Discovering Spatial Relationships Between Approximately
Equivalent Patterns in Contact Maps ~

Hui Yang, Keith Marsolo, Srinivasan Parthasarathy and Sameep Mehta
Department of Computer Science and Engineering
The Ohio State University
Columbus, Ohio, USA

{yanghu, marsolo, srini, mehtas}@Qcse.ohio-state.edu

ABSTRACT

We present a method for finding relationships between ap-
proximate patterns in contact maps. We examine contact
maps generated from protein data in order to discover spa-
tial relationships among the connected patterns contained in
those maps. We discuss our criteria for determining whether
two patterns are approximately equivalent as well as the mo-
tivation behind our work. Finally, we provide results that
validate our efforts.

General Terms

Algorithms, Experimentation, Performance

Keywords

Spatial association mining, pattern-set mining, approxima-
tion, contact maps

1. INTRODUCTION

Discovering important structures in molecular datasets has
been the focus of many recent research efforts in biologi-
cal and chemical informatics. These efforts have targeted,
for example, substructure analysis in small molecules and
macromolecules such as proteins and nucleic acids, as well
as material defect analysis in molecular dynamics simula-
tions [13; 24; 7; 36; 11; 12; 26; 31]. Most of the work in
discovering substructures in molecules has focused on rep-
resenting the molecule as a 3-D graph and finding frequent
subgraphs that are contained within [16; 33; 17; 21; 14; 6; 5;
32]. A problem occurs, however, when trying to determine
whether two subgraphs are equal. In general, the problem
of subgraph isomorphism is NP-complete, and as such, any
efficient solution will require the use of heuristics or similar
techniques to keep the running time manageable. Another
approach used recently has been to represent a molecule as a
contact map. The principle behind a contact map is to only
represent the interactions between points, as opposed to an
entire three-dimensional structure. Using such a represen-
tation reduces the dimensionality of the problem down to a
more manageable size. A contact map is essentially an ad-
jacency matrix, where matrix position A(%,j) will be set to 1

*This work was supported by NSF Career Grant 11S-0347662
and NSF Grant CCF-0234273

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

if residues (or atoms, depending on the resolution used) are
“in contact” and 0 otherwise. The definition of “in contact”
can change depending on the data being examined, but most
applications use the Euclidian distance between two atoms,
with a user-specified distance as a cutoff threshold.

We are interested in using contact maps to represent pro-
tein molecules. A protein is composed of a series of amino
acids. This sequence is commonly referred to as the pro-
tein’s primary structure. When placed in aqueous solution,
a protein will “fold” into a three-dimensional structure, with
the structure uniquely determined by the protein’s sequence.
While the exact steps that a protein undergoes while folding
is unknown, it is known that a protein will fold into a se-
ries of substructures (a-helices and (-sheets), referred to as
secondary structures and these substructures will fold into
larger structures, called tertiary structures. Trying to deter-
mine the steps, or the pathway that a protein follows while
folding remains an open problem in biology. In the protein
domain, contact maps are useful in that they provide a vi-
sual representation of the secondary structures that make
up a protein molecule. For instance, a-helices show up as
thick bands on the main diagonal and [S-sheets appear as
bands either parallel or anti-parallel to the main diagonal,
depending on the conformation of the secondary structure.
In addition to reducing the dimensionality of the dataset and
providing a method of visualization, representing a molecule
as a contact map also allows for the efficient use of bit-wise
operations during implementation.

In the protein domain, contact maps have been used for
a number different applications, including molecular align-
ment, fold prediction, and the discovery of non-local struc-
tures (or patterns) [10; 9; 18; 29]. We are also interested in
mining contact maps to discover non-local structures, how-
ever, we intend to look for spatial relationships between the
patterns across multiple contact maps, not just within a
single map. In a contact map, non-local patterns are in-
dicative of interactions between the tertiary structures of a
protein molecule. Thus, if we can find relationships between
non-local patterns across several different contact maps, we
might be able to shed some insight into the protein folding
problem. Finally, we would like to cluster a set of proteins
based on the relationships that we generate to determine
whether there is any correlation between those relationships
and a molecule’s function. By incorporating information
from a database like the Structural Classification of Pro-
teins (SCOP) database [23], which classifies proteins based
on their 3-D structure, we would like to make predictions

page 62

about a molecule’s function based on its contact map. In
addition, we would also like to see if the reverse is true:
whether we can use the spatial relationships we discover to
generate rules that can be used to describe a protein’s func-
tion.

One problem with protein data is that it is inherently noisy.
Therefore, one cannot treat the distances between atoms as
absolute. Two different crystallizations of a protein might
yield slightly different coordinates for a molecule and lead to
different contact maps. Thus, we need to derive a method
to discover approximate patterns, and define a notion of
approximate equivalence.

In this paper we present an algorithm for generating spatial
associations based on approximate patterns within a contact
map. We give an overview of the related work in this field
in Section 2. Our algorithm is presented in Section 3. We
show our experimental results in Section 4 and provide our
conclusions and future goals in Section 5.

2. RELATED WORK

A great deal of work has gone into the area of using contact
maps in the protein domain. Hu et al. have looked into min-
ing contact maps to generate frequent dense patterns [10].
Additional work has gone into mining non-local patterns in
contact maps [9]. A number of researchers have attempted
to structurally align two protein molecules by solving the
the Maximum Contact Map Overlap problem [18; 4]. Oth-
ers have shown that it is possible to reconstruct a protein’s
structure from a contact map even in the presence of a large
amount of noise [30]. Zhao and Karypis have developed
a technique to predict a molecule’s contact map using Sup-
port Vector Machines (SVM), which can be beneficial in fold
recognition and structure determination [35]. Several groups
have looked into using contact maps and the principles of
energy minimization to create a system to recognize a pro-
tein’s folds [28; 19; 3]. Finally, contact maps have been used
to create a heuristic solution to the protein fold prediction
problem [29].

