module for overall
23 categories is [0.512, 0.538, 0.525], and after the post-
processing the performance becomes [0.729, 0.711, 0.72] for
[P, R, F]. For protein, DNA and RNA classes, our method
achieves [P, R, F] of [0.77, 0.80, 0.785], [0.653, 0.748, 0.7],
and [0.716, 0.788, 0.752], respectively. The post-processing
stage significantly improves the performance of our ME-
based NER module.

1. INTRODUCTION

The amount of biomedical literature available on the Web
is rapidly increasing. There is a pressing need for biomed-
ical information extraction. To extract useful information
from natural language text, we must first recognize biomed-
ical named entities in the text. In fact, named entity (NE)
recognition (NER) is a fundamental research topic in natural
language processing (NLP), which involves entity identifica-
tion and classification.

Unlike NER in the newswire domain, NER in the biomedi-
cal domain remains a perplexing challenge. Biomedical NEs
in general do not follow any nomenclature, and can be com-
prised of long compound words or short abbreviations. Some
even contain various symbols or spelling variations. In sum-
mary, difficulties of NER in the biomedical domain are as
follows:

(1) Unknown word identification:
Unknown words can be acronyms, abbreviations, or
words containing hyphens, digits, letters, and Greek
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letters. Examples of NEs with unknown words in-
clude: alpha B1, GM-CSF, Adenyly cyclase 76F, and
4 ’-mycarosyl isovaleryl-CoA transferase.

(2) Named entity boundary identification:

The boundary of an NE can be a regular English word,
unknown word, Roman numeral, or digit. For exam-
ple, MHC Class II, latent membrane protein 1, NF-
kappaB consensus site, cyclin-like UDG gene product
all have different types of boundaries. Additionally,
nested NEs (an NE embedded in another NE, referred
to as cascaded NEs by Shen et al. [9]) further compli-
cate this problem. Consider the named entity kappa 3
binding factor. Its annotation <PROTEIN> <DNA>
kappa 3 </DNA> binding factor </PROTEIN> has
two right boundaries at 3 and factor, which correspond
to the embedded NE in the DNA category and the
nested NE of the Protein category, respectively.

(3) Named entity classification:

Once an NE is identified, it is then classified into a
category such as protein, DNA, RNA, and so on. Am-
biguity and inconsistency are often encountered at this
stage. NEs with the same orthographical features may
fall into different categories. For example, BRIX and
SCOP both have the AllCaps feature, but the former is
a gene and the latter is a protein. An NE may belong
to multiple categories, e.g., ELK1 is both a DNA and
a protein. p53 is an another example. p53 is a syn-
onym for the gene TP53 in HUGO nomenclature; but
in the GENTA corpus, p53 is also tagged as a protein.
Such ambiguity is intrinsic. Another complication is
that a nested NE of one category may contain an NE
of another category. For instance, a protein name may
contain the gene coding for this protein. For exam-
ple, A27L protein is a protein name containing A27L
which is the gene coding for this protein. We need to
properly distinguish A27L from A27L protein.

To tackle these challenges, researchers use NLP techniques
such as machine learning, dictionary-based methods and
rule-based methods. Tsuruoka et al. [11] and Hanisch et al.
[3] present dictionary-based approaches. Since new biomed-
ical NEs keep being generated in literature, the machine
learning approach prevails. After the release of GENIA cor-
pus [6], machine learning approaches using GENIA corpus
as training corpus are reported [10; 5; 13; 9; 14]. GENIA
corpus provides a benchmark for evaluating different meth-
ods. The overall F-scores on 23 categories in GENIA corpus
reported by these systems were at most 0.67.
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Figure 1: Method overview

The performance of machine learning approaches has big
room for improvement. This fact can be attributed to small
size of training corpora. Though GENIA corpus is the largest
corpus for NER, it is rather small in comparison with the
size of biomedical NEs. Various strategies are proposed to
enhance the performance. In this paper, we use maximum
entropy (ME) as our underlying machine learning method.
Unexceptionally, the F-score of pure ME is 0.525 over the
23 categories of GENIA corpus. Our post-processing of ME
output aims to resolve boundary detection problems and
correct misclassification problems. Dictionary-based and
rule-based methods are used, which significantly improves
the performance.