A number of researchers have been looking into the area of
spatial association mining. Koperski et al. [15] have used the
technique to find association rules in geographic information
system (GIS) databases. The Spatial Mining for Data of
Public Interest (SPIN!) project’ has looked into the mining
of GIS databases as well as other areas such as census data.
These efforts have primarily looked at defining associations
based on a set of spatial predicates. Others have proposed
methods to discover metric-based spatial associations [22;
8], though these metrics are defined over points, not over
objects.

3. ALGORITHM

In this section, we describe the major steps taken towards

generating approximate pattern-associations in contact maps.

An overall description of our algorithm is given in Figure 1.
We will now describe each step in further detail.

3.1 Contact Map Generation

When generating a contact map, one can examine the dis-
tances between individual atoms, between residues, or even
secondary structures, depending on the resolution desired.

"http:/ /www.ccg.leeds.ac.uk/spin/index.html

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

1. Generate contact maps for protein molecules.

2. Identify maximally connected patterns for each map
and represent each pattern as a feature vector.

3. Cluster the feature vectors into approzimately
equivalent groups using a k-means-based
clustering method.

4. Choose the optimal number of clusters based on the
clustering entropy.

5. Re-label each pattern in a contact map with its
corresponding cluster label.

6. Create an occurrence vector for each occurrence of a
labeled pattern.

7. Generate spatial pattern-associations based on the

occurrence list

Figure 1: Pattern-Association Mining Algorithm

We chose to look at the distances between the a-carbons
(Cq) of each amino acid. Thus, for a protein with N amino
acids, we will generate a binary matrix of size N x N. We
define each position C(4,j) in the contact map in the follow-
ing manner: Given two amino acids a; and a;, if d(as,a;),
the Euclidian distance between the C, atoms of a; and aj,
is less than a user-specified threshold ¢, then C(7,7) = 1.
Otherwise, C(¢,j) = 0. Since a contact map is symmet-
ric across the diagonal, we only examine half of the matrix
when running our experiments. In addition, we ignore the
protein backbone (the 1s on the diagonal) in all of our tests.

3.2 Extracting Maximal Connected Patterns
Every non-edge position (4,j) in a contact map has eight
neighbor bits at locations (i1, j+1), (¢+1,5), and (z,j£1).
For edge positions, we assume the out-of-bound neighbor
bits to be 0. We define a bit pattern or simply, a pattern,
to be an arbitrary collection of 1 and 0 bits. A connected
pattern is a pattern where, for every position that contains
a 1, there is a neighboring bit that is also set to 1. The min-
imum bounding rectangle (MBR) is the minimum rectangle
that encloses a pattern. We define a mazimally connected
pattern (also referred to as a feature in this article) to be
a connected pattern p where every neighbor bit not in p is
0. We apply a simple region growth algorithm to identify
all mazimally connected patterns within every protein con-
tact map in a dataset. Connected patterns of size 1 are not
considered.

3.3 Generation of Feature Vectors

One of the issues raised when working with contact maps is
how to represent a feature. Several different methods have
been employed, each with varying success. One simple ap-
proach is to represent a feature as a set of positions (%,5)
where each position in the set corresponds to a 1 in the
original pattern [9]. This method works best when the pat-
terns are sparse and spread over a large area. An alternative
approach is to represent a pattern as an array of bit strings
[10]. Both of these approaches work well when the patterns
examined are relatively small. When the number of pat-
terns and the patterns themselves are large, however, both
representation methods require an unacceptable amount of
storage space.

In this work, we often deal with features that contain thou-
sands of 1s and since we are attempting to identify non-local

page 63

features across a large set of contact maps, we must store
thousands of unique (and potentially large) patterns. It is
clear that representing every 1 in a pattern is not a viable
option. Therefore, we must use an approximate representa-
tion, one that captures a feature’s major characteristics, is
storage-efficient and is easily explainable and interpretable.
We propose a method using the following fields to represent
a pattern:

e Height: the number of rows contained in a pattern’s
MBR.

e Width: the number of columns in a pattern’s MBR.

o NumOmnes: the number of 1s in a pattern.

e Angle: the general linear distribution trend of all the
1s in the pattern within its MBR.

e zStdDev: the standard deviation of all the 1s’
x-coordinates (this quantifies how the 1s spread along
the x dimension).

e yStdDev: the standard deviation of all the 1s’
y-coordinates.

Thus, a feature vector is a 6-tuple consisting of the above
fields. The reason that we require both the height and
width of a pattern’s MBR instead of simply using the area
is that we believe two patterns should be considered “dif-
ferent” when one MBR has a different number of rows or
columns than the other, even if both MBRs have the same
area. To compute the angle of a connected pattern we use
the least-squares method to estimate the slope of a linear
regression line. For a pattern containing n 1s, we denote
the positions of the 1s as: (1, y1)...(Zn, yn). The least-
squares method then estimates the slope (81) as:

n

Br=3 (i —2)* (yi — 7))/ Z((mi -17)%)

i=1

Notice that (; is a real number in the range +oco. This
makes the comparison of two patterns’ 31 values difficult.
Therefore, we convert the (1 value of each pattern to its
corresponding angle off the x-axis. After this conversion,
the values of an angle are in the range of [0, 180). After
the feature generation step, we are left with a set of feature
vectors. We then normalize those vectors to decrease the
impact of attributes with a large range of values.

3.4 Clustering

Our next step is to place the maximally connected patterns
into approximately equivalent groups. Two common meth-
ods can be used to do this: classification and clustering.
Classification is a supervised procedure which requires the
user to pre-label a set of connected patterns in order to build
up a set of decision rules. Such a requirement is difficult to
meet because it requires a domain expert’s participation,
which is impractical in this case due to the large number
and variety of features that are generated. Thus, clustering
is used to group the features into approzimately equivalent
groups. Besides being an unsupervised procedure, by using
an appropriate similarity metric, a clustering algorithm can
place similar elements together while separating dissimilar
items. We consider each group generated from the clustering
procedure to be an approximately equivalent pattern group.
A pattern is assigned to the group to which its feature vector
has the highest similarity.

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

When determining the similarity between two patterns, we
believe the most significant parameters of the feature vec-
tor to be the dimensions of the MBR. As a result, similar
patterns should have similar-sized MBRs. We ensure this
property by weighing the height and width attributes more
than the others when clustering the feature vectors.

Once all the vectors have been clustered, we re-label each
pattern with its corresponding cluster label. By re-labeling
the patterns, we are left with a much smaller set of feature
types, as opposed to a large number of individual features.
This enables us to study the spatial relationship between
patterns in a more effective and efficient manner. We are
guaranteed that the information “lost” by our clustering
method is minimized by our clustering scheme, discussed
next.

Quantitatively Measuring the Clustering Quality

After the completion of any clustering algorithm, one should
measure the “goodness” of the clusters. Informally, a “good”
cluster is one that has high intra-cluster similarity and low
inter-cluster similarity. If one takes the opposite view and
measures the quality of a cluster based on the dissimilar-
ity of the features within that cluster, one is left with the
quality measure of entropy. The higher a cluster’s entropy,
the greater the degree of dissimilarity among the members
of that cluster. Given a set of events e1,ea,. . ., ,, where the
probability of an event e}s occurrence is p;, then the entropy
(H) of the set is defined as:

H = —p; *log2(pi)

Each feature vector in our dataset is composed of 6 at-
tributes. When computing the entropy of a cluster, we need
to compute it in such a way that ensures every attribute
contributes to the final entropy value. In addition, once we
have computed the entropy for each cluster, we cannot sim-
ply sum them to determine the goodness of a clustering run
because some clusters are larger than others and thus should
not carry the same weight. We propose a goodness measure
that weighs each individual cluster’s entropy by that clus-
ter’s size in relation to the size of the entire dataset. Thus,
for a dataset of N records, partitioned into k clusters, ci,. ..,
ck, where a cluster ¢; (1 < ¢ < k) has an individual entropy
H; and contains N; elements, then the total entropy of this
clustering is given by the following formula:

k
H =) H;*(Ni/N)
i=1

Now we look at computing the individual entropy of a clus-
ter. We compute the entropy of a cluster using the non-
normalized feature vectors. As stated previously, each fea-
ture vector is composed of 6 attributes. The first three at-
tributes, Height, Width and NumOnes are discrete, while
the remaining attributes, Angle, zStdDev and yStdDev are
continuous. For a discrete attribute, we take every unique
value of that attribute in the cluster as a single event. We
count the total number of occurrences for that value and
then compute the probability of this value by dividing the
number of times it occurred by the number of feature vectors
in the cluster. For the Angle attribute, we assume it has a
uniform distribution and compute its entropy as follows:

1. For all the vectors in a cluster, compute the mini-
mum and maximum angle values, denoted Anglemirn

page 64

and Anglemaz-
2. Partition the interval [Anglemin, Anglemas] into equi-
width intervals of length 30.

Each interval is treated as a single event, and we are able
to compute the entropy for the Angle attribute exactly the
same way as we compute it for a discrete attribute. For
the other two attributes, zStdDev (0,) and yStdDev (o),
we assume they follow a Gaussian distribution and therefore
their entropy can be computed by the following formula [27]:

H(z) = log,(V2me % 03,)

Finally, the entropy of a cluster is computed as:

6
H;, = ZH(Attributei)

i=1
Choosing the Cluster Size

In order to pick the “optimal” number of clusters for group-
ing our feature vectors, we run the k-means clustering al-
gorithm [20] on different k values. We then compute the
entropy for each run using the method described above and
finally, we plot the entropy vs. the number of clusters and
choose a value k where the entropy plot begins to show a
linear trend.

3.5 Mining Spatial Pattern-Associations

Creation of an Occurrence Dataset

Once the number of clusters has been chosen, we re-label
each pattern with its cluster label, i.e. the cluster ID, and
for each occurrence of a pattern in a contact map, we create
an entry with the following fields:

e p;: the cluster ID of the pattern.

e m;: the contact map ID where the pattern is located.

e r;: the row number of the pattern’s MBR’s upper left
bit within the contact map.

e ¢;: the column number of the pattern’s MBR’s upper
left bit within the contact map.

e h;: the height of the pattern’s MBR at location (r;, ¢;)
within the contact map.

e w;: the width of the pattern’s MBR at location (r;,c;)
within the contact map.

The above representation is analogous to the vertical format
structure used for frequent association mining [34]. The ver-
tical format allows us to efficiently generate spatial pattern
associations, as we will see shortly. From this point on, we
only deal with the re-labeled patterns.

Computing Pattern Distance

Before we define the problem of spatial pattern-set mining,
let us first define how to compute the distance between two
connected patterns. The distance between two patterns p;
and ps is defined only if they occur in the same map. Two
types of metrics can be used to compute the distance be-
tween two patterns, with the first type defined over their
feature vectors and the second over their spatial shapes and
locations in a map. We do not consider the first type as
it does not reflect the spatial distance between two pat-
terns. Several distance metrics are available based on spatial
shape and location. They include the Hausdorff distance [1],

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

the distance between the center 1-bits in both patterns, the
shortest distance between two 1-bits from each pattern, and
the distance between two patterns’ MBRs.