2. ME-BASED BIOMEDICAL NER FRAME-
WORK

Our recognition method consists of two stages: (1) ME-
based recognition, (2) post-processing including boundary
extension and reclassification. We first use ME for NER.
Then we use a dictionary and rules to correct boundary
identification errors by boundary extension. After bound-
ary error correction is performed, the results are reclassified.
Our method is depicted in Figure 1.

2.1 Maximum Entropy

We regard each word as a token. Since a named entity can
have more than one token, each token is associated with a
tag that indicates the category of the NE and the location
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of the token within the NE, for example, z_begin, z_continue,
z_end, r_unique where z is a category. The first three tags
denote respectively the beginning, the middle and the end
of an NE in category x. The fourth tag denotes that a to-
ken itself is an NE of category z. In addition, we use the
tag unknown to indicate that a token is not part of an NE.
The NER problem can then be rephrased as the problem of
assigning one of 4n + 1 tags to each token, where n is the
number of NE categories. In our ME module, there are 23
named entity categories and 93 tags. For example, one way
to tag the phrase IL-2 gene expression, CD28, and NF-kappa
B in a paper is “othername_begin, othername_continue, oth-
ername_end, unknown, protein_unique, unknown, unknown,
protein_begin, protein_end.”

ME is a flexible statistical model which assigns an outcome
for each token based on its history and features. Outcome
space is comprised of the 93 tags for an ME formulation of
NER. ME computes the probability p(o|h) for any o from
the space of all possible outcomes O, and for every h from
the space of all possible histories H. A history is all the
conditioning data that enables one to assign probabilities to
the space of outcomes. In NER, history can be viewed as
all information derivable from the training corpus relative
to the current token.

The computation of p(o|h) in ME depends on a set of binary-
valued features, which are helpful in making predictions about
the outcome. For instance, one of our features is: when all
characters of the current token are capitalized, it is likely to
be part of a biomedical NE. Formally, we can represent this
feature as follows:

1 if Current-Token-AllCaps(h) = true
and o = protein_begin; (1)
0 otherwise.

f(h7 0) =

Here, Current-Token-AllCaps(h) is a binary function that
returns the value true if all characters of the current token
in the history h are capitalized. Given a set of features and
a training corpus, the ME estimation process produces a
model in which every feature f; has a weight a;. From [1],
we can compute the conditional probability as:

(ol = g [Tl ™ )

The probability is given by multiplying the weights of ac-
tive features (i.e., those fi(h,0) = 1). The weight «; is
estimated by a procedure called Generalized Iterative Scal-
ing. This method improves estimation of weights at each
iteration. The ME estimation technique guarantees that,
for every feature f;, the expected value of a; equals the em-
pirical expectation of a; in the training corpus.

As noted in Borthwick [2], ME allows users to focus on find-
ing features that characterizes the problem while leaving
feature weight assignment to the ME estimation routine.

2.2 Decoding

After having trained an ME model and assigned the proper
weights «; to each feature f;, decoding (i.e., marking up)
a new piece of text becomes simple. First, the ME module
tokenizes the text. Then, for each token, we check which
features are active and combine a; of the active features
according to Equation 2. Finally, a Viterbi search is run
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Table 1: Orthographical features

Orthographical features Example Orthographical features Example
AllCaps EBNA, NFAT, LMP || AlphaDigit p50, p65
AlphaDigitAlpha IL23R, E1A ATGCSequence CCGCCC, ATGAT
CapLowAlpha Srec, Ras, Epo CapMixAlpha NFkappaB, EpoR
CapsAndDigits 1.2, STAT4, SH2 DigitAlpha 2xNFkappaB, 2A
Digit AlphaDigit 32Dc13, 2D3 DigitCommaDigit 1,25

Digits 1,2, 3, 1.1 Greek Letter alpha, beta
Hyphen - LowMixAlpha mRNA, mAb
Roman Numeral I, IT, 111 SingleCap A-Z