In this work, we use the last metric, the distance between
two patterns’ MBRs. There are several reasons that we use
such a distance metric. It gives an approximate spatial dis-
tance between two patterns and is easy to explain. Also, it
has a better scalability compared to other metrics such as
the Hausdorff distance. There are three different cases that
can occur when computing the distance between two MBRs:

e Case 1 (Overlap): If two MBRs are overlap, then the
distance between them is 0

e Case 2 (Parallel): If two MBRs are parallel to each
other, then the distance between them is the Euclidian
distance between the two closest edges.

e Case 3 (Other): If two MBRs are neither overlapping
nor parallel, the distance between them is the mini-
mum Euclidian distance between any pair of vertices.

Spatial Pattern Creation

Given n spatial patterns P = {p1,p2,...,pn}, and k 2-D
maps M = {mi, ma,...,my}, a spatial dataset D can be
described as: D = {E;},

where E; =<p;, mj, 73, ¢, hi,w; >, and p; €EP and mj; e M
In the context of contact maps, each E; corresponds to one
occurrence of a maximal connected pattern, with p; being
the pattern’s cluster ID. Given a spatial dataset D as de-
scribed above, we define the problem of spatial association
mining as the identification of associations which are not
only frequent over the 2-D maps in M, but also meet a
user-specified pattern distance criterion.

A pattern association or pattern-set S of size k is one that
consists of k patterns {po,p1,...,pr—1}, where p; € P and
0 < i < (k—1) and distance(po,p;) < mazxDist, where
0 < j < (k—1) and mazDist is a user-specified distance
threshold. Thus, a pattern-set S covers a circular area on
a 2-D map, with its center located in po and its radius no
greater than maxzDist. po is also called the center pattern of
S. Unless otherwise noted, the first pattern in S is its center
pattern. A pattern-set of size k is denoted as a k-set. The
support of a pattern-set is the percentage of contact maps in
the dataset in which it occurs. A frequent pattern-set is one
whose support is greater than or equal to a user-specified
parameter minSupport. Note that when we say a pattern
association is in a given map, we currently do not consider
its specific occurrences in the map, just that it exists. We
plan to integrate information regarding in-map occurrences
into our future work.

A pattern set Si is a sub-pattern-set of So, if: Vp; € S1,p; €
S> and they have the same center pattern. Accordingly,
S> is a super-pattern-set of S;. For instance, <A,B,C> is
a sub-pattern-set of the set <A,B,C,D>. A mazimal fre-
quent pattern-set is one that does not have a frequent super-
pattern-set.

Pattern-Set Generation: Basic Algorithm

The basic principle of our pattern-set generation algorithm
is to generate pattern-sets in an increasing level-wise man-
ner, starting with pattern-sets of size 1. The first step is
to identify all the individual patterns that reside in at least
minSupport contact maps. Given that all pattern occur-
rences are organized in the vertical format representation,

page 65

this step is fairly easy to implement. The second step is to
generate all frequent 2-sets, the third step to generate k-sets
where k£ > 2, and the last step is to generate only maximal
pattern sets, which is optional.

The anti-monotonicity property of a frequent spatial pattern-
set is used to facilitate the generation of frequent k-sets with
k > 2. The property of anti-monotonicity states that a
pattern-set cannot be frequent if one of its sub-pattern-sets
is infrequent. Therefore, when generating k-sets, we only
need to consider those where all the (k-1)-sub-pattern-sets
are also frequent. We define a candidate pattern-set as one
where all its sub-pattern-sets are frequent.

In the basic algorithm, for a candidate 2-set < p;,p; >, a
brute-force method is used to check whether it is frequent
by examining all possible location combinations of p; and
p; in a map. Such a method has very poor performance,
given that a pattern can occur at multiple locations within
a contact map.

A similar process is used to generate all frequent k-pattern-
sets of size k > 2 by first generating candidate k-sets based
on the frequent (k—1)-sets, then computing their support to
see if they meet the minSupport threshold. Since only cir-
cular pattern-sets are considered in this work, we do not
need to compute the pattern distance in this step. For
example, if we know both < A,B > and < A,C > oc-
cur at location (m;,r,c), where m; is the ID of a map,
and (r,c) is the location of the upper left bit of the MBR,
then we know <A,B,C> must also occur at (mi,r,c), as
we are sure that both B and C are within the distance of
maxzDist from A at (ms,r,c). By the same token, if both
S1 = {so,s1,.--,8k—1,p} and Sz = {so, $1,...,8k—1,q} OC-
cur at position (ms,r,c), then Sz = {so,s1,...,8k—1,P0,¢}
must also occur at (m;, r,c).

Pattern-Set Generation: Optimizations

Two optimization techniques are employed to improve per-
formance when generating all 2-pattern-sets. One quickly
eliminates the maps that do not contain a certain candidate
pattern-set, the other prunes patterns that are sure not to
be within mazDist of a pattern.

To eliminate maps that do not contain a certain candidate
2-set, we assign each map in the dataset a unique ID that re-
mains fixed throughout the entire algorithm. By doing this,
we can record the IDs of the first and last map where a pat-
tern or pattern-set appears, denoted as M min and Mmaqz. We
can then define an interval [Mmin, Mmaz] Which represents a
superset of the maps in which a pattern or pattern-set exists.
For a 2-set <p;,p; >, we intersect p;’s [Mmin ,Mmaz] interval
with that of p;’s. Then we decide whether a further step is
needed to determine this set’s support. If the intersected in-
terval spans fewer than minSupport maps, such a set can be
immediately discarded; otherwise, a further step is needed
to decide whether it is frequent, which can be done much
faster than the non-optimized version since we now have a
much smaller set of maps to examine.

In order to prune away patterns that are certain to be greater
than maxDist from a given pattern, the following method
is used. For a given pattern p;, we order its occurrences by
(ri, ¢;) values. Once we have all of a single pattern’s loca-
tions ordered in a map, the following step can be taken to
prune far-away patterns. For a pattern p at location (r,c)
in a map, where h is the height of p’s MBR . at this location

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

and (r,c) is the location of the upper left bit of p’s MBR, we
first divide the map into the following 3 areas:

e A;-the area above the row

with row number =[(r-maxDist)]
e As-the area under the row
with row number =[(r+h+maxDist)]

e Ajs-the remaining area
We determine into which of these three areas another pat-
tern q is located before computing its distance to p. If q lies
in either in A; or As, we are sure that it cannot be close to
p. Since a pattern’s occurrences in a map are ordered, we
can use a binary search to mark the last occurrence of ¢ in
A; and the first occurrence of g in As. Once this marking is
complete, we only need to compute the distances from p to
g between the two marked occurrences (i.e. if g lies in Aj).
The other optimization technique introduced to improve the
performance is the usage of equivalence classes. An equiv-
alence class is a collection of frequent pattern-sets, where
all sets have the same prefiz. A set’s prefix is composed
of all the patterns in a set except the last one. The size
of an equivalence class is defined as the size of its corre-
sponding pattern-sets. Obviously, all sets in an equivalence
class have the same center pattern. For instance, suppose
P = {A,B,C}. P would have the following size-2 equiv-
alence classes: {< A, A> <A B> <A C>}, {<B/A>
,<B,B><B,C>}, and {<C,A>,<C,B><(C,C>}
(Note: we assume all the pattern-sets are frequent). One
potential size-3 equivalence class for P is {< 4,4, A > <
AJA B>, <A A C>}.
The optimized algorithm to generate frequent pattern sets
of size greater than 2 is as follows: We first partition all
frequent 2-sets into equivalence classes. As demonstrated
in [25], all equivalence classes are independent of one an-
other. Therefore, we can work on one equivalence class a
time to generate larger frequent sets. This allows us to effi-
ciently mine frequent spatial associations in a large dataset,
as we are dealing with equivalence classes individually in-
stead of the whole dataset.

Evaluating Frequent Pattern-Sets

For a frequent pattern-set, one would like to define a mea-
sure of “usefulness.” This measurement is often subjective
and domain-specific. In the protein context, we propose
using a pattern-set’s entropy to measure its “usefulness.”
We do this by integrating the SCOP lineage information
of a pattern-set’s associated proteins. We realize several
other public databases also provide a method of structure-
based protein classification, and that their classifications for
a given protein may disagree, but for the time being, we use
the SCOP classification.

For each frequent pattern-set, we identify the list of pro-
teins contained in that pattern-set. We then classify these
proteins into different groups based on a protein’s SCOP
lineage. A protein’s SCOP lineage is organized into 6 lev-
els: Ly : class, La : fold, L3 : super-family, Ls : family,
Ls : protein, and Lg : species. In our experiments, we look
at the first 4 levels.

Once the N proteins contained in a pattern-set S are clas-
sified at a certain SCOP level, we compute the entropy to
measure how well these proteins are distributed among dif-
ferent SCOP categories. Take L1: class as an example.
L; is divided into 11 sub-classes, denoted {c1,ca,...,c11}.
When computing the entropy for S at this level, we first

page 66

count the number of proteins in each sub-class, denoted
{n1,n2,...,n11}. The entropy is computed as:
11

H(S) =Y ~(ns/N) x logs(ni/N)
i=1

The pattern-set generation algorithm provides a parameter
that allows a user to specify a maximum entropy at a given
SCOP level. As with other user-specified parameters, the
value of this parameter differs from dataset to dataset and
is determined empirically.

As we discussed in Section 2, there has been a great deal
of work toward the mining of spatial associations. We feel
that our work differentiates itself from existing efforts in a
number of areas:

e Vertical format data representation: To the best of our
knowledge, there has not been any work in spatial data
mining that represents a database using a vertical for-
mat. Accordingly, we are the first to use “equivalence
classes” to expedite the process of mining spatial data.

e Metric-based spatial associations: Unlike the spatial
associations proposed in [15], where a spatial associa-
tion is defined over a set of spatial predicates (such as
close_to() and west_of(), which are pre-defined and can
only approximately describe the relationships between
spatial objects), in our work, the relationship between
spatial objects in a pattern-set is accurately quantified
by Euclidian distances.

e 2-D object-oriented spatial associations: Existing metric-

based spatial association mining algorithms [22; 8],
have defined their distance metrics over points instead
of objects. In this case, however, using points instead
of objects can lead to information loss. The distance
metric implemented here functions over actual 2-D ob-
jects; in this case, MBRs. The metric quantifies the
topological relationship between two MBRs when they
overlap or are parallel to each other and takes into ac-
count the size of the MBRs otherwise.

e Quantitative measurement of “interestingness”: An
entropy-based measurement is proposed to indicate
whether a particular pattern-set is “interesting.”

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results carried
out on 3 different datasets.

4.1 Datasets

To generate our contact maps, we used proteins taken from
the Protein Data Bank (PDB) [2]. We generated three
different sets of contact maps using a cut-off distance be-
tween amino acids of 4.5A, 6A, and 7.5A. Table 1 shows the
datasets generated. Also given in the table are the num-
ber of unique feature vectors, the total number of feature
occurrences and the average number of features per protein.

4.2 Clustering Results

To cluster the feature vectors, we used a k-means-based clus-
tering algorithm, where the Euclidian distance between two
feature vectors is used as the similarity metric. As men-
tioned previously, in order to choose an optimal number of
clusters, we ran the clustering algorithm multiple times for
each dataset with different values for k. Once we obtained
the clustering results, we computed the entropy for each

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

cluster and plotted the weighted sum of the entropy versus
the number of clusters (k). Based on the plot, we chose
the value of k where entropy became approximately linear.
When this criterion leads to multiple solutions, we chose
the one that has smaller H(Height) and H(W1idth), i.e. the
one that gives a tighter clustering solution in terms of a
connected pattern’s height and width.