Stop word at, in Other “rser Lo,y

Table 2: Head nouns
Head nouns

factor, protein, receptor, alpha,
NF-kappaB, IL-2, cytokine, AP-1,
kinase, IL.-4, transcription, domain,
complex, TNF-alpha, IFN-gamma,
Nuclear, p50, p65, beta, NFAT,
CD28, TNF, PKC, -calcineurin,
molecules, GM-CSF, GATA-1, IL-
12, subunit, cell, STAT3, family,
antibody, TCR, CIITA, chain, tu-
mor, gamma, factor-alpha, expres-
sion, interleukin, TkappaBalpha
NF-kappa B, transcription factor,
I kappa, kappa B, nuclear factor,
protein kinase, B alpha, kinase C,
tumor necrosis, T cell, glucocor-
ticoid receptor, colony-stimulating
factor, binding protein, factor al-
pha, necrosis factor-alpha, adhe-
sion molecule, monoclonal anti-
body, necrosis factor, T lympho-
cyte, cytoplasmic domain, gene
product, binding domain

Unigram

Bigram

Table 3: Morphological features

~ase ~blast ~cin ~cyte
~kin ~lin ~lipid ~ma
~mide | ~peptide | ~phil ~rin
~rogen | ~sor ~tin ~tor
~virus | ~vitamin | ~zole anti~
cyto~ dehydr~ | erytho~ | hemo~

to find the highest probability path through the lattice of
conditional probabilities that does not produce any invalid
tag sequences. For instance, the sequence [protein_begin,
othername_continue] is invalid because it does not contain
an ending token and these two tokens are not in the same
category. Further details on the Viterbi search can be found
in [12].

2.3 Related Studies of NER Using ME

Raychaudhuri et al. [8] uses ME to assign Gene Ontology
tags to genes appearing in biomedical literature. They re-
port that ME outperforms the Naive Bayes method and the
nearest-neighbor method. ME is also used for acronym and
abbreviation normalization in medical texts. Pakhomov [7]
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and Kazama et al. [4] report that SVM outperforms ME
for biological NER. In Kazama et al. [4], the comparison is
made using GENIA corpus version 1.0. The precision, re-
call and F-score ([P, R, F]) of the SVM-based system was
[0.562, 0.528, 0.544] for overall categories and [0.492, 0.664,
0.565] for protein. The ME-based system reports [P, R, F]
of [0.534, 0.530, 0.532] for overall performance and [0.491,
0.621, 0.548] for protein. Nevertheless, the authors also state
that one advantage of the ME model is that it allows flexible
feature selection. When new features, e.g., syntax features
are added to ME, users do not need to reformulate the model
like in the HMM model and ME estimation routine can auto-
matically calculate new weight assignment. Thus we choose
ME as the underlying machine learning model.

3. FEATURES

Feature selection is critical to the success of machine learning
approaches. Orthographical features, head noun features,
morphological features, and part-of-speech (POS) features
are frequently used for token identification. We use POS
features annotated in the GENIA corpus and report the re-
maining features below.

3.1 Orthographical Features

Table 1 lists some orthographical features used in our sys-
tem. In our experience, AllCaps, CapMixAlpha, LowMix-
Alpha, SingleCap are more useful than others.

3.2 Head Nnouns

The head noun is usually the major noun or noun phrase
of an NE that describes its function or the property, e.g.,
transcription factor is the head noun for the NE NF-kappa B
transcription factor. Compared with the other words in NE,
head noun is a decisive factor for distinguishing the NE class.
For instance, the classifications of <Protein> NF-kappa B
transcription factor </Protein> and <DNA> IFN-gamma
activation sequence </DNA> are determined by the head
nouns transcription factor and sequence. In this work, only
unigram and bigram head nouns are considered. We use
training corpus to obtain 960 frequently used head nouns,
and some are listed in Table 2.

3.3 Morphological Features

We consider morphological features of at least three charac-
ters in length. Some are listed in Table 3.

4. POST-PROCESSING AND RECLASSIFI-
CATION FOR ERROR CORRECTION
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Using ME, we find some NEs are partially recognized or
mistakenly classified. In the post-processing stage, we aim to
resolve boundary detection problems of partially recognized
NEs by a boundary extension method. Afterwards, we use
a re-classifier to resolve NE misclassification. Dictionary-
based and rule-based methods are used for post-processing.
The dictionary is constructed from the training corpus.

4.1 Boundary Extension

For those partially recognized NEs, we deal with two types of
boundary detection problems that arise from (1) nested NEs
and (2) brackets for name alias and slash for concatenated
names.