Figure 2 shows the entropy plots for the three datasets.
Based on the entropy values and H(Height) and H(Width),
24 and 32 clusters are the k values selected for all three
datasets. We evaluated both and the results using 24 clus-
ters were always worse in terms of the quality of pattern-sets
than those obtained using 32 clusters (see Section 4.3). One
possible explanation for this result is that placing the fea-
tures into 24 approximate equivalence groups eliminates the
information that can distinguish one pattern from the other
when 32 groups are used.

4.3 Evaluation of Circular Spatial Pattern Sets

‘We only consider frequent pattern-sets whose SCOP lineage-
based entropy is less than a certain threshold. In addition,
when both a pattern-set and its super-pattern-set have an
entropy below threshold, only the latter is kept for analysis.
We denote the pattern-sets retained after these two steps
as low entropy maximal pattern-sets, or quality pattern-sets.
Three parameters are used to generate low entropy maxi-
mal pattern-sets, minSupport, mazDist, and the maximal
pattern-set entropy at one or more SCOP levels. For conve-
nience, we refer the last parameter as the entropy cut-point.
If max Dist is fixed, one can observe that the set of frequent
pattern-sets derived at a lower minSupport value must be
a superset of the set of frequent pattern-sets derived with
a higher minSupport. Therefore, in order to get a larger
collection of pattern-sets, we set the minSupport to a rel-
atively low value of 0.02. As for the maxDist parameter,
various values were applied to each dataset. Based on the
experimental results (SCOP-based entropy used as the main
leverage), we empirically chose the following values for the
3 datasets: 32 for the 4.5A dataset, 45 for the 6.0A dataset
and 55 for 7.5A. Like the other parameters, the maximal
SCOP-based pattern-set entropy is selected empirically. In
our experiments, we only look at the first 4 SCOP levels.
At a given SCOP level, we prefer a pattern-set that has a
lower entropy, since a lower entropy usually indicates that a
large percentage of the cluster’s proteins belong to the same
SCOP group. The entropy cut-points we chose correspond-
ing to SCOP levels L; and L» are 2.0 and 3.2, respectively.
For the other two levels, the entropy cut-point is 3.7.

Table 2 presents the number of low entropy maximal pattern-
sets generated in each dataset. In order to compare results
between the datasets, minSupport is set so that the value of
(Numbero fproteins) x minSupport is the same across all
datasets. Thus, 0.02 is used for the 6.0A dataset and 0.01
for the other two.

A closer look at the results shows that the pattern-sets
demonstrate different clustering ability. Nearly all the sets
from the 4.5A dataset consist of Small proteins, a sub-class
at SCOP level Li. In other words, for most pattern-sets,
their associated proteins are classified as small proteins in
SCOP. One example is the pattern-set (10 1 22) (Note that
each value in a pattern-set corresponds to a clusterID ob-
tained by clustering the individual feature vectors). Such a
pattern-set was found in 22 proteins, which had the follow-

page 67

Threshold Number of Number of Number of Total Average Number of
Distance Proteins Unique Features Feature Occurrences Features per Protein
4.5A 2,169 23,148 74,396 34
6.0A 1,090 36,967 175,525 52
7.5A 2,122 53,817 410,041 122

Table 1: Contact Map Datasets

Entropy vs. Cluster Size.

Entropy vs. Cluster Size

Entropy vs. Cluster Size

Entropy

entiopy” ——

Figure 2: Clustering results: (a)4.5 A (b)6 A (¢)7.5 A

dataset | H(L1) <20 | H(L1) <2.0andH(L2) <32 | #:H(L:)<15 | #:H(L1)< 1.5 and H(L:) <1.7)
4.5 433 142 19 0
6.0A 214 93 47 11
7.5A 1102 468 314 13

Table 2: Low entropy maximal pattern-sets

ing SCOP L; distribution: 2 all-8, 2 a + 8, 17 small and
1 designed. Unlike the 4.5A dataset, the pattern-sets from
the 7.5A dataset tend to favor all-3 proteins.

One other observation to be drawn about the pattern-sets
generated for the 4.5A dataset is that very few of them have
H;, < 1.5. Empirically, we found that if a pattern set’s en-
tropy at a certain SCOP level was less than 1.5, then nearly
all of its associated proteins belonged to the same SCOP
sub-group. In addition, we found that the 4.5A pattern-
sets generally occur in very few proteins. One possible ex-
planation for this behavior might be that the 4.5A contact
maps are too sparse to capture most structural information,
while the 7.5A maps are so dense that they introduce too
much noise which would confuse the structural distinction
for other types of proteins such as all-o, a + 3, etc.

The pattern-sets from the 6.0A dataset have a relatively bal-
anced distribution in terms of the number of protein groups
they are able to distinguish. For instance, the pattern set
(5 5 10 25 26), was found in 23 proteins with the following
SCOP L, distribution: 21 all-a, 1 all-B and 2 a/B. (Please
see Figure 3(b) for a visualization of the above pattern-set
in the all-a protein 1a2f (ID from the PDB)). On the other
hand, the pattern set (3 3 7 18) is good at distinguishing all-
B proteins. Among the 49 proteins where this set occurs, the
following SCOP L; distribution was found to exist: 1 all-o,
39 all-B, 2 a/B, 5 @+ B, 1 membrane and cell surface, and
1 designed. (Please see Figure 3(a) for an illustration of the
above pattern-set in the all-g protein 1a25 (ID from PDB)).
One property illustrated by the pattern-sets from the 6.0A
dataset that does not exist in the the 4.5A dataset is that

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

there exists a collection of maximal pattern-sets that have
low entropy (< 1.5) at the SCOP level Li (some are even
close to 0) and that there exists a collection of maximal
pattern-sets that have low entropy across the first four SCOP
levels (see Table 2). An example pattern-set that presents
both of these properties is (10 5 10 28). There are 23 pro-
teins that contain this pattern-set, and their distribution at
each of the first four SCOP levels is shown in Table 3.

4.4 Performance

In Figure 1, we give an overview of our mining algorithm.
In this section, we provide a high-level analysis of the algo-
rithmic running time of each step in that algorithm. Please
note that we provide this analysis without proof. Before
proceeding, however, we define several variables that will be
used to help quantify the running time of each step. Let M
be the number of protein molecules in a given dataset, and
N, be the number of amino acid residues contained in the
largest protein molecule. Ny is defined to be the maximum
number of occurrences of a feature in a contact map, NV, the
total number of unique features in the dataset, and N, the
total number of occurrences of all the features in a dataset
of M contact maps.

e The generation of contact maps occurs in order
O(MN,?) time.

e The time required to identify all the features in a
dataset is O(MN,?) + O(N,). Of this, O(MN,?) is
the time required by the region growth algorithm to
extract all the maximally-connected patterns in the

page 68

11

11
center 1

11

11
11

111

V]
=
N

(a) (b)
Figure 3: (a) The locations of pattern-set (3 3 7 18) in protein 1a25. (b) The locations of pattern-set (5 5 10 25 26) in protein
la2f.

Ly:class Ly:fold Lj:super family L4:family
lall 8 1 SH3-like barrel 1 SH3-like barrel 1 SH3-domain
20 o/ 20 PLP-dependent transferases 20 PLP-dependent transferases 20 AAT-like
1 Peptides 1 Amyloid peptides 1 Amyloid peptides 1 Amyloid peptides
1 designed 1 Alpha-t-alpha 1 Alpha-t-alpha 1 Alpha-t-alpha

Table 3: The distribution of 23 protein containing the maximal pattern-set (10 5 10 28) with a low entropy across the first
four SCOP levels.

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

page 69

maps and O(N,) is the time needed to identify the
unique features. For the 7.5A dataset, which contains
over 400,000 feature occurrences, the time to complete
this step was less than 20 minutes.

e The time required by one iteration of the k-means-
based clustering algorithm is O(kN,,) with k being the
number of clusters. Of all the steps in the algorithm,
this step took the longest, as we must collect a set
of cluster solutions before we can decide on an opti-
mal number of clusters. For each value of k, we let
the algorithm run for 300 iterations to make sure any
solution is approximately optimal. The time for one
clustering run ranged from from 1 to 2 hours. The
larger the dataset, the longer the clustering would take
to complete, but the running time is not affected by
the number of clusters that were generated. Once the
number of clusters has been selected, it is possible to
re-use the clustering solution to label the features for
a new set of proteins, provided that the same distance
threshold is used when generating the contact maps.

o The fourth step of the algorithm selects an optimal
number of clusters based on the clustering entropy of
a clustering run. It requires O(V,) time to compute
the entropy for a given run.

o Re-labeling each pattern and creating an occurrence
vector requires a running time of O(N,) for a particu-
lar dataset.

e The final step of the algorithm involves the actual gen-
eration of frequent spatial pattern-associations. The
time required in this step can be decomposed into 3
phases:

1. Discover all frequent 1-sets. This takes O(N,)
time.

2. Generate all frequent 2-sets, which can be done in
O(MN;?) time. This is so because in the worst
case, one needs to compute the distance between
every pair of feature occurrences in a map.

3. Generate all pattern-sets of size greater than 2.
It is hard to quantify the time required to gener-
ate a candidate set and all the frequent pattern-
sets of a given size, because the time is not only
impacted by the two user-specified parameters,
minSupport and maxDist, but is also dataset-
specific. As a result, we provide only the time
required to confirm whether a candidate pattern-
set is frequent, which is O(MNy). The time is
linear to the number of occurrences since there
is no need to compute the distance between two
feature occurrences in this step.

Please note that the performance analysis given here
assumes the worst-case scenario. In practice, the two
threshold parameters, minSupport and mazDist, can
play a significant role in affecting the performance of
this step.

5. CONCLUSIONS AND ONGOING WORK

In this paper we present our algorithm for discovering spatial
relationships between approximately equivalent patterns in
contact maps. While this work is still in the preliminary
stages, we were able to find several interesting relationship
rules. With further tuning of the algorithm parameters, we
hope to find even more biologically-meaningful results.

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

We are currently extending this work in several aspects:
First, we are implementing the other distance metrics de-
scribed in this paper and intend to run an exhaustive com-
parison between them. Second, we plan to extend the pattern-
set mining algorithm so that it can also generate pattern-sets
of other spatial relationships. For example, we are inter-
ested in finding pattern-sets that have all pairs of involved
patterns within a certain distance, and those that can be
spatially arranged as a sequence, with the distance between
any two adjacent patterns below a certain threshold. Fi-
nally, we plan to take into account a pattern-set’s intra-map
occurrences, including both the number of occurrences and
the locations of those occurrences in a given map.

In addition, we would like to expand this work to other do-
mains. We have access to several datasets containing infor-
mation about the agricultural yield of farm fields for specific
crops over a series of years. By generating contact maps for
this dataset and applying our algorithm, it might be possi-
ble to determine whether there is any relationship between
certain areas and specific crops.

6. REFERENCES

[1] M. J. Atallah. A linear time algorithm for the hausdorff dis-
tance between convex polygons. Information Processing Let-
ters, 17:207-209, 1983.

[2] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. Shindyalov, and P. Bourne. The protein data
bank, 2000.

[3] Marco Berrera, Henriette Molinari, and Federico Fogolari.
Amino acid empirical contact energy definitions for fold
recognition in the space of contact maps. BMC Bioinfor-
matics, 4(8), Feb. 2003.