Nested NEs may cause boundary detection problems. Con-
sider the example “[E1A] /protein gene” — “[E1A gene] /pna.”
A straightforward right(R)-boundary extension rule is to ex-
tend the boundary if the NE is followed by NEs and/or
head nouns. In the example “{GATA-1]/,rotein activity” —
“[GATA-1 activity] /othername,” the word activity is not a
head noun. How do we determine whether the right bound-
ary should be extended to activity? Consider another exam-
ple: “type [I receptor] /protein” — “[type I receptor]/protein-”
Should the left boundary extend to the word type? For the
left(L)-boundary extension, we consider extension to include
a modifier. What modifiers are allowed?

To resolve the abovementioned problems, we compile two
lists of the leftmost (L) and the rightmost (R) context words
of NEs in the training corpus. To construct these lists, we
calculate the frequency of each context word candidate and
determine a cutoff threshold to include candidates into the
lists. The threshold is expected to affect the content of the
lists and thus, the performance of post-processing. However,
in our experiments, we have tried different threshold values
and found that the threshold does not significantly affect
the performance. We thus include all the candidates in the
lists. Note that these context words may not be head nouns,
but unigram head nouns surely belong to the lists.

In the previous example, activity is in the R-context word
list and thus the right boundary can be extended to activity.
We use context word lists to examine un-tagged tokens that
are adjacent to ME-recognized NEs. If these tokens appear
in the L- & R-context word lists, then they are concatenated
with ME’s output. But simply using context word lists to
determine boundary extension may fail in some cases. For
example, binding is in the R-context word list. But binding
can be tagged as a verb, an adjective or a noun. If binding
is tagged as a verb, it is unlikely to be a part of an NE. Only
few tokens tagged as a verb are included in NEs of GENTA
corpus. We thus consider only adjective and noun as valid
POS tags for the token in consideration. To further improve
boundary extension accuracy, we examine the validity of the
POS tag of the token. If this token appears in a context word
list and its POS is valid, we will concatenate this token with
the NE.

In summary, our boundary extension algorithm to resolve
nested NEs goes as follows:

Step 1. Check R-boundary extension: Extend the bound-
ary of an NE recognized by ME repeatedly if the NE is
followed by another NE or a token in R-context word
list with valid POS tag.

Step 2. Check L-boundary extension: Repeat similar pro-
cedure as in Step 1.
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Step 3. Repeat Step 1 and 2 until no extension occurs.

Our algorithm can handle six patterns of nested NE con-
struction presented in Zhou et al. [14].

The second type of boundary detection problem occurs when
NEs contain brackets for name alias and slash for concate-
nated names which are not well handled by maximum en-
tropy. For example, basic heliz-loop-heliz (VHLH) motif is
an NE. Our ME module recognizes both basic heliz-loop-
heliz and bHLH as protein. Since “(” and “)” are not valid
context words, the previous algorithm cannot extend the
boundary of ME’s output. Our solution is to detect whether
motif is a valid context word. If yes, basic heliz-loop-helix
(bHLH) motif will be concatenated as one named entity.
After performing boundary extension for nested NEs, we use
rule-based approach to extend boundary of the second type
problem. The rules are given as follows:

1. NE := NE (+ NE) + R-context word,;
2. NE := NE + / + NE (+ / + NE) + R-context word.

Inspecting the results generated by ME, we found that some
human names were identified as NEs. A special module
developed by our laboratory was introduced to filter these
errors. This module is originally designed to extract authors,
paper titles and journal names from citations.

4.2 Re-classifier

In boundary extension stage, we do not change the classi-
fication. Our re-classifier aims to resolve two types of clas-
sification errors. The first type is associated with bound-
ary extension, for example, “{GATA-1]/0tein activity” —
“[GATA-1 activity] /othername.” The other type is intrinsic
ambiguity caused by abbreviations. Orthographical features
of AllCaps and CapsAndDigits are sometimes insufficient to
distinguish between abbreviations of protein and DNA. For
example, CD28 is a protein, and PS1 a DNA.

The re-classifier performs two steps. The first step is dic-
tionary lookup. If the named entity is in the dictionary, we
assign new class according to the dictionary. If the NE is
not in the dictionary, we take the second step to adjust the
classification according to R context word. We assign the
class according to the context word.

5. EXPERIMENTS
5.1 GENIA Corpus

We use GENTIA corpus version 3.01 to evaluate our system.
The GENIA corpus contains 2,000 abstracts extracted from
the Medline database and these abstracts are annotated
with Penn Treebank part-of-speech tags. The annotation of
the NEs is based on GENIA ontology. In our experiments,
we use 23 distinct NE categories of GENIA corpus.