[4] B. Carr, W. Hart, N. Krasnogor, J. Hirst, and E. Burke.
Alignment of protein structures with a memetic evolutionary
algorithm. In 2002, 2002.

[5] D.J. Cook, L.B. Holder, S. Su, R. Maglothin, and I. Jonyer.
Structural mining of molecular biology data. IEEE Engi-
neering in Medicine and Biology, 20(4):67-74, 2001.

[6] H.M. Grindley, P.J. Artymiuk, D.W. Rice, and P. Willett.
Identification of tertiary resemblence in proteins using a
maximal common subgraph isomorphism algorithm. J. of
Mol. Biol., 229(3):707-721, 1993.

[7] L. Holm and C. Sander. Protein structure comparison by
alignment of distance matrices. J. Mol. Biol., 233:123-138,
1993.

[8] Wynne Hsu, Jing Dai, and Mong Li Lee. Mining viewpoint
patterns in image databases, 2003.
[9] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M.J. Zaki. Mining

non-local structural motifs in proteins. In BIOKDD 2002,
Edmonton, Canada, 2002.

[10] Jingjing Hu, Xiaolan Shen, Yu Shao, Chris Bystroff, and
Mohammed J. Zaki. Mining protein contact maps.

[11] I. Jonassen, I. Eidhammer, D. Conklin, and W. Taylor.
Structure motif discovery and mining the pdb. In German
Conference on Bioinformatics, 2000.

[12] J. Kim, E. Moriyama, C. Warr, P. Clyne, and J. Carlson.
Identification of novel multi-transmembrane proteins from
genomic databases using quasi-periodic structural proper-
ties. Bioinformatics, 2002.

[13] R. King, A. Karwath, A. Clare, and L. Dehaspe. Genome
scale prediction of protein functional class from sequence us-
ing data mining. In The Sizth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2000.

page 70

[14]

(15]

(16]

(17]

18]

(19]

(20]

(24]

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

I. Koch, T. Lengauer, and E. Wanke. An algorithm for find-
ing maximal common subtopologies in a set of protein struc-
tures. J. of Comp. Biol., 3(2):289-306, 1996.

K. Koperski and J. Han. Discovery of spatial association
rules in geographic information databases. In Proc. 4th Int’l
Symp. on Large Spatial Databases, pages 47-66, 1995.

M Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In IEEFE International Conference on Data Mining, Nov
2001.

M Kuramochi and G. Karypis. Discovering frequent geomet-
ric subgraphs. In IEEE International Conference on Data
Mining, Dec 2002.

Giuseppe Lancia, Robert Carr, Brian Walenz, and Sorin Is-
trail. 101 optimal pdb structure alignments: a branch-and-
cut algorithm for the maximum contact map overlap prob-
lem. In Proceedings of the fifth annual international confer-
ence on Computational biology, pages 193-202. ACM Press,
2001.

R. Najmanovich M. Vendruscolo and E. Domany. Pro-
tein folding in contact map space. Physical Review Letters,
82(656), 1999.

J MacQueen. Some methods for classification and analysis
of multivariate observation. In L.M. Le Cam and J. Ney-
man, editors, Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, volume 1, pages
281-297, Berkeley, 1967. University of California Press.

E.M. Mitchell, P.J. Artymiuk, D.W. Rice, and P. Willett.
Use of techniques derived from graph theory to compare sec-
ondary structure motifs in proteins. J. Mol. Biol., 212:151—
166, 1990.

Yasuhiko Morimoto. Mining frequent neighboring class sets
in spatial databases. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 353—-358. ACM Press, 2001.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for
the investigation of sequences and structures. J. Mol. Biol,
247:536-540, 1995.

W. Pan, J. Lin, and C. Le. Model-based cluster analysis of
microarray gene-expression data. Genome Biology, 2002.

(25]

[26]

28]

[29

[30

(31]

(32]

(33]

(34]

(35]

(36]

Srinivasan Parthasarathy, Mohammed Javeed Zaki, Mit-
sunori Ogihara, and Sandhya Dwarkadas. Incremental and
interactive sequence mining. In CIKM, pages 251-258, 1999.

L. De Raedt and S. Kramer. The level-wise version space
algorithm and its application to molecular fragment finding.
In Seventeenth International Joint Conference on Artificial
Intelligence, 2001.

C. E. Shannon. A mathematical theory of communica-
tion. SIGMOBILE Mob. Comput. Commun. Rev., 5(1):3—
55, 2001.

M. Vendruscolo and E. Domany. Protein folding using con-
tact maps. Vitamins and Hormones, 58(171), 2000.

Michele Vendruscolo and Eytan Domany. Efficient dynamics
in the space of contact maps. Folding & Design, 3(5):329—
336, 1998.

Michele Vendruscolo, Edo Kussell, and Eytan Domany. Re-
covery of protein structure from contact maps. Folding &
Design, 2(5):295-396, 1997.

J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and
C.-Y. Chang. Automated discovery of active motifs in mul-
tiple rna secondary structures. In International Conference
on Knowledge Discovery and Data Mining, 1996.

X. Wang, J.T.L. Wang, D. Shasha, B.A. Shapiro, I. Rigout-
sos, and K. Zhang. Finding patterns in three-dimensional
graphs: Algorithms and applications to scientific data min-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing, 14(4):731-749, jul/aug 2002.

X. Yan and J. Han. gspan: Graph based substructure pattern
mining. In IEEE International Conference on Data Mining,
Dec 2002.

Mohammed J. Zaki and Karam Gouda. Fast vertical mining
using diffsets. In RPI Technical Report 01-1, 2001.

Ying Zhao and George Karypis. Prediction of contact maps
using support vector machines. In Bioinformatics and Bio-
engineering. IEEE, 2003.

X. Zheng and T. Chan. Chemical genomics: A systematic
approach in biological research and drug discovery. Current
Issues in Molecular Biology, 2002.

page 71