5.2 Experimental Results

We conduct 10-fold cross validation experiments and divide
2000 abstracts into 10 collections. Each collection contains
not only abstracts but also paper titles. We evaluate our
approach using standard precision (P), recall (R), and F-
score, where F-score is defined as 2PR/(P+R). To evaluate
our method, we consider the longest word annotation, since
these NEs are useful for relation extraction.
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Table 5: NE recognition performance

Config | Boundary Extension Reclassify NE Recognition
BE-1 | BE-2 | BE-3 | RC-1 | RC-2 P/R/F
Baseline 0.512/0.538/0.525
Conf4 Vi Vi Vi 0.645/0.634/0.639
Conf5 Vv Vv Vi Vv 0.67/0.658/0.664
Conf6 Vi Vi Vi Vi 0.707/0.695/0.701
Conf7 Vi Vi Vi Vi vV 0.727/0.715/0.721
Table 7: Partial matching performance
Task NE Identification NE Recognition
Measurement Precision | Recall | F-Score | Precision | Recall | F-Score
Exact Match 0.776 0.763 | 0.769 0.727 0.715 | 0.721
LD=1, ER > CR | 0.802 0.788 | 0.795 0.74 0.728 | 0.734
LD=2, ER > CR | 0.818 0.804 | 0.811 0.754 0.741 | 0.747
LD=1, CR > ER | 0.804 0.791 | 0.797 0.744 0.731 | 0.737
LD=2, CR > ER | 0.809 0.795 | 0.802 0.748 0.735 | 0.741
RD=1, ER > CR | 0.805 0.79 0.797 0.733 0.72 0.726
RD=2, ER > CR | 0.813 0.798 | 0.805 0.737 0.724 | 0.73
RD=1, CR > ER | 0.808 0.791 | 0.799 0.735 0.721 | 0.728
RD=2, CR > ER | 0.811 0.802 | 0.806 0.736 0.723 | 0.729

Table 4: NE identification performance

Config | Boundary Extension NE Identification
BE1 | BE2 | BE3 P/R/F
Baseline 0.56/0.589/0.574
Confl V| 0.582/0.597/0.594
Conf2 Vi 0.591/0.6/0.595
Conf3 Vv 0.757/0.746/0.751
Confd | / v V[ 0.776/0.763/0.769

Table 6: System performance comparison (measured in F-
Score)

Category Overall | Protein | DNA | RNA
Our system 0.721 0.785 0.700 | 0.752
Zhou et al, 2004 | 0.666 0.758 0.633 | 0.612

In Table 4, we report the named entity identification (re-
gardless of classification) performance. We use BE-1 to de-
note the nested boundary extension algorithm, BE-2 to de-
note the boundary extension for brackets and slashes, and
BE-3 to denote the module to remove human names. From
the figures, we can see that each method yields different de-
gree of improvement in NE identification (boundary detec-
tion) performance. BE-1, which improves the NE identifi-
cation performance by 0.177, is the most effective boundary
extension method among the three methods.

In Table 5, we report the named entity recognition (includ-
ing classification) performance. We use RC-1 to denote the
re-classifier using dictionary lookup and RC-2 to denote the
re-classifier using R context word. In Table 6, we show the
performance of our system in overall 23 categories and in
protein, DNA and RNA classes, and compare them with
those reported in Zhou et al. [14]. We can see that our
system has advantage over Zhou’s system in each main NE
category and in overall performance. In Table 7, we report
the partial matching results. We use LD = i (RD = i) to
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mean that the recognized NE differs from the annotation by
only 7 words at the left (right) boundary. ER and CR denote
the length of the recognized NE (the experiment result) and
the length of the annotation (the correct result).

6. CONCLUDING REMARKS

In this paper, we propose a hybrid method using maximum
entropy and dictionary /rule-based methods. Currently, dic-
tionary is only used in the post-processing stage. In the fu-
ture, we shall improve our system by also using dictionary in
the preprocessing stage. However, we need to overcome the
difficulty arising from integration of dictionary preprocess-
ing with ME. In the post-processing stage, we shall explore
more extensively on determining rules for boundary exten-
sion and entity concatenation. In addition, we shall try to
automatically generate good rules to enhance our system.
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